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Abstract

As an important framework for safe Reinforcement Learning, the Constrained
Markov Decision Process (CMDP) has been extensively studied in the recent liter-
ature. However, despite the rich results under various on-policy learning settings,
there still lacks some essential understanding of the offline CMDP problems, in
terms of both the algorithm design and the information theoretic sample complex-
ity lower bound. In this paper, we focus on solving the CMDP problems where
only offline data are available. By adopting the concept of the single-policy con-
centrability coefficient C∗, we establish an Ω

(
min{|S||A|,|S|+I}C∗

(1−γ)3ϵ2

)
sample com-

plexity lower bound for the offline CMDP problem, where I stands for the number
of constraints. By introducing a simple but novel deviation control mechanism,
we propose a near-optimal primal-dual learning algorithm called DPDL. This al-
gorithm provably guarantees zero constraint violation and its sample complexity
matches the above lower bound except for an Õ((1 − γ)−1) factor. Comprehen-
sive discussion on how to deal with the unknown constant C∗ and the potential
asynchronous structure on the offline dataset are also included.

1 Introduction

Reinforcement Learning (RL) is an important tool for modeling the real world tasks that involve
sequential decision making. Such RL problems are often mathematically described as a Markov
Decision Process (MDP) that maximizes a cumulative sum of rewards. The safe reinforcement
learning, on the other hand, not only cares the reward maximization, but also attempts to ensure a
reasonable system performance with respect to certain safety constraints. Such safety constrained
RL problems are often formulated as the Constrained Markov Decision Process (CMDP) M =
(S,A,P, r, u, γ, ρ0), where S is a finite state space, A is a finite action space, γ ∈ (0, 1) is the
discount factor, P (s′ | s, a) stands for the transition probability from s to s′ under the action a for
∀(s, a, s′) ∈ S×A×S, and r : S×A → [−1, 1] is the reward function, (ui : S×A → [−1, 1])i∈[I]

is a set of I utility functions, ρ0 is the initial state distribution over S. The goal of CMDP is to find
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an optimal policy π to maximize the cumulative reward while satisfying a group of constraints:

maxπ J(π) := E
[+∞∑
t=0

γt · r (st, at)
∣∣∣ s0 ∼ ρ0, π] (1)

s.t. Jui (π) := E
[+∞∑
t=0

γt · ui (st, at)
]
≥ 0, for i ∈ [I] = {1, 2, ..., I} .

For the CMDP problem, there has been plenty of on-policy algorithms, see [7, 8, 20, etc.]. However,
in real world applications such as training physical robots, where safety is an important measure of
performance, the real time on-policy interaction with the environment may suffer from the potential
damages to the robots. Besides, in many non-simulating environments, the on-policy data collection
may also be time-consuming. Therefore, it is crucial to design an off-policy algorithm to solve the
CDMP problems, where plenty of historical data are already accumulated while real time interac-
tions are limited. To our best knowledge, offline CMDP algorithms are rare [12, 27, 29], and the
sample complexity guarantees are limited. In particular, a strong uniform concentrability assump-
tion is required in [12], and the model-based method [27] mainly considers the case an empirical
model is known. Thus it is still not clear how to efficiently solve offline CMDPs with model-free
approaches, and there lacks essential understanding of the information theoretic lower bound on the
sample complexity of the offline CMDP.

In this paper, we propose a Deviation-controlled Primal-Dual Learning (DPDL) method to solve
problem (1). We adopt the primal-dual strategy developed in [4, 16, 26, 35, etc.] as the main al-
gorithmic framework while several non-trivial contributions have been made beyond the existing
results. Unlike the aforementioned literatures that exclusively rely on the accessibility of a gener-
ative model, DPDL utilizes the offline data, where the distribution shift difficulties of the offline
data is tackled by a novel and effective adaptive deviation control mechanism. If the considered
CMDP instance has a finite (but potentially unknown) concentrability coefficient, DPDL provably
finds a policy with O(ϵ)-optimal reward and zero constraint violation. An information theoretical
lower bound on the sample complexity of offline CMDP is also derived in this paper, which indi-
cates that our deviation control mechanism achieves a minimax optimal complexity dependence on
I, |S|, |A|, C∗.

Main Contribution. We summarize the contributions in details as follows.

• We propose the DPDL algorithm to solve the CMDP problem (1). Suppose the CMDP in-
stance satisfies the Slater’s condition and certain prior knowledge on the concentrability coeffi-
cient C∗ is given, DPDL provably finds an ϵ-optimal policy with zero constraint violation using
Õ
(

min{|S||A|,|S|+I}C∗

(1−γ)4ϵ2

)
offline samples.

• We establish an information theoretic sample complexity lower bound of Ω
(

min{|S||A|,|S|+I}C∗

(1−γ)3ϵ2

)
for the offline CMDPs, indicating that DPDL is near optimal up to an Õ((1 − γ)−1) factor. The
necessity of the Slater’s condition for achieving zero constraint violation is also established. The
sharp dependence on the number of constraints is mainly captured by our careful construction of
the correlated actions.

