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ABSTRACT

With the advent of large-scale foundation models and their success in diverse fields,
Knowledge Distillation (KD) techniques are increasingly used to deploy them to
edge devices with limited memory and computation constraints. However, most
KD works focus on improving the prediction performance of the student model
distilled from large teacher models, and there is little to no work in studying the
effect of distillation on key fairness properties, ensuring trustworthy distillation. In
this work, we propose a fairness-driven distillation framework, BIRD (BIas-awaRe
Distillation), which introduces a FAIRDISTILL operator to collect feedback from
the student through a meta-learning-based approach and selectively distill teacher
knowledge. We demonstrate that BIRD can be augmented with different KD meth-
ods to increase the performance of a wide range of foundation models and convolu-
tional neural networks after distillation. Extensive experiments across three fairness
datasets show the efficacy of our framework over existing state-of-the-art KD meth-
ods, opening up new directions to develop trustworthy distillation techniques.

1 INTRODUCTION

Recent years have witnessed an alarming trend toward developing large-scale foundation models
(FMs) (Radford et al., 2021; Singh et al., 2022) trained on large datasets from unvetted data sources,
leading to several deployment and fairness issues (Agarwal; Birhane et al., 2021; Mehrabi et al.,
2021; Naik & Nushi, 2023; Seth et al., 2023). To address the deployment constraints of FMs, model
compression techniques like Knowledge Distillation (KD) (Hinton et al., 2015) are recently used to
reduce their parameter size while preserving their predictive prowess (Hsieh et al., 2023; Wang et al.,
2022; Sanh et al., 2019), where KD frameworks distill knowledge from the output representations
and/or logits of a teacher FM into a smaller student model. However, none of the existing works
address the fairness problems of using KD in foundation models. As the distillation of large models
becomes increasingly prevalent, it is essential that the resulting student models are safe and reliable,
where they do not learn discriminatory features and exacerbate the bias of the teacher model.

In contrast to supervised learning frameworks where model bias is attributed to the training dataset
and/or algorithm (Agarwal et al., 2021; Hooker, 2021; Yucer et al., 2022), bias in KD is influenced by
the bias in the dataset, bias in the pre-trained teacher, and the nature of the KD method to optimize the
student (since student models are prone to inherit teacher biases). While utilizing fair teachers may
address this issue a bit, training fair teacher foundation models is an infeasible solution as i) removing
biased data or using fairness objectives during teacher training conflicts with the accuracy goals
of FMs, dissuading researchers from adopting them, ii) retraining existing FMs like CLIP, Flava, and
GPT for fairness is hindered by limited access of original training data and extensive computational
requirements, iii) the unavailability of large fairness datasets encompassing multiple bias attributes
exacerbates this issue, and iv) most FMs are shielded behind APIs and intellectual property pro-
tections, limiting the transparency of their architectures and legal constraints on modifications. These
contrasting aspects of the distillation framework in FMs make the problem of fair KD non-trivial.

While several existing works focus on either KD or fairness, there is little to no research on addressing
them simultaneously. Despite extensive efforts in these two fields, it remains unaddressed “what”
teacher features distill more bias during KD. To this end, Jung et al. (2021) propose MMD-based
distillation, which enforces fairness constraints solely on the student model. However, they fail to
provide any results to show whether it removes the bias in the teacher features or scales to large-scale
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foundation models. Further, Chai et al. (2022) leverage KD to ensure fairness without using demo-
graphic labels. In contrast to existing works, we propose a joint transformation of the biased teacher
knowledge and debiasing the student model with fairness objectives, where our framework learns
to exclude the biased features from the teacher representations by incorporating student feedback
via meta-learning, controlling “what” and “how much” a student distills knowledge from a teacher.

Present Work. We present BIRD, a novel BIas-awaRe Distillation framework that can be integrated
with any existing KD framework to learn fair and accurate student representations. We first identify a
key connection between the bias induced by the teacher and the bias inherited by the student (refer to
Q1 in Sec. 5.2) and show that there is a trade-off between the predictive and biased knowledge distilled
by a student in a KD framework. We demonstrate that existing KD frameworks result in a student
model that also inherits the bias present in the teacher predictions. Further, we introduce a new fair-
distillation operator that selects and filters a subset of uncorrelated features from the teacher for knowl-
edge distillation (Sec. 4.1). The fair-distillation operator is updated using the meta-gradients from the
student objective functions (Sec. 4.2). To the best of our knowledge, the proposed BIRD framework
is the first to tackle the problem of fairness in KD using student feedback in a meta-learning pipeline.

We conduct extensive experimentation with three benchmark fairness datasets and several baseline
KD and self-distillation techniques to analyze the efficacy of the proposed framework. Our empirical
studies across different datasets and baselines reveal the following key findings. 1) The proposed fair
knowledge distillation framework achieves more effective debiasing for KD compared to existing tech-
niques. 2) BIRD is model-agnostic and can be integrated with diverse foundational models and CNNs
across both knowledge-distillation and self-distillation applications. 3) BIRD introduces a simple,
flexible, and computationally inexpensive fair-distillation operator trained using meta-learning that
selectively distills fair and accurate teacher features. 4) Results show that BIRD improves the fairness
of the knowledge distillation framework by 40.91% (on average across multiple datasets and teacher-
student pairs) compared to existing MFD baselines without sacrificing predictive performance.

2 RELATED WORKS

This work lies at the intersection of fairness and knowledge distillation. Below we discuss related
work for each of these topics.

Knowledge Distillation. Knowledge distillation (KD) pertains to the group of algorithms that trans-
fers knowledge from one model to another, usually from a larger teacher model to a smaller student.
While initial KD techniques predominantly focused on distilling knowledge from logits (Hinton et al.,
2015), Romero et al. (2015) proposed a two-stage training procedure to perform distillation using the
features of the teacher model. Following the success of Romero et al. (2015), several other variants
were proposed, such as transferring attention maps (Zagoruyko & Komodakis, 2017), defining the dis-
tilled knowledge from a teacher model as the flow of the solution process (FSP) (Yim et al., 2017), and
using the mutual relations between the convolution activations to perform Relational Knowledge Dis-
tillation (Park et al., 2019). In contrast to traditional KD methods that consider smaller student models
than the teacher, recent works (Furlanello et al., 2018; Hahn & Choi, 2019) propose self-distillation,
utilizing the same student-teacher architecture. In addition, recent works (Park et al., 2021; Liu et al.,
2021; Zhou et al., 2021) propose new KD pipelines, where the teacher is trained using the student
feedback so that “it learns to teach,”, thus resulting in a more holistic teacher-student framework.
However, we note that all existing methods focus on improving students’ predictive performance
while ignoring the impact of distillation on its fairness properties, which is the motivation of this work.

Fairness. With the increase in the scale of large foundation models (e.g., CLIP (Radford et al., 2021),
FLAVA (Singh et al., 2022), etc.), it is essential to ensure that these models make fair and trustworthy
decisions. Existing debiasing techniques can be categorized into methods that: i) remove the bias from
the training dataset (Creager et al., 2019; Zemel et al., 2013; Louizos et al., 2016), ii) apply fairness
constraints while training (Agarwal et al., 2018; Jiang & Nachum, 2020; Kamishima et al., 2012), or
iii) operate on the predicted labels post-training (Hardt et al., 2016; Alghamdi et al., 2020). However,
these approaches are designed primarily for models trained only using ground truth labels. In contrast,
fairness in KD (Ahn et al., 2022) is influenced by the bias in the dataset, bias stored in the pre-trained
teacher, and the nature of the KD method to optimize the student. Further, it is unclear whether we can
jointly perform fair and accurate distillation or if there exist trade-offs between them. To this end, Jung
et al. (2021) propose a maximum mean discrepancy (MMD) based loss function to address the fairness
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Figure 1: Overview of BIRD framework. BIRD learns bias-aware representations from the teacher
fT by training the FAIRDISTILL operator using a meta-learning framework: a) for addressing teacher
bias, we update FAIRDISTILL operator using Linner and Louter and b) the student model fS selectively
distills unbiased representations using the formerly updated FAIRDISTILL and Ljoint objective.

problem in KD. However, we note that none of the existing works adapt the incoming biased teacher
knowledge based on student feedback, which can lead to a fairer student model. In contrast, our unify-
ing framework explores the paradigm of “learning to teach fairly” and leads to fairer student models.

