
Characterizing Out-of-Distribution Error
via Optimal Transport

Anonymous Author(s)
Affiliation
Address
email

Abstract

Out-of-distribution (OOD) data poses serious challenges in deployed machine1

learning models, so methods of predicting a model’s performance on OOD data2

without labels are important for machine learning safety. While a number of meth-3

ods have been proposed by prior work, they often underestimate the actual error,4

sometimes by a large margin, which greatly impacts their applicability to real tasks.5

In this work, we identify pseudo label shift, or the difference between the predicted6

and true OOD label distributions, as a key indicator to this under-estimation. Based7

on this observation, we introduce a novel method for estimating model performance8

by leveraging optimal transport theory, Confidence Optimal Transport (COT), and9

show that it provably provides more robust error estimates in the presence of10

pseudo label shift. Additionally, we introduce an empirically-motivated variant of11

COT, Confidence Optimal Transport with Thresholding (COTT), which applies12

thresholding to the individual transport costs and further improves the accuracy13

of COT’s error estimates. We evaluate COT and COTT on a variety of standard14

benchmarks that induce various types of distribution shift – synthetic, novel sub-15

population, and natural – and show that our approaches significantly outperform16

existing state-of-the-art methods with an up to 3x lower prediction error.17

1 Introduction18

Machine Learning methods are largely based on the assumption that test samples are drawn from19

the same distribution as training samples, providing a basis for generalization. However, this i.i.d.20

assumption is often violated in real-world applications where test samples are found to be out-of-21

distribution (OOD) – sampled from a different distribution than during training. This may result in a22

significant negative impact on model performance [14, 32, 24]. A common practice for alleviating23

this issue is to regularly gauge the model’s performance on a set of labeled data from the current target24

data distribution, and update the model if necessary. When labeled data is not available, however, one25

needs to predict the model’s performance on the target distribution with unlabeled data, a task known26

as OOD performance prediction.27

Performance prediction on unlabeled data has previously been shown to be impossible without28

imposing additional constraints over the unknown target distribution [7, 11, 5, 25], due to the fact that29

target samples may take any label. Thus, the feasibility of this task is dependent on what assumptions30

we make regarding the shift between the train and target distributions. Prior works often make the31

assumption that the conditional density P (y|x) remains fixed in the presence of covariate shift [35].32

However, this tells us little when x falls outside the support of the train distribution. Despite the33

theoretical difficulty, prior works have proposed a number of heuristic methods to estimate the34

performance of a model based on unlabeled target samples. For instance, Average Confidence35

(AC) [19, 15] estimates error based on the average maximum softmax score for target samples,36
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assuming the model has been calibrated for the train distribution. This method was further improved37

with the addition of a learned threshold [12], for which the error is predicted as the fraction of38

samples with confidence falling below it. Other approaches estimate model performance based39

on a disagreement score computed between the predictions of two models trained over the same40

dataset [21, 3]. Some works have found that applying a transformation over target samples and41

estimating the effect of the transformation leads to a reliable prediction of model performance in42

vision tasks [9, 10]. However, many of these prior methods have been shown to underestimate43

the model’s error when it is miscalibrated in the target distribution [12, 21]; that is, the predicted44

softmax scores differ from the true class likelihoods. We empirically observe that this miscalibration45

is strongly positively correlated with pseudo-label shift, which is the difference between the predicted46

target label distribution PT (ỹ) and the true label distribution PT (y). Thus, we treat pseudo label shift47

as a key indicator of error underestimation.48

In this work, we propose an approach which provides robust error estimates in the presence of pseudo-49

label shift. Our approach, Confidence Optimal Transport (COT), leverages the optimal transport50

framework to predict the error of a model as the Wasserstein distance between the predicted target51

class probabilities and the true source label distribution. We theoretically derive lower bounds for52

COT’s predicted error. This results in a more provably conservative error prediction than AC, which53

is crucial for safety in many real-world machine learning applications. In addition, we introduce54

a variant of COT, Confidence Optimal Transport with Thresholding (COTT), which introduces a55

learned threshold over the optimal transportation costs in line with prior work [12] and empirically56

improves upon COT’s performance. We compare our proposed methods to existing state-of-the-art57

approaches in extensive empirical experiments over eleven datasets exhibiting distribution shift from58

multiple vision and language domains. These distribution shifts include: visual corruptions (e.g.,59

blurred image data), novel subpopulation shifts (e.g., novel appearances of a category), and natural60

shifts in the wild (e.g., different stain colors for pathology images), all of which are frequently61

experienced in the real world. We find that COT and COTT consistently avoid the significant error62

underestimations suffered by previous methods. In particular, COTT achieves significantly lower63

prediction errors than existing methods for most models and datasets (up to 3x better), establishing64

new state-of-the-art results.65

2 Preliminaries and Motivation66

In this section, we introduce the problem setup of OOD error prediction and show how a popular67

baseline, Average Confidence (AC), can be understood as the Wasserstein Distance (WD) between68

a reference label distribution and the softmax output distribution from an Optimal Transport (OT)69

perspective. We then demonstrate why the reference label distribution AC uses is problematic by70

explaining pseudo-label shift and its correlation with miscalibration. After establishing the relation71

and utility of OT to OOD error prediction, we formally introduce our proposed methods in Sec. 3.72

2.1 OOD Performance Prediction73

In this work, we address the OOD problem in the domain of classification tasks. Let X ⊆ Rd be the74

input space of size d, and Y = {1, · · · , k} be the label space, where k is the number of classes. Let75

the source distribution over X × Y be PS(x, y) and the target distribution be PT (x, y). A classifier76

f⃗ : X → ∆k−1 maps an input to a confidence vector (i.e. the output of the softmax layer), where77

∆k−1 = {(z1, · · · , zk) : z1+· · ·+zk = 1, zi ≥ 0} is the k-dimensional unit simplex. Let the training78

samples be {(x(i)
train, y

(i)
train)} ∼ PS(x, y), and the validation samples be {(x(i)

val , y
(i)
val )} ∼ PS(x, y). The79

validation set is used in some previous methods and will also be used in COT and COTT.80

The OOD performance prediction problem is formally stated as follows: Given an unlabeled test81

set {x(i)
T } ∼ PT (x), and a classifier f⃗ trained over the training samples, predict the accuracy of82

f⃗ over the test set α = 1
n

∑n
i=1 1[y

(i)
T − argmaxj f⃗j(x

(i)
T )], where y

(i)
T is the ground truth label.83

Equivalently, we can also predict the error ϵ = 1− α with an estimate ϵ̂.84

In this work, we are further investigating the distribution of confidence vectors. While a confidence85

vector f⃗(x) itself is a distribution of labels in the k-dimensional simplex ∆k−1, the distribution of86

confidence vectors f⃗#P (c⃗) is a distribution of distributions, where c⃗ ∈ ∆k−1. f⃗#P (c⃗) is defined87
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to be the pushforward of a covariate distribution P (x) using f⃗ : f⃗#P (c⃗) = P (f⃗−1(c⃗)). Consider88

the following example: Suppose we have a uniform covariate distribution P (x) on x ∈ {A,B,C}89

and f⃗ maps A,B to [0.5, 0.5]⊤ and C to [0.7, 0.3]⊤. Then, f#P (c⃗) will assign 2
3 mass to [0.5, 0.5]⊤90

and 1
3 mass to [0.7, 0.3]⊤. To facilitate easy comparison between confidence vectors and labels, we91

denote y⃗ ∈ {0, 1}k ∩ ∆k−1 to be the one-hot representation of y ∈ Y , where the only non-zero92

element in y⃗ is the y-th element, i.e. y⃗j = 1[y = j]. We denote the distribution of one-hot labels93

as P (y⃗). For a covariate distribution P (x), we will refer to the distribution of predicted labels94

from classifier f⃗ as the pseudo-label distribution Ppseudo(y⃗). We reuse the notation to denote the95

probability mass of y⃗ also as which is given by the mass of the inputs that give this prediction, i.e.96