• In order to handle the practical situation where C∗ is unknown, an adaptive version of DPDL is
designed with the same sample complexity as DPDL.

• Our analysis of DPDL also extends to the asynchronous case, where the offline dataset consists of
a sample trajectory generated by certain behavior policy. In this situation, the sample complexity
of DPDL is shown to be Õ

(
t2mix min{|S||A|,|S|+I}C∗

(1−γ)4ϵ2

)
. Our handling of the correlated gradient

estimators with large variance can also be beneficial to other algorithms under the asynchronous
setting.

Related Work. Recently, considerable efforts have been devoted to the online learning of CMDP.
Under the episodic and tabular setting, several works [7, 8, 20] have achieved the Õ

(√
|S|2|A|T

)
regret and cumulative constraint violation, with different dependence on the episode length H
omitted. Under proper assumptions, zero or bounded cumulative constraint violation can be
achieved [1, 17]. In terms of the number of constraints I , MOMA proposed in [34] achieves
an Õ

(√
min{|S|,I}I|S||A|/T

)
convergence on both average reward gap and constraint violation.
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Nevertheless, all the above results adopt the model-based approaches. Except for [34], they either
consider the cases where I = 1 or completely ignore the influence of I in the sample complexity.
Therefore, both deriving an efficient model-free method and obtaining the optimal dependence on I
remain open.

Another approach closely related to our paper is the primal-dual method in RL, see [4, 11, 25, 26, 35,
etc.]. Given the access to a generative model, the model-free primal-dual method developed in [4]
achieves an Õ

( I|S||A|
(1−γ)4ϵ2

)
sample complexity to find an ϵ-optimal safe policy. The deviation control

mechanism we develop enables the primal-dual approach to extend beyond the generative model.

Finally, we mention a few related works in the offline RL and safe RL. Previous offline RL algo-
rithms with sample efficiency guarantees typically assume the uniform concentrability [12, 18, etc.]
or lower bounded minimum visitation µmin [32, 33, etc.]. Recently, under the less restrictive as-
sumption of the single-policy concentrability coefficient C∗, a minimax optimal sample complexity
lower bound of Ω

( |S|C∗

(1−γ)3ϵ2
)

for discounted offline MDPs is derived in [21]. A similar Ω
(H3|S|C∗

ϵ2

)
lower bound is also derived for the episodic setting in [28]. Under both settings, offline algorithms
with Õ(|S|C∗ϵ−2) sample complexity (with different (1−γ)−1 orH factors omitted) have been dis-
covered with either model-based [15, 21, 28, 31] or model-free approaches [22, 30]. In terms of the
offline CMDP problem, the only existing results are [12, 27, 29], where [29] only provides asymp-
totic convergence, [12] relies on a much stronger uniform concentrability assumption, and [27] is a
model based method that potentially suffers an O((C∗)2) dependence. Compared to these works,
our method is model-free and has an optimal O(C∗) dependence on the concentrability coefficient.

2 Problem setup

2.1 LP formulation of CMDP problem

For any policy π, the (unnormalized) state-action occupancy measure is defined as

νπ(s, a) :=

+∞∑
t=0

γt · P (st = s, at = a | s0 ∼ ρ0, π) , for ∀(s, a) ∈ S ×A. (2)

Given any occupancy measure νπ , the policy π that generates νπ can be recovered as

π(a|s) = νπ(s, a)∑
a′ ν

π(s, a′)
, ∀(s, a) ∈ S ×A. (3)

According to [2], it is well known that the set of all state-action occupancy measures form a poly-
hedron

{
ν ∈R|S|×|A|

≥0 :
∑
a∈A(I − γPa)νa = ρ0

}
, where νa := (ν(s, a))s∈S is an |S|-dimensional

column vector, I is the |S|×|S| identity matrix, and Pa := (P(s′|s, a))s′,s is an |S|×|S| transition
matrix, see also [26]. Therefore, combined with the fact that J(π) = ⟨νπ, r⟩ and Jui (π) = ⟨νπ, ui⟩,
the CMDP problem (1) can be reformulated as an LP problem with |S|+I constraints:

max
ν∈R|S|×|A|

≥0

⟨ν, r⟩ s.t.
∑
a∈A

(I− γPa)νa = ρ0, ⟨ν, ui⟩ ≥ 0, ∀i ∈ [I]. (4)

Due to the fundamental theorem of LP, see e.g. [5], problem (4) has an optimal basic feasible
solution with at most |S|+ I positive entries, which indicates the following proposition.
Proposition 2.1. For the CMDP problem (1) with I constraints, there is an optimal policy π∗ such
that |supp(νπ∗

)| ≤ N :=min{|S|+I, |S||A|}, where supp(·) denotes the support of a vector.