3 PRELIMINARIES

Notation. Let D = {(x1, y1), . . . , (xN , yN )} be the dataset, where an image sample xi ∈ R3×h×w

has height h and width w, and each label yi ∈ {1, 2, . . . , C} represents one of the C classes in D. In
addition to the ground-truth label, each sample comprises a protected attribute label yp which may be
used unfairly against the subject in the image. Following previous meta-learning works (Finn et al.,
2017), we split the dataset D into three mutually exclusive sets Dtrain, Dtest, and Dmeta.

Knowledge Distillation. Let fT and fS denote the teacher and student model parameterized by
θT and θS, respectively. We denote the output logits generated by these models as zT and zS. The
knowledge distillation loss for a given pair of teacher-student models is then defined as:

LKD = ατ2
C∑
i=1

KL

(
exp(zT,i/τ)∑C
j=1 exp(zT,j/τ)

,
exp(zS,i/τ)∑C
j=1 exp(zS,j/τ)

)
+ (1− α)LCE(ŷ, y) (1)

where ŷ is the softmax output of the student model fS, KL(·) denotes the KL-Divergence loss, τ is the
temperature hyperparameter in softmax, α is a regularization coefficient, and LCE is the cross-entropy
loss function. In addition to matching logits (Eqn. 1), feature matching is widely used to achieve
KD. Let the output representations of the teacher and student model be hT and hS. Feature KD
(FKD) (Zagoruyko & Komodakis, 2017; Romero et al., 2015) is performed by optimizing D(hS,hT),
where D is any distance metric (e.g., Euclidean). In our work, we define Feature KD as:

LFKD = αD (hS,hT) + (1− α)LCE(ŷ, y) (2)
The above definitions of logit and feature KD (Eqns. 1-2) show that student models are only optimized
for their predicted performance. Since large teacher models are often biased, these frameworks distill
spurious correlations in the student, further motivating the need for a bias-free distillation framework.

4 OUR METHOD: BIRD

Here, we describe our proposed BIRD framework that aims to generate fair and accurate student
representations. BIRD demonstrates that we can obtain a fair student model by i) eliminating the
biased features in the teacher representation and ii) using fairness objectives for optimizing the
student during distillation. BIRD achieves this by introducing a fairness-aware distillation operator,
as well as the student copy update and meta-update objective function in the distillation.

Problem Formulation (Bias-Aware Distillation). Given a dataset Dtrain and a biased teacher
model fT optimized for predictive performance on Dtrain, we aim to learn a student model fS whose
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representations do not reflect any undesirable discriminatory biases (i.e., they are fair) and achieve
high predictive performance (i.e., they are accurate).

4.1 TEACHER BIAS

It is crucial to identify features in the teacher representation hT that exhibit correlation with the pro-
tected attributes p as they may potentially introduce bias when distilled to the student model. To elim-
inate the bias in the teacher representations during distillation, we propose FAIRDISTILL, a fairness-
aware distillation operator that aims to identify and distill a subset of uncorrelated (to p) teacher fea-
tures, i.e., selectively distill fair teacher features. Our proposed FAIRDISTILL operator is generic in its
formulation and can be augmented with any existing knowledge distillation method. It is defined to be
a computationally inexpensive operator FAIRDISTILL : Rd −→ Rd, which consists of a d-dimensional
learnable weight vector ϕ. For a given teacher representation hT, FAIRDISTILL is defined as:

FAIRDISTILL(hT) = sigmoid(ϕ)⊙ hT (3)

where ϕ ∈ [0, 1]d are the learnable weight parameters, ⊙ is the Hadamard product, and sigmoid
is the non-linear activation function. We apply sigmoid to the parameters ϕ before performing
element-wise multiplication to re-weight hT based on their correlation with the protected attributes.

Student Feedback. We leverage meta-learning frameworks consisting of two optimization steps: an
inner-loop and outer-loop, where the inner-loop learns the task-specific adaptation and the outer-loop
learns about the learning process of the inner-loop via the respective meta-parameters. In the inner
optimization loop, we create a copy fcopy of the original student model. Using (xt, yt) ∼ Dtrain, we
obtain the penultimate layer representations hT and hcopy from fT and fcopy, respectively. We then
leverage the FAIRDISTILL at the current step to transform hT and update fcopy using:

Linner = αD (hcopy, FAIRDISTILL(hT)) + (1− α)LCE(ŷt, yt), (4)

where D can be any distance-based metric (e.g., mean-squared error) and ŷt is the label predicted
by fcopy(xt). Since FAIRDISTILL aims to learn to fairly distill, we compute the resulting fairness
properties of the updated student copy, i.e., f ′

copy, and use them as feedback to update FAIRDISTILL

in the meta-step. Intuitively, we update FAIRDISTILL such that f ′
copy is fair, which in turn teaches

FAIRDISTILL to distill fairly. We describe the same as the meta-step in BIRD.

FAIRDISTILL update. In the meta step, we first sample data from the meta-subset (xm, ym) ∼ Dmeta

and pass it through updated f ′
copy. As detailed in Eqn. 4, θcopy is a function of ϕ which implies that

the gradients for θ′copy is a function of the gradients of ϕ. Consequently, we use θ′copy to perform
meta-updates on ϕ using a bias-aware objective function given by:

Louter =

C∑
i=1

max (

M∑
j=1

abs(LCE(ŷi|yp = j, yi|yp = j)− LCE(ŷi, yi))), (5)

where M is the number of unique values in the given protected attribute p, ŷi|yp = j denotes the
output of the network f ′

copy(xm) such that the unprotected class label is i and the label of the protected
attribute is j. Intuitively, Eqn. 5 denotes the difference between the predictive performance of f ′

copy
conditioned on the unprotected/task attribute and the predictive performance of f ′

copy conditioned
on both the protected attribute and given task attribute. The gradients of Louter w.r.t. ϕ imply that
ϕ is updated such that f ′

copy exhibits equal predictive performance across all protected demographic
groups for every task category (i.e., it is fair). In Fig. 1, we show the gradient flow using the
meta-gradients obtained from Louter, where the gradients of Louter w.r.t. ϕ are backpropagated via
θ′copy and ϕ is updated by computing the meta-gradients.

4.2 STUDENT BIAS

Distilling the entire teacher representation (including the biased features) and training only using
predictive objectives are two leading causes of the observed bias in the student model. To learn
student representations that are invariant to the protected attribute and tackle the aforementioned
facets, we train BIRD using the following objectives: i) we gather feedback from fS in the form
of meta-gradients to learn an optimal FAIRDISTILL (see Sec. 4.1) and ii) we apply the learned
FAIRDISTILL on fT to selectively perform fair knowledge distillation. In addition, we use an explicit
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model-agnostic regularization on fS that further penalizes student bias. Finally, the joint objective
loss which updates the original student model fS using the updated FAIRDISTILL is given as:

Ljoint = αD(hS, FAIRDISTILL(hT)) + (1− α)LCE(ŷt, yt) + λLreg, (6)

where Lreg is the regularization on fS that penalizes student bias, λ is a regularization weight for
Lreg, and ŷt is the softmax output of fS(xt). We use Eqn. 5 as the regularization term in our BIRD
framework. Algorithm 1 summarizes the overall training framework of BIRD.

Algorithm 1 BIRD: BIas-awaRe Distillation.

1: procedure BIRD(θS, θT, ϕ) ▷ Input Parameters
2: Hyperparameters: µ1, µ2, µ3 ▷ Learning Rates
3: Dataset: Dtrain,Dmeta ▷ Data Splits
4: for i = 1 to num_epochs do ▷ For every epoch
5: while Dtrain do ▷ For each batch in train data
6: θcopy ← θS ▷ Save current student state
7: θ′copy ← θcopy − µ1▽θcopyLinner(fcopy) ▷ Update with (xt, yt) ∼ Dtrain using Eqn. 4
8: ϕ← ϕ− µ2▽ϕLouter(f

′
copy) ▷ Update with (xm, ym) ∼ Dmeta using Eqn. 5

9: θS ← θS − µ3▽θSLjoint(fS) ▷ Update with (xt, yt) ∼ Dtrain using Eqn. 6
10: end while

5 EXPERIMENTS

Next, we present the experimental results for our BIRD framework. We address the following key
questions: Q1) Does knowledge distillation worsen/improve the bias in a student? Q2) Can we
selectively distill from the teacher to ensure bias-free distillation? Q3) Can BIRD be augmented
with existing knowledge distillation baselines? Q4) How do meta gradients from student models
improve debiasing? Q5) Are changes to BIRD ’s objective function necessary for fair predictions?