Ppseudo(y⃗) = P ({x ∈ X | argmaxj f⃗j(x) = y}).97

2.2 Wasserstein Distance and Optimal Transport98

In recent years, optimal transport theory has found numerous applications in the field of machine99

learning [2, 4, 1, 26]. Optimal transport aims to move one distribution of mass to another as efficiently100

as possible under a given cost function. In the Kantorovich formulation of optimal transport, we101

are given two distributions µ(x) over X and ν(y) over Y and a cost function c(x, y) that tells us102

the cost of transporting from location x to location y. Here, we aim to find a transport plan π(x, y)103

that minimizes the total transport cost. The transport plan is a joint distribution with marginal104

π(·,Y) = µ(·) and π(X , ·) = ν(·). The conditional distribution π(x,y)
µ(x) of the transport plan informs105

us how much mass is moved from x to y. Let Π(µ, ν) be the set of all transport plans. More formally,106

the Wasserstein Distance is defined as:107

W (µ, ν) = inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ(x, y)

The Wasserstein distance satisfies the definition of a metric (non-negativity, symmetry, and sub-108

additivity), inducing a metric space over a space of probability distributions. Unlike other metrics,109

such as total variation, the Wasserstein metric induces a weaker topology and provides a robust110

framework for comparing probability distributions that respect the underlying space geometry [2].111

For discrete distributions µ, ν such as the empirical distributions, the Wasserstein distance simplifies112

to the following linear programming problem:113

W (µ, ν) = min
P∈Π(µ,ν)

⟨P,C⟩ = min
P∈Π(µ,ν)

∑
i,j

PijCij

where C,P ∈ Rm×n are the cost matrix and the plan matrix respectively and Cij is the transport114

cost from sample i to sample j. When n = m, the optimal transport problem reduces to the115

optimal matching problem (Proposition 2.1 in Peyré et al. [30]), i.e. the optimal transport plan116

P∗ = argminP∈Π(µ,ν)⟨P,C⟩ is a permutation matrix. Not only does this constraint enable efficient117

algorithms like the Hungarian algorithm, but it will also help draw the connection between pseudo-118

label shift and target error that is central to our Confidence Optimal Transport method.119

2.3 Average Confidence as Wasserstein Distance120

We use Average Confidence, a popular OOD performance prediction method, as the starting point121

of our analysis. Average Confidence with Max Confidence (AC-MC) estimates the target accuracy122

by taking the empirical mean of maximum confidence of the classifier over all target samples123

x(i) ∼ PT (x), i.e. 1
n

∑n
i=1 maxj f⃗j(x

(i)). Its corresponding target error estimate is therefore124

ϵ̂AC = 1− 1
n

∑n
i=1 maxj f⃗j(x

(i)). By definition, |ϵ− ϵ̂AC| measures the miscalibration of the model,125

i.e. how far away the model’s confidence is from its actual accuracy. In the following proposition, we126

connect the AC-MC estimates with distances in the Wasserstein Metric Space:127

Proposition 1 (ϵ̂AC-W∞ Equivalence). Let (P(Rk),W∞) be the metric space of all distributions128

over Rk, where W∞ is the Wasserstein distance with c(x, y) = ∥x− y∥∞. Then, the estimated error129

of AC-MC is given by ϵ̂AC = W∞(f⃗#P (c⃗), Ppseudo(y⃗)).130

We defer all proofs to the supplementary material. Here, we appeal to pictorial intuition in Figure131

1, where δ0 (Dirac delta over the zero vector) represents the origin. All one-hot label distributions,132
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Figure 1: The AC-COT Triangle in the Wasserstein Space (P(Rk),W∞). Red line: AC-MC error
estimate. Blue line: (our) COT error estimate (assuming PT (y⃗) ≈ PS(y⃗)). Green line: Pseudo-label
shift. Left: AC-MC predicts the target error as the distance between the distribution of confidence
vectors and its projection on the unit sphere, the smallest among all label distributions. This makes
AC-MC prone to underestimating the target error. Middle: Mild pseudo-label shift. Right: Severe
pseudo-label shift.

including PT (y⃗) and Ppseudo(y⃗), are represented as points on the (dashed) unit sphere around δ0.133

A distribution of confidence vectors f⃗#P (c⃗) is simply a point within the unit ball around δ0. The134

AC-MC accuracy estimate measures how far the point is to the origin δ0. Additionally, we can project135

the point to the unit sphere, resulting in the projection point Ppseudo(y⃗), which is the pseudo-label136

distribution. The AC-MC error estimate measures the length of the projection.137

Corollary 1 (Ppseudo(y⃗) is closest to f⃗#P (c⃗)). Let P ′(y⃗) ∈ P({0, 1}k ∩∆k−1) be a one-hot label138

distribution. Then W∞(f⃗#P (c⃗), P ′(y⃗)) ≥ W∞(f⃗#P (c⃗), Ppseudo(y⃗)).139

This suggests that AC-MC, among all possible reference one-hot label distributions, selects the140

closest one and reports the distance to be the predicted error. Thus, we can see that AC-MC is141

a very optimistic prediction strategy, so it is not surprising that AC-MC is widely reported to be142

over-estimating the performance on real tasks [12, 15, 21, 3].143

2.4 Pseudo-Label Shift and its Correlation with Miscalibration144

The pseudo-label shift is defined as W∞(Ppseudo(y⃗), PT (y⃗)), i.e. the distance from the pseudo label145

distribution Ppseudo(y⃗) to the ground truth target label distribution PT (y⃗), which is also the length of146

the green line segment in Figure 1. An important property is W∞(Ppseudo(y⃗), PT (y⃗)) ≤ ϵ ≤ 1, i.e.147

the pseudo-label shift is a lower bound of the true target error of the model (as true target error can be148

interpreted as the average transport cost of a suboptimal matching). We can clearly see how a large149

pseudo-label shift could potentially destroy the prediction of AC-MC from Figure 1 (right), where150

the red line segment is much shorter than the green one which should be a lower bound of the true151

error. This lower bound, however, can be loose when it is small, as shown in Figure 1 (middle).152

Most existing prediction methods heavily rely on the model being well-calibrated, as pointed out by153

Jiang et al. [21], Garg et al. [12], yet the underlying difficulty is a lack of precise understanding of154

when and by how much neural networks become miscalibrated. This is evident in the large-scale155

empirical study conducted in [28], showing that the variance of the error becomes much larger among156

the different types of shift studied, despite some positive correlation between the expected calibration157

error and the strength of the distribution shift. In this section, we empirically show that there is158

a strong positive correlation between the pseudo-label shift and |ϵ − ϵ̂AC|, which we define as the159

model’s miscalibration. Because of this correlation, we consider pseudo-label shift as the key signal160

to why existing methods have undesirable performance.161

We evaluate the pseudo label shift and the prediction error of AC-MC |ϵ− ϵ̂AC| on CIFAR-10 and162

CIFAR-100 under different distribution shifts, and plot the results in Figure 2 (left). The plots163

demonstrate a strong positive correlation between these two quantities, which not only means that164

the performance of AC-MC worsens as the pseudo-label shift gets larger, but also implies that the165

performance of existing methods [15, 12, 21] that depend on model calibration will drop.166

Our exploration of miscalibration and pseudo-label shift reveals a previously unexplored tradeoff:167

When the pseudo-label shift is small, prior work has given us some reassurance to trust the calibration168

of neural networks, which motivated methods such as AC [19] and ATC [12]. More critically, as169

miscalibration worsens, the pseudo-label shift becomes a tighter low bound of the error and thus a170

more trustworthy estimate of the error.171
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Figure 2: Left: Absolute difference between the model’s Average Confidence and its true error under
different levels of pseudo-label shift. This difference measures the degree of miscalibration. We see
a strong correlation between the miscalibration and pseudo-label shift on the common corruption
benchmarks (CIFAR-10-C, CIFAR-100-C). Right: Absolute difference between GDE error estimate
and true error under different levels of pseudo-label shift. The strong correlation is also observed.