This result captures the potential sparse structure of the optimal policy when I is not as large as
|S||A|, and is the key to deriving a tight complexity dependence on the number of constraints I .

2.2 Off-policy learning from demonstration

In this work, we consider the offline CMDP problems where the agent cannot interact with the
environment. Instead, the optimization is conducted using a fixed offline dataset. To standardize the
discussion, we make the following assumption on the offline dataset, see e.g. [21].
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Assumption 2.2 (Independent batch dataset). The batch dataset D consists of independent tuples
(s, a, s′, r,u), such that (s, a) ∼ µ, E [r| s, a] = r(s, a),E [ui| s, a] = ui(s, a), and s′ ∼ P(·|s, a),
where µ is called the reference distribution.

To characterize the distribution shift of an arbitrary occupancy measure νπ from the reference distri-
bution µ, we introduce the following notion of the deviation: Dπ := maxs,a

(1−γ)νπ(s,a)
µ(s,a) , where the

(1−γ)-factor normalizes νπ to be a distribution. In offline RL, it is natural to assume that the devia-
tion Dπ∗

of the optimal policy is finite. That is, the reference distribution µ fully covers supp(π∗).
Otherwise, no optimality can be guaranteed. Combining the sparse nature of the optimal solution of
(1), we introduce the following finite concentrability assumption for our problem.
Assumption 2.3. For ∀ψ ≥ 1, denote the ψ-deviated policy class as Π(ψ) :={π :νπ∈D(ψ)} where

D(ψ) :=

{
ν ∈ R|S||A|

≥0 : max
s,a

(1− γ)ν(s, a)
µ(s, a)

≤ ψ,
∑
s,a

(1− γ)ν(s, a)
µ(s, a)

≤ Nψ
}
. (5)

We assume there exists a finite ψ such that some optimal policy π∗ is contained in Π(ψ). Let C∗ be
the minimum of such ψ. We call this constant C∗ the (single-policy) concentrability coefficient.

The above assumption includes a sparsity induced constraint as a result of Proposition 2.1, its coun-
terpart in the definition of single-policy concentrability of offline MDP [21] is the deterministic
optimal policy. The explicit dependence on N in D(ψ) facilitates the derivation of the information
theoretic lower bound as well as a near-optimal algorithm.

A second remark is that if we know any upper bound ψ of the coefficientC∗, then it will be sufficient
to only consider the policies in Π(ψ). When C∗ is unknown, ψ control the risk of distribution shift.
Consequently, in this paper, we propose to solve the LP formulation (4) with a tighter feasible region
introduced by D(ψ). This will allow us to properly control the variance of the off-policy sampling
when some of µ(s, a) is extremely small or even zero. We call this strategy deviation control.

2.3 Conservatism toward constraints

We say policy π is safe if it satisfies all constraints in (1), and we say π is ϵ-safe if Jui (π) ≥ −ϵ,
for ∀i ∈ [I]. Most of the existing online CMDP algorithms guarantee O

(
1/
√
T
)

average safeness.
To ensure the true safeness (zero constraint violation) in this work, we assume the Slater’s condition
to hold throughout this paper. In fact, in Section 5, we will show that the Slater’s condition is the
necessary condition for any offline CMDP algorithm to obtain zero constraint violation.
Assumption 2.4. There exists φ > 0 and a policy π such that Jui (π) ≥

φ
1−γ , ∀i ∈ [I].

A prior knowledge of such a constant φ is assumed throughout our discussion, and we also assume
the Slater’s condition holds for Π′ := Π(C∗). Given Assumption 2.4, we leverage the idea of conser-
vative constraints proposed in [4]. Namely, instead of Jui (π) ≥ 0, we consider the conservative con-
straints Jui (π) ≥ κ when solving the CMDP problem, where κ > 0 is a properly chosen parameter
that controls the level of conservatism in the constraints. In order to keep the form of the constraints
in problem (1), we adopt a shifted utility function uκi defined by uκi (s, a) := ui(s, a)− (1− γ)κ for
∀(s, a) ∈ S ×A, ∀i ∈ [I]. Therefore, Jui (π) ≥ κ is then equivalent to Ju

κ

i (π) ≥ 0. It can be shown
that a properly selected κ will facilitate a high probability of preserving zero constraint violation,
while only introducing an extra O

(
κ
φ

)
sub-optimality gap in the reward.

3 The Deviation-controlled Primal Dual Learning (DPDL) algorithm

To solve CMDP with offline samples, we transform its LP formulation (4) to a saddle point form

max
ν∈D(ψ)

min
λ≥0,V

L(V, λ, ν) := ⟨r, ν⟩+
〈
V, ρ0 −

∑
a

(I− γPa)νa
〉
+ ⟨λ,Uκν⟩ , (6)

where D(ψ) is defined by (5), V ∈ R|S|, λ ∈ RI are Lagrangian multipliers, and the matrix Uκ is
defined as Uκ := [uκ1 , · · · , uκI ]

⊤ ∈ RI×|S||A| with uκi being the shifted utility defined in Section 2.3.
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Given the reference distribution µ, the objective function can be rewritten as an expectation:

L(V, λ, ν) = E
s0∼ρ0

[V (s0)] + E
(s,a)∼µ

s′∼P(·|s,a)

[
ν(s, a)

µ(s, a)

(
r(s, a)− (V (s)− γV (s′))+

∑
i

λiu
κ
i (s, a)

)]
.

