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Abstract

Automatically generating source code from nat-
ural language descriptions has been a growing
field of research in recent years. Invoking cor-
rect APIs is crucial to code generation. How-
ever, existing code generation models struggle
in handling unknown APIs (e.g., user-private
projects and libraries) , often generating erro-
neous or even non-existent APIs. Inspired by
the process of human developers using code
search tools to learn unknown APIs, we pro-
pose ToolCoder, a novel approach that inte-
grates API search tools with existing models to
assist code generation and API selection. Tool-
Coder automatically invokes API search tools
to retrieve relevant APIs and learns API usages
from retrieved results. Our experimental results
demonstrate that ToolCoder exhibits excellent
performance and generalization ability across
five public and private library code generation
benchmarks, with at least 6.21% improvement
on average pass @ 1 metrics and 9.64% improve-
ment on average pass@ 10 metrics compared
to state-of-the-art methods. Furthermore, we
show that our relatively small ToolCoder model
is comparable to one of the current best mod-
els, i.e.,, GPT-3.5, highlighting the potential of
incorporating programming tools into the code
generation process.

1 Introduction

Deep learning techniques have shown great
promise in generating high-quality source code
from natural language requirements. Nowadays,
pre-trained language models have achieved the
state-of-the-art results on multiple code generation
benchmark, such as CodeX (Chen et al., 2021),
ChatGPT (Chen et al., 2023; Ouyang et al., 2022)
and CodeGen (Nijkamp et al., 2022) models.
Application Programming Interfaces (APIs) are
crucial components of programs, and selecting cor-
rect APIs is a key step to code generation. Exist-
ing models demonstrate impressive proficiency in
generating code and APIs through their extensive

general knowledge. However, these solutions en-
counter significant challenges when faced with un-
known APIs, especially those from private projects
and libraries. The lack of specialized domain
knowledge in dealing with such APIs often leads
to the generation of erroneous code. These models
may fabricate non-existent APIs, a phenomenon
commonly referred to as "hallucination” of large
language models (Ji et al., 2023).

We conduct a preliminary experiment to validate
the "hallucination" for APIs. We apply a popular
code generation model - CodeGen-2B to generate
programs involving private libraries (Zan et al.,
2022a). These private libraries contain numerous
unknown APIs that code generation models have
not seen before. We found that more than 90% of
generated programs contain incorrect APIs. The
above limitation hinders the application of code
generation models in real-world software projects.

To assist models in generating unknown APIs,
we draw inspiration from human programmers’
code search behaviors. When encountering un-
familiar APIs, programmers turn to search engines
to retrieve APIs relevant to current requirements or
learn APIs through documentations. Inspired by
this observation, our motivation is to enable code
generation models to use search tools to obtain
suitable APIs in those unknown libraries.

In this paper, we propose ToolCoder, a low-cost
and efficient solution that integrates API search
tools into pre-trained code generation models, mim-
icking the searching behaviors as in the demonstra-
tive example. To enable models to use tools, we
fine-tune these models upon the source code data
containing tool usage information. To obtain the
fine-tuning data, we propose an automated data an-
notation method, which uses ChatGPT to annotate
tool usage information in the original source code.
After the fine-tuning, we successfully integrate API
search tools into code generation, allowing existing
models to use external tools autonomously.



Private Library Public Library

Monkey BeatNum TorchData Pandas Numpy
96.72% 90.18% 62.70% 32.30% 26.34%

Table 1: Hallucination rate of CodeGen-2B model upon
different libraries.

We carry out in-depth evaluations to show that
ToolCoder is capable of improving pass rate (Chen
et al., 2021) when dealing with unknown libraries
and APIs. @ We evaluate our model on two pri-
vate library benchmarks (Zan et al., 2022a). With
the help of tools, ToolCoder can generate more un-
seen APIs and alleviate the hallucination in APIs,
even outperforming GPT-3.5. ® We further evalu-
ate ToolCoder on three public library benchmarks
(Zan et al., 2022a). Our model achieves significant
improvements over state-of-the-art API-oriented
baselines (Zan et al., 2022b,a), with at least 1.39%,
3.26% and 10.11% pass@1 on the three bench-
marks correspondingly. @ We also conduct an
ablation study to analyze the different settings in
our experiments, including the dataset, the training
process, and the inference settings. To the best of
our knowledge, this paper takes the first step to
explore the concept of incorporating programming
tools into code generation models.

Our contributions in this paper can be summa-
rized as follows:

* We propose to enable code generation models
to invoke code search tools, i.e., ToolCoder, ad-
dressing code generation with unseen APIs.

* We propose an automated data annotation method
in software engineering community and release
a tool-augmented code generation dataset for fur-
ther study.

* We conduct extensive experiments on code gener-
ation tasks involving multiple private and public
libraries. We demonstrate that ToolCoder sig-
nificantly reduces the frequency of generating
erroneous fabricated APIs.

2 Motivating Examples

In order to demonstrate our motivation, we present
the limitations of existing models in generating
unseen APIs and how API search tools alleviate the
limitations.