Figure 3: We further compare the sensitivity of COT and COTT’s estimation error to the degree
of pseudo-label shift. Compared to Figure 2, we can clearly see that the correlation between the
prediction error and pseudo-label shift weakens significantly. Moreover, COTT is even more robust
to pseudo-label shift compared to COT.

Motivated by this observation, we leverage the information of the pseudo-label shift to improve the172

performance of confidence-based prediction methods for miscalibrated models. The problem, as173

mentioned earlier, is that without any information about the target label distribution, it is theoretically174

impossible to estimate the pseudo label shift when the test set contains data from unseen domains.175

Thus, the only option is to make assumptions on the target label distribution.176

In our proposed method, we make a natural assumption: the target label distribution is close to the177

source label distribution. This assumption aligns with most natural shifts that can be observed in178

real-world datasets. This extra assumption allows us to develop COT and COTT, which perform179

much better than existing methods in most cases (See Table 1), especially when the pseudo-label180

shift is large. Given this assumption, Figure 3 (Left), shows the prediction error of COT versus the181

pseudo-label shift. We can see that equipped with the extra information, COT is able to maintain182

a low prediction error even under very large pseudo label shift, and the correlation between COT183

performance and the pseudo label shift is weak. Since the pseudo label shift is strongly correlated184

with miscalibration, this implies that COT is much more robust to miscalibration than existing185

miscalibration-sensitive prediction methods.186

3 Methods187

In this section, we formally introduce our proposed method – Confidence Optimal Transport – and188

propose an additional variation, COTT, that utilizes a threshold over the optimal transportation costs189

between two distributions, instead of taking a simple average.190

3.1 Confidence Optimal Transport191

Let P̂S(y⃗) denote the empirical source label distribution. The predicted error of COT, which is the192

length of the blue line segment (assuming PT (c⃗) = PS(y⃗)) in Figure 1, is given by193

ϵ̂COT = W∞(f⃗#P̂T (c⃗), P̂S(y⃗)).
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By Corollary 1, ϵ̂COT ≥ ϵ̂AC, which means that COT provably predicts a larger error than AC-MC,194

which empirically tends to produce more accurate predictions as we find overestimation of the error195

far less common than underestimation. As mentioned earlier, in the case where the pseudo-label shift196

is large, such as in Figure 1 (Right), AC-MC can have arbitrarily large prediction error, while COT197

always has the following guarantee:198

Proposition 2 (Calibration independent lower bound of COT). Under the assumption that PT (y⃗) =199

PS(y⃗), we always have ϵ̂COT ≥ 0.5W∞(Ppseudo(y⃗), PT (y⃗)).200

Thus, we can see that COT is by nature different from existing methods because it is a miscalibration-201

robust method. Its success is dependent on the difference between PT (y⃗) and PS(y⃗), which is202

relatively small in most real-world scenarios, while the dependency on calibration of existing methods203

can not always be controlled. The geometric explanation of this is that COT measures a fundamentally204

different length in the Wasserstein Space (P(Rk),W∞), allowing for the above guarantee which205

does not exist in previous methods. Moreover, as we will empirically demonstrate in the next section,206

large pseudo-label shift is prevalent in real models and datasets. Consequently, COT performs much207

better than miscalibration-sensitive methods in most cases.208

3.2 Thresholding as a Robust Transport Cost Stastistic209

Computationally, COT (or Wasserstein Distance in general) is implemented as a two-step process: 1)210

calculating individual transport costs for all samples; 2) returning the mean across all transport costs211

as the error estimate. While we have seen that COT has some protection against miscalibration, it212

is not completely immune. Another outstanding issue lies in the second step - computing the mean213

of all transport costs. In statistics, it is well known that the mean is less robust to outliers than the214

median [20]. In the supplemental material, we show that the empirical transport cost distribution is215

also heavy-tailed and therefore COT is susceptible to outlier costs. A large fluctuation in the outliers216

impacts the mean much more than it does to the median. Therefore, a more robust statistic is desired217

to protect COT against these outliers.218

To search for such a robust statistic that is suitable for our purpose, we turn to Average Thresholded219

Confidence (ATC) [12] for inspiration. ATC tremendously improves the performance of AC precisely220

by offering such protection against the overconfident outlier predictions (shown in supp material) by221

returning the percentile above the threshold rather than the mean. In a similar vein, we safeguard222

COT against outlier costs by introducing COT with Thresholding, COTT.223

Specifically, to compute the threshold t ∈ [0, 1], we first sample a validation set {(x(i)
val , y

(i)
val )}ni=1 ∼224

PS(x, y). Let P̂val denote the empirical validation distribution. We compute the optimal transport plan225

P∗
val = argminP∈Π(f⃗#P̂val(c⃗),P̂S(y⃗))⟨P,C⟩, where C is the cost matrix determined by the L-infinity226

distance. Note that P∗
val ∈ {0, 1}n×n is a permutation matrix due to the equal number of confidence227

vectors and one-hot labels (Proposition 2.1 in [30]). Then the threshold t is set such that the validation228

of error the classifier equals the fraction of samples with transport cost higher than t, i.e.229

ϵval =
1

n
|{Cij ≥ t|P∗

valij = 1}|

With the threshold t learned from the validation set, we can compute the COTT target error estimate.230

Let P̂S(y⃗) denote the empirical source label distribution and f⃗#P̂T (c⃗) denote the empirical distribu-231

tion of confidence vectors of samples from the target distribution PT (x). We compute the optimal232

transport plan P∗ = argminP∈Π(f⃗#P̂T (c⃗),P̂S(y⃗))⟨P,C⟩. Our COTT estimate is then defined as233

ϵ̂COTT =
1

n
|{Cij ≥ t|P∗

ij = 1}|

4 Experiments234

In this section, we empirically compare COT and COTT with existing methods on various benchmark235

datasets. For all experiments, we trained the model on in-distribution data and froze the model after236

convergance. To predict the model’s performance on the target domain, we only used unlabeled data237

from the target domain. When we have a test set size greater than 10,000, we show the results of238
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Table 1: Mean Absolute Error (MAE) between the estimated error and ground truth error to compare
different methods. The "shift" column denotes the nature of distribution shifts for each dataset. For
vision datasets, we reported results for ResNet18 and ResNet50; for language datasets, we reported
results for DistilBERT-base-uncased. The results are averaged over 3 random seeds. We highlight the
best-performing method. We defer the full table with std to the supplemental material.

Baselines Ours
Dataset Shift AC DoC IM GDE ATC-MC ATC-NE COT COTT

CIFAR10 Natural 5.97 5.38 5.87 5.9 3.38 3.15 5.41 3.33
Synthetic 9.1 8.53 9.26 8.84 4.2 3.37 2.17 1.7

CIFAR100 Synthetic 10.83 8.76 12.07 11.36 6.8 6.63 2.09 2.59

ImageNet Natural 8.5 7.43 8.62 5.62 3.57 2.6 3.88 2.41
Synthetic 10.34 9.28 12.87 6.54 1.59 3.41 3.24 1.42

Entity13 Same 19.63 19.2 17.5 15.37 8.09 7.23 8.47 2.61
Novel 29.61 29.18 27.22 24.48 14.54 9.49 15.9 5.46

Entity30 Same 16.97 16.21 13.56 13.98 8.19 9.08 5.9 2.46
Novel 27.57 26.81 23.96 23.4 13.46 8.57 15.11 5.94

Living17 Same 14.84 14.67 11.22 9.94 4.88 5.43 6.25 2.94
Novel 29.61 29.18 27.22 24.48 14.54 9.49 15.9 5.53

Nonliving26 Same 19.25 18.43 16.6 12.77 11.18 9.69 7.06 3.34
Novel 31.37 30.54 28.79 23.37 19.93 16.56 17.8 10.46