If the reference distribution µ is known, we can directly sample a stochastic gradient of L. However,
when the reference distribution µ is unknown in practice, then the importance sampling weight
ν(s,a)
µ(s,a) is also unknown. To tackle this issue, let µ̂ be a proper estimation of the reference distribution

µ, we introduce the weights w(s, a) = µ(s,a)
µ̂(s,a) , and the diagonal matrix W = diag (w(s, a)). Then

we apply a change of variables x=W−1ν, in other words, we set x(s,a)µ̂(s,a) =
ν(s,a)
µ(s,a) for ∀s, a to enable

sampling. From now on, we will focus on the following reweighted problem
min

λ∈Λ,V ∈V
max
x∈X

Lw(V, λ, x) := L(V, λ,Wx), (7)

where the feasible regions are defined as

X :=

{
x ∈ R|S||A|

≥0 : max
s,a

x(s, a)

µ̂(s, a)
≤ ψ

1− γ
,
∑
s,a

x(s, a)

µ̂(s, a)
≤ Nψ

1− γ
,
∑
s,a

x(s, a) ≤ 4

1− γ

}
,

V :=

{
V ∈R|S| : ∥V ∥∞ ≤

8

1− γ
(1 +

2

φ
)

}
and Λ =:

{
λ ∈ RI≥0 : ∥λ∥1 ≤

8

φ

}
.

(8)

The sets X , V and Λ are chosen to be large enough so that they contain the optimal solution of the
problem (6), see detailed discussion in Appendix E. Given a sample ζ = (s0, s, a, s

′, r,u) ∼ ρ0×D,
and a point Z := (V, λ, x), we construct the unbiased gradient estimators for Lw(·) as

ĝV (Z; ζ) := Is0 +
x(s, a)

µ̂(s, a)
(γIs′ − Is) ,

ĝλ(Z; ζ) :=
x(s, a)

µ̂(s, a)
uκ,

ĝx(Z; ζ) :=
r + γV (s)− V (s′) + ⟨uκ, λ⟩

µ̂(s, a)
Is,a,

(9)

where Is is the |S|-dimensional unit vector with the s-th element being one, Is,a is the |S||A|-
dimensional unit vector with the (s, a)-th element being one, and uκ = u − κ(1 − γ)1 ∈ RI is
the shifted utility vector. Based on these estimators, we propose a stochastic mirror descent ascent
approach to solve problem (7), as stated in Algorithm 1.

The algorithm starts from a feasible solutionZ1, which, for example, can be easily chosen as V 1=0,
λ1 = 1

φI , x1 = N
|S||A|

µ̂
1−γ . In each iteration, an offline sample ζt is used to construct the unbiased

gradient estimators gtV , g
t
λ and gtx. A stochastic mirror descent ascent step (11) is then used to update

the solution Zt, where ProjV(·) denotes the Euclidean projection to the set V , and KL(Y ∥Y ′) :=∑
i Yi log

Yi

Y ′
i
−
∑
i Yi+

∑
i Y

′
i denotes the generalized KL divergence. Simple closed form solutions

are available to the V t+1 and λt+1 updates. By taking the advantage of the special structure of gtx
and the fact that xt ∈ X is feasible, the xt+1 subproblem can be reduced to the root finding of a
1-dimensional monotone function, which can be solved efficiently, see details in Appendix A.

Finally, it is worth noting that x is the approximate optimal solution to the reweighted problem.
And Wx will be the approximate solution to the original problem (6) before the change of variable.
Therefore, ideally, we should have output the policy πw(a|s) = w(s,a)x̄(s,a)∑

a′ w(s,a′)x̄(s,a′) , which is inacces-
sible in practice without knowing the reference distribution µ. In order to overcome such dilemma,
we show that by properly constructing the estimated distribution µ̂, the π output by Algorithm 1 will
be close enough to the ideal output πw.