5.1 DATASETS AND EXPERIMENTAL SETUP

Datasets. We evaluate BIRD on two widely-used fairness datasets and a synthetic dataset. 1)
CelebA (Liu et al., 2015) dataset comprises more than 200,000 images with 40 binary attribute
annotations. Following Quadrianto et al. (2019) and Jung et al. (2021), we only consider the binary
protected group and binary task class in our experiment, namely, we set Gender (male/female) as the
protected attribute and Attractive (yes/no) as the target variable. 2) UTKFace (Zhang et al., 2017)
dataset consists of approximately 20,000 face images with annotations of age (from 0 to 116), gender
(male/female), and ethnicity (White, Black, Asian, and Indian). Images in the dataset are diverse
and encompass different variations in pose, facial expression, illumination, occlusion, resolution,
etc. We follow the setup described by Jung et al. (2021) and use ethnicity as the protected attribute
with four classes and age as the task attribute bucketed into three classes. The synthetic dataset is
the CIFAR-10S (Wang et al., 2020) dataset, which is a modified version of CIFAR-10 to study bias
mitigation in image classification and consists of 32×32 images categorized into one of 10 classes.
For space constraints, details and results of this synthetic dataset are in Appendix Sec. A.

Evaluation metrics. We report AUROC and F1-score on the test set to evaluate the predictive perfor-
mance of the student. For fairness, we use two types of difference of equalized odds (DEO) metrics
as proposed by Jung et al. (2021), defined upon taking the maximum and the average over the given
prediction label ŷ. Further, ∆max-DEO denotes the worst-case unfairness performance and ∆mean-DEO
represents the overall fairness across all classes. Mathematically, these metrics are defined as:

∆mean-DEO =
1

|C|
∑
yi

|P (ŷ = yi|y = yi, yp = 0)− P (ŷ = yi|y = yi, yp = 1), | (7)

∆max-DEO = max
yi

|P (ŷ = yi|y = yi, yp = 0)− P (ŷ = yi|y = yi, yp = 1), | (8)

where ŷ represents the predicted label, yp is a given protected attribute, and yi denotes a label from
all possible labels C in the dataset.
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Baseline methods. We consider the standard knowledge distillation baselines: Base KD (BKD) (Hin-
ton et al., 2015), and FitNet (Romero et al., 2015) – they entirely focus on improving student’s
prediction accuracy. In addition, we include recent methods proposed to tackle fairness in KD:
Adversarial debiasing (Zhang et al., 2018), MFD (Jung et al., 2021). Further, in our experiments
with CNNs in the Appendix, we include another kd baseline - Attention Transfer (Zagoruyko &
Komodakis, 2017) that requires access to the spatial features of the teacher network.

Model architectures. We investigate the flexibility of BIRD using three established foundation
models (FMs): CLIP-ResNet-50, CLIP-ViT-B/32 (Radford et al., 2021), and FLAVA (Singh et al.,
2022). In addition, we consider three widely used Convolutional Neural Network (CNN) architectures
in knowledge distillation to show the generalizability of BIRD in performing bias-aware distillation:
ShufflenetV2 (Ma et al., 2018), ResNet-18, and ResNet-34 (He et al., 2016). We use the public
implementations and pre-trained weights for FMs and CNNs models from HuggingFace (Wolf et al.,
2020) and PyTorch model-zoo (PyTorch), respectively. Note that while we initialize the FMs using
their pre-trained weights, the CNN models were trained from scratch.

Baseline Implementation. We use Adam optimizer (Kingma & Ba, 2015) with its default parameters
and a learning rate of 1× 10−3 to train all our baseline models. For the CelebA dataset, all models
are trained for 10 epochs with a constant learning rate. However, for the UTK dataset, we train the
CNNs for 50 epochs with a decay factor of 1× 10−1 every 10 epochs and FMs for 10 epochs with
a constant learning rate. We follow previous works and use α = 0.90 and τ = 4 for the knowledge
distillation parameters for all experiments. We implement FitNet (Romero et al., 2015) following
their official paper Romero et al. (2015), AT loss using the official repository 1 with β = 1× 106, and
Adversarial Debiasing from the repository2 provided by Wang et al. (2020). Refer to the Appendix
for details on baseline hyperparameters.

BIRD Implementation. We use PyTorch (Paszke et al., 2017) and Higher (Grefenstette et al., 2019)
to implement the BIRD framework. Following previous meta-learning works (Liu et al., 2022), BIRD
utilizes two mutually exclusive data splits namely, Dtrain and Dmeta for training fS and FAIRDISTILL,
respectively (also see Fig. 1). The meta subset is created by randomly sampling 20% examples from
the training dataset (similar to (Finn et al., 2017)). The baselines are trained using the entire set of
training examples Dtrain ∪Dmeta. We use SGD optimizer (Ruder, 2016) with a momentum of 0.90
and weight decay of 5× 10−4 to train fS because it is non-trivial to achieve convergence using Adam
optimizer in performing meta-optimization. The ϕ parameters are updated using AdamW optimizer
with a weight decay of 5× 10−2, learning rate of 1× 10−3 after a fixed number of warmup epochs
to ensure that fS is partially optimized for KD and can generate meaningful meta-gradients. Finally,
with careful analysis and linear probing, we find the optimal λ weight hyperparameter to regularize
fairness (see Eqn. 6) for each architecture setting and show the individual values in the Appendix.
We use a single A100 GPU with 80GB GPU memory for our experiments.

5.2 RESULTS

Here, we discuss our experimental results that address the aforementioned questions Q1-Q5.

1) KD introduces bias in student models. To demonstrate the impact of an unfair teacher, we
compute the DEO metrics (both mean and max) for a student model before and after distillation. We
use BKD (refer to Eqn. 1) with CLIP-ViT-B/32 and FLAVA models as teachers and the ResNet-
{18,34} as students. Across different teacher-student combinations, results in Fig. 2 show that the
student model, which originally had better fairness performance, becomes unfair (higher metric
values) after inheriting the teacher’s biased features. On average, we find an increase of 38.54% in
∆mean-DEO and 37.26% in ∆max-DEO, reinforcing our hypothesis that vanilla KD introduces bias in the
student model. See the Appendix for similar insights on additional teacher-student architectures.

2) BIRD improves the fairness of knowledge distillation. A vital property of any KD framework
is to effectively and fairly distill from a given unfair teacher model. We conduct multiple experiments
on different teacher-student combinations to analyze the efficacy of BIRD over different KD methods.
Specifically, we present our results for both Self Distillation (similar to Jung et al. (2021)) and
Knowledge Distillation settings in Table 1 and Table 2 respectively. Across multiple datasets and

1https://github.com/szagoruyko/attention-transfer
2https://github.com/princetonvisualai/DomainBiasMitigation
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Figure 2: Difference of Equalized Odd (DEO) metric scores for baseline teacher (CLIP-ViT-B/32
(C-Vit), FLAVA (FL)), baseline student (ResNet-{18, 34}), and distilled student models using base
knowledge distillation (BKD). We find that knowledge distillation results in unfairer student predic-
tions as compared to baseline students across both ∆mean-DEO (row 1) and ∆max-DEO (row 2) metrics.

Table 1: Results of self-distillation on foundation models using two fairness datasets. Shown is the
average performance across five independent runs. Arrows (↑, ↓) indicate the direction of better
performance. BIRD retains the predictive power (AUROC and F1-score) of the baseline model
while improving their fairness (shaded area). Note that teacher-student architectures in each case
are identical. See Appendix for fairness results of widely used CNNs in KD and CIFAR-10S results.