Camelyon17-WILDS Natural 9.44 9.44 10.24 5.19 7.73 7.73 7.27 5.71

RxRx1-WILDS Natural 5.21 8.44 8.09 7.48 6.53 6.86 3.25 5.82

Amazon-WILDS Natural 2.62 2.35 2.34 17.04 1.63 1.54 2.43 2.01

CivilCom.-WILDS Natural 1.54 0.96 0.86 8.7 2.3 2.3 1.23 4.68

utilizing the batched version of COT and COTT detailed in Section 3.2. For context, solving the OT239

problem of size 10,000 only takes around 10s, thus adding only negligible computation overhead.240

4.1 Datasets and Nature of Shift241

In our comprehensive evaluation, we consider more than 10 benchmark datasets across multiple242

modalities, including vision and language, with a variety of distribution shifts:243

Synthetic Shift: First, we consider distribution shifts caused by common visual corruptions, such244

as brightness, defocusing, and blurriness, which are common in real-world settings. We used the245

corrupted versions of CIFAR10, CIFAR100, and ImageNet proposed in [18], which includes 19 types246

of common visual corruptions across 5 levels of severity.247

Novel Subpopulation Shift: Next, we consider novel subpopulation shifts, where the subpopulations248

in the train and test sets differ. For example, models might have only observed golden retrievers for249

the dog class but not huskies. In our experiments, we used the BREEDS benchmark [34], which250

leveraged the ImageNet[8] class hierarchy to create 4 datasets, Living-17, Nonliving-26, Entity13,251

and Entity-30.252

Natural Shift: Finally, we consider non-simulated shifts in which the distribution shifts are induced253

through differences in the data collection process, such as ImageNet-V2 and CIFAR10-V2 proposed254

in [32]. We also include ImageNet-Sketch [37], which consists of sketched images of the original255

ImageNet classes. Additionally, we consider distribution shifts faced in the wild, such as ones256

curated in the WILDS benchmark [23]. We consider four WILDS datasets, two for language tasks257

(Amazon-WILDS, CivilComments-WILDS) and two for vision tasks (Camelyon17, RxRx1).258

4.2 Architectures and Evaluations259

For vision tasks (CIFAR10, CIFAR100, ImageNet, Living17, Nonliving26, Entity13, Entity30,260

Camelyon17-WILDS, RxRx1-WILDS), We trained ResNet18 and ResNet50 [17]; for language261

tasks (Amazon-WILDS, CivilComments-WILDS), we fine-tuned DistilBERT-base-uncased [33]. We262

7



Figure 4: Qualitative results for AC, ATC, COT, and COTT, comparing error estimates vs. ground
truth target error. Accurate estimates should be close to y = x (dashed black line). Notably, COT
and COTT remain accurate even when the shifts are large. By contrast, AC and ATC often severely
underestimate the error, which is particularly evident in the Nonliving-26 dataset.

followed training setups from previous works [12] and provided the full details in the supplemental263

material. After training, we calibrated models using Temperature Scaling (TS) [16] on the in-264

distribution validation data, effectively adjusting the output probabilities of the neural network265

to match the actual correctness likelihood. This approach has previously demonstrated that TS266

consistently improves error estimation performance for all methods [12]. To evaluate different267

methods, we utilized the mean absolute difference between their predicted errors and the true errors,268

which are obtained using ground truth labels. We refer to this metric as Mean Absolute Error (MAE).269

4.3 Results270

We systematically evaluate our methods against an array of baselines, including Average Confidence271

(AC) [19], Difference of Confidence (DoC a.k.a. DOC-Feat)[15], Importance Re-weighting (IM)272

[6], Generalized Disagreement Equality (GDE) [21], Average Thresholded Confidence (ATC) [12],273

ProjNorm [38]. See the supplementary material for a review of detailed definitions.274

In Table 1, we report the MAE results grouped by datasets and nature of shifts. Across all benchmarks,275

we observe that COT always obtains lower estimation error than AC, supporting our theoretical276

analysis that COT additionally leverages pseudo-label shift to fight miscalibration. On synthetic277

shift benchmarks (CIFAR10-Synthetic, CIFAR100-Synthetic, ImageNet-Synthetic BREEDS-same),278

COT is 2 − 4× better than AC, drastically reducing the estimation error. On novel subpopulation279

shift (BREEDS-novel), COT cuts about half of the AC error. On natural shift, COT also improves280

upon AC. On ImageNet natural shift datasets, COT reduces the error from 8.5 to 3.88 compared to281

AC. COTT, presents the best overall results, surpassing the best current method (ATC) by a notable282

margin. On synthetic shift benchmarks, COTT is 2-3× better than ATC-NE, the stronger version of283

ATC that uses a negative entropy score function. On novel subpopulation shift benchmarks, COTT is284

at least 4 absolute percent better than ATC-NE. On natural shift benchmarks, however, we observed285

mixed results. On ImageNet-Natural, COTT is better than ATC-NE while on CIFAR10-Natural,286

COTT is marginally worse. On WILDS benchmarks, no single method dominantly outperforms287

others. Note that the WILDS benchmark datasets contain label shift, meaning PS(y) ̸= PT (y). This288

leads COTT to overestimate the error on the CivilComments-WILDS. Nonetheless, COTT has the289

smallest worst-case error of 5.82 compared to ATC-NE’s 7.73, demonstrating its robustness even on290

distribution shifts faced in the wild.291

In Figure 4, we use scatterplots to visualize estimations given by different methods, notably AC, ATC,292

COT, and COTT, where we plot the predicted error against the true error. Ideally, these scattered293

points should demonstrate a strong linear correlation and closely follow the y = x line. While this294

is true for COT and COTT, AC and ATC often underestimate, sometimes by a large margin. In295

Nonliving-26, we can see data points representing shifts whose ATC predicted errors are around296

0.1 while true errors are close to 1. These observations corroborate the necessity of leveraging297

pseudo-label shifts to guard against such catastrophic failures of existing confidence-based methods.298

We include the scatterplots for all datasets in the supplemental material, where we show that COT299

and COTT successfully prevent severe underestimation seen in other methods.300
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A Deferred Proofs405

For readers’ convenience, we review the statements of the propositions and corollaries and provide406

the full proofs below.407

A.1 Proof of Proposition 1408

Proposition 1 (ϵ̂AC-W∞ Equivalence). Let (P(Rk),W∞) be the metric space of all distributions409

over Rk, where W∞ is the Wasserstein distance with c(x, y) = ∥x− y∥∞. Then, the estimated error410

of AC-MC is given by ϵ̂AC = W∞(f⃗#P (c⃗), Ppseudo(y⃗)).411

Proof. We first show the following equality. Let j∗ = argmaxj f⃗j(x)412

1− f⃗j∗(x) = ∥y⃗ − f⃗(x)∥∞ (1)

where y⃗j = 1[j = j∗]. Let f⃗−j∗(x) denote the vector f⃗(x) with j∗-th element removed. Since for a413

confidence vector ∥f⃗(x)∥1 = 1,414

1− f⃗j∗(x) = ∥f⃗−j∗(x)∥1 ≥ ∥f⃗−j∗(x)∥∞
Therefore, we have obtained the desired Equality 1:415

∥y⃗ − f⃗j(x)∥∞ = max{∥f⃗−j∗(x)∥∞, 1− f⃗j∗(x)} = 1− f⃗j∗(x)

Next, we consider the optimal transport plan between f⃗#P (c⃗) and Ppseudo(y⃗). Namely, we show all416

confidence vectors f⃗(x(i)) are coupled with their one-hot pseudo-labels y⃗(i). This can be observed by417

the fact that the one-hot pseudo-label is the one-hot label that achieves the lowest L-infinity cost, i.e.418

∥f⃗(x(i))− y⃗(i)∥∞ ≤ ∥f⃗(x(i))− y⃗′∥∞,∀y⃗′ ∈ {0, 1}k ∩∆k−1

Suppose there exist confidence vectors that are not coupled with their one-hot pseudo-labels, then all419

individual costs are suboptimal and the total cost is suboptimal as well, contradicting the assumption420

that the transport plan is optimal. Therefore,421

W∞(f⃗#P (c⃗), Ppseudo(y⃗)) =
1

n

n∑
i=1

∥f⃗(x(i))− y⃗(i)∥∞ (2)