4 The sample complexity of DPDL

4.1 Main results of DPDL

For the DPDL algorithm, the convergence and performance guarantee of the output policy π̄ are
summarized as the following theorem.
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Algorithm 1: Deviation-controlled Primal-Dual Learning algorithm (DPDL)
input : Tolerance ϵ > 0, confidential level δ > 0, conservatism level κ > 0, stepsize ηt > 0,

constants αV , αλ, αx, Ne, ς > 0, and initial feasible solution Z1 = [V 1;λ1;x1].
1 Obtain Ne samples from D, let N(s, a) be the times that the pair (s, a) appears. Compute

µ̂(s, a) = max

(
N(s, a)

Ne
, ς

)
, ∀(s, a) ∈ S ×A. (10)

for t = 1, · · · , T − 1 do
2 Sample ζt = (s0t , st, at, s

′
t, rt,ut) from ρ0 ×D;

3 Compute stochastic gradients gtV := ĝV (Z
t; ζt), gtλ := ĝλ(Z

t; ζt), and gtx := ĝx(Z
t; ζt);

4 Compute the stochastic mirror descent ascent update

V t+1 = ProjV
(
V t − ηtα−1

V gtV
)
,

λt+1 = argmin
λ∈Λ

(〈
gtλ, λ− λt

〉
+
αλ
ηt

KL(λ ∥ λt)
)
,

xt+1 = argmin
x∈X

(
−
〈
gtx, x− xt

〉
+
αx
ηt

KL(x ∥ xt)
)
,

(11)

5 Compute the average iterate x = 1
T

∑T
t=1 x

t, V = 1
T

∑T
t=1 V

t, λ = 1
T

∑T
t=1 λ

t;
6 Compute π(a|s) = x(s,a)∑

a′ x(s,a′)
, for all (s, a);

output: Policy π and the approximate solution x.

Theorem 4.1. Suppose that Algorithm 1 runs with ηt ≡ 1√
T

, κ = 5φϵ, αλ = 1
1−γ

√
ψ

log I , αV =

φ
√

ψ
|S| , αx = 1

φ(1−γ)

√
Nψ
logψ , and ψ ≥ C∗. Then for any fixed ϵ ∈

(
0, 1

10(1−γ)
]
, and T ≥

co
Nψι

φ2(1−γ)4ϵ2 , where ι = log
(
ψ|S||A|I

δ

)
and co is a universal constant, the output policy π of

DPDL satisfies the following with probability at least 1− δ

J(π∗)− J(π) ≤ O (ϵ) , and Jui (π) ≥ 0,∀i ∈ [I].

When ψ = O(C∗), DPDL needs at most Õ
(

NC∗

φ2(1−γ)4ϵ2

)
samples to find a safe O (ϵ)-optimal

policy.
Remark 4.2. When the prior knowledge of C∗ is not available, and the selected parameter ψ < C∗

but the Slater’s condition for Π(ψ) still holds, the output policy π of DPDL satisfies that

J(π) ≥ max
π∈Π(ψ)∩S

J(π)−O (ϵ) and Jui (π) ≥ −ϵapprox,∀i ∈ [I],

where S denotes the set of safe policies, and ϵapprox(ψ) := J(π∗) −maxπ∈Π(ψ)∩S J(π) in some
sense measures the “sub-optimality” of the policy class Π(ψ). In case a fixed sub-optimality gap ϵ
is given, such difficulty of unknown C∗ also appears in the guarantees provided in previous works
[15, 21, 22, 28, 30, 31].

A simple approach to resolve the difficulty of an unknown C∗ is discussed later in Section 6.

4.2 The analysis of DPDL

We break down the analysis of Theorem 4.1 into the following steps. First of all, we provide a proper
choice of Ne and ς so that µ̂ is close enough to µ. See proof in Appendix B.

Proposition 4.3. Denote ϵe = ϵ
100 , and let ς = φ(1−γ)2ϵe

2Nψ , and Ne ≥ 512Nψ
φ2(1−γ)4ϵ2e

· log
(

6|S||A|
δ

)
.

Then with probability at least 1− δ/3, the estimated reference distribution µ̂ defined by (10) satisfies
the following properties simultaneously: (1). µ(s,a)

µ̂(s,a) ≤ 2, and µ̂(s, a) ≥ ς , for all s, a; (2). For any
π ∈ Π(ψ), W−1νπ ∈ X ; (3). For any x ∈ X , ∥Wx− x∥1 ≤ φ(1− γ)ϵe.
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All the rest of our analyses are all conditioning on the success of Proposition 4.3. It is worth noting
that in Proposition 4.3, (3) clarifies the validity of constructing the output policy π with x instead of
Wx; (2) explains why the feasible region X is defined as (8); and (1), combined with the carefully
specified feasible domains, provides the proper upper bounds on the magnitude and variance of
the unbiased gradient estimators in (9). A very detailed discussion is provided in Appendix C. In
particular, for the ĝx(·) estimator, an explicit O(N ) dependence has been established for both the
magnitude and variance, which plays a crucial role in deriving the optimalO(min{|S||A|, |S|+ I})
dependence on |S|, |A| and I . Let us define the following gap to measure the performance of the
output x̄ w.r.t. problem (7):

Gap(x) := max
x∈X

min
V ∈V,λ∈Λ

Lw(V, λ, x)− min
V ∈V,λ∈Λ

Lw(V, λ, x). (12)

Based on the properly bounded gradient estimators, a high probability bound for Gap(x) is estab-
lished in the following theorem. Its proof is detailed in Appendix D.
Theorem 4.4. Suppose the constants ηt, αV , αλ, αx and κ are chosen the same as Theorem 4.1.
Then there is a universal constant co such that, as long as T ≥ co

Nψι
φ2(1−γ)4ϵ2 , the output x satisfies

Gap(x) ≤ ϵ
2 with probability at least 1− δ/3.

