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Abstract

Automatically generating source code from nat-001
ural language descriptions has been a growing002
field of research in recent years. Invoking cor-003
rect APIs is crucial to code generation. How-004
ever, existing code generation models struggle005
in handling unknown APIs (e.g., user-private006
projects and libraries) , often generating erro-007
neous or even non-existent APIs. Inspired by008
the process of human developers using code009
search tools to learn unknown APIs, we pro-010
pose ToolCoder, a novel approach that inte-011
grates API search tools with existing models to012
assist code generation and API selection. Tool-013
Coder automatically invokes API search tools014
to retrieve relevant APIs and learns API usages015
from retrieved results. Our experimental results016
demonstrate that ToolCoder exhibits excellent017
performance and generalization ability across018
five public and private library code generation019
benchmarks, with at least 6.21% improvement020
on average pass@1 metrics and 9.64% improve-021
ment on average pass@10 metrics compared022
to state-of-the-art methods. Furthermore, we023
show that our relatively small ToolCoder model024
is comparable to one of the current best mod-025
els, i.e.,, GPT-3.5, highlighting the potential of026
incorporating programming tools into the code027
generation process.028

1 Introduction029

Deep learning techniques have shown great030

promise in generating high-quality source code031

from natural language requirements. Nowadays,032

pre-trained language models have achieved the033

state-of-the-art results on multiple code generation034

benchmark, such as CodeX (Chen et al., 2021),035

ChatGPT (Chen et al., 2023; Ouyang et al., 2022)036

and CodeGen (Nijkamp et al., 2022) models.037

Application Programming Interfaces (APIs) are038

crucial components of programs, and selecting cor-039

rect APIs is a key step to code generation. Exist-040

ing models demonstrate impressive proficiency in041

generating code and APIs through their extensive042

general knowledge. However, these solutions en- 043

counter significant challenges when faced with un- 044

known APIs, especially those from private projects 045

and libraries. The lack of specialized domain 046

knowledge in dealing with such APIs often leads 047

to the generation of erroneous code. These models 048

may fabricate non-existent APIs, a phenomenon 049

commonly referred to as "hallucination" of large 050

language models (Ji et al., 2023). 051

We conduct a preliminary experiment to validate 052

the "hallucination" for APIs. We apply a popular 053

code generation model - CodeGen-2B to generate 054

programs involving private libraries (Zan et al., 055

2022a). These private libraries contain numerous 056

unknown APIs that code generation models have 057

not seen before. We found that more than 90% of 058

generated programs contain incorrect APIs. The 059

above limitation hinders the application of code 060

generation models in real-world software projects. 061

To assist models in generating unknown APIs, 062

we draw inspiration from human programmers’ 063

code search behaviors. When encountering un- 064

familiar APIs, programmers turn to search engines 065

to retrieve APIs relevant to current requirements or 066

learn APIs through documentations. Inspired by 067

this observation, our motivation is to enable code 068

generation models to use search tools to obtain 069

suitable APIs in those unknown libraries. 070

In this paper, we propose ToolCoder, a low-cost 071

and efficient solution that integrates API search 072

tools into pre-trained code generation models, mim- 073

icking the searching behaviors as in the demonstra- 074

tive example. To enable models to use tools, we 075

fine-tune these models upon the source code data 076

containing tool usage information. To obtain the 077

fine-tuning data, we propose an automated data an- 078

notation method, which uses ChatGPT to annotate 079

tool usage information in the original source code. 080

After the fine-tuning, we successfully integrate API 081

search tools into code generation, allowing existing 082

models to use external tools autonomously. 083
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Private Library Public Library

Monkey BeatNum TorchData Pandas Numpy

96.72% 90.18% 62.70% 32.30% 26.34%

Table 1: Hallucination rate of CodeGen-2B model upon
different libraries.

We carry out in-depth evaluations to show that084

ToolCoder is capable of improving pass rate (Chen085

et al., 2021) when dealing with unknown libraries086

and APIs. ❶ We evaluate our model on two pri-087

vate library benchmarks (Zan et al., 2022a). With088

the help of tools, ToolCoder can generate more un-089

seen APIs and alleviate the hallucination in APIs,090

even outperforming GPT-3.5. ❷ We further evalu-091

ate ToolCoder on three public library benchmarks092

(Zan et al., 2022a). Our model achieves significant093

improvements over state-of-the-art API-oriented094

baselines (Zan et al., 2022b,a), with at least 1.39%,095

3.26% and 10.11% pass@1 on the three bench-096

marks correspondingly. ❸ We also conduct an097

ablation study to analyze the different settings in098

our experiments, including the dataset, the training099

process, and the inference settings. To the best of100

our knowledge, this paper takes the first step to101

explore the concept of incorporating programming102

tools into code generation models.103

Our contributions in this paper can be summa-104

rized as follows:105

• We propose to enable code generation models106

to invoke code search tools, i.e., ToolCoder, ad-107

dressing code generation with unseen APIs.108

• We propose an automated data annotation method109

in software engineering community and release110

a tool-augmented code generation dataset for fur-111

ther study.112

• We conduct extensive experiments on code gener-113

ation tasks involving multiple private and public114

libraries. We demonstrate that ToolCoder sig-115

nificantly reduces the frequency of generating116

erroneous fabricated APIs.117

2 Motivating Examples118

In order to demonstrate our motivation, we present119

the limitations of existing models in generating120

unseen APIs and how API search tools alleviate the121

limitations.122

2.1 Hallucinations with unknown APIs123

APIs are essential to modern software development.124

However, generating the proper API remains chal-125

Case 2: Publich library (Numpy)

a = np.arange(2*3*2).reshape((2,3,2)) 
count_value = a.count(2)

'numpy.ndarray' object has no a:ribute 'count' 

Case 1: Private library (BeatNum)

import beatnum as bn 
num_str = bn.numstr([0,33,4444522])

module ‘beatnum' has no attribute 'numstr'