Combining Equality 1 and Equality 2, we obtain the desired relationship between AC error estimate422

and W∞ distance423

ϵ̂AC =
1

n

n∑
i=1

(1−max
j

f⃗j(x
(i))) =

1

n

n∑
i=1

∥f⃗(x(i))− y⃗(i)∥∞ = W∞(f⃗#P (c⃗), Ppseudo(y⃗))

424

A.2 Proof of Corollary 1425

Corollary 1 (Ppseudo(y⃗) is closest to f⃗#P (c⃗)). Let P ′(y⃗) ∈ P({0, 1}k ∩∆k−1) be a one-hot label426

distribution. Then W∞(f⃗#P (c⃗), P ′(y⃗)) ≥ W∞(f⃗#P (c⃗), Ppseudo(y⃗)).427

Proof. We first show the following equality, which establishes the relationship between AC accuracy428

estimate with W∞ distance:429

1− ϵ̂AC = W∞(f⃗#P (c⃗), δ0) (3)

Since W∞(f⃗#P (c⃗), δ0) transports f⃗#P (c⃗) to δ0, the optimal transport plan couples every element430

in f⃗#P (c⃗) to 0. For each x(i), its confidence vector f⃗#P (c⃗) has a transport cost ∥f⃗(x(i)) − 0∥∞.431

Hence,432

1− ϵ̂AC =
1

n

n∑
i=1

max
j

f⃗j(x
(i)) =

1

n

n∑
i=1

∥f⃗(x(i))− 0∥∞ = W∞(f⃗#P (c⃗), δ0)
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With this, our inequality is simply the Triangle Inequality in (P(Rk),W∞),433

W∞(f⃗#P (c⃗), δ0) +W∞(f⃗#P (c⃗), P ′(y⃗)) ≥ W∞(P ′(y⃗), δ0) = 1

Combined with Equation 3, we obtain the desired inequality434

W∞(f⃗#P (c⃗), Ppseudo(y⃗)) = 1−W∞(f⃗#P (c⃗), δ0) ≤ W∞(f⃗#P (c⃗), P ′(y⃗))

435

A.3 Proof of Proposition 2436

Notations: Let C(c⃗) = {c⃗′ ∈ ∆k−1| argmaxj c⃗
′
j = argmaxj c⃗j} be the set of confidence vectors437

whose one-hot pseudo-labels that match with that of c⃗ ∈ ∆k−1. Let P(∆k−1) be the set of438

all distributions of confidence vectors and Pc[Ppseudo(y⃗)] = {P ′(c⃗) ∈ P(∆k−1)|Ppseudo(y⃗) =439

P ′(argmaxj c⃗j = argmaxj y⃗j)} be the set of distributions of confidence vectors that share the440

same pseudo-label distribution Ppseudo(y⃗).441

Pc[Ppseudo(y⃗)] defines an equivalence class for the space of distributions of confidence vectors442

(P(∆k−1),W∞) that share the same pseudo-label distribution Ppseudo(y⃗). Pictorially, in Figure 1,443

Pc[Ppseudo(y⃗)] represents the line between δ0 and Ppseudo(y⃗). On this line, every distribution of444

confidence vectors shares the same pseudo-label distribution Ppseudo(y⃗).445

To prove Proposition 2, we need the following lemma, which intuitively allows us to change the446

metric from measuring the distance between two points to the distance between an equivalence class447

and a point.1448

Lemma 1 (Change-of-metric). Let y⃗, y⃗′ ∈ {0, 1}k ∩∆k−1 be two one-hot labels. Then the following449

holds450

inf
c⃗∈C(y⃗)

∥c⃗− y⃗′∥∞ = 0.5× 1[y⃗ ̸= y⃗′]

451

Proof. If y⃗ = y⃗′, then we know the optimal c⃗ = y⃗452

inf
c⃗∈C(y⃗)

∥c⃗− y⃗′∥∞ = ∥y⃗ − y⃗′∥∞ = 0

If y⃗ ̸= y⃗′, then we proceed by showing equality with two inequalities. First, observe {(0.5 + δ) y⃗ +453

(0.5− δ) y⃗′|δ ∈ (0, 0.5]} ⊂ C(y⃗).454

inf
c⃗∈C(y⃗)

∥c⃗− y⃗′∥∞ ≤ inf
δ∈(0,0.5]

∥(0.5 + δ) y⃗ + (0.5− δ) y⃗′ − y⃗′∥∞ = inf
δ∈(0,0.5]

(0.5 + δ) = 0.5

If ∥c⃗ − y⃗′∥∞ < 0.5, argmaxj c⃗j = argmaxj y⃗
′
j ̸= argmaxj y⃗j , i.e. c⃗ /∈ C(y⃗). Therefore,455

inf c⃗∈C(y⃗) ∥c⃗− y⃗′∥∞ ≥ 0.5, which further implies inf c⃗∈C(y⃗) ∥c⃗− y⃗′∥∞ = 0.5.456

We are now in a position to prove Proposition 2, which follows from the somewhat surprising fact457

that the left-hand side of the inequality is simply the distance between f⃗#PT (c⃗) and PT (y⃗) with a458

change-of-metric to the metric defined above.459

Proposition 2 (Calibration independent lower bound of COT). Under the assumption that PT (y⃗) =460

PS(y⃗), we always have ϵ̂COT ≥ 0.5W∞(Ppseudo(y⃗), PT (y⃗)).461

Proof. Since PT (y⃗) = PS(y⃗),462

ϵ̂COT = W∞(f⃗#PT (c⃗), PT (y⃗))

= inf
π(c⃗,y⃗)∈Π(f⃗#PT (c⃗),PT (y⃗))

∫
∥c⃗− y⃗∥∞dπ(c⃗, y⃗)

≥ inf
π(c⃗,y⃗)∈Π(f⃗#PT (c⃗),PT (y⃗))

∫
inf

c⃗′∈C(c⃗)
∥c⃗′ − y⃗∥∞dπ(c⃗, y⃗) (4)

= inf
π(y⃗′,y⃗)∈Π(Ppseudo(y⃗′),PT (y⃗))

∫
inf

c⃗′∈C(y⃗′)
∥c⃗′ − y⃗∥∞dπ(y⃗′, y⃗) (5)

1This is closely related to the Hausdorff distance between sets in a metric space.
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Equation 5 follows from the observation that C(c⃗) = C(y⃗′) for a confidence vector c⃗ and its corre-463

sponding one-hot pseudo-label y⃗′. Furthermore, since our new metric inf c⃗′∈C(y⃗′) ∥c⃗′ − y⃗∥∞ is only464

defined up to the equivalence class, replacing each c⃗′ ∈ C(c⃗) with its pseudo-label y⃗′ does not change465

the distance.466

Plugging in Lemma 1,467

ϵ̂COT ≥ inf
π(y⃗′,y⃗)∈Π(Ppseudo(y⃗′),PT (y⃗))

∫
0.5× 1[y⃗′ ̸= y⃗]dπ(y⃗′, y⃗)

= 0.5 inf
π(y⃗′,y⃗)∈Π(Ppseudo(y⃗′),PT (y⃗))

∫
∥y⃗′ − y⃗∥∞dπ(y⃗′, y⃗)

= 0.5W∞(Ppseudo(y⃗), PT (y⃗))

468

A.4 Tightness of Proposition 2469

While Inequality 4 seems loose, our bound is, in fact, tight if no further assumptions on the calibration470

status of the classifier f⃗ are made. We need the following lemma that establishes the relationship471

between pseudo-label shift and the total variation distance between target label distribution and472

pseudo-label distribution. Note this equivalence only makes sense in the context of measuring W∞473

distance between two one-hot label distributions, but not under other contexts presented in the paper.474

Lemma 2 (Pseudo-label shift is total variation).