Given Theorem 4.4, we finalize the proof of Theorem 4.1 by properly transforming the bound on
Gap(x) to the expected reward gap and the constraint violation on the original CMDP problem (1),
which is discussed in details in Appendix E.

4.3 Extension to asynchronous setting

In some situations, an independent dataset that satisfies Assumption 2.2 may not be available. In-
stead, the dataset may have the following asynchronous structure.
Assumption 4.5. The asynchronous datasetDasync is a single sample trajectory generated by some
behavior policy πb. Namely, what we observe is a sequence {st, at, rt,ut}t≥1 generated under πb.
We assume the Markov Chain {(st, at)}t≥1 is irreducible, aperiodic and uniformly ergodic, with
the stationary distribution µ and the mixing time tmix < +∞.

The asynchronous data structure introduced here is frequently considered in RL, for example, the
asynchronous Q-learning [14]. However, to our best knowledge, this type of offline data has yet
been considered under the assumption of a finite single-policy concentrability. In this situation,
we set ζt = (s0t , st, at, st+1, rt,ut) in the DPDL method (Algorithm 1), where s0t ∼ ρ0 and
(st, at, st+1, rt,ut) is the tuple in the t-th time step of the asynchronous dataset. The sample com-
plexity of the DPDL Algorithm under Assumption 4.5 is established as follows.
Theorem 4.6. Under Assumption 4.5, we follow the choice of constants in Theorem 4.1. Then given
any fixed ϵ ∈

(
0, 1

10(1−γ)

]
, ψ ≥ C∗, and T ≥ c′o

t2mixNψι3

φ2(1−γ)4ϵ2 , the output policy π of DPDL satisfies
the following with probability at least 1− δ

J(π∗)− J(π) ≤ ϵ and Jui (π) ≥ 0,∀i ∈ [I].

Here ι = log (T |S||A|I/δ) and c′o is a universal constant. Therefore, when ψ = O(C∗), DPDL

needs at most Õ
(

t2mixNC∗

φ2(1−γ)4ϵ2

)
samples to find a safe ϵ-optimal policy.

The main framework for proving Theorem 4.6 is similar to that in Section 4.2, thus we present the
proof in the Appendix H. However, compared to the synchronous setting, a key difficulty here is
that the gradient estimators ĝV (Zt; ζt), ĝλ(Zt; ζt), and ĝx(Zt; ζt) are no longer unbiased, because
the samples {ζt}Tt=1 are obtained from a sample path. This brings further difficulties in the analysis
because the variance of the estimators can be amplified by the correlation between samples.

The basic idea to deal with this difficulty is to leverage the mixing property of the uniformly ergodic
Markov chain. Take the ĝx(·) estimator for example, the bias can be well controlled as long as
T is selected larger than the mixing time tmix of the sample path, which can be illustrated by the
following decomposition
ĝx(Z

t; ζt)−∇xLw(Zt) = ĝx(Z
t; ζt)−ĝx(Zt−τ ; ζt)+∇xLw(Zt−τ )−∇xLw(Zt)︸ ︷︷ ︸

order O(τη)

+ ĝx(Z
t−τ; ζt)−E

[
ĝx(Z

t−τ; ζt)
∣∣Zt−τ ]︸ ︷︷ ︸

zero mean

+E
[
ĝx(Z

t−τ; ζt)
∣∣Zt−τ ]−∇xLw(Zt−τ )︸ ︷︷ ︸

order O(exp(−τ/tmix))

.
(13)
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When t = Ω̃ (tmix), one can bound the bias of ĝx(Zt; ζt) by Õ (tmixη) with suitably chosen τ .

5 Lower Bound of Sample Complexity for Learning CMDP

In this section we will discuss whether the DPDL Algorithm is the near-optimal and whether the
Slater’s condition (Assumption 2.4) is necessary in achieving zero constraint violation. We answer
these questions affirmatively by establishing the following theorems.
Theorem 5.1. Suppose S ≥ 4, A ≥ 3, I ≥ 8, C ≥ 2, γ ∈ [ 12 , 1), N ≥ 1. For any learning
algorithm A, there exists a CMDPM = (S,A,P, r, (ui)i∈[I], γ, ρ0) and a reference distribution µ,
such that the following hold true.

(1) |S| ≤ 4S + 1, |A| ≤ A, and the concentrability coefficient C∗ forM and µ satisfies C∗ ≤ C.

