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ABSTRACT

Data augmentation has been a successful common practice for improving the per-
formance of deep neural network during training stage. In recent years, studies on
test time augmentation (TTA) have also been promising due to its effectiveness on
improving the robustness against out-of-distribution data at inference. Instead of
simply adopting pre-defined handcrafted geometric operations such as cropping
and flipping, recent TTA methods learn predictive transformations which are sup-
posed to provide the best performance gain on each test sample. However, the
desired iteration number of transformation is proportional to the inference time of
the predictor, and the gain by ensembling multiple augmented inputs still requires
additional forward pass of the target model. In this paper, we propose a cascade
method for test time augmentation prediction. It only requires a single forward
pass of the transformation predictor, while can output multiple desirable trans-
formations iteratively. These transformations will then be adopted sequentially on
the test sample at once before the target model inference. The experimental results
show that our method provides a better trade-off between computational cost and
overall performance at test time, and shows significant improvement compared to
existing methods.

1 INTRODUCTION

Robustness in artificial intelligence system has been recognized as an important topic in recent years,
especially for the application scenario closely related to human life or health, such as biometrics,
autonomous driving, medical diagnosis, virtual and augmented reality and so on. Though heavily
rely on training data, AI models in real-world will inevitably encounter unforeseen circumstances,
which requires not only high performance from the aspect of accuracy, but also high robustness from
the aspect of generalization.

Data augmentation has been a successful strategy for improving the robustness in many deep learn-
ing model training applications. During training stage, various transformations are adopted on the
input samples thus to expend the diversity of the training space without truly collecting novel data.
In the community of computer vision, some basic augmentation operations are commonly used such
as rotation, zoom-in and -out, cropping, flipping, translation, blur, contrast, etc. Some advanced
techniques also explore sub-instance level operations such as mixing samples together (Zhang et al.,
2018; DeVries & Taylor, 2017; Hendrycks et al., 2019), or learnable augmentation search strate-
gies (Cubuk et al., 2019; Lim et al., 2019; Hataya et al., 2020; Zheng et al., 2021). While data
augmentation during training time brings much benefit, the challenge would lie in the training cost
and the difficulty, given the continually increasing size of the training dataset.

On the other hand, training time augmentation cannot solve the issue once for all. In general, we
consider that the performance on in-distribution data as the standard accuracy, the performance on
the out-of-distribution data as the robustness or the generalization. Specifically, we consider some
corruption will occur at test time that is unknown a priori. Consequently, such kind of corruption
cannot be explicitly learnt during training stage e.g. by adopting certain data augmentation that
attempts to explore the unknown data distribution.

Test time augmentation (TTA) is defined as transforming samples before inference at test time. Con-
ventional TTA always requires averaging multiple predictions over different augmented test samples
to obtain a final prediction. The major performance gain of conventional TTA methods heavily lies
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in the ensembling mechanism (Lakshminarayanan et al., 2017), which inevitably requires multiple
forward passes of the inference model. Recent studies on learnable TTA methods put more focus
on how to select the best transformation policies at each inference, i.e. the one supposed to provide
the largest performance gain compared to no transformation (Kim et al., 2020; Chun et al., 2022).
By adopting instance-level transformation policies, these methods show significant improvement
for corrupted (out-of-distribution) data without harm on clean (in-distribution) data. However, there
exist still several limitations: (i) most methods still require model ensembling on different predic-
tions to achieve the best performance; (ii) the desired iteration number of transformation before the
inference is proportional to the cost of the transformation predictor, which limits the variety of the
transformation; (iii) the transformation policy search is still under-explored thus leads to sub-optimal
performance.

In this paper, we propose a cascade loss prediction method that, for the first time, only requires a sin-
gle forward pass of the transformation predictor, while can output multiple desirable transformations
iteratively. Our contribution can be summarized as follows:

• a novel cascade test time augmentation with sequential predictions by a single forward
pass.

• a better trade-off between target model performance and inference cost with the first com-
patibility and analysis on various network architectures.

• a better exploration on the test data space which leads to state-of-the-art performance
against various corruption benchmark.