Model Dataset Method AUROC (↑) F1-score (↑) ∆mean-DEO(↓) ∆max-DEO(↓)

CLIP-ViT-32

UTKFace

Baseline
BKD

95.96±0.03
95.95±0.05

86.22±0.16
86.02 ±0.15

13.47±0.20
13.73±0.15

25.07±0.96
25.27±0.99

FitNet
AD

95.95±0.06
96.05±0.06

86.07±0.29
86.34 ±0.32

13.80±0.21
11.84±0.73

25.47±1.42
22.49±0.31

MFD
BIRD

96.05±0.04
95.50±0.04

86.64±0.15
85.67±0.08

12.11±0.16
12.07±0.27

22.79±0.37
16.92±0.82

CelebA

Baseline
BKD

87.01±0.26
87.07±0.26

78.15±0.52
78.20±0.48

23.38±1.72
23.26±1.67

24.91±1.15
24.62±1.14

FitNet
AD

87.08±0.23
88.20±0.17

78.16±0.46
79.00 ±0.15

23.25±1.50
17.02±1.03

24.57±1.02
17.82±0.97

MFD
BIRD

87.22±0.11
88.55±0.03

77.59 ±0.70
80.84±0.06

21.99±0.70
3.44±0.92

23.70±1.58
5.19±1.06

CLIP-
ResNet50

UTKFace

Baseline
BKD

95.67±0.04
95.67±0.03

84.90±0.20
84.85 ±0.20

13.70 ±0.58
13.57±0.50

23.08 ±1.06
23.28 ±0.99

FitNet
AD

95.66±0.03
95.67±0.05

84.98±0.28
83.86±0.16

13.93±0.45
14.83±1.58

23.78±1.01
26.27±0.70

MFD
BIRD

95.69±0.03
95.43±0.02

84.90±0.52
84.05±0.13

14.16±0.60
12.43±0.14

22.99±1.60
23.28±0.43

CelebA

Baseline
BKD

87.72±0.06
87.72±0.06

78.71±0.21
78.90±0.15

21.11±0.30
21.10±0.40

21.97±0.41
22.07±0.41

FitNet
AD

87.75±0.06
88.51±0.02

78.77±0.21
80.32±0.05

21.00±0.28
5.33 ±0.19

21.80±0.38
7.93±0.22

MFD
BIRD

87.49±0.12
87.93±0.01

78.56±0.21
80.34±0.08

22.56±0.56
2.65±0.29

23.52±0.33
4.49±0.48

state-of-the-art foundational models, we show that BIRD learns fairer student representations while
preserving the predictive performance of the original model over strong baselines. On average
across both datasets and models, BIRD improves the fairness of the underlying model by 46.29%
(in ∆mean-DEO) and 44.33% (in ∆max-DEO), respectively as compared to MFD for the self distillation
setting. Similarly, BIRD improves the fairness of the underlying model by 38.47% (in ∆mean-DEO)
and 34.54% (in ∆max-DEO), respectively for the knowlegde distillation setting. We observe that
BIRD consistently achieves the best fairness performance across all methods without significantly
impacting their predictive performance for both self and knowledge distillation framework. We also
analyze the efficacy of BIRD across widely used CNNs in distillation literature (see Table 4).
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Table 2: Results of knowledge distillation using foundation models, ResNets, and two fairness
datasets. Shown is the average performance across five independent runs. Arrows (↑, ↓) indicate
the direction of better performance. BIRD retains the predictive power (AUROC and F1-score) of
the baseline model while improving their fairness (shaded area).

Model Dataset Method AUROC (↑) F1-score (↑) ∆mean-DEO(↓) ∆max-DEO(↓)

CLIP-ViT-32
−→ResNet18

CelebA

Student
Teacher

85.44±0.29
87.01±0.26

74.26±1.59
78.15 ±0.52

18.60±1.46
23.38±0.20

21.46±1.61
24.91±1.15

BKD
FitNet

87.03±0.28
87.52±0.32

77.55 ±0.94
78.85±0.52

25.04±1.46
23.96±1.75

28.81±1.53
26.29±1.38

AD
MFD

79.50±1.95
87.06±0.05

71.61±1.81
77.86±0.28

8.48±3.55
18.31±1.60

11.30±3.21
25.27±0.84

BIRD 89.26±0.06 80.86±0.15 7.51±1.03 10.16±1.12

UTKFace

Student 92.25±0.14 78.73±0.27 17.21±0.40 36.92±1.13
BKD
FitNet

95.06±0.05
94.76±0.07

81.12 ±0.56
81.59 ±0.52

17.74±0.82
16.52 ±0.69

36.22±0.82
33.63±1.81

AD
MFD

86.55±1.82
90.45±0.35

69.03±0.57
77.61±0.25

30.55±2.19
18.31±1.60

50.85±4.55
34.73±2.21

BIRD 91.05±0.15 77.71±0.61 14.96±1.23 30.55±2.68

CLIP-R50
−→ResNet18

CelebA

Student 85.44±0.29 74.26±1.59 18.60±1.46 21.46±1.61
BKD
FitNet

87.63±0.15
87.61 ±0.1

78.72±0.47
81.59 ±0.52

22.99±0.47
22.93 ±0.32

26.25±1.39
26.51±0.8

AD
MFD

81.41±1.59
87.09±0.25

62.85±3.21
77.55±0.37

17.80±6.43
21.88±0.38

25.52±9.54
23.52±0.65

BIRD 85.72±0.96 74.15±2.54 6.20±1.73 9.83±2.77

UTKFace

Student 92.25±0.14 78.73±0.27 17.21±0.40 36.92±1.13
BKD
FitNet

95.25±0.08
94.93±0.16

82.51 ±0.62
81.42 ±0.38

16.85±0.86
16.25±1.08

35.52±1.07
34.33±2.11

AD
MFD

85.50±1.15
89.88±0.27

68.28±1.88
75.87±1.10

28.46±1.46
18.77±1.07

53.33±2.72
39.90±1.99

BIRD 90.59±0.13 77.04±0.87 17.84±1.30 33.35±1.21

Table 3: Results of BIRD for three different KD methods. Shown is the average performance across
five independent runs on the Celeb-A dataset with ResNet18→ResNet18. BIRD consistently improves
the fairness performance (shaded area) of all existing KD methods.

Method AUROC (↑) F1-score (↑) ∆mean-DEO(↓) ∆max-DEO(↓)

FitNet 85.99±0.18 75.59±0.99 19.01±1.17 21.46±1.37

BIRD + FitNet (Stage 2) 84.49±0.18 77.04±0.35 11.32±1.29 16.15±1.38

AT 86.03±0.20 75.07±1.50 18.00±1.19 22.16±1.54

BIRD + AT 86.92±0.16 78.56±0.33 3.55±0.37 5.24±0.56

MFD 86.24±0.09 77.32±0.26 19.34±0.47 21.46±0.64

BIRD + MFD 82.61±0.34 75.20±0.63 15.25±0.45 18.09±0.45

3) BIRD-augmented methods are fairer than their vanilla counterpart. We conduct multiple
experiments on different BIRD-augmented knowledge distillation techniques to analyze the efficacy of
BIRD. In particular, we augment BIRD with two widely used KD methods (FitNet and AT) and MFD,
a baseline to achieve fairness in KD. Our results in Table 3 demonstrate that BIRD-augmented knowl-
edge distillation techniques learn fairer representations than their vanilla counterparts. On average,
BIRD improves the fairness of three existing KD methods by 41.86% (in ∆mean-DEO) and 41.80% (in
∆max-DEO), respectively. A key takeaway from our experiments is that BIRD learns a small distillation
operator using meta-learning that can be easily integrated with any existing KD frameworks.

4) Meta-updates improve fairness. We conduct an ablation on the importance of the meta-step in
our BIRD framework. The meta step allows us to update the parameters of FAIRDISTILL such that
the biased features from the teacher do not impact the student. We substantiate its effectiveness by
removing this operator and performing KD with only the regularization term Lreg. Results show that
the meta-learning component is necessary to learn fair representations (Figure 3). In particular, we
observe a 6.45% improvement in the fairness of BIRD, as compared to BIRD w/o Meta, providing
empirical evidence that the meta-gradients improve the fairness of the student model.
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RESNET-18→RESNET-18 CLIP-RESNET-50→RESNET-18
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Figure 3: Ablation study to understand the impact of meta-gradients in BIRD. Shown is the average
performance across five independent runs on the Celeb-A dataset with ResNet18 and CLIP-RN50
models, evidencing that the student feedback through the meta-step update improves fairness.