Figure 1: Hallucination examples of CodeGen-2B
model in generating APIs, including unknown private
libraries (Case 1) or even popular public libraries (Case
2).

lenging for code generation models. Existing mod- 126

els often encounter the issue of "hallucination" (Ji 127

et al., 2023) when faced with unknown or unfamil- 128

iar third-party library APIs. 129

To demonstrate this issue, we employ the popu- 130

lar CodeGen-2B (Nijkamp et al., 2022) to evaluate 131

its API generation performance. We employ bench- 132

marks from (Zan et al., 2022a) and generate 10 133

samples for each question. "Hallucination Rate" 134

presents the percentage of incorrect API genera- 135

tions that are identified as hallucinations and ver- 136

ified to be incorrect in the respective third-party 137

library. Table 1 reveals that over 90% of the gen- 138

erated APIs are incorrect in private (or unknown) 139

private libraries, while even when dealing with pop- 140

ular public libraries, the incorrect rate still exceeds 141

26%. Figure 1 presents two examples of hallucina- 142

tion in the generated code for such APIs. Case ❶: 143

CodeGen-2B lacks corresponding private knowl- 144

edge and generates an incomprehensible API for 145

the unknown private library BeatNum. This high- 146

lights the potential risk that existing code genera- 147

tion models may fabricate non-existent APIs for 148

unknown APIs. Case ❷: Even for widely-used 149

third-party libraries, the models may still struggle 150

in API generation. E.g.,, CodeGen-2B generates a 151

non-existent count API for the NumPy library. 152

The performance gap caused by APIs, partic- 153

ularly unknown APIs, is huge and quite severe, 154

according to Table 1. It is essential to address these 155

API generation challenges and propose solutions 156

to finally improve generation quality. 157

2.2 Existing search tools to aid API generation 158

When facing unknown or unfamiliar libraries, it is 159

natural for programmers to seek help and advice 160

from API search tools, which inspires the design 161

of ToolCoder. For example, the developer turns 162

to online search engine tools or library docu- 163

mentation search tools and gets the proper API 164
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Online Search Engine Documentation Search

Knowledge
Resources

Programming Community
or Tutorial Websites
(StackOverFlow, datagy.io, etc.)

Library Documentation

API Type
Public libraries,
especially those well-known
and widely-discussed

Any APIs,
including public and
private libraries

Advantages
Practical and Accurate
Rich sources
Keep updating

Wide coverage
Detailed explanation
Stable

Example Tools Google, Bing,
DuckDuckGo

NumPydoc,
Pandasdoc,
Private documentations

Table 2: Comparison between search tools for API se-
lection.

suggestion. A comparison of these two types of165

search tools is given in Table 2.166

Online Search Engine Tool Online search en-167

gine tools provide rich information about API us-168

ages. Human programmers share their experience169

in solving various programming problems on vari-170

ous community and tutorial websites such as Stack-171

Overflow (platform, 2023) and datagy.io (DataGY,172

2023). They organize and summarize the API sug-173

gestions used for different problems. When other174

people encounter similar problems, search engines175

can use this information well. Commercial search176

engine tools such as Google (Google, 2023), Duck-177

DuckGo (DuckDuckGo, 2023) can regard these178

community websites as knowledge resources and179

can provide helpful API suggestions, especially180

for those public libraries that are well-known and181

widely discussed.182

Documentation Search Tool Since lesser-183

known public libraries or private libraries have few184

discussions on the online community websites, hu-185

man programmers also turn to library documen-186

tations for API suggestions. Documentations are187

usually available for both public libraries and pri-188

vate libraries if one has access to the library. There-189

fore, it can provide rich information for any API190

usage scenario. Usually, API information in the191

documentation is usually provided in pairs of API192

and corresponding comments. We can use BM25193

(Robertson and Zaragoza, 2009) or other seman-194

tic similarity scores as search metrics to search195

for comments that meet the requirements and find196

the corresponding API as the final suggestion for197

coding.198

These various search tools are helpful for select-199

ing APIs. Inspired by the API search process of200

human developers, we aim to incorporate these two201

types of search tools into code generation models.202

Code Genera=on 
Pretrained Model

2. Parameter-efficient 
Fine-Tuning 

ChatGPT

Before Annota+on:
if mean is not None:

samples=mulFvariate(mean, 
matrix, N)

A-er Annota+on:
if mean is not None:

samples=
<API>APISearch(Generates 
random samples from a 
mul%variate normal 
distribu%on.)-> 
mul%variate</API> mulFvariate 
(mean, matrix, N)

NL_input:
How do I get the value at an n-th row of a given column in Pandas?

output = <API> APISearch(selects a single row of data from a 
DataFrame.)-> pandas.DataFrame.iloc </API> 
df.iloc[n][column_name]

🔍 Selects a single row of data from a DataFrame
✅ pandas.DataFrame.iloc

output = <API> APISearch(selects a single row of data from a 
DataFrame.)->

Fine-Tuning

3. Inference With Search Tools

🤖 CodeGen-350M
🤖 CodeGen-2B

...

x

h

Wdown

WupFrozen
Pretrained 

Weights

1. Tool-augmented Dataset
Annota+on

Figure 2: The pipeline of our approach ToolCoder.
The pipeline has three main parts: ❶ Automatically
Annotate Tool-augmented Dataset with ChatGPT, ❷
Parameter-efficient Fine-tune existing pre-trained code
generation model with the annotated dataset, and ❸
Inference of the fine-tuned model enhanced with API
search tools.