2 RELATED WORKS

General Data Augmentation Traditional data augmentation aims at enlarging training datasets to
improve predictive performance. Recent works explore more diverse strategies of data augmentation
such as by mixing up the features and their corresponding labels (Zhang et al., 2018), by cutting out
some random certain area of mixed samples (DeVries & Taylor, 2017), or by cutting out then mixing
up those samples with different strategies (Yun et al., 2019; Han et al., 2022). On the other hand,
there are some studies on trainable augmentation policy (Cubuk et al., 2019; Lim et al., 2019; Hataya
et al., 2020; Zheng et al., 2021). They focus rather on the exploration of larger data space and the
automatic learning strategy for efficient training. These techniques are commonly used in many
state-of-the-art models for their benefit on both accuracy and calibrations, bringing performance
gain on standard benchmarks such as CIFAR (Krizhevsky et al., 2009) and ImageNet (Deng et al.,
2009).

Out-of-Distribution Robustness Sufficient augmentation is also a successful practice to improve
out-of-distribution robustness. Hendrycks & Dietterich (2018) built the first benchmark for eval-
uating model robustness given different image corruption at test time. Hendrycks et al. (2019)
proposed a simple data processing method to improve robustness; it augments training samples by
mixing weighted random transformation operations and learns a distribution similarity between the
original samples and the augmented samples. Wen et al. (2020) argued that simple model ensem-
bles on top with such augmentation will degrade the performance, and then proposed a improved
variant that dismisses the ones with high uncertainty. Zhang et al. (2021) proposed to adapt the
model parameters by minimizing the entropy of the model’s average output distribution across the
augmentations, at test time. Whereas the inference becomes expensive due to its augmentation and
adaptation procedure, thus limits the usability for other models or tasks.

Test Time Augmentation Given a trained model, conventional test time augmentation is often car-
ried out together with model ensembling, that is at inference with different augmented test samples,
such as the conventional transformations e.g. cropping or flipping. Lyzhov et al. (2020) demon-
strated that test time augmentation policies can be learned and introduced a greedy method for
learning a policy of test time augmentation. Shanmugam et al. (2021) analyzed when and why test
time augmentation works and presented a learning-based method for aggregating test time augmen-
tations. Kim et al. (2020) selected suitable transformations for a test input based on their proposed
loss predictor; without high additional computational cost, it carried out instance-level transforma-
tion at inference for the first time. However, the proposed method only explores one single trans-
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formation for each sample, while requires model ensembles to achieve the performance on target
model with multiple transformations. Recently, Chun et al. (2022) proposed a cyclic search for
suitable transformations with the use of the entropy weight method, thus extend the instance-level
augmentation to a larger data space. Whereas, the proposed cyclic mechanism is carried out on
the entire loss predictor thus the model size is limited to be lightweight so as to achieve reasonable
applicability.

3 METHOD

Loss prediction to find suitable transformations is an efficient search policy for test time augmen-
tation (Kim et al., 2020; Chun et al., 2022). In this section, we introduce our method of a cascade
loss prediction that outputs a succession of multiple transformations at a stretch. To begin with, we
describe the general test time augmentation and the loss prediction pipeline in Section 3.1. Then,
our Cascade-TTA method is in detail explained in Section 3.2. The cascade style contributes to
the flexibility as well as the advantage in terms of calculation cost. Particularly in Section 3.3, we
introduce the training method for our cascade loss predictor.

3.1 LOSS PREDICTION

Given a trained target model Θtarget and an input image x, the predictive result is based on the
output y of the target model:

y = Θtarget(x). (1)

Let T = {T1, T2, ..., Tk} denote the candidate set of augmentations, test time augmentation is then
conducted as:

ytta =
1

k

k∑
i=1

Θtarget(Ti(x)), (2)

where k indicates the size for ensemble effect. Conventional TTA methods usually carry out straight-
forward transformation for Ti such as cropping and flipping (He et al., 2016; Krizhevsky et al., 2017),
indiscriminatingly performed on every input image. Assume we have an N -sized pre-defined trans-
formation operation set, T = {t1, t2, ..., tN}. Especially, tid is included in T as identity to indi-
cate no transformation operation is done. In conventional TTA, only one transformation is adopted
each time on x, thus the size of the candidate set is |T | = N .