5) Ablation study. We conduct ablations on several components of the BIRD framework, namely
the impact of the Louter loss objective, computational overhead compared to baseline, and comparing
BIRD with methods that use KD to ensure fairness without using demographic labels. Our ablation
on the Louter objective shows that our proposed framework is agnostic to the choice of the loss
function. Results in Figure 4 show that all three variants of BIRD with different objectives achieve
better predictive performance (AUROC and F1-Score) and fairness (∆mean-DEO and ∆max-DEO)
compared to the baseline model and its vanilla KD counterpart. While BIRD-MSE achieves the best
performance in our ablation using the CelebA dataset, we used the max loss objective (Eq. 5) for
our main experiments as, on average, it achieves better predictive and fairness performance across all
datasets and foundation models. Further, for our ablation on the computational overhead, we analyze
the GPU memory reserved and the number of parameters for a ResNet18 model on both BIRD and
MFD. We observe that BIRD is highly efficient in terms of GPU memory consumption and reserves
11878MiB GPU memory in comparison to MFD, which reserves 62400MiB (this overhead is due to
the expensive kernel operations in the MMD loss proposed in MFD (Jung et al., 2021)). In addition,
BIRD only introduces 512 (for ResNet18) new trainable parameters compared to existing methods
(a 0.46% increase in parameters compared to MFD and BKD). Finally, we conduct experiments to
compare the fairness performance of BIRD with a method (denoted as FWD Chai et al. (2022)) that
uses KD to achieve fairness without utilizing demographic labels(see Table 6-7) for more details).

AUROC ( ) F1-Score ( )0
25
50
75

100

mean DEO( ) max DEO( )0
5

10
15
20
25

Baseline CLIP-ViT Vanilla KD BIRD-MSEBIRD-MeanBIRD

Figure 4: Results of BIRD on different Louter losses on CelebA dataset. Shown is the average perfor-
mance across five independent runs. BIRD achieves better predictive (AUROC and F1-score) and fair-
ness (∆mean-DEO and ∆max-DEO) than baseline and vanilla KD models across different Louter objectives.

6 CONCLUSION

The recent surge in the development of large-scale vision-language models and commercial APIs
suffers from deployment and fairness issues due to their enormous parameter size and unvetted
training datasets. In this work, we address the problem of learning fair distilled students. To this end,
we introduce BIRD, a meta-learning framework that exploits a critical connection between “what”
and “how much” knowledge to distill from a given teacher. We demonstrate that BIRD leverages
important student feedback to identify and transfer teacher features uncorrelated to a given protective
attribute, resulting in fairer and more accurate student representation. Our results on three benchmark
datasets show that BIRD consistently improves the fairness (in terms of difference of equalized odds
metric) compared to state-of-the-art knowledge distillation and debiasing techniques. This work
paves the way for an exciting direction to develop trustworthy distillation techniques, where student
feedback can guide the distillation process to distill trustworthy features from the teacher.
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A APPENDIX

Here, we present additional results and ablations of BIRD. Particularly, we replicate the setup
by Jung et al. (2021) and extend our self-distillation experiments on additional architectures (CNNs:
ShuffleNet-v2, ResNet-18, ResNet-34, and FM: Flava). Further, we perform experiments on ResNet-
18 using a synthetic dataset, namely, CIFAR-10S. Albeit different from the problem we are solving, we
compare BIRD against an additional baseline technique Chai et al. (2022) that tackles the problem of
fairness when sensitive labels are not present. In Table 8, we share the exact metrics for the illustration
shown in Fig. 2 which further establishes the argument that knowledge distillation incurs bias.

Results on additional models and CIFAR-10S. We observe that BIRD consistently improves the
fairness performance for all architectures in the CNN experiments for two real-world, widely used
visual fairness datasets while maintaining their predictive performance (See Table 4). Interestingly,
while AD does improve fairness in some cases (Table 4 CelebA) it fails to do so consistently while
maintaining the F1 and AUROC scores. Finally, we see a significant improvement in both ∆max-DEO
and ∆mean-DEO for Flava on both UTKFace and CelebA datasets as shown in Table 4.

We reproduce the experimental setup by Wang et al. (2020) for CIFAR-10S, and show the results for
the same in Table 5. We show that BIRD is able to improve both ∆max-DEO by 20.19% (47.94→38.26)
and ∆mean-DEO by 24.71% (26.26→19.77) over the baseline student. It is noteworthy that even AD
significantly improves the fairness metrics, however, this results in a substantial drop in F1-Scores.
On the other hand, BIRD obtains the best predictive performance metrics amongst all baselines.

Additional Baseline: Fairness without Demographics. In this section, we compare with Chai et al.
(2022), a technique that uses knowledge distillation to improve fairness in a setting where demographic
labels are not available. Although the problem statement is different and their approach addresses
fairness without demographics, this section includes their application to the problem described in
our work. For results in Table 6 and Table 7, we refer to Chai et al. (2022) as FWD, and we clearly
observe that BIRD consistently outperforms FWD on various model configurations and datasets.

A.1 ADDITIONAL HYPERPARAMETER DETAILS

In this section, we discuss the critical hyperparameter choices for BIRD and predominant baselines.
For the CIFAR-10S dataset, we observe that the widely accepted temperature τ = 4 and α = 0.90
do not give optimal BKD performance. Thereby, we tune the strength of the aforementioned
hyperparameters and use τ = 10 and α = 0.50 instead. We observe that setting the training ratio
parameter (base model updates compared to domain classifier) to 3 if the total number of epochs is
greater than 20, and 1 otherwise helps retain the predictive performance the best when using AD. We
observe that this largely retains the predictive performance of AD. The feature distillation strength for
FitNet loss in Stage 2 is kept constant at 0.1. For the experiments conducted on foundation models
(FLAVA, CLIP-ViT-32, CLIP-R50) in our paper, we operate under the assumption that only the
penultimate representation layer is accessible, following a black-box setting. As a result, employing
AT is not feasible, and that is why the corresponding results are excluded from Table 1. Lastly, since
Jung et al. (2021) does not provide a public codebase, we try to implement MFD as faithfully as
possible keeping testing conditions consistent across all our experiments. Please refer to Table 9 for
the list of hyperparameters for different BIRD experiments. For experiments in Table 3, we combine
BIRD with existing KD and Fair KD pipelines. For BIRD +FitNet, we apply Fitnet stage 2 loss in
addition to the BIRD optimization 6 with feature distillation strength kept at 0.1. Similarly, for BIRD
+AT and BIRD +MFD, we augment Eq 6 with the attention transfer loss and MMD loss respectively
keeping the rest of the bird framework intact.
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Table 4: Results of self-distillation on three CNN models and an additional FM using two fairness
datasets. Shown is the average performance across five independent runs. Arrows (↑, ↓) indicate the
direction of better performance. BIRD retains the predictive power (AUROC and F1-score) of the
baseline model while improving their fairness (shaded area).

Model Dataset Method AUROC (↑) F1-score (↑) ∆mean-DEO(↓) ∆max-DEO(↓)