2.1 Hallucinations with unknown APIs

APIs are essential to modern software development.
However, generating the proper API remains chal-

Case 1: Private library (BeatNum)

import beatnum as bn
num_str = bn.numstr([0,33,4444522])

module ‘beatnum’ has no attribute ‘'numstr'
Case 2: Publich library (Numpy)

a =np.arange(2*3*2).reshape((2,3,2))
count_value = a.count(2)

‘numpy.ndarray’ object has no attribute ‘count’

Figure 1: Hallucination examples of CodeGen-2B
model in generating APIs, including unknown private
libraries (Case 1) or even popular public libraries (Case
2).

lenging for code generation models. Existing mod-
els often encounter the issue of "hallucination" (Ji
et al., 2023) when faced with unknown or unfamil-
iar third-party library APIs.

To demonstrate this issue, we employ the popu-
lar CodeGen-2B (Nijkamp et al., 2022) to evaluate
its API generation performance. We employ bench-
marks from (Zan et al., 2022a) and generate 10
samples for each question. ""Hallucination Rate'
presents the percentage of incorrect API genera-
tions that are identified as hallucinations and ver-
ified to be incorrect in the respective third-party
library. Table 1 reveals that over 90% of the gen-
erated APIs are incorrect in private (or unknown)
private libraries, while even when dealing with pop-
ular public libraries, the incorrect rate still exceeds
26%. Figure 1 presents two examples of hallucina-
tion in the generated code for such APIs. Case @:
CodeGen-2B lacks corresponding private knowl-
edge and generates an incomprehensible API for
the unknown private library BeatNum. This high-
lights the potential risk that existing code genera-
tion models may fabricate non-existent APIs for
unknown APIs. Case @: Even for widely-used
third-party libraries, the models may still struggle
in API generation. E.g.,, CodeGen-2B generates a
non-existent count API for the NumPy library.

The performance gap caused by APIs, partic-
ularly unknown APIs, is huge and quite severe,
according to Table 1. It is essential to address these
API generation challenges and propose solutions
to finally improve generation quality.

2.2 Ecxisting search tools to aid API generation

When facing unknown or unfamiliar libraries, it is
natural for programmers to seek help and advice
from API search tools, which inspires the design
of ToolCoder. For example, the developer turns
to online search engine tools or library docu-
mentation search tools and gets the proper API
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suggestion. A comparison of these two types of
search tools is given in Table 2.

Online Search Engine Tool Online search en-
gine tools provide rich information about API us-
ages. Human programmers share their experience
in solving various programming problems on vari-
ous community and tutorial websites such as Stack-
Overflow (platform, 2023) and datagy.io (DataGY,
2023). They organize and summarize the API sug-
gestions used for different problems. When other
people encounter similar problems, search engines
can use this information well. Commercial search
engine tools such as Google (Google, 2023), Duck-
DuckGo (DuckDuckGo, 2023) can regard these
community websites as knowledge resources and
can provide helpful API suggestions, especially
for those public libraries that are well-known and
widely discussed.

Documentation Search Tool Since lesser-
known public libraries or private libraries have few
discussions on the online community websites, hu-
man programmers also turn to library documen-
tations for API suggestions. Documentations are
usually available for both public libraries and pri-
vate libraries if one has access to the library. There-
fore, it can provide rich information for any API
usage scenario. Usually, API information in the
documentation is usually provided in pairs of API
and corresponding comments. We can use BM25
(Robertson and Zaragoza, 2009) or other seman-
tic similarity scores as search metrics to search
for comments that meet the requirements and find
the corresponding API as the final suggestion for
coding.

These various search tools are helpful for select-
ing APIs. Inspired by the API search process of
human developers, we aim to incorporate these two
types of search tools into code generation models.

— 3. Inference With Search Tools —_—

NL_input:
How do | get the value at an n-th row of a given column in Pandas?

output =

‘A Selects a single row of data from a DataFrame 9
pandas.DataFrame.iloc |

output =

df.iloc[n][column_name]

AN J

Figure 2: The pipeline of our approach ToolCoder.
The pipeline has three main parts: @ Automatically
Annotate Tool-augmented Dataset with ChatGPT, @
Parameter-efficient Fine-tune existing pre-trained code
generation model with the annotated dataset, and &
Inference of the fine-tuned model enhanced with API
search tools.

3 ToolCoder

The pipeline of ToolCoder is presented in Figure
2. There are three stages to implement ToolCoder:
@ data annotation, @ fine-tuning, and ® inference.
To deliver the readers an overall understanding, we
first elaborate the tools we employed in ToolCoder
(Section 3.1); then we illustrate the three modules
in our pipeline in details, including the automatic
annotation process for training data (Section 3.2,
the fine-tuning process for ToolCoder (Section 3.3)
and the inference algorithm to invoke search tools
(Section 3.4).

3.1 API Search Tool Invocation

We first introduce the tools we adopted in Tool-
Coder. We develop two major categories of API
search tools as introduced in Section 2.2. @
For those commonly used public libraries such as
numpy and pandas, we employ DuckDuckgo as
the search engine, which provides a cheaper and
more convenient method compared to other search



engines like Google, Bing. We use the engine to
search the relative content from several online com-
munity websites and extract the APIs with string
regex matching mentioned in the context. Since
these contents discuss the API in depth, more accu-
rate API suggestions can be provided by the search
engine. @ For those lesser-known or private li-
brary APIs, there is no relevant online information.
We employ BM25 score as our retrieval metric to
search within the corresponding API documenta-
tion. We encapsulate these search interfaces so
that ToolCoder can call search tools with high per-
formance in a unified form. In our experiment,
we control the search delay within 0.6s to ensure
high efficiency during the code generation process.
We make an unified abstraction to unify the above-
mentioned tools as below:

APISearch(query) — answer (1)

where AP1Search refers to the abstracted name
of different API search tools, query denotes the
search query (functionality or requirement descrip-
tion), and answer is the search result returned by
the tools (i.e.,, an API recommendation).