3 ToolCoder 203

The pipeline of ToolCoder is presented in Figure 204

2. There are three stages to implement ToolCoder: 205

❶ data annotation, ❷ fine-tuning, and ❸ inference. 206

To deliver the readers an overall understanding, we 207

first elaborate the tools we employed in ToolCoder 208

(Section 3.1); then we illustrate the three modules 209

in our pipeline in details, including the automatic 210

annotation process for training data (Section 3.2, 211

the fine-tuning process for ToolCoder (Section 3.3) 212

and the inference algorithm to invoke search tools 213

(Section 3.4). 214

3.1 API Search Tool Invocation 215

We first introduce the tools we adopted in Tool- 216

Coder. We develop two major categories of API 217

search tools as introduced in Section 2.2. ❶ 218

For those commonly used public libraries such as 219

numpy and pandas, we employ DuckDuckgo as 220

the search engine, which provides a cheaper and 221

more convenient method compared to other search 222
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engines like Google, Bing. We use the engine to223

search the relative content from several online com-224

munity websites and extract the APIs with string225

regex matching mentioned in the context. Since226

these contents discuss the API in depth, more accu-227

rate API suggestions can be provided by the search228

engine. ❷ For those lesser-known or private li-229

brary APIs, there is no relevant online information.230

We employ BM25 score as our retrieval metric to231

search within the corresponding API documenta-232

tion. We encapsulate these search interfaces so233

that ToolCoder can call search tools with high per-234

formance in a unified form. In our experiment,235

we control the search delay within 0.6s to ensure236

high efficiency during the code generation process.237

We make an unified abstraction to unify the above-238

mentioned tools as below:239

APISearch(query)→ answer (1)240

where APISearch refers to the abstracted name241

of different API search tools, query denotes the242

search query (functionality or requirement descrip-243

tion), and answer is the search result returned by244

the tools (i.e.,, an API recommendation).245

Following our design, ToolCoder invokes a tool246

by generating the APISearch(query) → part,247

and wait for the tool’s response, i.e.,, answer. In248

addition, to distinguish invocation of tools from249

normal source code, we surround the tool invoca-250

tion with special tokens, starting with ⟨API⟩ and251

ending with ⟨/API⟩. All ⟨API⟩, ⟨/API⟩, and→252

are appended into the special token set in the code253

generation model’s vocabulary. Please refer to the254

part in Figure 2 for a demonstrative example. We255

will elaborate the detailed algorithm in Section 3.4256

later.257

3.2 Automatic Data Annotation258

To enable the model to use the API search tool,259

we fine-tune existing models with a dataset that260

includes the source code and associated tool call261

processes. As mentioned in Section 3.1, we ab-262

stract the search call process with the notation263

⟨API⟩APISearch(query) → answer ⟨/API⟩.264

However, such a dataset is not readily available. To265

address this issue, we propose to automatically aug-266

ment an existing source code dataset with the tool267

call notation annotated by ChatGPT (gpt-3.5-turbo)268

(Chen et al., 2023; Ouyang et al., 2022). ChatGPT269

has already demonstrated excellent few-shot and270

Statistic

Dataset Size 53,000
Avg. Annotation API 3.2
Avg. length (in words) before annotation 186.24
Avg. length (in words) after annotation 211.49

Proportion of some third-party libraries

NumPy 24%
Pandas 13%
TorchData 0%
Private Libraries:
Monkey, BeatNum 0%

Table 3: Statistics of the annotation dataset.

even zero-shot learning ability in many different 271

language learning tasks. This low-cost and effi- 272

cient annotation method reduces the manual effort 273

required to create private annotated datasets. A 274

demonstrative example is presented in the left part 275

of Figure 2. 276

Your task is to add calls to a API Search Tool to a piece of 
source code. You can use an API Search Tool to lookup 
important third-party APIs from the document. The API Search 
Tool should help you get information required to complete 
the source code and select API. Use the format: 
"<API>APISearch(query)->answer</API>". In the format, 
"query" is the search input that describes the specific role 
of the API required in this code, and "answer" is the search 
output API. Here are some examples of API calls:

Input: B = np.reshape(A, (-1, 2))
Output: B = <API>APISearch(Gives a new shape to an array 
without changing its data.)->np.reshape</API>np.reshape(A, 
(-1, 2))

(...another two Input-Output pairs...)

Input: {code}
Output:

Figure 3: An example of prompt used to generate API-
augmented datasets for the API search tool.

We use the popular code corpus CodeSearchNet- 277

Python (Husain et al., 2019) and ask the ChatGPT 278

to annotate the tool-augmented dataset with the 279

prompt in Figure 3. The details of the dataset con- 280

struction are described in Appendix A. The final 281

dataset, which will be used for subsequent fine- 282

tuning, contains 53k of well annotated samples. 283

Table 3 shows the statistics of the final annotated 284

dataset. We list the proportion of some third-party 285

library APIs in the dataset for reference in subse- 286

quent evaluation experiments. 287

3.3 Parameter-efficient Fine-tuning 288

In order to facilitate tool invocations in ToolCoder, 289

fine-tuning is almost necessary. Even though we 290

have a dataset annotated as describe in the previ- 291

ous subsection now, it is still relatively difficult to 292

fine-tune a rather large model (e.g.,, CodeGen-2B 293

with two billion parameters), due to limited compu- 294

tational power and high training efficiency require- 295

ments. To address such challenges, we propose to 296

restrict the number of meta-trainable parameters 297

and layers in the pre-trained model and adopting a 298

parameter-efficient fine-tuning approach that can 299

efficiently adapt pre-trained models to new task 300
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Algorithm 1 Inference with API search tools
1: procedure INFERWITHTOOL(model, input_nl, maxlen)
2: Pass input_nl to the model and get predicted token
3: output← [token]
4: i← 0
5: while i < maxlen do
6: token← the last token of output
7: if token = ⟨API⟩ then
8: query ← the following generated tokens be-

tween APISearch( and )→
9: response← Call API search tool with query

10: Append ⟨API⟩APISearch(query)→response⟨/API⟩
to output

11: i← i+ length of the call process
12: else
13: Pass token to the model and get predicted

token
14: Append predicted token to output
15: i← i+ 1
16: end if
17: end while
18: return output
19: end procedure