ShuffleNetV2

UTKFace

Baseline
BKD

89.15±0.37
90.43±0.13

74.05±0.56
74.60±0.23

20.33±1.17
20.00±0.68

42.29±2.42
38.31±2.13

FitNet
AT
AD

89.84±0.44
90.70 ±0.29
90.16 ±0.15

73.63±0.47
76.12 ±0.44
75.60 ±0.29

20.20±0.87
19.34 ±1.74
19.60 ±0.63

42.59±2.39
40.10 ±2.58
40.30 ±2.19

MFD
BIRD

90.11±0.27
90.53±0.37

74.75±0.85
74.88±0.61

19.77±0.67
16.92±1.15

37.91 ±0.81
36.12±1.39

CelebA

Baseline
BKD

86.01±0.04
86.20±0.11

76.44 ±1.21
76.81 ±0.86

23.11±0.20
23.26±0.59

28.38±0.60
26.72±1.78

FitNet
AT
AD

85.84±0.20
86.27 ±0.11
86.51 ±0.18

76.93±0.40
75.51 ±1.50
77.64 ±0.79

22.98±0.89
25.17 ±1.76
8.04 ±1.96

25.17±1.76
27.54 ±1.97
11.18 ±2.33

MFD
BIRD

85.88±0.08
88.01±0.27

76.72±0.52
79.82±0.29

21.59±0.39
5.01±1.04

23.81±1.06
8.16±2.17

ResNet18

UTKFace

Baseline
BKD

92.25±0.14
93.06±0.17

90.80±0.16
80.22 ±0.49

17.21±0.40
18.54±0.81

36.92±1.13
39.00±2.13

FitNet
AT
AD

93.01±0.17
92.92 ±0.12
90.93 ±0.46

79.35±0.20
80.30 ±0.24
78.61 ±0.47

17.42±1.10
17.88 ±0.71
17.18 ±0.73

34.93±2.43
36.22 ±1.52
36.32 ±2.32

MFD
BIRD

93.03±0.11
91.67±0.29

80.10±0.19
77.71±0.42

16.62±0.70
15.49±0.77

36.22±0917
30.65±3.42

CelebA

Baseline
BKD

85.44±0.29
86.17±0.18

74.26±1.59
74.52±1.53

18.60±1.46
17.98±1.81

21.46±1.61
21.12±1.99

FitNet
AT
AD

85.99±0.18
86.03 ±0.20
60.19 ±2.88

75.59±0.99
75.07 ±1.50
55.63 ±1.69

19.01±1.17
18.00 ±1.19
13.78 ±4.54

21.46±1.37
22.16 ±1.54
16.89 ±4.42

MFD
BIRD

86.24±0.09
84.49±0.18

77.32 ±0.26
77.04±0.35

19.34±0.47
11.32±1.29

21.46±0.64
5.31±1.38

ResNet34

UTKFace

Baseline
BKD

92.18±0.35
92.36±0.43

78.96±0.33
79.95 ±0.30

17.61 ±0.90
17.41±0.63

36.52 ±1.16
37.91 ±1.45

FitNet
AT
AD

92.23±0.45
92.06 ±0.27
92.08 ±0.40

80.15±0.29
79.50 ±0.27
79.05 ±0.70

17.81±0.54
16.72 ±1.05
18.04 ±1.45

36.12±1.99
34.03 ±2.26
36.52 ±3.33

MFD
BIRD

92.48±0.16
90.90±0.16

78.76±0.31
77.74±0.43

16.98 ±0.78
15.92±0.55

35.42 ±1.08
33.13±1.31

CelebA

Baseline
BKD

85.93±0.31
86.32±0.36

75.73±0.53
77.04±0.26

20.43±1.11
20.88±1.43

24.71 ±1.71
23.29 ±1.83

FitNet
AT
AD

86.16±0.29
85.95 ±0.38
69.32 ±4.14

73.73±2.75
74.89 ±0.80
61.83 ±3.10

22.45±0.69
21.05 ±0.79
28.52 ±7.25

28.91±2.54
25.35 ±1.59
34.12 ±8.88

MFD
BIRD

87.10±0.10
84.31±0.37

78.04 ±0.06
73.90±0.55

17.48 ±0.80
10.31±2.88

17.91 ±0.90
13.59±3.92

FLAVA

UTKFace

Baseline
BKD

94.43±0.04
94.43±0.04

81.12±0.28
81.02±0.23

14.49±0.49
15.02±0.51

32.54±1.62
32.84±1.51

FitNet
AD

94.33±0.04
92.81 ±0.09

81.54±0.48
77.21 ±0.44

14.93±0.37
17.08 ±0.12

32.34±1.72
37.11 ±0.21

MFD
BIRD

94.42±0.10
94.00±0.02

80.77±0.32
80.74±0.54

15.42±1.38
14.23±0.55

33.03 ±3.73
28.16±2.89

CelebA

Baseline
BKD

84.43±0.12
84.42±0.11

74.87 ±0.21
74.96 ±0.22

27.48±0.64
27.39±0.58

29.37±1.53
29.36±1.41

FitNet
AD

84.40±0.11
84.35 ±0.05

74.94±0.60
77.88 ±0.20

27.36±0.65
10.54 ±0.80

29.23±1.50
12.93 ±0.79

MFD
BIRD

84.45±0.11
85.48±0.02

75.55±0.14
78.54±0.10

26.64±0.62
2.53±0.17

28.63±0.68
4.12±0.59
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Table 5: Results on CIFAR-10S dataset across 5 independent runs for ResNet18→ResNet18. Arrows
(↑, ↓) indicate the direction of better performance. BIRD retains the predictive power (AUROC and
F1-Score) of the baseline model while improving the fairness criterion (∆mean-DEO and ∆max-DEO)

Method AUROC (↑) F1-score (↑) ∆mean-DEO(↓) ∆max-DEO(↓)

Baseline 98.91±0.02 88.34±0.17 26.26±0.70 47.94±1.94
BKD 98.95±0.02 88.90±0.13 25.30±0.63 46.92±2.16
FitNet 98.89±0.01 88.15±0.08 26.55±0.66 48.86±1.85
AT 98.99±0.02 88.95±0.12 25.16±0.33 46.08±2.27
AD 98.44±0.11 85.98±0.43 16.20±1.18 31.94±3.89
MFD 98.93±0.03 88.32±0.10 27.27±0.34 49.16±1.62
BIRD 99.12±0.02 89.45±0.14 19.77±0.37 38.26±1.73

Table 6: Results of BIRD compared to FWD (Chai et al., 2022) on CelebA dataset for several
architectures. BIRD consistently outperforms the additional baseline on both predictive performance
and fairness metrics.

Method AUROC (↑) F1 (↑) ∆mean-DEO ∆max-DEO

FWD (CLIP-ViT-32−→Res-18) 86.68±0.34 77.55±0.75 24.89±1.48 28.32±1.41

BIRD (CLIP-ViT-32−→Res-18) 89.26±0.06 80.86±0.15 7.51±1.03 10.16±1.12
FWD (CLIP-RN50−→Res-18) 87.24±0.33 76.2±2.1 23.27±1.5 28.04±1.67

BIRD (CLIP-RN50−→Res-18) 85.72±0.96 74.15±2.54 6.2±1.73 9.83±2.77
FWD (Res-18−→Res-18) 84.3±0.34 71.43±1.8 19.33±0.86 21.67±0.53

BIRD (Res-18−→Res-18) 84.49±0.18 77.04±0.35 11.32±1.29 16.15±1.38
FWD (Shuffv2−→Shuffv2) 85.42±0.42 70.13±8.12 20.59±2.22 27.2±1.68

BIRD (Shuffv2−→Shuffv2) 88.01±0.27 79.82±0.29 5.01±1.04 8.16±2.17
FWD (CLIP-ViT-32−→CLIP-ViT-32) 87.16±0.27 78.14±0.41 22.87±1.43 24.47±1.61

BIRD (CLIP-ViT-32−→CLIP-ViT-32) 88.55±0.03 80.84±0.06 3.44±0.92 5.19±1.06
FWD (CLIP-RN50−→CLIP-RN50) 87.54±0.14 78.87±0.22 21.79±0.68 22.88±1.0

BIRD (CLIP-RN50−→CLIP-RN50) 87.93±0.01 80.34±0.08 2.65±0.29 4.49±0.48
FWD (Flava−→Flava) 84.51±0.1 75.08±0.5 26.96±0.54 28.67±1.18

BIRD (Flava−→Flava) 85.48±0.02 78.54±2.1 2.53±0.17 4.12±0.59

Table 7: Results of BIRD compared to FWD (Chai et al., 2022) on UTK dataset for several architec-
tures. BIRD consistently outperforms the additional baseline on fairness metrics and is competitive in
terms of predictive performance for most cases.

Method AUROC (↑) F1 (↑) ∆mean-DEO ∆max-DEO

FWD (CLIP-ViT-32−→Res-18) 95.12±0.14 81.74±0.35 16.19±0.67 35.62±1.86

BIRD (CLIP-ViT-32−→Res-18) 91.05±0.15 77.71±0.61 14.96±1.23 30.55±2.68
FWD (CLIP-RN50−→Res-18) 95.13±0.05 81.69±0.43 16.85±0.31 35.12±0.86

BIRD (CLIP-RN50−→Res-18) 90.59±0.25 77.04±0.87 17.84±1.3 33.53±1.21
FWD (Res-18−→Res-18) 92.36±0.29 78.63±0.74 18.18±1.12 35.62±1.98

BIRD (Res-18−→Res-18) 91.67±0.29 77.71±0.44 15.49±0.95 30.65±2.69
FWD (Shuffv2−→Shuffv2) 89.36±0.41 73.43±0.79 23.18±0.94 41.49±1.8

BIRD (Shuffv2−→Shuffv2) 89.53±0.37 73.88±0.61 16.92±1.15 36.12±1.39
FWD (CLIP-ViT-32−→CLIP-ViT-32) 96.03±0.07 86.34±0.18 13.20±0.63 23.68±2.16

BIRD (CLIP-ViT-32−→CLIP-ViT-32) 95.5±0.02 85.67±0.28 12.07±0.5 16.92±1.39
FWD (CLIP-RN50−→CLIP-RN50) 95.68±0.02 85.25±0.13 13.70±0.14 24.18±0.43

BIRD (CLIP-RN50−→CLIP-RN50) 95.43±0.02 84.05±0.13 14.43±0.14 23.28±0.43
FWD (Flava−→Flava) 94.51±0.04 81.27±0.26 14.66±0.68 32.54±1.68

BIRD (Flava−→Flava) 94.00±0.02 80.47±0.54 14.23±0.55 28.16±2.89
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Table 8: Results of Base KD on different teacher-student pairs (Q1). Shown is the average perfor-
mance across five independent runs. We establish that across different architectures, KD results in
unfair student models by following the fairness properties (∆mean-DEO, ∆max-DEO) of the teacher.