In this paper, we define that each Ti is a sequence of independent augmentations as

Ti = [τi1 , τi2 , ..., τiL ], τij ∈ T, (3)

where L is the iteration number of transformations, L ≥ 1; τ is one single transformation from
the pre-defined space. Thus conventional TTA with L = 1 is a special case by this definition. In
general, the transformation space is |T | = NL −NL−1 + 1.

Following Kim et al. (2020), we propose to find the optimal Ti in an instance-aware manner:

T̃ = [τ̃1, τ̃2, ..., τ̃L] = ftta(x), τ̃j ∈ T, (4)

where ftta stands for the learned search criteria.

Given a trained Θtarget, when L = 1, the loss value on augmented samples Lt(Θtarget(τ(x)), ŷ)
can signify the quality of the transformations τ (Kim et al., 2020), where ŷ indicates the ground-
truth of x for the target model. Thus, the selection on τ is straightforward with the exact loss values.
The loss predictor, denoted by Θlp, can be trained independently in order to estimate the loss values
corresponding to each pre-defined transformation (Kim et al., 2020):

ftta ≜ Θlp |L=1 . (5)

The loss predictor takes charge of telling by which transformations the target model achieves best
performance. Since the output of loss predictor represents the quality ranking of the transformations,
the benefit from ensemble effect is also possible. A cyclic version of the loss predictor has been
proposed to deal with severely corrupted test samples (Chun et al., 2022), namely in the case of
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Figure 1: Illustration of different loss predictors at inference stage. The selection from pre-defined
transformations is based on the assumption that lower predicted loss value corresponds to better
transformation. (a) The single loss predictor for the best transformation when L = 1, selecting from
T = {t1, t2, ..., tN}. (b) The cyclic version of the loss predictor. L steps of the single loss predictor
form a cycle and produce L-sequenced transformations. (c) The cascade loss predictor, requiring
only a single of forward pass prediction with L transformations outputted. The backbone is used
once while the stacked RNN-cell and the FC layer produce the outputs iteratively.

L > 1. Multiple repeated usage of the loss predictor forms a cycle, deeming the transformed image
again as an input:

ftta ≜

L times︷ ︸︸ ︷
Θlp(Θlp(· · ·Θlp · · ·)) = Θlp

L. (6)

In the cyclic process, the loss predictor takes the intermediate transformed images in each iteration.

3.2 CASCADE LOSS PREDICTION

Multiple iterative transformations on a single test sample improves the potential of TTA. With L > 1,
more operations are adequately performed to be better appropriate for the target model. Different
from simple and plain repetition on the loss predictor, our method focusses on how to produce a
succession of transformations once with a single network:

ftta ≜ Θclp, (7)

where Θclp is our novel cascade loss predictor performing merely once with no limitation on L.

As the ensemble is simple to implement in practical, we will take k = 1 in the sequel for simplicity.
Figure 1 shows the overview of the single loss predictor (Kim et al., 2020), the cyclic version (Chun
et al., 2022) and our cascade loss predictor respectively. As noted earlier, the single implementation
only caters for L = 1 and the cyclic version just calls the loss predictor multiple times block-wise.

In this paper, we propose a cascade architecture as shown in Figure 1(c). It uses recurrent neu-
ral network (RNN) to capture the semantic information of the transformed image in each iteration,
and realizes predicting iterative transformations with no need to take advantage of the intermediate
transformed images. Significantly, only a single forward pass of the cascade loss predictor is re-
quired to obtain L desired transformations iteratively. Without the tedious process of re-inputting
the transformed image into the loss predictor, the proposed cascade network just accepts once the
original input x but provides a succession of appropriate transformations. On this occasion, we are
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Algorithm 1 Inference of our cascade predictor
Inputs: An input test image x1

Output: A succession of transformations T
1: h1 ← Backbone(x1)
2: τ1 ← argmin(FC(h1))
3: T ← [τ1]
4: for each i ∈ [2, L] do
5: if τi−1 is tid then
6: break
7: end if
8: hi ← RNN(hi−1, g(τi−1))
9: τi ← argmin(FC(hi))

10: T ← T + [τi]
11: end for

able to directly perform the obtained L-sequenced transformation T = [τ1, τ2, ..., τL] at a stretch,
and straightforward get the final augmented sample T (x) that should be fed into the target model.
None of the intermediate transformed images are substantially utilized for the cascade network.