W∞(Ppseudo(y⃗), PT (y⃗)) = ∥Ppseudo(y⃗)− PT (y⃗)∥TV

Proof. For two y⃗, y⃗′ ∈ {0, 1}k ∩∆k−1, the transport cost c(y⃗, y⃗′) = 1[y⃗ ̸= y⃗′]. Then, the standard475

result on optimal transport [36] gives the desired equality.476

Corollary 2.

W∞(Ppseudo(y⃗), PT (y⃗)) = 1−
∑

y⃗∈{0,1}k∩∆k−1

min{Ppseudo(y⃗), PT (y⃗)}

477

Proof.

W∞(Ppseudo(y⃗), PT (y⃗)) = ∥Ppseudo(y⃗)− PT (y⃗)∥TV

=
1

2

∑
y⃗∈{0,1}k∩∆k−1

|Ppseudo(y⃗)− PT (y⃗)|

=
1

2

∑
y⃗∈{0,1}k∩∆k−1

max{Ppseudo(y⃗), PT (y⃗)} −min{Ppseudo(y⃗), PT (y⃗)}

=
1

2

∑
y⃗∈{0,1}k∩∆k−1

max{Ppseudo(y⃗), PT (y⃗)}+min{Ppseudo(y⃗), PT (y⃗)}

−
∑

y⃗∈{0,1}k∩∆k−1

min{Ppseudo(y⃗), PT (y⃗)}

=
1

2

∑
y⃗∈{0,1}k∩∆k−1

Ppseudo(y⃗) + PT (y⃗)−
∑

y⃗∈{0,1}k∩∆k−1

min{Ppseudo(y⃗), PT (y⃗)}

= 1−
∑

y⃗∈{0,1}k∩∆k−1

min{Ppseudo(y⃗), PT (y⃗)}

478

Finally, we show Proposition 2 is tight by constructing a sequence of distributions of confidence479

vectors, the limit of which is exactly 0.5W∞(Ppseudo(y⃗), PT (y⃗)) away from PT (y⃗).480
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Lemma 3 (Proposition 2 is tight).

inf
P (c⃗)∈Pc[Ppseudo(y⃗)]

W∞(P (c⃗), PT (y⃗)) = 0.5W∞(Ppseudo(y⃗), PT (y⃗))

Proof. First, we construct the following family of distributions {Pδ(c⃗)|δ ∈ (0, 0.5]}, where Pδ(c⃗) is481

the following mixture distribution482

Pδ(c⃗) = γP∩(y⃗) + (1− γ)P×(⃗t)

where P∩(y⃗) = γ−1 min{Ppseudo(y⃗), PT (y⃗)}, γ =
∑

y⃗∈{0,1}k∩∆k−1 min{Ppseudo(y⃗), PT (y⃗)},483

P×(⃗t) is a distribution supported on ∆k−1 ∩ {0.5 + δ, 0.5− δ, 0}k (i.e. one element in t⃗ is 0.5 + δ,484

another is 0.5 − δ, and the rest are 0). Additionally, P×(⃗ti = 0.5 + δ) = Ppseudo(y⃗i = 1) and485

P×(⃗ti = 0.5− δ) = PT (y⃗i = 1). It is easy to check that Pδ(c⃗) ∈ Pc[Ppseudo(y⃗)].486

Next, we construct an explicit transport plan π(c⃗, y⃗) ∈ Π(Pδ(c⃗), PT (y⃗)). We construct it via the487

factorization π(c⃗, y⃗) = Pδ(c⃗)π(y⃗|⃗c), where488

π(y⃗|⃗c) =
{
1 if c⃗ = y⃗ or ⟨c⃗, y⃗⟩ = 0.5− δ

0 otherwise

The cost of this transport plan is therefore489 ∫
∥c⃗− y⃗∥∞dπ(c⃗, y⃗) = (0.5 + δ)(1− γ) = (0.5 + δ)W∞(Ppseudo(y⃗), PT (y⃗))

where the last equality follows from Lemma 2. Taking infimum,490

inf
δ∈(0,0.5]

∫
∥c⃗− y⃗∥∞dπ(c⃗, y⃗) = 0.5W∞(Ppseudo(y⃗), PT (y⃗))

Combining everything so far, we obtain the desired result:491

0.5W∞(Ppseudo(y⃗), PT (y⃗)) = inf
δ∈(0,0.5]

∫
∥c⃗− y⃗∥∞dπ(c⃗, y⃗)

≥ inf
δ∈(0,0.5]

W∞(Pδ(c⃗), PT (y⃗)) (6)

≥ inf
P (c⃗)∈Pc[Ppseudo(y⃗)]

W∞(P (c⃗), PT (y⃗)) (7)

≥ 0.5W∞(Ppseudo(y⃗), PT (y⃗)) (8)

Inequality 6 follows from the fact that the optimal transport plan cannot have a greater cost than our492

explicit plan π. Inequality 7 is due to the fact that the family of distribution we are considering is493

a subset of Pc[Ppseudo(y⃗)]. Inequality 8 is an application of the lower bound 4 which holds for all494

P (c⃗) ∈ Pc[Ppseudo(y⃗)].495

B Experiment Baselines496

We consider an array of baselines to compare against our methods: COT and COTT.497

Average Confidence (AC) estimates target error by taking the average of one minus the maximum498

softmax confidence of target data. ϵ̂AC = Ex∼P̂T
[1−maxj∈Y f⃗j(x)].499

Difference of Confidence (DoC a.k.a. DOC-Feat) [15] estimates target error through the dif-500

ference between the confidence of source data and the confidence of target data. ϵ̂DoC =501

Ex∼P̂S
[1[argmaxj∈Y f⃗j(x) ̸= y]] + Ex∼P̂T

[1−maxj∈Y f⃗j(x)]− Ex∼P̂S
[1−maxj∈Y f⃗j(x)].502

Importance Re-weighting (IM) estimates target error as a re-weighted source error. The weights are503

calculated as the ratio between the number of data points in each bin in target data and source data.504

This is equivalent to [6] using one slice based on the underlying classifier confidence.505
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Generalized Disagreement Equality (GDE) [21] estimates target error as the disagreement ratio of506

predictions on the target data using two independently trained models f⃗(x) and f⃗ ′(x). ϵ̂GDE =507

Ex∼P̂T
[1[argmaxj∈Y f⃗j(x) ̸= argmaxj∈Y f⃗ ′

j(x)]].508

Average Thresholded Confidence (ATC) [12] first identifies a threshold t such that the fraction of509

source data points that have scores below the threshold matches the source error on in-distribution510

validation data. Target error is estimated as the expected number of target data points that fall511

below the identified threshold. ϵ̂ATC(s) = Ex∼P̂T
[1[s(f⃗(x)) < t]], where s is the score function512

mapping the softmax vector to a scalar. Two different score functions are used, Maximum Confidence513

(ATC-MC) and Negative Entropy (ATC-NE).514

In addition, we also compare our method to ProjNorm [38]. ProjNorm cannot provide a direct515

estimate, instead, the authors demonstrated their metric has the strongest linear correlation to true516

target error compared to existing baselines. In this case, we followed their setup and performed a517

correlation analysis to draw a direct comparison. We included results in the supplemental material518

and showed that our method consistently outperforms ProjNorm.519

C Extended Results520

C.1 Results with Standard Deviation521

We show the full experimental results with standard deviation in Table 2.522

C.2 Qualitative Results523

We show the qualitative results (scatter plots) in Fig 5524

C.3 Correlation Analysis525

ProjNorm [38] leverages pseudo labels on the target domain to retrain a copy of the reference526

model trained on the source domain. The authors show that the difference between the two models’527

parameters has a strong linear correlation to the true target error. Following the paper’s experimental528

setup, we conducted the correlation analysis on CIFAR10 and CIFAR100 using three architectures,529

ResNet18, ResNet50, and VGG11. We note that ProjNorm in fact implicitly leverages the assumption530

that PT (y) = PS(y) as this condition holds for both CIFAR10 and CIFAR100. As Fig. 18 of their531

paper [38] shows, ProjNorm tends to overestimate when label shift exists.532

C.4 Mild Label Shift533

We motivate our methods under the assumption of no label shift. In Proposition 2, we showed that534

the worst-case underestimate of COT is half of the pseudo-label shift. Under mild label shifts, the535

guarantee for such worst-case underestimation becomes weaker. This can be observed from the536

following corollary of Proposition 2:537

Corollary 3 (Calibration independent lower bound of COT under mild label shift).