Baselines AUROC (↑) F1-score (↑) ∆mean-DEO(↓) ∆max-DEO(↓)

FLAVA 84.43±0.12 74.87±0.63 27.48±0.64 29.37±1.53
CLIP-ViT-32 87.01±0.26 78.15±0.52 23.38±1.72 24.91±1.15
CLIP-R50 87.72±0.06 78.71±0.21 21.11±0.30 21.97±0.40
ResNet18 75.52±0.70 74.26±1.59 18.60±1.46 21.46±1.61
ResNet34 85.93±0.31 75.73±1.25 20.43±1.11 24.71±1.71

Teacher Student AUROC (↑) F1-score (↑) ∆mean-DEO(↓) ∆max-DEO(↓)

FLAVA ResNet18 85.24±0.09 76.30±0.81 28.15±0.75 32.74±1.65
FLAVA ResNet34 84.81±0.32 75.46±0.89 29.50±1.29 33.34±2.29
CLIP-ViT-32 ResNet18 86.94±0.37 77.14±1.55 24.75±1.46 30.01±1.65
CLIP-ViT-32 ResNet34 86.71±0.15 78.11±0.39 23.68±0.24 25.38±1.00
CLIP-R50 ResNet18 86.71±0.37 77.96±0.63 25.61±1.86 30.08±1.49
CLIP-R50 ResNet34 87.31±0.15 78.11±0.39 23.68±0.24 25.38±1.0
ResNet34 ResNet18 86.25±0.76 73.45±1.30 19.80±1.62 23.86±1.67

Table 9: Hyperparameters for BIRD for different datasets and architectures. We perform minimal
linear probing to find the optimal λ (See 4.2) for each setting.

Architecture Dataset λ Warmup Total Epochs

FLAVA CelebA 0.1 5 10
CLIP-ViT-32 CelebA 0.2 5 10
CLIP-R50 CelebA 0.1 5 10
ShuffleNetV2 CelebA 0.05 5 10
ResNet18 CelebA 0.2 5 10
ResNet34 CelebA 0.1 5 10
FLAVA UTK 0.1 20 50
CLIP-ViT-32 UTK 0.2 20 50
CLIP-R50 UTK 0.1 20 50
ShuffleNetV2 UTK 0.05 20 50
ResNet18 UTK 0.2 20 50
ResNet34 UTK 0.1 20 50
ResNet18 CIFAR-10S 0.2 70 100

Table 10: Comparison of BIRD with and without Augmentations on the UTKFace Dataset. BIRD
with Augmentations, on an average across models, improves the predictive power (AUROC and
F1-Score) over BIRD while keeping the fairness criterion (∆mean-DEO and ∆max-DEO) same as w/o
Augmentation.

Teacher Student Method AUROC (↑) F1-score (↑) ∆mean-DEO(↓) ∆max-DEO(↓)

CLIP/RN50 ResNet18 BIRD 90.59±0.13 77.04±0.87 17.84±1.30 33.35±1.21
CLIP/RN50 ResNet18 BIRD + Aug 91.05±0.14 78.26±0.72 16.00±1.35 32.84±1.70

CLIP/ViT-32 ResNet18 BIRD 91.05±0.15 77.71±0.61 14.96±1.23 30.55±2.68
CLIP/ViT-32 ResNet18 BIRD + Aug 90.93±0.28 77.74±0.63 16.48±0.70 34.73±1.54

CLIP/RN50 CLIP/RN50 BIRD 95.43±0.02 84.05±0.13 12.43±0.14 23.28±0.43
CLIP/RN50 CLIP/RN50 BIRD + Aug 95.93±0.02 85.27±0.29 12.74±0.51 18.11±0.30

CLIP/ViT-32 CLIP/ViT-32 BIRD 95.50±0.04 85.67±0.08 12.07±0.27 16.92±0.82
CLIP/ViT-32 CLIP/ViT-32 BIRD + Aug 96.03±0.03 87.04±0.24 12.14±0.4 19.00±1.45
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Table 11: Results of BIRD against baselines for CLIP/ViT-32 and CLIP/RN50 as students on the
CelebA dataset. BIRD retains the predictive power (AUROC and F1-Score) of the baseline model
while improving the fairness (∆mean-DEO and ∆max-DEO) while traditional KD methods perform poorly.
(Note that the optimal value of α in this setting was found to be 0.1 based on linear probing.)

Teacher Student Method AUROC (↑) F1-score (↑) ∆mean-DEO(↓) ∆max-DEO(↓)
ResNet18 CLIP/ViT-32 Baseline 85.44±0.29 74.26±1.59 18.60±1.46 21.46±1.61
ResNet18 CLIP/ViT-32 BKD 86.94±0.06 69.62±1.56 20.98±0.64 29.26±0.77
ResNet18 CLIP/ViT-32 FitNet 87.12±0.17 69.88±1.61 20.64±0.58 28.76±1.39
ResNet18 CLIP/ViT-32 AD 88.91±0.07 74.23±0.84 6.35±1.29 8.01±1.87
ResNet18 CLIP/ViT-32 MFD 84.03±1.02 74.25±1.01 19.54±4.73 24.64±6.47
ResNet18 CLIP/ViT-32 BIRD 88.55±0.00 79.51±0.59 6.73±1.51 8.87±1.88

ResNet18 CLIP/RN50 Baseline 85.44±0.29 74.26±1.59 18.60±1.46 21.46±1.61
ResNet18 CLIP/RN50 BKD 87.30±0.06 71.94±0.80 18.81±0.65 26.30±1.23
ResNet18 CLIP/RN50 FitNet 87.25±0.12 71.17±1.18 19.09±1.10 27.03±1.89
ResNet18 CLIP/RN50 AD 88.24±0.03 70.61±0.86 4.95±0.77 7.39±0.96
ResNet18 CLIP/RN50 MFD 86.70±0.36 77.50±0.79 20.81±1.50 23.86±1.06
ResNet18 CLIP/RN50 BIRD 89.13±0.05 80.53±0.44 3.47±0.78 4.88±1.2

ResNet34 CLIP/ViT-32 Baseline 85.93±0.31 75.46±1.25 20.43±1.11 24.71±1.71
ResNet34 CLIP/ViT-32 BKD 86.85±0.09 70.04±0.9 21.38±0.64 29.35±1.06
ResNet34 CLIP/ViT-32 FitNet 86.99±0.14 71.12±1.11 21.64±0.46 29.28±1.38
ResNet34 CLIP/ViT-32 AD 88.97±0.08 73.35±1.45 7.08±0.75 9.45±1.15
ResNet34 CLIP/ViT-32 MFD 83.45±0.60 73.57±1.84 23.96±2.78 30.72±5.12
ResNet34 CLIP/ViT-32 BIRD 88.67±0.09 79.79±0.61 4.55±0.65 6.25±1.01

ResNet34 CLIP/RN50 Baseline 85.93±0.31 75.73±1.25 20.43±1.11 24.71±1.71
ResNet34 CLIP/RN50 BKD 87.52±0.22 71.30±0.98 17.95±1.29 25.37±1.92
ResNet34 CLIP/RN50 FitNet 87.24±0.09 72.59±0.98 19.95±0.64 27.11±0.77
ResNet34 CLIP/RN50 AD 88.25±0.03 70.94±1.64 5.01±0.80 7.21±0.73
ResNet34 CLIP/RN50 MFD 86.90±0.27 75.83±1.66 18.46±1.20 22.5±0.53
ResNet34 CLIP/RN50 BIRD 89.05±0.1 80.95±0.23 3.66±1.4 5.63±1.75

Table 12: Results of KD using foundation models, ResNets, and two fairness datasets. Shown is the average
performance across five independent runs. Arrows (↑, ↓) indicate the direction of better performance. BIRD

retains the predictive power (Top1, F1-score) of the baseline model while improving their fairness (shaded area).