(2) Let π̂ be the policy output by A given N offline samples from µ, and let π∗ be the optimal policy,
then at least one of the following two inequalities hold true:

EM,A[J(π
∗)−J(π̂)]≳min

{
1

1− γ
,

√
min {SA, S+I}C

(1− γ)3N

}
, and EM,A

[
violation(π̂)

]
≳ 1,

where violation(π̂) :=
∑I
i=1 [J

u
i (π̂)]−, and Jui is the utility w.r.t. the constraints Jui ≥ 0,∀i ∈ [I].

For DPDL, the constraint violation is guaranteed to be zero with high probability, then only the first
inequality is valid for our method, which indicates an Ω

( NC∗

(1−γ)3ϵ2
)

sample complexity lower bound.

Therefore, the complexity of DPDL is nearly optimal up to an Õ
(

1
1−γ

)
factor. Besides the lower

bound, we also establish the necessity of the Slater’s condition in ensuring zero violation.
Theorem 5.2. Let S,A,C, γ be the same as Theorem 5.1. For any algorithm A, there exists a CMDP
M = (S,A,P, r, (ui)i∈[I], γ, ρ0) with I = 1, |S| ≤ S, |A| ≤ A and a reference distribution µ with

C∗ ≤ C, such that EM,A[violation(π̂)] ≳ min
{

1
1−γ ,

√
SC

(1−γ)3N

}
, where π̂ is the output policy of

A given N samples from µ.

Theorem 5.2 is obtained by utilizing the same idea as Theorem 5.1. Thus we only discuss the
derivation of Theorem 5.1, while moving all the details to Appendix F.

For offline CMDPs, the fixed data distribution µ fully dominates the frequency of exploring the
state-action pairs. Therefore, intuitively, the hard CMDP instances will be the ones with a large
support supp(νπ

∗
) that widely spreads across the less frequently visited station-action pairs of µ.

Based on this intuition, we design a basic block of CMDP presented in Fig. 1, which is essentially a
constrained bandit with 2K+1 arms. The instanceM will be S replicas of the basic blocks, plus an
extra “null” state s−1 to control C∗. In this discussion, we only consider the case where I ≃ KS,
the more general construction that cover full range of I is presented in the appendix.

s
j
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r = 0

r = −1 r = 0

r = 1

s
j
⊕

s
j
⊖ s

j
0

1− p

q

1− q

p
q

1− q

1+ϖθi,j
2

1−ϖθi,j
2

(a) (sj1, ai)

s
j
1
r = 0

r = −1 r = 0

r = 1

s
j
⊕

s
j
⊖ s

j
0

1− p

q
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p
q

1− q

1
2

(
1− ϖ

2

)

1
2

(
1 + ϖ

2

)

(b) (sj1, bi)

s
j
1
r = 0

r = −1 r = 0

r = 1

s
j
⊕

s
j
⊖ s

j
0

1− p

q

1− q

p
q

1− q

1
2

1
2

(c) (sj1, e)

Figure 1: Transition dynamics of the jth replica under different actions, i ∈ [K].

State, action and transition. At the states sj⊕, s
j
⊖, s

j
0, there is no action to be taken. At each state

sj1, there are 2K +1 actions a1, b1, · · · , aK , bK , e. The transition dynamics of the jth replica under
different actions are illustrated in Fig. 1 where the directed arcs and the numbers associated with
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them are the transitions and the corresponding probabilities, where p = 1
2−γ and q = 2 − 1

γ are
some constants, while ϖ and θi,j ∈ {−1, 1}, ∀i, j are parameters to be designed.
Constraints and Reward. By carefully selecting the ui’s, one can construct a set of I = 2SK

constraints that indicate π(ai|sj1)≤π(bi|s
j
1)≤ 1

4K , ∀i, j. For the reward, we set r(sj1) = r(sj0) = 0,
r(sj⊕) = 1, and r(sj⊖) = −1, regardless of the actions. At any replica j, we can view ai, bi, and e
as bandit arms with (cumulative) reward cϖθi,j , − cϖ2 , and 0 respectively, for some c > 0. When
θi,j =−1, one would rather pick e . But when θi,j = 1, due to the constraint π(ai|sj1)≤π(bi|s

j
1)≤

1
4K , picking ai and bi with equal probability 1

4K will be optimal. In fact, this 1
4K upper bound forces

the support of the optimal policy to widely spread across the (i, j)’s where θi,j = 1, and the task of
learning is essentially determining whether θi,j = 1 for each (i, j).
Optimal policy. Based on the above discussion, it is not hard to see that the unique optimal policy
is π∗,θ(ai|sj1) = π∗,θ(bi|sj1)=

I{θi,j=1}
4K and π∗,θ(e|sj1)=1− 1

2K

∑K
i=1I{θi,j=1}.