Following our design, ToolCoder invokes a tool
by generating the APISearch(query) — part,
and wait for the tool’s response, i.e.,, answer. In
addition, to distinguish invocation of tools from
normal source code, we surround the tool invoca-
tion with special tokens, starting with (API) and
ending with (/API). All (API), (/API), and —
are appended into the special token set in the code
generation model’s vocabulary. Please refer to the
part in Figure 2 for a demonstrative example. We
will elaborate the detailed algorithm in Section 3.4
later.

3.2 Automatic Data Annotation

To enable the model to use the API search tool,
we fine-tune existing models with a dataset that
includes the source code and associated tool call
processes. As mentioned in Section 3.1, we ab-
stract the search call process with the notation
(API) APISearch(query) — answer (/API).
However, such a dataset is not readily available. To
address this issue, we propose to automatically aug-
ment an existing source code dataset with the tool
call notation annotated by ChatGPT (gpt-3.5-turbo)
(Chen et al., 2023; Ouyang et al., 2022). ChatGPT
has already demonstrated excellent few-shot and

Statistic

Dataset Size 53,000
Avg. Annotation API 32
186.24

Avg. length (in words) before annotation

Avg. length (in words) after annotation 211.49
NumPy 24%
Pandas 13%

Proportion of some third-party libraries ~ TorchData 0%
Private Libraries: 0%

Monkey, BeatNum

Table 3: Statistics of the annotation dataset.

even zero-shot learning ability in many different
language learning tasks. This low-cost and effi-
cient annotation method reduces the manual effort
required to create private annotated datasets. A
demonstrative example is presented in the left part
of Figure 2.

" 2\
Your task is to add calls to a API Search Tool to a piece of
source code. You can use an API Search Tool to lookup
important third-party APIs from the document. The API Search
Tool should help you get information required to complete
the source code and select API. Use the format:
"<API>APISearch(query)->answer</API>". In the format,

"query" is the search input that describes the specific role
of the API required in this code, and "answer" is the search
output API. Here are some examples of API calls:

Input: B = np.reshape(A, (-1, 2))

Output: B = <API>APISearch(Gives a new shape to an array
without changing its data.)->np.reshape</API>np.reshape(A,
(-1, 2))

(...another two Input-Output pairs...)

Input: {code}
Output:
- J

Figure 3: An example of prompt used to generate API-
augmented datasets for the API search tool.

We use the popular code corpus CodeSearchNet-
Python (Husain et al., 2019) and ask the ChatGPT
to annotate the tool-augmented dataset with the
prompt in Figure 3. The details of the dataset con-
struction are described in Appendix A. The final
dataset, which will be used for subsequent fine-
tuning, contains 53k of well annotated samples.
Table 3 shows the statistics of the final annotated
dataset. We list the proportion of some third-party
library APIs in the dataset for reference in subse-
quent evaluation experiments.

3.3 Parameter-efficient Fine-tuning

In order to facilitate tool invocations in ToolCoder,
fine-tuning is almost necessary. Even though we
have a dataset annotated as describe in the previ-
ous subsection now, it is still relatively difficult to
fine-tune a rather large model (e.g.,, CodeGen-2B
with two billion parameters), due to limited compu-
tational power and high training efficiency require-
ments. To address such challenges, we propose to
restrict the number of meta-trainable parameters
and layers in the pre-trained model and adopting a
parameter-efficient fine-tuning approach that can
efficiently adapt pre-trained models to new task



Algorithm 1 Inference with API search tools

1: procedure INFERWITHTOOL(model, input_nl, maxlen)
2: Pass input_nl to the model and get predicted token
3 output < [token)

4: 1+ 0

5: while i < maxlen do

6 token < the last token of output

7 if token = (API) then

8 query < the following generated tokens be-
tween APISearch( and )—

9: response < Call API search tool with query

10: Append (API)APISearch(query)— response{/APT)
to output

11: i < 1+ length of the call process

12: else

13: Pass token to the model and get predicted
token

14: Append predicted token to output

15: 14 1+1

16: end if

17: end while

18: return output

19: end procedure

types.

In our training setting, we we apply LoRA (Hu
et al., 2022) to reduce trainable parameters. As
a result, we only need to train 0.18% parameters
in CodeGen-350M and 0.09% for CodeGen-2B. It
makes it possible to efficiently fine-tune models
on a consumer-level GPU, such as Nvidia GeForce
RTX 2080 (11GB RAM). The parameter-efficient
tuning strategy significantly reduces the training
computational burden in our experiments. It can
achieve results comparable to full-parameter train-
ing with less computational resources and time. We
will give a detailed analysis of the ablation experi-
ment in Section 5.3.

