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Abstract

Reinforcement learning from human feedback
(RLHF) and direct preference optimization (DPO)
are important techniques to align large language
models (LLM) with human preference. However,
the quality of RLHF and DPO training is seriously
compromised by Corrupted preference, reward
Overoptimization, and bias towards Verbosity. To
our knowledge, most existing works tackle only
one of these important issues, and the few other
works require much computation to estimate mul-
tiple reward models and lack theoretical guaran-
tee of generalization ability. In this work, we
propose RLHF-COV and DPO-COV algorithms
that can simultaneously mitigate these three is-
sues, in both offline and online settings. This
ability is theoretically demonstrated by obtaining
length-regularized generalization error rates for
our DPO-COV algorithms trained on corrupted
data, which match the best-known rates for sim-
pler cases with clean data and without length reg-
ularization. Moreover, our DPO-COV algorithm
is simple to implement without reward estimation,
and is proved to be equivalent to our RLHF-COV
algorithm, which directly implies the equivalence
between the vanilla RLHF and DPO algorithms.

1. Introduction

Reinforcement learning from human feedback (RLHF)
has been widely used in robotics (Christiano et al., 2017;
Bukharin et al., 2024), autonomous driving (Wang et al.,
2024; Cao et al., 2024), large language models (LLM)
(Ouyang et al., 2022; Bai et al., 2022b; Rafailov et al., 2023),
image and video generation (Wallace et al., 2023; Liang
et al., 2024; Liu et al., 2024b), etc. This work will focus on
the application of RLHF to LLM alignment which makes
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LLM more helpful, honest, and harmless (Ouyang et al.,
2022; Bai et al., 2022b). LLM alignment has two critical
steps. The first step is reward modeling, which estimates the
reward model that measures the quality of LLM responses,
based on human preference data. The second step is rein-
forcement learning (RL), which fine-tunes the LLM policy
to generate responses with an improved expected value of
the learned reward (Ouyang et al., 2022). Direct preference
optimization (DPO) (Rafailov et al., 2023) further simpli-
fies the standard RLHF process by directly fine-tuning the
optimal policy without reward estimation.

However, the LLM aligned by RLHF and DPO sometimes
yields undesirable responses, due to the corruption, overop-
timization, and verbosity issues, as introduced below.

Corruption. The quality of preference data is essential
in RLHF and DPO. However, preference labels given by
human may be corrupted due to inexperience, inattention,
personal bias, unclear context, and even malicious falsifica-
tion (Bukharin et al., 2024). For instance, when fine-tuning
LLM for automated content moderation on social media,
malicious annotators may mislabel harmful contents like
misinformation and hate speech as preferable, which mis-
leads the LLM to generate such harmful contents. There-
fore, robustness of RLHF and DPO to such corruption is
critical, but is tackled by only a few recent works to our
knowledge. For example, (Cheng et al., 2024; Mandal et al.,
2024; Gao et al., 2024b) use confidence-based data filter-
ing. (Ethayarajh et al., 2024) maximizes the utility function
defined based on the prospect theory of human decision
making (Tversky and Kahneman, 1992) to filter out noisy
data. (Coste et al., 2024; Rame et al., 2024) estimate an
ensemble of rewards. The recently proposed robust RLHF
and robust DPO approaches in (Bukharin et al., 2024) use
noise modeling to automatically select the outliers and the
estimated reward provably converges to the true reward.

Overoptimization. RLHF and DPO may overoptimize the
reward model, yielding LLM responses of high estimated
reward but low actual quality (Gao et al., 2023; Casper et al.,
2023). Various methods have been proposed to tackle such
overoptimization issue (a.k.a. reward hacking). For ex-
ample, (Gao et al., 2023) uses larger reward model which
significantly increases the computational cost of pretraining.



Achieve Performatively Optimal Policy for Performative Reinforcement Learning

(Moskovitz et al., 2024) applies constraints to RLHF. The
®Po method (Azar et al., 2024) optimizes a general prefer-
ence function. (Eisenstein et al., 2024; Coste et al., 2024,
Rame et al., 2024; Fisch et al., 2024; Zhai et al., 2023) use
an ensemble of estimated rewards.