types.301

In our training setting, we we apply LoRA (Hu302

et al., 2022) to reduce trainable parameters. As303

a result, we only need to train 0.18% parameters304

in CodeGen-350M and 0.09% for CodeGen-2B. It305

makes it possible to efficiently fine-tune models306

on a consumer-level GPU, such as Nvidia GeForce307

RTX 2080 (11GB RAM). The parameter-efficient308

tuning strategy significantly reduces the training309

computational burden in our experiments. It can310

achieve results comparable to full-parameter train-311

ing with less computational resources and time. We312

will give a detailed analysis of the ablation experi-313

ment in Section 5.3.314

3.4 Inference enhanced with Tools315

During inference, ToolCoder interacts with the316

tools in a similar manner of system calls in operat-317

ing system. The code generation model initiates an318

invocation by generating the left half part of Eq. 1,319

and waits for the tool’s response (i.e.,, the right half320

part of Eq. 1). We give a detailed pseudo-code de-321

scription of the decoding process with API search322

tool procedure in Algorithm 1.323

Specifically, during the inference stage, there are324

two modes of the code generation model – regular325

generation and tool invocation. The regular gen-326

eration mode of ToolCoder is no difference than327

next token prediction (please refer to Line 12 in328

Algorithm 1). When an API needs to be generated,329

ToolCoder switches to the other tool invocation330

mode, by generating the ⟨API⟩ token (Line 7 in331

Private Library Public Library

MonkeyEval BeatNumEval TorchDataEval PandasEval NumpyEval

Known by
Model ✖ ✖ ✖ ✔ ✔

Data Size 101 101 50 101 101
Avg. APIs 1.35 1.21 1.48 1.35 1.21
Avg. Tests 6.50 3.54 1.14 6.50 3.54

Table 4: Statistics of evaluated benchmarks.

Algorithm 1). The model continue to decode the 332

APISearch token, the → token, along with the 333

query between them. At this point, we interrupt the 334

decoding process and call the API search tool to 335

get a response. The search result is appended after 336

the→ token. Finally, the ⟨/API⟩ token is added 337

to the output; ToolCoder completes one tool invo- 338

cation and switches back to the regular mode. As 339

the consequence, the code generation model is now 340

capable to generate correct API calls according to 341

the search result. 342

By leveraging API search tools in this way, Tool- 343

Coder can effectively address the challenge of se- 344

lecting the right APIs and reduce the effort required 345

by developers to find suitable APIs. 346

4 Experimental Setup 347

4.1 Benchmark Datasets 348

Our experiments are conducted on two private li- 349

brary benchmarks and three public library bench- 350

marks in Table 4. We also show whether our model 351

known the corresponding library during training as 352

"Known by Model". 353

Private library benchmarks We use private li- 354

brary benchmarks to show how our approach can 355

improve the accuracy of utilizing APIs that are 356

unknown to the code generation models and lie 357

beyond the scope of its knowledge. MonkeyE- 358

val (Zan et al., 2022a) is crafted by modifying all 359

Pandas-related keywords to ensure that no informa- 360

tion about the API names is leaked. BeatNumEval 361

(Zan et al., 2022a) is crafted from the NumPy li- 362

brary. The pre-trained model has not seen the API 363

in MonkeyEval and BeatNumEval, and the online 364

search resources cannot provide any API-related 365

information. So the API selection on these bench- 366

marks will only rely on the API search tool we built 367

on the documentation of these private libraries. 368

Public library benchmarks We use public li- 369

brary benchmarks to demonstrate how our ap- 370

proach can also enhance the accuracy of utilizing 371

unfamiliar APIs within these open-source public 372
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libraries. TorchDataEval (Zan et al., 2022a) is373

based on the TorchData library in Python. Torch-374

Data is a newly released library, which is unseen375

to the existing pre-trained code generation mod-376

els. Therefore, this benchmark can also be used377

to demonstrate the generalization ability of our378

method on those APIs that are public but never379

seen by the code generation model. PandasEval380

(Zan et al., 2022b) is a domain-specific code gener-381

ation benchmark for the Pandas library in Python.382

NumpyEval (Zan et al., 2022b) specifically targets383

the Numpy library in Python. Following the pre-384

vious work, we use the metric pass rate pass@k385

(Chen et al., 2021) and set k = {1, 10}.386

4.2 Baselines387

We select six series of recent code generation mod-388

els as baselines, including one of the most powerful389

models, GPT-3.5. These models can be divided390

into two categories: ❶ general models, such as391

CodeT5 (Wang et al., 2021), PyCodeGPT (Zan392

et al., 2022b), CodeGen (Nijkamp et al., 2022),393

GPT-3.5 (Chen et al., 2023; Ouyang et al., 2022)394

and ❷ API-oriented models, such as CERT (Zan395

et al., 2022b) and CodeGenAPI (Zan et al., 2022a).396

Details are shown in Appendix C.397

4.3 Tools398

When implementing the API search tool, we adopt399

in-site online search in datagy.io as well as NumPy400

(NumPy, 2023), Pandas (Pandas, 2023) and Torch-401

Data websites (TorchData, 2023) using the Duck-402

DuckGo1 for public library benchmarks. For pri-403

vate library benchmarks, we use provided Monkey404

and BeatNum library documentations to design an405

API search tool based on the BM25 algorithm. The406

tool’s response for inference is considered as the407

first retrieved API. Other training and inference408

details are shown in Appendix D.409

5 Results and Analyses410

5.1 Private Library & API411

We first evaluate our model on private library code412

generation (MonkeyEval and BeatNumEval). Re-413

sults are shown in Table 5. ToolCoder-DocTool rep-414

resents the performance of our model with the doc-415

umentation search tool to generate code as these pri-416

vate libraries do not have relevant online resources.417

1We choose DuckDuckGo because it provides a cheaper
and more convenient API than other search engines such as
Google and Bing.