3.4 Inference enhanced with Tools

During inference, ToolCoder interacts with the
tools in a similar manner of system calls in operat-
ing system. The code generation model initiates an
invocation by generating the left half part of Eq. 1,
and waits for the tool’s response (i.e.,, the right half
part of Eq. 1). We give a detailed pseudo-code de-
scription of the decoding process with API search
tool procedure in Algorithm 1.

Specifically, during the inference stage, there are
two modes of the code generation model — regular
generation and tool invocation. The regular gen-
eration mode of ToolCoder is no difference than
next token prediction (please refer to Line 12 in
Algorithm 1). When an API needs to be generated,
ToolCoder switches to the other tool invocation
mode, by generating the (API) token (Line 7 in

| Private Library Public Library
\MonkeyEval BeatNumEval TorchDataEval PandasEval NumpyEval
Known by
Model ‘ x x x v v
Data Size 101 101 50 101 101
Avg. APIs 1.35 1.21 1.48 1.35 1.21
Avg. Tests 6.50 3.54 1.14 6.50 3.54

Table 4: Statistics of evaluated benchmarks.

Algorithm 1). The model continue to decode the
APISearch token, the — token, along with the
query between them. At this point, we interrupt the
decoding process and call the API search tool to
get a response. The search result is appended after
the — token. Finally, the (/API) token is added
to the output; ToolCoder completes one tool invo-
cation and switches back to the regular mode. As
the consequence, the code generation model is now
capable to generate correct API calls according to
the search result.

By leveraging API search tools in this way, Tool-
Coder can effectively address the challenge of se-
lecting the right APIs and reduce the effort required
by developers to find suitable APIs.

4 Experimental Setup
4.1 Benchmark Datasets

Our experiments are conducted on two private li-
brary benchmarks and three public library bench-
marks in Table 4. We also show whether our model
known the corresponding library during training as
"Known by Model".

Private library benchmarks We use private li-
brary benchmarks to show how our approach can
improve the accuracy of utilizing APIs that are
unknown to the code generation models and lie
beyond the scope of its knowledge. MonkeyE-
val (Zan et al., 2022a) is crafted by modifying all
Pandas-related keywords to ensure that no informa-
tion about the API names is leaked. BeatNumEval
(Zan et al., 2022a) is crafted from the NumPy li-
brary. The pre-trained model has not seen the API
in MonkeyEval and BeatNumEval, and the online
search resources cannot provide any API-related
information. So the API selection on these bench-
marks will only rely on the API search tool we built
on the documentation of these private libraries.

Public library benchmarks We use public li-
brary benchmarks to demonstrate how our ap-
proach can also enhance the accuracy of utilizing
unfamiliar APIs within these open-source public



libraries. TorchDataEval (Zan et al., 2022a) is
based on the TorchData library in Python. Torch-
Data is a newly released library, which is unseen
to the existing pre-trained code generation mod-
els. Therefore, this benchmark can also be used
to demonstrate the generalization ability of our
method on those APIs that are public but never
seen by the code generation model. PandasEval
(Zan et al., 2022b) is a domain-specific code gener-
ation benchmark for the Pandas library in Python.
NumpyEval (Zan et al., 2022b) specifically targets
the Numpy library in Python. Following the pre-
vious work, we use the metric pass rate pass @k
(Chen et al., 2021) and set &k = {1, 10}.

4.2 Baselines

We select six series of recent code generation mod-
els as baselines, including one of the most powerful
models, GPT-3.5. These models can be divided
into two categories: @ general models, such as
CodeT5 (Wang et al., 2021), PyCodeGPT (Zan
et al., 2022b), CodeGen (Nijkamp et al., 2022),
GPT-3.5 (Chen et al., 2023; Ouyang et al., 2022)
and ® API-oriented models, such as CERT (Zan
etal., 2022b) and CodeGenAPI (Zan et al., 2022a).
Details are shown in Appendix C.

4.3 Tools

When implementing the API search tool, we adopt
in-site online search in datagy.io as well as NumPy
(NumPy, 2023), Pandas (Pandas, 2023) and Torch-
Data websites (TorchData, 2023) using the Duck-
DuckGo" for public library benchmarks. For pri-
vate library benchmarks, we use provided Monkey
and BeatNum library documentations to design an
API search tool based on the BM25 algorithm. The
tool’s response for inference is considered as the
first retrieved API. Other training and inference
details are shown in Appendix D.

5 Results and Analyses
5.1 Private Library & API

We first evaluate our model on private library code
generation (MonkeyEval and BeatNumEval). Re-
sults are shown in Table 5. ToolCoder-DocTool rep-
resents the performance of our model with the doc-
umentation search tool to generate code as these pri-
vate libraries do not have relevant online resources.

'We choose DuckDuckGo because it provides a cheaper

and more convenient API than other search engines such as
Google and Bing.

|MonkeyEval |[BeatNumEval|  Avg.