ϵ̂COT ≥ 0.5W∞(Ppseudo(y⃗), PT (y⃗))−W∞(PS(y⃗), PT (y⃗))

Proof. By Triangle Inequality in (P(Rk),W∞),538

W∞(f⃗#PT (c⃗), PS(y⃗)) +W∞(PS(y⃗), PT (y⃗)) ≥ W∞(f⃗#PT (c⃗), PT (y⃗))

Combined with Proposition 2, we obtain the desired result.539

As the label shift increases, we have a weaker guarantee of the worst-case underestimation error of540

COT as long as W∞(PS(y⃗), PT (y⃗)) ≤ 0.5W∞(Ppseudo(y⃗), PT (y⃗)). However, we perform additional541

controlled experiments which suggest our methods remain to be the most performant despite the542

theoretical guarantee is not as strong as the case without label shift.543

To simulate mild label shift for datasets with PS(y⃗) = PT (y⃗), we first calculate the original target544

marginal and then sample the shifted target marginal from a Dirichlet distribution as in [13] with a545
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Table 2: Mean Absolute Error (MAE) between the estimated error and ground truth error to compare
different methods. The "shift" column denotes the nature of distribution shifts for each dataset. For
vision datasets, we reported results for ResNet18 and ResNet50; for language datasets, we reported
results for DistilBERT-base-uncased. The results are averaged over 3 random seeds. We highlight the
best-performing method. The number in the parentheses denotes the standard deviation.

Baselines Ours
Dataset Shift AC DoC IM GDE ATC-MC ATC-NE COT COTT

CIFAR10
Natural 5.97 5.38 5.87 5.9 3.38 3.15 5.41 3.33

(0.10) (0.08) (0.09) (0.15) (0.14) (0.28) (0.09) (0.13)

Synthetic 9.1 8.53 9.26 8.84 4.2 3.37 2.17 1.7
(0.25) (0.28) (0.35) (0.11) (0.38) (0.30) (0.09) (0.26)

CIFAR100 Synthetic 10.83 8.76 12.07 11.36 6.8 6.63 2.09 2.59
(0.08) (0.22) (0.37) (0.25) (0.39) (0.43) (0.27) (0.01)

ImageNet
Natural 8.5 7.43 8.62 5.62 3.57 2.6 3.88 2.41

(0.39) (0.41) (0.47) (0.33) (0.46) (0.66) (0.04) (0.11)

Synthetic 10.34 9.28 12.87 6.54 1.59 3.41 3.24 1.42
(0.83) (0.86) (0.77) (0.37) (0.08) (0.53) (0.28) (0.29)

Entity13
Same 19.63 19.2 17.5 15.37 8.09 7.23 8.47 2.61

(2.17) (2.51) (0.90) (1.06) (0.49) (0.49) (0.66) (0.31)

Novel 29.61 29.18 27.22 24.48 14.54 9.49 15.9 5.46
(2.61) (2.95) (1.08) (0.61) (0.95) (0.70) (0.80) (0.75)

Entity30
Same 16.97 16.21 13.56 13.98 8.19 9.08 5.9 2.46

(0.35) (0.36) (2.53) (0.26) (1.07) (0.42) (0.29) (0.65)

Novel 27.57 26.81 23.96 23.4 13.46 8.57 15.11 5.94
(0.06) (0.61) (2.79) (0.1) (2.55) (2.2) (0.38) (1.17)

Living17
Same 14.84 14.67 11.22 9.94 4.88 5.43 6.25 2.94

(3.36) (3.30) (2.06) (0.48) (0.42) (1.06) (1.91) (1.21)

Novel 29.61 29.18 27.22 24.48 14.54 9.49 15.9 5.53
(3.76) (3.71) (3.45) (0.74) (2.87) (3.25) (2.04) (1.93)

Nonliving26
Same 19.25 18.43 16.6 12.77 11.18 9.69 7.06 3.34

(2.45) (3.13) (0.96) (0.85) (2.77) (0.70) (1.17) (0.90)

Novel 31.37 30.54 28.79 23.37 19.93 16.56 17.8 10.46
(2.99) (3.65) (1.47) (0.61) (4.02) (1.28) (1.53) (3.08)

Camelyon17-WILDS Natural 9.44 9.44 10.24 5.19 7.73 7.73 7.27 5.71
(0.50) (0.49) (0.38) (0.44) (0.72) (0.72) (0.57) (0.94)

RxRx1-WILDS Natural 5.21 8.44 8.09 7.48 6.53 6.86 3.25 5.82
(0.26) (0.15) (0.16) (0.26) (0.10) (0.28) (0.16) (0.31)

Amazon-WILDS Natural 2.62 2.35 2.34 17.04 1.63 1.54 2.43 2.01
(0.16) (0.06) (0.06) (0.84) (0.1) (0.11) (0.04) (0.42)

CivilCom.-WILDS Natural 1.54 0.96 0.86 8.7 2.3 2.3 1.23 4.68
(0.23) (0.19) (0.20) (0.14) (0.34) (0.34) (0.05) (0.39)

parameter α = 50. The parameter α controls the severity of the label shift, and a smaller α means546

a larger label shift. Concretely, let the shifted target marginal be PT̃ (y⃗). Then PT̃ (y⃗) ∼ Dir(β)547

where β(y⃗) = α · PT (y⃗). Finally, based on PT̃ (y⃗), we sample a new set of test samples for which we548

estimate the performance. We conducted this mild label shift experiment for CIFAR10, CIFAR100,549

ImageNet, Living17, Nonliving26, Entity13, and Entity30 as these datasets have the same source and550

target marginal. We showed the results in Table 3. As we can see, our methods still dominate existing551

methods under this relaxed condition.552

C.5 When does thresholding improve over averaging?553

In this section, we provide some intuitions on when using a threshold provides better estimates than554

taking the average. From Fig. 6, we show that thresholding yields larger and more accurate error555

estimates when the cost distribution on the OOD data is more spread out and less concentrated around556

0. By contrast, when the cost distribution is mostly near 0, thresholding leads to similar estimates as557

averaging. Interestingly, even on OOD data where the model has very low performance, there is still558

a decent amount of samples whose cost is near 0. Thus, when taking the average, we will end up559
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Table 3: Mean Absolute Error (MAE) between the estimated error and ground truth error to compare
different methods under mild label shift. The results are averaged over 3 random seeds. We highlight
the best-performing method. The number in the parentheses denotes the standard deviation.