Model Param. MonkeyEval BeatNumEval Avg.
pass@1 pass@10 pass@1 pass@10 pass@1 pass@10

General Models
CodeT5 220M 0 0 0 0 0.000 0.000
CodeGen350M 350M 0.95 4.90 5.15 11.96 3.050 8.430
CodeGen2B 2B 1.59 5.94 5.94 11.88 3.765 8.910

API-oriented
CodeGenAPI 350M 1.19 4.68 4.44 8.24 2.815 6.460
CodeGenAPI-retrieval 475M 3.41 8.33 5.90 11.79 4.655 10.060
CodeGen-retrieval 475M 2.46 6.35 6.65 13.68 4.555 10.015

GPT3.5 - 2.47 8.91 6.68 17.82 4.575 13.365

Ours

ToolCoder-DocTool 350M 2.98 5.94 6.73 12.87 4.855 9.405
2B 3.02 7.92 6.93 13.86 4.975 10.890

Table 5: Pass rate of models on private library bench-
marks

The private library benchmarks are extremely 418

hard for code generation models, such as CodeT5, 419

which proves that the generation of API has partic- 420

ular challenges for code generation models. Our 421

ToolCoder achieves the best average performance 422

on these two private benchmarks. Compared with 423

the base pre-trained model CodeGen-350M and 424

CodeGen-2B, our model also greatly improves. It 425

shows that documentation search tools can help 426

code generation models select proper APIs during 427

inference, thus improving the quality of the gener- 428

ated code. Results show that our proposed Tool- 429

Coder can assist the API generation process and 430

enhance the ability of the code generation model. 431

When compared with the state-of-the-art API- 432

oriented baselines, our model shows comparable 433

performance. Note that CodeGenAPI-retrieval 434

(Zan et al., 2022a) requires a well trained retriever 435

model on the documentation. And their reported 436

results are very unstable with hyperparameters. For 437

instance, when changing the number of retrieval 438

results, the pass@1 of CodeGenAPI-retrieval over 439

MonkeyEval can vary from 1.94% to 3.41%. By 440

contrast, our ToolCoder shows stable and com- 441

parable performance. Even compared with the 442

most powerful model GPT3.5, our ToolCoder can 443

achieve better results in some inference settings. 444

5.2 Public Library & API 445

We then evaluate our model on public library 446

code generation (TorchDataEval, NumpyEval and 447

PandasEval) and results are shown in Table 6. 448

ToolCoder-OnlineTool represents the performance 449

of our model with the online search engine tool to 450

generate code. 451

It is worth noting that TorchData is a newly 452

released library, which is unseen to the existing 453

pre-trained code generation models except GPT3.5 454

and other API-oriented baselines. Our method can 455
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Model Param. TorchDataEval PandasEval NumpyEval
pass@1 pass@10 pass@1 pass@10 pass@1 pass@10

General Models
CodeT5 220M 0 0.1 0 0 0 0
PyCodeGPT 110M 3.80 14.00 12.75 37.62 18.04 38.61
CodeGen350M 350M 4.60 14.00 16.73 29.70 18.51 43.56
CodeGen2B 2B 7.00 18.00 30.69 42.57 29.10 53.46

API-oriented
CERT-numpy 220M 2.20 14.00 16.03 27.72 31.47 46.42
CERT-pandas 220M 2.80 6.00 28.42 48.04 18.81 33.66
CodeGenAPI 350M 7.19 16.93 13.58 34.95 16.55 29.48
CodeGenAPI-retrieval 475M 10.41 23.50 11.25 28.61 12.67 27.32
CodeGen-retrieval 475M 7.52 16.36 9.54 29.02 18.30 35.12

GPT3.5 - 6.00 24.00 30.09 33.16 58.41 66.21

Ours

ToolCoder-OnlineTool 350M 7.40 20.00 22.77 37.62 35.64 50.50
2B 11.80 24.00 31.68 47.52 41.58 55.44

Table 6: Pass rate of models on public library bench-
marks.

achieve the best performance over all baselines on456

this benchmark. It indicates that the online search457

engine tool can well handle the unknown public458

API and assist models to generate accurate code.459

Results also show that ToolCoder achieves the460

best average results on all three benchmarks. Our461

model achieves 1.39%, 3.26%, and 10.11% pass@1462

improvement over the best API-oriented baseline463

on three benchmarks. Even when we control our464

model parameters to be smaller than the baselines465

as ToolCoder-350M, our model can still achieve466

excellent overall performances. Existing API-467

oriented models such as CERT-numpy and CERT-468

pandas mainly focus on training and inference on469

a library API code dataset, resulting in the failure470

of the same model to achieve good results on mul-471

tiple API benchmarks. Our model shows stronger472

generalization ability and can be applied to various473

API libraries.474

Combining the performance of our method on475

private library benchmarks, the average pass@1 on476

five benchmarks of our two series of ToolCoder is477

15.10%, 19.00%. For this average pass@1 metric,478

our ToolCoder outperforms all baselines by at least479

6.21%. As for the average pass@10, our model480

outperforms by at least 9.64%. It is confident that481

our ToolCoder shows the overall best performance482

on various API generation scenarios.483

5.3 Ablation484

We further investigate the impact of different stage485

settings in our pipeline, including changing the486

dataset, training, and inference settings.487

5.3.1 Dataset Setting488

In Table 7, we replace our training dataset with the489

original dataset, which only contains the regular490

TorchDataEval PandasEval NumpyEvalDataset Setting
pass@1 pass@10 pass@1 pass@10 pass@1 pass@10

ToolCoder-350M 7.40 20.00 22.77 37.62 35.64 50.50

original dataset 6.00 14.00 19.92 38.61 19.40 39.60
annotation w/o query 3.80 6.00 11.68 33.66 14.05 43.56

Table 7: Ablation studies on dataset settings against
ToolCoder-350M

Training Setting Training
Time

Trainable
Param.