Model Dataset Method Top1 (↑) F1-score (↑) ∆mean-DEO(↓) ∆max-DEO(↓)

CLIP-ViT-32
−→ResNet18

CelebA

Student
Teacher

75.52±0.70
77.83±0.30

74.26±1.59
78.15 ±0.52

18.60±1.46
23.38±0.20

21.46±1.61
24.91±1.15

BKD
FitNet

77.55±0.43
78.31±0.31

77.55 ±0.94
78.85±0.52

25.04±1.46
23.96±1.75

28.81±1.53
26.29±1.38

AD
MFD

67.71±3.81
77.86±0.28

71.61±1.81
77.86±0.28

8.48±3.55
18.31±1.60

11.30±3.21
25.27±0.84

BIRD 80.51±0.12 80.86±0.15 7.51±1.03 10.16±1.12

UTKFace

Student 78.73±0.27 78.73±0.27 17.21±0.40 36.92±1.13
BKD
FitNet

81.12±0.56
81.59±0.52

81.12 ±0.56
81.59 ±0.52

17.74±0.82
16.52 ±0.69

36.22±0.82
33.63±1.81

AD
MFD

69.03±2.12
77.61±0.25

69.03±0.57
77.61±0.25

30.55±2.19
18.31±1.60

50.85±4.55
34.73±2.21

BIRD 77.71±0.61 77.71±0.61 14.96±1.23 30.55±2.68

CLIP-R50
−→ResNet18

CelebA

Student 75.52±0.70 74.26±1.59 18.60±1.46 21.46±1.61
BKD
FitNet

78.35±0.19
78.22 ±0.12

78.72±0.47
81.59 ±0.52

22.99±0.47
22.93 ±0.32

26.25±1.39
26.51±0.8

AD
MFD

68.79±1.19
77.80±0.19

62.85±3.21
77.55±0.37

17.80±6.43
21.88±0.38

25.52±9.54
23.52±0.65

BIRD 75.24±1.75 74.15±2.54 6.20±1.73 9.83±2.77

UTKFace

Student 78.73±0.27 78.73±0.27 17.21±0.40 36.92±1.13
BKD
FitNet

82.51±0.62
81.42±0.38

82.51 ±0.62
81.42 ±0.38

16.85±0.86
16.25±1.08

35.52±1.07
34.33±2.11

AD
MFD

68.28±1.88
75.87±1.10

68.28±1.88
75.87±1.10

28.46±1.46
18.77±1.07

53.33±2.72
39.90±1.99

BIRD 77.26±0.27 77.04±0.87 17.84±1.30 33.35±1.21
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Table 13: Results of self-distillation on foundation models using two fairness datasets. Shown is the average
performance across five independent runs. Arrows (↑, ↓) indicate the direction of better performance. BIRD

retains the predictive power (Top1-acc and F1-score) of the baseline model while improving their fairness
(shaded area). Note that teacher-student architectures in each case are identical.

Model Dataset Method Top1 (↑) F1-score (↑) ∆mean-DEO(↓) ∆max-DEO(↓)

CLIP-ViT-32

UTKFace

Baseline
BKD

86.22±0.16
86.02±0.15

86.22±0.16
86.02 ±0.15

13.47±0.20
13.73±0.15

25.07±0.96
25.27±0.99

FitNet
AD

86.27±0.31
86.34±0.32

86.07±0.29
86.34 ±0.32

13.80±0.21
11.84±0.73

25.47±1.42
22.49±0.31

MFD
BIRD

86.64±0.12
85.67±0.08

86.64±0.15
85.67±0.08

12.11±0.16
12.07±0.27

22.79±0.37
16.92±0.82

CelebA

Baseline
BKD

77.83±0.30
77.88±0.26

78.15±0.52
78.20±0.48

23.38±1.72
23.26±1.67

24.91±1.15
24.62±1.14

FitNet
AD

77.97±0.14
78.76±0.15

78.16±0.46
79.00 ±0.15

23.25±1.50
17.02±1.03

24.57±1.02
17.82±0.97

MFD
BIRD

77.84±0.28
80.13±0.07

77.59 ±0.70
80.84±0.06

21.99±0.70
3.44±0.92

23.70±1.58
5.19±1.06

CLIP-
ResNet50

UTKFace

Baseline
BKD

84.9±0.2
84.85±0.2

84.90±0.20
84.85 ±0.20

13.70 ±0.58
13.57±0.50

23.08 ±1.06
23.28 ±0.99

FitNet
AD

85.02±0.44
83.86±0.16

84.98±0.28
83.86±0.16

13.93±0.45
14.83±1.58

23.78±1.01
26.27±0.70

MFD
BIRD

84.90±0.52
84.05±0.13

84.90±0.52
84.05±0.13

14.16±0.60
12.43±0.14

22.99±1.60
23.28±0.43

CelebA

Baseline
BKD

78.61±0.10
78.64±0.03

78.71±0.21
78.90±0.15

21.11±0.30
21.10±0.40

21.97±0.41
22.07±0.41

FitNet
AD

78.33±0.17
80.07±0.03

78.77±0.21
80.32±0.05

21.00±0.28
5.33 ±0.19

21.80±0.38
7.93±0.22

MFD
BIRD

78.28±0.12
80.04±0.05

78.56±0.21
80.34±0.08

22.56±0.56
2.65±0.29

23.52±0.33
4.49±0.48

Table 14: Results of BIRD against baselines for UTKFace Dataset with the same augmentations
applied to each technique.

Teacher Student Method AUROC (↑) F1-score (↑) ∆mean-DEO(↓) ∆max-DEO(↓)

CLIP/ViT-32 CLIP/ViT-32 BKD 95.96±0.06 85.97±0.34 13.96±0.18 25.57±1.72
CLIP/ViT-32 CLIP/ViT-32 FitNet 95.95±0.06 86.07±0.29 13.80±0.21 25.47±1.42
CLIP/ViT-32 CLIP/ViT-32 AD 96.08±0.06 86.17±0.22 13.27±0.21 23.98±1.16
CLIP/ViT-32 CLIP/ViT-32 MFD 96.05±0.04 86.64±0.15 12.11±0.16 22.79±0.37
CLIP/ViT-32 CLIP/ViT-32 BIRD 96.03±0.03 87.04±0.24 12.14±0.40 19.00±1.45

CLIP/RN50 CLIP/RN50 BKD 95.66±0.04 84.93±0.21 13.60±0.50 23.58±1.05
CLIP/RN50 CLIP/RN50 FitNet 95.66±0.03 84.95±0.29 13.96±0.47 23.58±1.01
CLIP/RN50 CLIP/RN50 AD 95.66±0.05 83.71±0.15 15.46±0.44 29.05±0.93
CLIP/RN50 CLIP/RN50 MFD 95.68±0.03 84.88±0.51 14.20±0.59 22.99±1.60
CLIP/RN50 CLIP/RN50 BIRD 95.93±0.02 85.27±0.29 12.74±0.51 18.11±0.30

CLIP/ViT-32 ResNet18 BKD 94.9±0.05 81.17±0.44 17.94±0.92 38.31±2.25
CLIP/ViT-32 ResNet18 FitNet 94.70±0.12 81.99±0.52 15.32±0.57 33.73±1.06
CLIP/ViT-32 ResNet18 AD 93.56±0.15 79.75±0.35 18.91±1.25 38.71±3.65
CLIP/ViT-32 ResNet18 MFD 90.23±0.29 77.21±0.36 17.31±1.26 35.72±2.50
CLIP/ViT-32 ResNet18 BIRD 90.78±0.28 77.36±0.64 16.64±0.60 34.91±1.27

CLIP/RN50 ResNet18 BKD 95.29±0.14 82.11±0.40 16.52±0.50 35.52±1.62
CLIP/RN50 ResNet18 FitNet 94.86±0.05 81.52±0.32 17.15±0.60 37.71±1.38
CLIP/RN50 ResNet18 AD 93.38±0.21 78.61±0.56 21.03±0.96 44.88±5.39
CLIP/RN50 ResNet18 MFD 90.64±0.25 77.54±0.36 17.61±0.91 35.92±2.32
CLIP/RN50 ResNet18 BIRD 91.14±0.15 77.86±0.85 16.09±1.91 33.33±2.30
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