" pass@1 pass@10 [pass@1 pass@10 | pass@l pass@10

Model Param

General Models

CodeT5 220M | 0 0 0 0 ]0.000 0.000

CodeGen350M 350M | 0.95 4.90 |5.15 11.96 |3.050 8.430
CodeGen2B 2B | 1.59 594 |594 11.88 |3.765 8.910
APl-oriented

CodeGenAPI 350M | 1.19 4.68 |4.44 824 |2.815 6.460
CodeGenAPI-retrieval | 475M | 3.41 8.33 | 590 11.79 |4.655 10.060
CodeGen-retrieval 475M | 246 6.35 | 6.65 13.68 [4.555 10.015

GPT3.5 ‘ |2.47 891 |6.68 17.82 |4.575 13.365

Ours

ToolCoder-DocTool 350M | 298 594 |6.73 12.87 |4.855 9.405

2B |3.02 7.92 |6.93 13.86 |4.975 10.890

Table 5: Pass rate of models on private library bench-
marks

The private library benchmarks are extremely
hard for code generation models, such as CodeT?5,
which proves that the generation of API has partic-
ular challenges for code generation models. Our
ToolCoder achieves the best average performance
on these two private benchmarks. Compared with
the base pre-trained model CodeGen-350M and
CodeGen-2B, our model also greatly improves. It
shows that documentation search tools can help
code generation models select proper APIs during
inference, thus improving the quality of the gener-
ated code. Results show that our proposed Tool-
Coder can assist the API generation process and
enhance the ability of the code generation model.

When compared with the state-of-the-art API-
oriented baselines, our model shows comparable
performance. Note that CodeGenAPI-retrieval
(Zan et al., 2022a) requires a well trained retriever
model on the documentation. And their reported
results are very unstable with hyperparameters. For
instance, when changing the number of retrieval
results, the pass@1 of CodeGenAPI-retrieval over
MonkeyEval can vary from 1.94% to 3.41%. By
contrast, our ToolCoder shows stable and com-
parable performance. Even compared with the
most powerful model GPT3.5, our ToolCoder can
achieve better results in some inference settings.

5.2 Public Library & API

We then evaluate our model on public library
code generation (TorchDataEval, NumpyEval and
PandasEval) and results are shown in Table 6.
ToolCoder-OnlineTool represents the performance
of our model with the online search engine tool to
generate code.

It is worth noting that TorchData is a newly
released library, which is unseen to the existing
pre-trained code generation models except GPT3.5
and other API-oriented baselines. Our method can



| TorchDataEval| PandasEval | NumpyEval

| TorchDataEval | PandasEval | NumpyEval

Model Param. Dataset Setting

‘pass@] pass@10 ‘pass@l pam@lo‘pass@] pass@10 ‘ pass@l  pass@10 ‘ pass@1 pass@10 ‘ pass@1 pass@10
General Models ToolCoder-350M | 7.40 2000|2277 37.62 | 3564 50.50
CodeT5 220M| 0 0.1 0O 0] 0 o0 —
Fuceiechr |TioM |80 140 1378 ytep|tooe sger oo TG00 100 2 el oad 0
CodeGen350M 350M | 4.60 14.00 [16.73 29.70 [18.51 43.56
CodeGen2B 2B |7.00 18.00 |30.69 42.57[29.10 53.46
APl-oriented Table 7: Ablation studies on dataset settings against
CERT-numpy 220M | 2.20 14.00 [16.03 27.72|31.47 46.42 ToolCoder-350M
CERT-pandas 220M | 2.80  6.00 |28.42 48.04 |18.81 33.66 . . Training | Trainable | TorchDataEval | PandasEval | NumpyEval
CodeGenAPI 350M | 7.19 16.93 |13.58 34.9516.55 29.48 Training SeUting | " rie | param. [pt pm@10 [pm@1 pr@10[ el paaio
CodeGenAPI-retrieval | 475M |10.41 23.50 [11.25 28.61 |12.67 27.32 ToolCodor350M | 6n 065N 1740 2000 12277 37.62135.64 5030

. oolCoder-33 .03 . A . /. 3. .

CodeGen-retrieval  |475M | 7.52 16,36 |9.54 29.0218.30 35.12 full-training 20h ‘ 350M ‘6.00 22.00 ‘22.67 40.59‘35.35 58.41
GPT3.5 \ | 6.00 24.00 |30.09 33.16|58.41 66.21
Ours sson | 740 2000 12277 37.62|35.64 50,50 Table 8: Ablation studies on training settings against
ToolCoder-OnlineTool| 5™ | 11 g0 24.00 [31.68 47.52|41.58 5544  LoolCoder-350M.

Table 6: Pass rate of models on public library bench-
marks.

achieve the best performance over all baselines on
this benchmark. It indicates that the online search
engine tool can well handle the unknown public
API and assist models to generate accurate code.

Results also show that ToolCoder achieves the
best average results on all three benchmarks. Our
model achieves 1.39%, 3.26%, and 10.11% pass @1
improvement over the best API-oriented baseline
on three benchmarks. Even when we control our
model parameters to be smaller than the baselines
as ToolCoder-350M, our model can still achieve
excellent overall performances. Existing API-
oriented models such as CERT-numpy and CERT-
pandas mainly focus on training and inference on
a library API code dataset, resulting in the failure
of the same model to achieve good results on mul-
tiple API benchmarks. Our model shows stronger
generalization ability and can be applied to various
API libraries.

Combining the performance of our method on
private library benchmarks, the average pass@ [ on
five benchmarks of our two series of ToolCoder is
15.10%, 19.00%. For this average pass@ 1 metric,
our ToolCoder outperforms all baselines by at least
6.21%. As for the average pass@ 10, our model
outperforms by at least 9.64%. It is confident that
our ToolCoder shows the overall best performance
on various API generation scenarios.