TorchDataEval PandasEval NumpyEval
pass@1 pass@10 pass@1 pass@10 pass@1 pass@10

ToolCoder-350M 6h 0.65M 7.40 20.00 22.77 37.62 35.64 50.50
full-training 29h 350M 6.00 22.00 22.67 40.59 35.35 58.41

Table 8: Ablation studies on training settings against
ToolCoder-350M.

source code and without annotation, referring as 491

original dataset. We also add an experiment to 492

remove the content of the query in the search call 493

so that its form becomes APISearch()→answer. 494

During inference, we use the question description 495

to search the API directly. We refer to this ablation 496

as annotation w/o query. We also add the original 497

CodeGen-350M model for comparison, which is 498

not trained on the new dataset. 499

Results show that it is essential to generate the 500

search query. When we discard the search query in 501

the data construction and use the problem descrip- 502

tion for API search tools, we observe a drastic drop 503

in the final results as annotation w/o query. We 504

attribute it to the fact that the problem description 505

is still far from the use of the specific API, so it 506

is still difficult to select the appropriate API using 507

the existing API search tools. We can also confirm 508

that only fine-tuning on the original source code 509

dataset can not help the model learn to select APIs. 510

We compare the CodeGen-350M with the model 511

trained on the original dataset. Results show that 512

additional training on the code dataset does not sig- 513

nificantly improve the model’s performance. The 514

key to our improvement is to annotate the API tool 515

into the code dataset to teach the model to use ex- 516

ternal API search tools. 517

5.3.2 Training Setting 518

We performed ablation experiments with 519

ToolCoder-350M on the training setting in Table 8. 520

Our experiments compare the performance of two 521

approaches: full parameter training, referred to as 522

full-training. Our proposed method utilizes LoRA 523

for parameter-efficient training. We evaluate their 524

performance on public library benchmarks and 525

recorded their training costs, including training 526

time and parameters, using 2*2080 GPUs. 527

Results show that our fine-tuning strategy has 528
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(a) On Public library benchmarks

Inference Setting TorchDataEval PandasEval NumpyEval
pass@1 pass@10 pass@1 pass@10 pass@1 pass@10

OnlineTool-350M 7.40 20.00 22.77 37.62 35.64 50.50
NoTool-350M 6.00 16.00 20.19 35.64 33.76 46.53

OnlineTool-2B 11.80 24.00 31.68 47.52 41.58 55.44
NoTool-2B 7.50 20.00 31.38 44.55 38.71 54.45

(b) On Private library benchmarks

Inference Setting MonkeyEval BeatNumEval
pass@1 pass@10 pass@1 pass@10

DocTool-350M 2.98 5.94 6.73 12.87
NoTool-350M 0.29 0.99 1.68 4.95

DocTool-2B 3.02 7.92 6.93 13.86
NoTool-2B 0.79 2.97 2.77 8.91

Table 9: Ablation studies on inference settings.

almost no performance penalty compared with the529

regular full-training. On the public library bench-530

marks, the difference between the two pass@1 re-531

sults is within 0.4%. The gap in these results is ac-532

ceptable, considering the huge savings in training533

costs. In our experiment settings, our parameter-534

efficient fine-tuning strategy can reduce the training535

time from 29h to 6h and the training parameters536

from more than 350M to 0.65M. We only need537

to train 0.18% parameters in CodeGen-350M and538

0.09% for CodeGen-2B. It makes it possible to effi-539

ciently fine-tune models on a consumer-level GPU,540

such as Nvidia GeForce RTX 2080 (11GB RAM).541

5.3.3 Inference Setting542

We perform ablation experiments on the inference543

setting in Table 9. We add experiments to disable544

the tool in our model. NoTool represents that we545

disable the tool for inference and use our trained546

model to directly generate an API based on the547

search query and complete the code. We compare548

with our original inference setting on public and549

private library benchmarks.550

Experiments show that our external tools are551

essential in improving performance. On public li-552

brary benchmarks, the online search engine tool553

improves pass@1 by 1.88%, 2.57%, 0.4% for554

ToolCoder-350M, and 2.87%, 0.29%, 4.3% for555

ToolCoder-2B. When considering private library556

benchmarks, the improvement is more significant.557

We find the model itself works poorly on private558

libraries. However, with the assistance of the doc-559

umentation search tool, our model can choose a560

suitable private library API.561

Another interesting observation is that the No-562

Tool also achieves relatively good performance on563

public library benchmarks. We believe it comes564

from our dataset annotation process. The addi- 565

tional tool call process in the dataset can be seen as 566

a way to think about and choose the API. The chain 567

of thought in the annotation dataset can assist the 568

code generation model in better understanding the 569

functions of different APIs. However, for private 570

libraries, since the knowledge of private libraries is 571

not seen by the code generation model, this form 572

of dataset annotation is challenging to bring im- 573

provements to the model. With proper API search 574

tools enhanced, our ToolCoder can select API more 575

accurately and improve further. 576

6 Related Work 577

Recently, some work has focused on selecting APIs 578

during code generation. As discussed in Section 579

2.1, existing code generation models still struggle 580

with selecting appropriate APIs for a given con- 581

text, especially for private or lesser-known APIs. 582

Existing work (Zan et al., 2022b,a; Zhou et al., 583

2023) has proposed some API-oriented code gen- 584

eration methods. They typically use a two-stage 585

pipeline, where the first stage involves searching 586

or generating related APIs and then using them to 587

generate code. We pursue this research line and 588

propose to leverage models and API search tools to 589

automate API selection in coding practices. Tools 590

have been demonstrated to assist large models in 591

addressing numerous complex tasks (Schick et al., 592

2023; Nakano et al., 2021; Qin et al., 2023; Yao 593

et al., 2022; Wang et al., 2023). Our approach 594

has two advantages: ❶ Our method shows strong 595

generalization ability. By setting an appropriate 596

API search tool, our method can quickly adapt to 597

any API-related code generation scenario. ❷ Our 598

method does not require multi-stage generation. In- 599

stead, we integrate the API search tool into the de- 600

coding process, making our approach more flexible 601

and allowing the API selection process to be closer 602

to the specific code fragment being generated. 603

7 Conclusion 604

We propose ToolCoder, a novel approach to incor- 605

porate API search tools into the code generation 606

process to assist models in generating unknown 607

APIs. Experiments on public and private library 608

code generation benchmarks show that our Tool- 609

Coder outperforms state-of-the-art methods. Our 610

paper demonstrate the potential of incorporating 611

programming tools into the code generation pro- 612

cess, shedding light on this line of future work. 613
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Limitation614