Finally, with the above π∗,θ and a proper initial distribution ρ0, the occupancy measure can be
explicitly computed and a reference distribution µ with concentrability coefficient C∗ ≤ C can be
designed. Moreover, for any policy π̂, we consider θ̂i,j(π̂) :=8Kπ̂(ai|sj1)− 1, then

L(π̂; θ) :=
[
J(π∗,θ; θ)− J(π̂; θ)

]
+
+

γϖ

1− γ
violation(π̂; θ) ≥ γ2ϖ∥θ̂(π̂)− θ∥1

64KS(1− γ)
.

Namely, if θ̂(π̂) is not close enough to the underlying parameter θ, the policy π̂ will incur a con-

siderable reward gap or constraint violation. By setting ϖ = min
{√

(SK−3)C
16(1−γ)N ,

1
2

}
to be a small

enough number, any two CMDP instances with different θ parameters will be non-distinguishable,
given N samples from µ. According to [9] and [24], there exists a subset Θ ⊆ {−1, 1}SK such
that |Θ| ≥ exp(SK/8), and ∥θ − θ′∥1 ≥

SK
2 for any pair of different θ, θ′ ∈ Θ. In other words,

there will be at least exp(SK/8) CMDP instances with different enough θ parameters while being
non-distinguishable under N samples. Then the rest of the arguments will follow by applying the
generalized Fano’s inequality [3]. A detailed proof is provided in Appendix F.

6 Adaptive deviation-control framework of DPDL

We should notice that in both Theorems 4.1 and 4.6, it has been explicitly emphasized that a prior
belief ψ ≥ C∗ is required. Otherwise, both the reward and the constraints will suffer an extra loss
of ϵapprox(ψ). In this section, we propose an adaptive deviation-control framework (Algorithm 2)
to handle the practical situation where no such prior knowledge is available.

Algorithm 2: The Adaptive-DPDL framework
input : Sub-optimality ϵ, confidence level δ.

1 Initialize ψ1, default JK ≡ −∞, for K = 0, 1, 2, ...;
2 for K = 1, 2, · · · do
3 Call DPDL with ψ = ψK , obtain an approximate solution x(K) and the policy π(K);
4 if VERIFY

(
x(K); ϵ, δ

)
== TRUE then

5 Compute Ĵ(π(K)) as an O(ϵ)-accurate estimator of J(π(K)), set JK = Ĵ(π(K));

6 if −∞ < JK ≤ JK−1 +O(ϵ) then Terminate;
7 Set ψK+1 = 2ψK ;

output: Policy π(K).

At a high-level, Algorithm 2 consists of the following steps.

Verification For the output x of the DPDL, we develop a verification method VERIFY(x; ϵ, δ) that,
with probability at least 1 − δ, returns TRUE only when following two statements hold: (1). The
vector ν := Wx satisfies ∥

∑
a(I− γPa)νa − ρ0∥1 = O(ϵ), which essentially checks whether ν is

approximately a valid occupancy measure; (2). The policy π induced by x is safe. At step K, if
any one of the two statements does not hold, we immediately know ψK < C∗ due to the analysis of
Theorem 4.1. Consequently, we to double the coefficient ψK+1 ← 2ψK in the next iteration.
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Certifying performance improvement When VERIFY(x; ϵ, δ) returns TRUE, then it holds that
j0(ψ) = J(π(K))+O(ϵ), where j0(ψ) denotes the optimal value of problem (7) with κ = 0. That is,
one can estimate j0(ψ) with Ĵ(π(K)) if VERIFY(x; ϵ, δ) = TRUE. As long as VERIFY returns TRUE
for two consecutive runs, and the performance improvement is small, i.e., j0(ψK) − j0(ψK−1) =

O(ϵ), then Lemma 6.1 guarantees that the safe policy π(K) is O( C
∗

ψK
ϵ)-optimal.

Lemma 6.1. The function j0(·) is strictly increasing in the range ψ ∈ [1, C∗], and j0(ψ) = J(π∗)
for ψ ≥ C∗. For any ψ < ψ′ ≤ C∗, it holds that

J(π∗)− j0(ψ′) ≤ C∗ − ψ
ψ′ − ψ

(j0(ψ
′)− j0(ψ)) .

Detailed descriptions of VERIFY and Adaptive-DPDL are presented in Appendix G, and so does the
proof of the following theorem.
Theorem 6.2. Fixed ϵ ∈

(
0, 1

10(1−γ)
]
, δ ∈ (0, 1). Then with probability at least 1 − δ, Adaptive-

DPDL stops at step K such that ψK ≤ 4C∗ and outputs the safe policy π(K) with sub-optimality
gap J(π∗)− J(π(K)) ≤ O

(
C∗

ψK
ϵ
)

. Moreover, there exists a (problem dependent) constant ϵ0(M)

such that, if ϵ ≤ ϵ0(M), then it must hold that ψK ∈ [C∗, 2C∗) and π(K) is ϵ-optimal.

Intuitively, the Adaptive-DPDL will quickly terminate within O(log2 C∗) calls of DPDL, resulting
in a total samples complexity of Õ

(
NC∗

(1−γ)4ϵ2

)
.
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