5.3 Ablation

We further investigate the impact of different stage
settings in our pipeline, including changing the
dataset, training, and inference settings.

5.3.1 Dataset Setting

In Table 7, we replace our training dataset with the
original dataset, which only contains the regular

source code and without annotation, referring as
original dataset. We also add an experiment to
remove the content of the query in the search call
so that its form becomes APISearch()—answer.
During inference, we use the question description
to search the API directly. We refer to this ablation
as annotation w/o query. We also add the original
CodeGen-350M model for comparison, which is
not trained on the new dataset.

Results show that it is essential to generate the
search query. When we discard the search query in
the data construction and use the problem descrip-
tion for API search tools, we observe a drastic drop
in the final results as annotation w/o query. We
attribute it to the fact that the problem description
is still far from the use of the specific API, so it
is still difficult to select the appropriate API using
the existing API search tools. We can also confirm
that only fine-tuning on the original source code
dataset can not help the model learn to select APIs.
We compare the CodeGen-350M with the model
trained on the original dataset. Results show that
additional training on the code dataset does not sig-
nificantly improve the model’s performance. The
key to our improvement is to annotate the API tool
into the code dataset to teach the model to use ex-
ternal API search tools.

5.3.2 Training Setting

We performed ablation experiments with
ToolCoder-350M on the training setting in Table 8.
Our experiments compare the performance of two
approaches: full parameter training, referred to as
full-training. Our proposed method utilizes LoRA
for parameter-efficient training. We evaluate their
performance on public library benchmarks and
recorded their training costs, including training
time and parameters, using 2%2080 GPUs.
Results show that our fine-tuning strategy has



(a) On Public library benchmarks

Inference Setting ‘ Tors:hDataEyal | PgndasEvgl | NgmpyEVgl

[ pass@l  pass@10 | pass@l  pass@l10 | pass@l  pass@10
OnlineTool-350M | 7.40  20.00 | 22.77 37.62 | 35.64 50.50
NoTool-350M 6.00 16.00 | 20.19 35.64 | 33.76 46.53
OnlineTool-2B 11.80 24.00 | 31.68 47.52 | 41.58 55.44
NoTool-2B 7.50  20.00 | 31.38 44.55 | 3871 5445

(b) On Private library benchmarks

| MonkeyEval | BeatNumEval

Inference Setting

‘ pass@1 pass@10 ‘ pass@1 pass@10
DocTool-350M 2.98 5.94 6.73 12.87
NoTool-350M 0.29 0.99 1.68 4.95
DocTool-2B 3.02 7.92 693 13.86
NoTool-2B 0.79 297 2.71 8.91

Table 9: Ablation studies on inference settings.

almost no performance penalty compared with the
regular full-training. On the public library bench-
marks, the difference between the two pass@1 re-
sults is within 0.4%. The gap in these results is ac-
ceptable, considering the huge savings in training
costs. In our experiment settings, our parameter-
efficient fine-tuning strategy can reduce the training
time from 29h to 6h and the training parameters
from more than 350M to 0.65M. We only need
to train 0.18% parameters in CodeGen-350M and
0.09% for CodeGen-2B. It makes it possible to effi-
ciently fine-tune models on a consumer-level GPU,
such as Nvidia GeForce RTX 2080 (11GB RAM).

5.3.3 Inference Setting

We perform ablation experiments on the inference
setting in Table 9. We add experiments to disable
the tool in our model. NoTool represents that we
disable the tool for inference and use our trained
model to directly generate an API based on the
search query and complete the code. We compare
with our original inference setting on public and
private library benchmarks.

Experiments show that our external tools are
essential in improving performance. On public li-
brary benchmarks, the online search engine tool
improves pass@1 by 1.88%, 2.57%, 0.4% for
ToolCoder-350M, and 2.87%, 0.29%, 4.3% for
ToolCoder-2B. When considering private library
benchmarks, the improvement is more significant.
We find the model itself works poorly on private
libraries. However, with the assistance of the doc-
umentation search tool, our model can choose a
suitable private library API.

Another interesting observation is that the No-
Tool also achieves relatively good performance on
public library benchmarks. We believe it comes

from our dataset annotation process. The addi-
tional tool call process in the dataset can be seen as
a way to think about and choose the API. The chain
of thought in the annotation dataset can assist the
code generation model in better understanding the
functions of different APIs. However, for private
libraries, since the knowledge of private libraries is
not seen by the code generation model, this form
of dataset annotation is challenging to bring im-
provements to the model. With proper API search
tools enhanced, our ToolCoder can select API more
accurately and improve further.

6 Related Work

Recently, some work has focused on selecting APIs
during code generation. As discussed in Section
2.1, existing code generation models still struggle
with selecting appropriate APIs for a given con-
text, especially for private or lesser-known APIs.
Existing work (Zan et al., 2022b,a; Zhou et al.,
2023) has proposed some API-oriented code gen-
eration methods. They typically use a two-stage
pipeline, where the first stage involves searching
or generating related APIs and then using them to
generate code. We pursue this research line and
propose to leverage models and API search tools to
automate API selection in coding practices. Tools
have been demonstrated to assist large models in
addressing numerous complex tasks (Schick et al.,
2023; Nakano et al., 2021; Qin et al., 2023; Yao
et al., 2022; Wang et al., 2023). Our approach
has two advantages: @ Our method shows strong
generalization ability. By setting an appropriate
API search tool, our method can quickly adapt to
any API-related code generation scenario. ® Our
method does not require multi-stage generation. In-
stead, we integrate the API search tool into the de-
coding process, making our approach more flexible
and allowing the API selection process to be closer
to the specific code fragment being generated.