Baselines Ours
Dataset Shift AC DoC IM GDE ATC-MC ATC-NE COT COTT

CIFAR10
Natural 5.58 4.99 5.50 5.69 2.76 2.47 3.75 1.68

(0.26) (0.23) (0.22) (0.04) (0.32) (0.43) (0.28) (0.34)

Synthetic 8.67 8.10 8.82 8.47 3.93 3.13 2.76 4.0
(0.29) (0.31) (0.38) (0.15) (0.38) (0.32) (0.04) (0.30)

CIFAR100 Synthetic 10.89 8.85 12.14 11.33 6.93 6.76 1.89 2.81
(0.15) (0.22) (0.37) (0.23) (0.44) (0.48) (0.30) (0.07)

ImageNet
Natural 8.36 7.29 8.46 5.54 3.53 2.47 3.74 2.05

(0.37) (0.42) (0.48) (0.36) (0.48) (0.71) (0.20) (0.26)

Synthetic 10.26 9.19 12.79 6.50 1.61 3.51 3.03 1.75
(0.83) (0.86) (0.77) (0.40) (0.08) (0.52) (0.25) (0.33)

Entity13
Same 15.50 14.60 15.49 15.18 8.51 7.40 4.59 3.24

(0.38) (0.34) (0.22) (1.03) (0.80) (0.57) (0.23) (0.12)

Novel 24.39 23.49 24.56 23.48 14.99 12.45 11.19 4.6
(0.23) (0.19) (0.05) (0.62) (0.82) (0.64) (0.34) (0.38)

Entity30
Same 15.46 13.93 15.55 13.83 8.80 8.26 4.75 2.16

(0.70) (0.65) (0.74) (0.27) (0.64) (0.83) (0.29) (0.15)

Novel 25.98 24.45 26.72 23.28 15.56 13.21 13.96 7.07
(0.53) (0.46) (0.68) (0.14) (0.56) (0.90) (0.17) (0.27)

Living17
Same 11.38 10.90 11.83 9.85 4.46 4.39 4.40 2.71

(0.67) (0.48) (1.31) (0.41) (0.31) (0.18) (0.34) (0.81)

Novel 25.72 25.13 26.32 21.61 14.09 11.48 16.94 9.31
(0.46) (0.76) (1.98) (0.68) (2.31) (1.99) (0.78) (1.79)

Nonliving26
Same 16.28 14.48 15.69 12.88 9.63 9.69 5.33 2.18

(0.37) (0.29) (0.19) (0.84) (0.43) (0.66 (0.73) (0.23)

Novel 27.93 26.13 27.76 23.25 18.15 16.08 15.66 8.71
(0.08) (0.25) (0.29) (0.69) (0.38) (0.38) (0.45) (0.42)

Table 4: Coefficients of determination (R2) and rank correlations (ρ) to measure the linear correlation
between a method’s output quantity and the true target error (the higher the better). COT achieves
superior performance than all existing methods across different models and datasets.

Dataset Network AC Entropy GDE ATC ProjNorm COT

R2 ρ R2 ρ R2 ρ R2 ρ R2 ρ R2 ρ

CIFAR10

ResNet18 0.825 0.980 0.862 0.982 0.842 0.981 0.875 0.987 0.947 0.988 0.996 0.998
ResNet50 0.950 0.995 0.949 0.995 0.959 0.995 0.885 0.989 0.936 0.989 0.993 0.996
VGG11 0.710 0.938 0.762 0.958 0.723 0.948 0.548 0.851 0.756 0.949 0.994 0.993
Average 0.828 0.971 0.858 0.978 0.841 0.975 0.769 0.942 0.880 0.975 0.994 0.996

CIFAR100

ResNet18 0.943 0.987 0.932 0.984 0.950 0.988 0.927 0.985 0.969 0.974 0.995 0.997
ResNet50 0.957 0.987 0.948 0.984 0.962 0.989 0.955 0.991 0.982 0.991 0.992 0.996
VGG11 0.794 0.959 0.821 0.973 0.870 0.978 0.736 0.975 0.653 0.849 0.996 0.997
Average 0.898 0.978 0.900 0.980 0.927 0.985 0.873 0.984 0.868 0.938 0.994 0.997
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Figure 5: Qualitative results for AC, ATC, COT, and COTT. In these scatterplots, the x-axis is the
target error estimate and the y-axis is the ground truth target error. Accurate estimates should be
close to y = x (dashed black line). We can see that for all datasets, COT and COTT avoid the severe
underestimation seen on ATC.

with a smaller value which suggests a low error. In these cases, thresholding will give larger error560

estimates than averaging.561

D Datasets562

CIFAR10: The synthetic shifts included 19 common visual corruptions across 5 levels of severity563

from [18]. The natural shift is CIFAR10-V2 [31].564

CIFAR100: The synthetic shifts included 19 common visual corruptions across 5 levels of severity565

from [18].566

ImageNet: The synthetic shifts included 19 common visual corruptions across 5 levels of severity567

from [18]. The natural shifts include 4 datasets from ImageNet-V2 [32] and ImageNet-Sketch [37].568

BREEDS: The BREEDS benchmark contains 4 datasets, Living-17, Nonliving26, Entity13,569

Entity30. For each of the datasets, the same subpopulation shifts include the corrupted versions of570

the test set with the same subpopulation; the novel subpopulation shifts include the clean as well as571

corrupted versions [18] of the test set with novel subpopulation.572

WILDS: For all WILDS datasets, we used the official OOD datasets provided in their paper [24].573
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ATC > AC ATC ≈ AC COTT > COT COTT ≈ COT

Figure 6: We demonstrate cases where using thresholding improves over taking averages. The x-axis
denotes the max norm between a confidence vector and the corresponding one-hot label. For AC and
ATC-MC, the corresponding label is always the argmax of the confidence vector as mentioned in
section 2.3. For COT and COTT, the corresponding label is the one matched via optimal transport.
We observe that thresholding improves over averaging when the cost distribution is less concentrated
around 0, which corresponds to situations where the model is very confident on most samples.

E Experiment Setup574

We performed training in PyTorch [29], and we used RTX 6000 Ada GPUs.575

For datasets without an official validation set, we randomly sampled a subset of the official training576

set as the validation set to perform calibration and learn thresholds for ATC and COTT. We trained 3577

models for each dataset with random seeds {0, 1, 10}.578

CIFAR10 and CIFAR100: We reserved 10000 images from the training set as the validation set.579

We trained ResNet18 from scratch, using SGD with momentum equal to 0.9 for 300 epochs. We set580

weight decay to 5× 10−4 and batch size to 200. We set the initial learning rate to 0.1 and multiply it581

by 0.1 every 100 epochs.582

ImageNet: We reserved 50000 images from the training set as the validation set. We used ResNet50.583

While ImageNet pretrained weights are available in PyTorch, we needed multiple ones trained using584

different initializations. Due to limited computation resources, we reused the upper layer weights but585

reinitialized the last layer with different random seeds. We finetuned the whole model using Adam586

[22] with a batch size of 64 and a learning rate of 10−4, for 10 epochs.587

BREEDS: We used the intersection set of images that are both in the ImageNet validation images588

we set aside and the BREEDS dataset as the validation set. For all BREEDS datasets (Living17,589

Nonliving26, Entity13, Entity30), we trained ResNet50 from scratch.590

For Living17 and Nonliving26, we used SGD with weight decay of 10−4 and batch size of 128. We591

trained for 450 epochs. We set the initial learning rate to 0.1 and multiplied it by 0.1 every 150592

epochs.593

For Entity13 and Entity30, we used SGD with weight decay of 10−4 and batch size of 128. We594

trained for 300 epochs. We set the initial learning rate to 0.1 and multiplied it by 0.1 every 100595

epochs.596

Camelyon17-WILDS: We used the id_val group as the validation set. We fine-tuned ImageNet597

pretrained ResNet50 using SGD with momentum of 0.9, weight decay of 5× 10−4, and batch size of598

32, for 5 epochs.599

RxRx1-WILDS: We used the id_text group as the validation set. We followed [24] to fine-tune600

an ImageNet pretrained ResNet50. We used Adam with weight decay of 10−5 and batch size of 75,601

for 90 epochs. We increased the learning rate from 0 to 10−4 linearly for the first 10 epochs and602

decayed it following a cosine learning rate schedule.603
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Amazon-WILDS: We used the id_val group as the validation set. We followed [24] to fine-tune604

a DistilBERT-base-uncased model [33]. We used AdamW [27] with weight decay of 10−2, learning605

rate of 10−5, and batch size of 8, for 3 epochs. We set the maximum number of tokens to 512.606

CivilComments-WILDS: We used the val group as the validation set. We followed [24] to607

fine-tune a DistilBERT-base-uncased model [33]. We used AdamW [27] with weight decay of 10−2,608

learning rate of 10−5, and batch size of 16, for 5 epochs. We set the maximum number of tokens to609

300.610
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