The proposed cascade loss predictor consists of three parts including the backbone, the stacked
RNN-cell and the FC layer. The direct and concise prediction on the successive transformations
comes from the RNN architecture of the cascade network. In other words, the stacked RNN-cells
process the dependencies through the cascade loss predictions. Inspired by the tremendous success
of RNN models in sequence processing (Bahdanau et al., 2014; Yang et al., 2018), we put forward a
reasonable RNN-based loss predictor for sequential transformations generation.

We present the inference procedure of the cascade predictor as shown in Algorithm 1. hi denotes the
feature of state at each iteration. In the first iteration, we take advantage of the backbone feature h1

for transformation prediction. From the second iteration, instead of using the explicitly augmented
sample i.e. xi = τi−1(τi−2(. . . τ1(x1). . . )), we apply the iterative hidden state as following:

hi = RNN(hi−1, g(τi−1)), (8)
where g is the embedding network to embed the transformations to a feature space. Then the optimal
τi at this iteration is selected by the minimum predicted loss value from a linear regressor. We
propose to use two stopping criteria: (i) tid is achieved; (ii) maximum iteration L. See Appendix A
for more details on the procedure of the cascade prediction.

For efficiency, the EfficientNet-B0 (Tan & Le, 2019) with modification (Yoo & Kweon, 2019) is
often used as the backbone of the loss predictor (Kim et al., 2020; Chun et al., 2022), whose cost is
relatively negligible to the target model. The downsizing operation into 64 by 64 pixels for ImageNet
dataset (Deng et al., 2009) further reduces the computation. However, light backbones intuitively
lack of representative ability, especially for the multiple iterative predictions. As the complexity of
backbone increases, it is also important to consider the trade-off between the loss prediction cost
and the improved performance. We will show in Section 4.3 the analysis and experimental results
on different complexity of backbones for the cascade loss predictor.

3.3 PRACTICAL TRAINING STRATEGY

We illustrate the training method of Cascade-TTA in Figure 2. Given a training image x1, the
ground-truth is defined as L vectors corresponding to L training iterations. Specifically, each of the
vectors consists of N loss values, which is calculated from the target model regarding augmented
images as inputs by the pre-defined transformations. For iteration i, we note the ground-truth loss
value vector as:

li = {Lt(Θtarget(tj(xi)), ŷ)} , j ∈ [1, N ], (9)
where xi is the intermediate image output from the last iteration and tj(xi) indicates the transformed
one. Note that Lt indicates the loss function for the target model which has been all fixed. Different
from the inference stage, xi needs to be explicitly produced for the ground-truth generation.

In practice, the intermediate image xi for iteration i is augmented by the pre-defined transformations
T = {t1, t2, ..., tN}, and each of the transformed image tj(xi) is in parallel fed into the target model
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Figure 2: Illustration of the training procedure of the cascade loss predictor. The shaded area is
the single ground-truth generator, which is iterated several times. Note that even when training the
predictor, the target model still remains fixed.

to obtain the loss value Lt(Θtarget(tj(xi)), ŷ). Before training the loss predictor, loss values are
generated from the trained target model by using Lt, the loss function of the target model at its
training stage. The generated loss values are then gathered to produce li and processed by softmax
function. Concretely, in the first iteration, the training sample x1 is transformed to {tj(x1)}, which
are fed into the target model for loss value calculation and eventually contribute to the first ground-
truth vector l1. For the diversity and balance of training data, we randomly assign a transformation
τi (except tid) for the current image xi. For instance, a random transformation τ1 ∈ T is assigned
for x1 at the end of the first iteration, so the intermediate image for the second iteration is defined as
x2 = τ1(x1). During the second iteration, similarly the target model takes the transformed {tj(x2)}
and produces the second ground-truth vector l2. And so on, for each of the iterations, sequentially
we can get all of the ground-truth vectors {li}. On the other hand, a vector of predicted loss values
is produced by the FC layer in each iteration, so our cascade loss predictor optimizes the correlation
between the predicted and ground-truth vectors in all training iterations.

The training iteration number can be determined independent of the test time iteration number.
Spearman correlation ranking loss (Engilberge et al., 2019) is used for optimization in all iterations
together, which is a better description of the transformation quality than the exact ones. We regard
the iteration number as a part of batch size during training the cascade loss predictor.