7 Conclusion

We propose ToolCoder, a novel approach to incor-
porate API search tools into the code generation
process to assist models in generating unknown
APIs. Experiments on public and private library
code generation benchmarks show that our Tool-
Coder outperforms state-of-the-art methods. Our
paper demonstrate the potential of incorporating
programming tools into the code generation pro-
cess, shedding light on this line of future work.



Limitation

Although we’re just starting to explore this field,
our work has some limitations that we’re planning
to fix soon:

First, constrained by our computational re-
sources, we used smaller CodeGen series models as
our base model. As our method is model-agnostic,
we plan to use it to train stronger models in the
future.

Next, we have simplified the API search tool to
only return the names of the functions found. We
have attempted to return the parameters of func-
tions as part of the search results, but due to the
flexibility of the Python language (some function
parameters can be optional) and the complexity
of the content in the search source, we did not
yield desirable results in initial experiments. We
will continue to explore how to design high-quality
search tools to assist large models in generating
those unknown APIs.
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A Details of Data Annotation

Our data annotation process can be divided into
three parts: @ base dataset selection, & prompt
selection, and @ filter & clean. A demonstrative
example is presented in the left part of Figure 2.

Base Dataset Selection For the base dataset,
we choose to use the popular code corpus
CodeSearchNet-Python (Husain et al., 2019) as
the base dataset. It is a real-world programming
dataset obtained from GitHub without additional
annotations. This dataset is already used by many
pre-trained code generation models (Wang et al.,
2021; Nijkamp et al., 2022), so we can assure that
our subsequent training will not affect the model’s
generalization performance on language genera-
tion and modeling ability as much as possible. We
use a simple length filtering method and randomly
choose nearly 60k function-level source code from
this dataset as the base dataset for further annota-
tion.

Prompt Selection Similar to ToolFormer (Schick
et al., 2023), to help generate the annotated dataset,
we need to provide a specific instruction for Chat-
GPT to specify its system role as a data annotator,
as shown in Figure 3. To facilitate the quality of the
generated datasets, we manually write three human-
written input-output pairs as the demonstration part
of the prompt with three libraries (numpy, pandas,
and matplotlib). We choose these three libraries be-
cause @ they are widely utilized in Python program-
ming and are familiar to most Python programmers,
and @ they are frequently used in our base dataset.
Based on our selected prompt and base dataset, we
ask the ChatGPT to annotate the tool-augmented
dataset. Specifically, as demonstrated in Figure 3,
the role instruction (““Your task is ...””), the demon-
stration input-output pairs (hand-written), and the
API (to be annotated) are concatenated, forming
the prompt. ChatGPT then annotates the API of
interest by following the instruction and imitateing
the demonstrations. We generate one annotated
data for each base sample. The overall automatic
annotation process lasts for four days.

Filter and Clean After getting all the generated
results from ChatGPT, we performed some filtra-
tions on the results to remove those abnormal data
samples. The nested API search calls are removed.
We limit the number of API search calls in a sample
to less than 5, and ensure that at least one of them
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is from a publicly available library. We also con-
duct rule-based correctness checks to ensure that
the API search call is closely related to the specific
code implementation. The final dataset, which will
be used for subsequent fine-tuning, contains 53k of
well annotated samples.

B Details of Parameter-efficient
Fine-tuning

In our experiments, we apply LoRA (Hu et al.,
2022) to reduce trainable parameters. Low-
Rank Adaptation (LoRA) is a low-dimensional
representation-based parameter-efficient tuning
method. It injects trainable low-rank matrices into
transformer layers to approximate the weight up-
dates. For a pre-trained weight matrix W € R%**
, LoRA represents its update with a low-rank de-
composition W +0W = W + Woun Wy , Where
Waown € RIXT, Wup € R™** are tunable param-
eters. LoRA generally applies this update to the
attention linear projection matrices in the multi-
head attention sub-layers in Transformer. For a spe-
cific input z to the linear projection in multi-head
attention, LoORA modifies the projection output A
as:

h < h+ s 2Waoun Waup, 2)

where s > 1 is a tunable scalar hyperparameter.
The illustration of LoRA is shown in the middle
part of Figure 2.

C Details of Baseline Models

We select six series of recent code generation mod-
els as baselines, including one of the most powerful
models, GPT-3.5. These models can be divided into
two categories: general models and API-oriented
models.

General Models CodeT5 (Wang et al., 2021) is
an encoder-decoder pre-trained model for code-
related tasks. It uses the identifier-aware pre-
training task and has achieved SOTA results on
many general code generation benchmarks. We
use CodeT5-base with 220M parameters in our ex-
periments. PyCodeGPT (Zan et al., 2022b) is a
decoder-only pre-trained code generation model
with 110M parameters. It is initialized with the
GPT-Neo and is continually pre-trained with a
large-scale code corpus in Python. CodeGen (Ni-
jkamp et al., 2022) is a series of decoder-only pre-
trained code generation models with parameters



varying from 350M to 16B. It casts code genera-
tion as a multi-turn conversation between a user
and a system. CodeGen has shown strong ability
on a variety of complex code generation tasks. Due
to computational limitations, we use 350M and
2B versions in our experiments. GPT-3.5 (Chen
et al., 2023; Ouyang et al., 2022) is one of the
most powerful generation models from OpenAl.
We use the “gpt-3.5-turbo* model as it is the most
cost-effective and performant model in the GPT3.5
family. As OpenAl states, it can be complemented
with flexible natural language and programming
language capabilities (GPT-3.5, 2022).