Although we’re just starting to explore this field,615

our work has some limitations that we’re planning616

to fix soon:617

First, constrained by our computational re-618

sources, we used smaller CodeGen series models as619

our base model. As our method is model-agnostic,620

we plan to use it to train stronger models in the621

future.622

Next, we have simplified the API search tool to623

only return the names of the functions found. We624

have attempted to return the parameters of func-625

tions as part of the search results, but due to the626

flexibility of the Python language (some function627

parameters can be optional) and the complexity628

of the content in the search source, we did not629

yield desirable results in initial experiments. We630

will continue to explore how to design high-quality631

search tools to assist large models in generating632

those unknown APIs.633
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A Details of Data Annotation775

Our data annotation process can be divided into776

three parts: ❶ base dataset selection, ❷ prompt777

selection, and ❸ filter & clean. A demonstrative778

example is presented in the left part of Figure 2.779

Base Dataset Selection For the base dataset,780

we choose to use the popular code corpus781

CodeSearchNet-Python (Husain et al., 2019) as782

the base dataset. It is a real-world programming783

dataset obtained from GitHub without additional784

annotations. This dataset is already used by many785

pre-trained code generation models (Wang et al.,786

2021; Nijkamp et al., 2022), so we can assure that787

our subsequent training will not affect the model’s788

generalization performance on language genera-789

tion and modeling ability as much as possible. We790

use a simple length filtering method and randomly791

choose nearly 60k function-level source code from792

this dataset as the base dataset for further annota-793

tion.794

Prompt Selection Similar to ToolFormer (Schick795

et al., 2023), to help generate the annotated dataset,796

we need to provide a specific instruction for Chat-797

GPT to specify its system role as a data annotator,798

as shown in Figure 3. To facilitate the quality of the799

generated datasets, we manually write three human-800

written input-output pairs as the demonstration part801

of the prompt with three libraries (numpy, pandas,802

and matplotlib). We choose these three libraries be-803

cause ❶ they are widely utilized in Python program-804

ming and are familiar to most Python programmers,805

and ❷ they are frequently used in our base dataset.806

Based on our selected prompt and base dataset, we807

ask the ChatGPT to annotate the tool-augmented808

dataset. Specifically, as demonstrated in Figure 3,809

the role instruction (“Your task is ...”), the demon-810

stration input-output pairs (hand-written), and the811

API (to be annotated) are concatenated, forming812

the prompt. ChatGPT then annotates the API of813

interest by following the instruction and imitateing814

the demonstrations. We generate one annotated815

data for each base sample. The overall automatic816

annotation process lasts for four days.817

Filter and Clean After getting all the generated818

results from ChatGPT, we performed some filtra-819

tions on the results to remove those abnormal data820

samples. The nested API search calls are removed.821

We limit the number of API search calls in a sample822

to less than 5, and ensure that at least one of them823

is from a publicly available library. We also con- 824

duct rule-based correctness checks to ensure that 825

the API search call is closely related to the specific 826

code implementation. The final dataset, which will 827

be used for subsequent fine-tuning, contains 53k of 828

well annotated samples. 829

B Details of Parameter-efficient 830

Fine-tuning 831

In our experiments, we apply LoRA (Hu et al., 832

2022) to reduce trainable parameters. Low- 833

Rank Adaptation (LoRA) is a low-dimensional 834

representation-based parameter-efficient tuning 835

method. It injects trainable low-rank matrices into 836

transformer layers to approximate the weight up- 837

dates. For a pre-trained weight matrix W ∈ Rd×k 838

, LoRA represents its update with a low-rank de- 839

composition W + δW = W +WdownWup , where 840

Wdown ∈ Rd×r,Wup ∈ Rr×k are tunable param- 841

eters. LoRA generally applies this update to the 842

attention linear projection matrices in the multi- 843

head attention sub-layers in Transformer. For a spe- 844

cific input x to the linear projection in multi-head 845

attention, LoRA modifies the projection output h 846

as: 847

h← h+ s · xWdownWup, (2) 848

where s ≥ 1 is a tunable scalar hyperparameter. 849

The illustration of LoRA is shown in the middle 850

part of Figure 2. 851

C Details of Baseline Models 852

We select six series of recent code generation mod- 853

els as baselines, including one of the most powerful 854

models, GPT-3.5. These models can be divided into 855

two categories: general models and API-oriented 856

models. 857

General Models CodeT5 (Wang et al., 2021) is 858

an encoder-decoder pre-trained model for code- 859

related tasks. It uses the identifier-aware pre- 860

training task and has achieved SOTA results on 861

many general code generation benchmarks. We 862

use CodeT5-base with 220M parameters in our ex- 863

periments. PyCodeGPT (Zan et al., 2022b) is a 864

decoder-only pre-trained code generation model 865

with 110M parameters. It is initialized with the 866

GPT-Neo and is continually pre-trained with a 867

large-scale code corpus in Python. CodeGen (Ni- 868

jkamp et al., 2022) is a series of decoder-only pre- 869

trained code generation models with parameters 870
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varying from 350M to 16B. It casts code genera-871