4 EXPERIMENTAL RESULTS

4.1 CIFAR100

CIFAR-100 benchmark (Krizhevsky et al., 2009) is a widely-used classification dataset. A total of
60000 images with 32 by 32 pixels belong to 100 classes. The corruption version of CIFAR-100-
C (Hendrycks & Dietterich, 2018) is introduced for evaluation, and the corrupted variant consists
of a total of 19 kinds with 5 severities. The error rate for clean data and the average corruption
error, CEc =

1
5

∑5
s=1Ec,s define the evaluation criteria, where Ec,s denotes the Top-1 error rate on

corruption c with severity s. The pre-defined transformations used in all of our experiments consist
of 12 kinds of operations. See Appendix B for details.

As shown in Table 1, experiments are conducted on the comparison between Cascade-TTA and ex-
isting TTA methods. Results for both clean and corrupted data are presented. The two target models
that we use are both augmented with AugMix (Hendrycks et al., 2019) with different architecture
of Wide-ResNet-40-2 (Zagoruyko & Komodakis, 2016) and ResNeXt-29 (Xie et al., 2017). Due
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Table 1: Evaluation result on CIFAR-100(-C) dataset. Metric for corrupted set is average corruption
error. The Cascade-TTA results are shown with L = 3.

Target Model TTA method Target Model Cost Clean↓ Corrupt↓

Wide-ResNet

Center-Crop 1 23.00 35.34
Horizontal-Flip 2 22.36 34.38
5-Crops 5 22.97 35.16
Random-TTA 1 27.86 40.89
Cascade-TTA 1 23.08 34.12

ResNext

Center-Crop 1 20.41 33.51
Horizontal-Flip 2 19.82 32.90
5-Crops 5 20.11 33.26
Random-TTA 1 25.51 38.94
Cascade-TTA 1 20.44 31.99

to the low resolution of CIFAR-100 images, we simply use modified EffcientNet-B0 as the back-
bone of the cascade loss predictor. The conventional augmentation strategies such as Center-Crop,
Horizontal-Flip and 5-Crops have always been used in previous applications. In spite of the mul-
tiple target model cost for ensemble in Horizontal-Flip and 5-Crops, the improved performance is
still limited. Random-TTA means to choose a random transformation out of the pre-defined aug-
mentations. The degraded performance indicates the sufficiency of the transformation diversity. Our
proposed Cascade-TTA outperforms not only the methods with same computation cost, but also
outperforms the methods with larger cost of target model.

4.2 IMAGENET

ILSVRC 2012 classification benchmark (ImageNet) (Deng et al., 2009) consists of 1.2 million im-
ages of 1000 classes. The corrupted variant of ImageNet-C (Hendrycks & Dietterich, 2018) is also
used for out-of-distribution evaluation. The error rate for clean data and the mean corruption error
(mCE) metric for corrupted data is calculated for evaluation criteria. Table 2 shows the perfor-
mance of different TTA methods on ResNet-50, but with different train-time augmentation. Here
we also implement two backbones of the loss predictor with different complexity, EfficientNet-B0
and ResNet-50. For target models trained with Standard, our performance by a clear margin exceeds
the single version of the loss predictor, no matter which the backbone is used. Additionally, ensem-
ble of two transformed images by Cascade-TTA with multiple cost of target model, produces lower
error rate up to expectations. For target models trained with AugMix, Cascade-TTA also achieves
best performance on both of the backbones.

4.3 BACKBONE VS PERFORMANCE

We also explore on various network architectures to dig into the trade-off between backbone com-
plexity and performance. Especially, we show in Figure 3 the calculation cost on different iteration
when using an EfficientNet-B0 or a ResNet-50. As we can see, there exists essential difference on
the calculation cost between Cyclic TTA (Chun et al., 2022) and our Cascade-TTA. With the re-
peated usage of the loss predictor for Cyclic TTA, the cost explicitly multiplies, greatly requiring L
times of the backbone cost. For our proposed Cascade-TTA, the cost on contrary mainly depends
on the stacked RNN-cell, which concretely contains one time of the backbone and L − 1 times of
the stacked RNN-cell. It is important to note that the stacked RNN-cell is generally light enough to
rival EfficientNet-B0.