API-oriented models CERT (Zan et al., 2022b)
is a generation approach designed for API-related
code. CERT contains two modules: the sketcher
and generator, each of which is fine-tuned indepen-
dently with PyCodeGPT. It first predicts a sketch
based on the NL description and generates the com-
plete code based on the sketch. For each library,
CERT requires a specially trained weight for gen-
eration. We use the released weight as two in-
dependent models: CERT-numpy, CERT-pandas.
CodeGenAPI (Zan et al., 2022a) is another API-
oriented code generation model. It uses a two-stage
pipeline to generate code: given an NL descrip-
tion, CodeGenAPI firstly uses a retriever model
initialized with BERT (Devlin et al., 2019) to find
APIs from documents. Then it uses a generator
initialized with CodeGen-350M to generate the
complete code based on the retrieved API and prob-
lem description. We use the three released settings
in their paper: CodeGenAPI, CodeGen-retrieval,
and CodeGenAPI-retrieval. The first setting only
uses the trained generator without retrieval, and the
latter two use the best-performing top2 retrieval
results to assist generation.

D Implementation Details

Training Our model is implemented in the Py-
torch framework, and we perform all the experi-
ments on four RTX 2080-11GB GPUs. We ini-
tialize our ToolCoder by leveraging pre-trained
weights of CodeGen-350M and CodeGen-2B. The
training batch size is set to 8. The learning rate is
set to 1e-4. The total training epoch is set to 10. We
use validation loss to determine the best checkpoint
as the final model.

Inference During the model generation process,
we use temperature sampling with 7" = 0.8 and
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limit the sample budget to 10. Each experiment is
run three times with random seeds and then aver-
aged for the final results.

E Discussion

Compared with ChatGPT Our ToolCoder
achieves similar performance compared with Chat-
GPT, even outperforms this powerful model on
those unknown APIs. The results can be unex-
pected to some extent, and we would like to dis-
cuss the reason for a bit. The whole process of
generating an API for code generation models may
be decomposed into three steps —@ the generation
model decides to use an API to achieve specific
requirements, @ it collects knowledge (internal or
external) of this API, and ® it generate an API call
based on the knowledge. The knowledge gathering
step is possibly the most important part during this
process as it dictates the extent and reliability of
the API knowledge that the model can tap into. For
most code generation models like ChatGPT, this
knowledge is based on its internal general under-
standing acquired during pre-training. However,
these models falls short when applied to unknown
API environments. In contrast, the API knowl-
edge of ToolCoder comes from massive external
sources — ToolCoder employs API search tools to
ensure more accurate and extensible API knowl-
edge. From the ablation study in Table 9 we can
show that the performance improvement of Tool-
Coder is mostly from the tool utilization. With the
proper tool assistant, even a rather small model can
achieve great performance.

Besides, ToolCoder requires low deployment
cost. Our model can be trained and developed
with just a consumer-level GPU. We also conduct
a time efficiency experiment over TorchDataEval.
We use Google Colab (Colab, 2023) with a Tesla
T4 GPU for evaluation. Our ToolCoder takes only
4.3 seconds to generate output for each sample,
while ChatGPT requires 11 seconds. As a result,
our model achieves better performance with less
time cost.

F Case Study

We perform a case study analysis in Figure 4, which
represents code snippets generated on public and
private library benchmarks. From the examples,
we obtain the following findings: @ The generated
search query provides more fine-grained technical
planning for the solution. The NumpyEval case



Input: NumpyEval/99
import numpy as np

import pandas as pd

df = pd.DataFrame({'A": [5, 6, 7], 'B": [7, 8, 91})

# What's the best way to sum all values in a
Pandas dataframe?

# the result is a numeric value

Output:

g sum_value =
Q \
?
£ sum_value =
np.cumsum(df.values)[-1]
Input: BeatNumEval/92

import beatnum as bn

master = bn.numset([1,2,3,4,5])

search = bn.numset([4,2,2,3])

# Find indices of a list of values in a beatnum
numset

Output:

Bout=

B out=

bn.find_sorted(master, search)

Figure 4: Cases produced by ToolCoder-2B, with online
search engine tool on NumpyEval and documentation
search tool on BeatNumEval respectively.

requires summing values in a dataframe, and the
generated query breaks down the requirements, fo-
cusing first on summing arrays. It fills the gap
between requirements and concrete APIs. @ The
response of the search tools both play a crucial role
in the generated code. The online search engine
tool finds the proper API from the correct websites,
and the documentation search tool finds the proper
API by searching over the API comments. & Our
ToolCoder also can make necessary modifications
based on the tool response. For example, the online
search tool returns the response as cumsum, not
directly defined in the input code. Our ToolCoder
can add some components not in the response and
generate the correct API np.cumsum.
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