tion as a multi-turn conversation between a user872

and a system. CodeGen has shown strong ability873

on a variety of complex code generation tasks. Due874

to computational limitations, we use 350M and875

2B versions in our experiments. GPT-3.5 (Chen876

et al., 2023; Ouyang et al., 2022) is one of the877

most powerful generation models from OpenAI.878

We use the “gpt-3.5-turbo“ model as it is the most879

cost-effective and performant model in the GPT3.5880

family. As OpenAI states, it can be complemented881

with flexible natural language and programming882

language capabilities (GPT-3.5, 2022).883

API-oriented models CERT (Zan et al., 2022b)884

is a generation approach designed for API-related885

code. CERT contains two modules: the sketcher886

and generator, each of which is fine-tuned indepen-887

dently with PyCodeGPT. It first predicts a sketch888

based on the NL description and generates the com-889

plete code based on the sketch. For each library,890

CERT requires a specially trained weight for gen-891

eration. We use the released weight as two in-892

dependent models: CERT-numpy, CERT-pandas.893

CodeGenAPI (Zan et al., 2022a) is another API-894

oriented code generation model. It uses a two-stage895

pipeline to generate code: given an NL descrip-896

tion, CodeGenAPI firstly uses a retriever model897

initialized with BERT (Devlin et al., 2019) to find898

APIs from documents. Then it uses a generator899

initialized with CodeGen-350M to generate the900

complete code based on the retrieved API and prob-901

lem description. We use the three released settings902

in their paper: CodeGenAPI, CodeGen-retrieval,903

and CodeGenAPI-retrieval. The first setting only904

uses the trained generator without retrieval, and the905

latter two use the best-performing top2 retrieval906

results to assist generation.907

D Implementation Details908

Training Our model is implemented in the Py-909

torch framework, and we perform all the experi-910

ments on four RTX 2080-11GB GPUs. We ini-911

tialize our ToolCoder by leveraging pre-trained912

weights of CodeGen-350M and CodeGen-2B. The913

training batch size is set to 8. The learning rate is914

set to 1e-4. The total training epoch is set to 10. We915

use validation loss to determine the best checkpoint916

as the final model.917

Inference During the model generation process,918

we use temperature sampling with T = 0.8 and919

limit the sample budget to 10. Each experiment is 920

run three times with random seeds and then aver- 921

aged for the final results. 922

E Discussion 923

Compared with ChatGPT Our ToolCoder 924

achieves similar performance compared with Chat- 925

GPT, even outperforms this powerful model on 926

those unknown APIs. The results can be unex- 927

pected to some extent, and we would like to dis- 928

cuss the reason for a bit. The whole process of 929

generating an API for code generation models may 930

be decomposed into three steps –❶ the generation 931

model decides to use an API to achieve specific 932

requirements, ❷ it collects knowledge (internal or 933

external) of this API, and ❸ it generate an API call 934

based on the knowledge. The knowledge gathering 935

step is possibly the most important part during this 936

process as it dictates the extent and reliability of 937

the API knowledge that the model can tap into. For 938

most code generation models like ChatGPT, this 939

knowledge is based on its internal general under- 940

standing acquired during pre-training. However, 941

these models falls short when applied to unknown 942

API environments. In contrast, the API knowl- 943

edge of ToolCoder comes from massive external 944

sources – ToolCoder employs API search tools to 945

ensure more accurate and extensible API knowl- 946

edge. From the ablation study in Table 9 we can 947

show that the performance improvement of Tool- 948

Coder is mostly from the tool utilization. With the 949

proper tool assistant, even a rather small model can 950

achieve great performance. 951

Besides, ToolCoder requires low deployment 952

cost. Our model can be trained and developed 953

with just a consumer-level GPU. We also conduct 954

a time efficiency experiment over TorchDataEval. 955

We use Google Colab (Colab, 2023) with a Tesla 956

T4 GPU for evaluation. Our ToolCoder takes only 957

4.3 seconds to generate output for each sample, 958

while ChatGPT requires 11 seconds. As a result, 959

our model achieves better performance with less 960

time cost. 961

F Case Study 962

We perform a case study analysis in Figure 4, which 963

represents code snippets generated on public and 964

private library benchmarks. From the examples, 965

we obtain the following findings: ❶ The generated 966

search query provides more fine-grained technical 967

planning for the solution. The NumpyEval case 968
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NumpyEval/99

BeatNumEval/92Input:
import beatnum as bn 
master = bn.numset([1,2,3,4,5]) 
search = bn.numset([4,2,2,3]) 
# Find indices of a list of values in a beatnum 
numset
Output:
out = <API>APISearch(Find indices where 
elements should be inserted to maintain 
order.)->

🔍 Find indices where elements should be inserted to 
maintain order
✅ BeatNum Documenta?on
find_sorted: 
find the indices into a sorted numset a such that if the 
corresponding elements in v were inserted before the 
indices the order of a would be preserved

out = <API>APISearch(Find indices where elements 
should be inserted to maintain order.)-
>bn.find_sorted</API>bn.find_sorted(master, search)

Input:
import numpy as np 
import pandas as pd 
df = pd.DataFrame({'A': [5, 6, 7], 'B': [7, 8, 9]}) 
# What's the best way to sum all values in a 
Pandas dataframe? 
# the result is a numeric value
Output:
sum_value = <API>APISearch(Calculate the sum of 
the values in the given array.)->
🔍 Calculate the sum of the values in the given array
✅ h8ps://datagy.io/numpy-cumsum/

-> cumsum

sum_value = <API>APISearch(Calculate the sum of 
the values in the given array.)->cumsum</API>
np.cumsum(df.values)[-1]

Figure 4: Cases produced by ToolCoder-2B, with online
search engine tool on NumpyEval and documentation
search tool on BeatNumEval respectively.

requires summing values in a dataframe, and the969

generated query breaks down the requirements, fo-970

cusing first on summing arrays. It fills the gap971

between requirements and concrete APIs. ❷ The972

response of the search tools both play a crucial role973

in the generated code. The online search engine974

tool finds the proper API from the correct websites,975

and the documentation search tool finds the proper976

API by searching over the API comments. ❸ Our977

ToolCoder also can make necessary modifications978

based on the tool response. For example, the online979

search tool returns the response as cumsum, not980

directly defined in the input code. Our ToolCoder981

can add some components not in the response and982

generate the correct API np.cumsum.983
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