We carry out experiments with diverse backbones to explore the relation between the complexity of
backbone and the improved performance. Table 3 shows the performance of Cascade-TTA with 6
kinds of backbones for cascade loss predictor, ranging from EfficientNet-B0 to ShuffleNetv2 (Ma
et al., 2018) and ResNet-50. The input resolution is adaptively adjusted as 64 by 64 pixels on
each EfficientNet family backbone. We choose to use the trained target model with ResNet-50 as
backbone and Standard as training data augmentation. Meanwhile, results of different maximum
iteration numbers are presented in proper order for compare. Experiments show that with light
backbones, short length of iteration can efficiently improve the performance, but the increasing
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Table 2: Evaluation result on ImageNet(-C) dataset with target model as ResNet-50. The Cascade-
TTA results are shown with L = 2.

Train-Aug TTA method Target Model Cost Clean↓ Corrupt↓

Standard

Center-Crop 1 24.14 77.54
Horizontal-Flip 2 23.76 76.50
5-Crops 5 23.57 76.08
Random-TTA 1 26.82 81.55
EfiicientNet-B0 Single-TTA* 1 24.19 75.09
EfiicientNet-B0 Cascade-TTA 1 24.17 74.20
EfiicientNet-B0 Cascade-TTA 2 24.16 74.05
ResNet-50 Single-TTA* 1 24.16 74.46
ResNet-50 Cascade-TTA 1 24.20 74.33
ResNet-50 Cascade-TTA 2 24.14 74.02

AugMix

Center-Crop 1 22.39 66.57
Horizontal-Flip 2 22.14 65.84
5-Crops 5 21.70 65.02
Random-TTA 1 24.15 70.58
EfiicientNet-B0 Cascade-TTA 1 22.37 64.87
ResNet-50 Cascade-TTA 1 22.38 64.49

1 Single-TTA* indicates the work of Kim et al. (2020).
2 We re-implemented Cyclic TTA but did not receive results as Chun et al. (2022) presents.
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Figure 3: Iteration Number vs. Calculation Cost. The blue line stands for the usage of Cyclic
TTA while the red line represents our method. Left: EfficientNet-B0 as backbone, the cost of Cyclic
TTA is marginally more costy. Right: ResNet-50 as backbone, the cost increases sharply along with
the iteration number in Cyclic TTA while our Cascade-TTA is almost impervious.

iterations soon start to depress the improvement even if the cost of predictor expands. Therefore,
the light backbones for the loss predictor limit the improvement from the iteration number. We
assume that it is due to the insufficient representation ability for the growing iterations of prediction.
However, there is no such issue when using large backbones. The increase on iteration stability
provides greater benefits, and the extra cost from RNN-cell is still light. Eventually the improvement
exceeds light backbones with sufficient iteration. In addition, experimental results show that the
largest backbone as ResNet-50 provides the best performance with long enough iterations. As a
consequence, when desiring optimal performance gain out of the loss predictor, long iteration and
large backbone offer the best alternative. In this case, Cascade-TTA compared with Cyclic TTA,
requires merely the extra cost of the light RNN-cells instead of the multiple large backbones, so
Cascade-TTA provides the best trade-off with significant improvement.
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Table 3: The ImageNet-C results of Cascade-TTA on backbones with different complexity. The
first, second, and third iteration of results are shown for the trend.

TTA backbone FLOPs(M) Clean Corrupt
L = 1 L = 2 L = 3 L = 1 L = 2 L = 3 L = 1 L = 2 L = 3

EfficientNet-B0 2.265 4.498 6.317 24.17 24.17 24.18 74.70 74.20 74.73
EfficientNet-B2 3.273 5.590 7.452 24.19 24.20 24.20 74.48 74.32 75.66
EfficientNet-B4 5.674 8.247 10.240 24.16 24.18 24.18 74.66 74.49 75.07
EfficientNet-B8 16.330 19.581 21.922 24.21 24.21 24.20 74.61 74.66 76.13

ShuffleNetv2 48.692 51.152 53.087 24.19 24.18 24.18 74.80 74.46 74.19
ResNet-50 337.308 339.767 341.702 24.20 24.20 24.20 74.64 74.33 74.05

5 DISCUSSION AND CONCLUSION

The visualization results are shown in Figure 4. The images are transformed iteration by iteration
and eventually are correctly classified by the target model.
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Figure 4: Visualization of selected samples on ImageNet when L = 3. First column: corrupted
images from ImageNet-C; Second to fourth column: transformed images performed by our method
iteratively. The corruption way or the selected transformation is annotated below each image.

To conclude, in this paper, we propose a novel test time augmentation using a cascade loss predic-
tion. For the first time, multiple transformations can be predicted iteratively with one single forward
pass of the predictor. The cascade predictor is computational efficient and compatible to various
network architectures with limited additional cost, thus holds a promising applicability. Due to the
fact that the training space is exponential to the pre-defined type of transformations, we propose a
practical training strategy to train the proposed cascade predictors. Experimental results validate
the effectiveness of the proposed method. We suppose that enlarging the pre-defined transformation
space could further upgrade the performance, while an efficient training strategy is essential, which
could be expected as a future work.
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A DETAILED ON THE CASCADE PREDICTION

Here we explain more details on how the cascade prediction works.

As shown in Algorithm 1, let x1 be a test sample. In the very first iteration, the cascade loss predictor
takes x1 without transformations as input and produces h1 out of the backbone. Here we define the
last layer of the backbone as a pooling layer, so h1 is a vector representing the feature of x1. Then
the FC layer takes h1 to perform the loss prediction, and selects the most appropriate transformation
as τ1. On the other hand, the stacked RNN-cell comes into play from the second iteration. Instead
of fetching the transformed x2 = τ1(x1) substantially, the stacked RNN-cell takes h1 as the hidden
state and the embedded τ1 as input. Here we embed the transformation by learning a vector to
represent it. After the two representations are processed by the stacked RNN-cell, the feature of x2

can be still obtained as the output h2, without any processing by the backbone repeatedly. The FC
layer is called again to perform the second time of loss prediction, taking h2 as input and selecting
τ2 as output. As we particularly employ the stacked RNN-cell instead of a single cell, the vector
h1 is cut into several segments and respectively put into the single cells at different levels. The FC
layer re-concatenates the several hidden states before the linear. In doing so, the deducible cascade
fashion comes into existence. Aside from the old-fashioned loss prediction in the first iteration,
for each iteration i, the hidden state hi−1 and the embedded selected transformation τi−1 from the
last iteration are inputted into the stacked RNN-cell, to provide the current hidden state hi. And
then the FC layer is responsible to predict the appropriate transformation τi from hi. Each state of
hi simulates the feature of xi = τi−1(τi−2(. . . τ1(x1). . . )). Eventually the cascade loss predictor
is implemented continuously until two exit signals. One is the predicted best transformation as
identity and the other is the predetermined ceiling iteration number L. The former indicates the
best condition of current image while the latter prevents endless prediction.

RNN as a kind of network with feedback loops, dynamically connects last output with current in-
put, which greatly matches the searching process for iterative transformations. Given the ground-
truth label of x1 with L iterations, T = [τ1, τ2, . . . . . . , τL], during ith iteration, the cascade loss
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predictor aims at finding τi. The determining factor of τi lies in the loss values of transformed
xi = τi−1(xi−1), while τi−1 is corresponding to the prediction in the last iteration thus τi−1 is
supposed to be inputted into the current iteration. In addition, RNN can memorize previous states
of xi−1. Therefore, the utilization of RNN in cascade loss prediction reasonably finds appropriate
transformations iteratively.

B PRE-DEFINED TRANSFORMATIONS

We use pre-defined transformations to a great extend following Kim et al. (2020); Chun et al. (2022).
With a bit difference on the magnitudes for better performance on iterative prediction, there are a
total of 12 kinds of pre-defined transformations in our experiments, including: identity, rotation,
zoom, contrast, sharpness and saturation. Rotation refers to rotating the image 20 or -20 degrees
to the center point; Zoom refers to resizing the image to 0.8 or 1.2 times and then cropping for the
original size; Contrast refers to adaptively streching the image to uniform contrast level; Sharpness
refers to adjusting the sharpness of the image to 0.2, 0.5, 3.0 or 4.0; Saturation refers to changing
the color saturation of the image to 0.5 or 2.0.
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