An emerging and popular strategy with provable general-
ization ability to solve overoptimization is to adopt a pes-
simistic (resp. an optimistic) approach for RLHF and DPO
with offline (resp. online) data. Specifically, in the offline
setting where only precollected offline preference data is
available for training, there are many out-of-distribution
samples about which we cannot obtain any information.
Therefore, (Zhu et al., 2023; 2024; Liu et al., 2024¢; Cen
et al., 2024; Ji et al., 2024; Yang et al., 2024; Huang et al.,
2024; Xiong et al., 2024; Ye et al., 2024; Fisch et al., 2024)
apply pessimistic principle to RLHF or DPO which penal-
izes LLM from generating such unknown out-of-distribution
responses and thus to mitigate overoptimization. Such pes-
simism principle has also been used in conventional offline
RL (Xie et al., 2021; Jin et al., 2021; Rashidinejad et al.,
2021; Bai et al., 2022a; Cheng et al., 2022). In contrast, in
the online setting where online data can be collected from
the up-to-date policy during the training process, optimistic
approaches have been used to encourage the collection of
unexplored samples to enrich data diversity in RLHF and
DPO (Cen et al., 2024; Xie et al., 2024; Zhang et al., 2024,
Ye et al., 2024; Xiong et al., 2024) as well as conventional
RL (Wei et al., 2017; Zhong and Zhang, 2023; Liu et al.,
2023a;b).

Verbosity. LLM aligned by vanilla RLHF and DPO is
likely to prefer verbose but possibly low-quality responses
(Singhal et al., 2023; Chen et al., 2024; Liu et al., 2024a;
Dong et al., 2024; Fisch et al., 2024). Multiple methods
have been used to tackle verbosity. For example, (Shen
et al., 2023; Chen et al., 2024) disentangle length-related
reward component. (Guo et al., 2024) instructs the LLM
to prefer concise response. (Eisenstein et al., 2024; Fisch
et al., 2024; Chakraborty et al., 2024) estimate an ensemble
of reward models. (Singhal et al., 2023; Liu et al., 2024a;
Dong et al., 2024; Park et al., 2024) use length penalty and
similarly (Meng et al., 2024) uses length normalization.

Our Motivation. However, to our knowledge, most ex-
isting works primarily tackle only one of these three is-
sues (corruption, overoptimization and verbosity). The only
method to our knowledge that has been used to tackle all
these issues is to estimate an ensemble of reward models
(Coste et al., 2024; Fisch et al., 2024; Eisenstein et al., 2024;
Rame et al., 2024), which, however, requires much com-
putation and lacks theoretical guarantee of generalization
ability. Therefore, we are motivated to ask the following
research question.

Q: Can we design RLHF and DPO algorithms that
solve corruption, overoptimization and verbosity
simultaneously with simple implementation and the-
oretical guarantee of generalization ability?

1.1. Our Contributions

We answer the above question affirmatively, by proposing
RLHF-COV and DPO-CQYV algorithms that simultaneously
mitigate Corruption, Overoptimization and Verbosity issues,
in both offline and online settings. Specifically, we tackle
Corruption by noise modeling, tackle Overoptimization by
pessimistic and optimistic regularizers in the offline and
online settings respectively, and tackle Verbosity by length
regularizer. Our DPO-COV algorithms are almost as simple
to implement as the vanilla DPO algorithm without reward
model estimation. We prove that our RLHF-COV and DPO-
COV are equivalent in the reward-induced policy space in
both the offline and online settings. Since our RLHF-COV
and DPO-COV algorithms generalize the vanilla RLHF and
DPO algorithms respectively, our equivalence result implies
that the vanilla RLHF and DPO algorithms are also equiva-
lent. Moreover, we obtain the length-regularized generaliza-
tion error rates of our DPO-COV algorithms on both offline
and online datasets obtained from corrupted preference, and
the rates match the existing results in the simple special case
with clean dataset and without verbosity regularization. This
theoretically demonstrates that our algorithms can simul-
taneously mitigate the Corruption, Overoptimization and
Verbosity issues.

In particular, the effect of noise modeling on the general-
ization error of learned policy for corrupted data has not
been studied to our knowledge, which requires novel proof
techniques. The true and estimated noise terms have very
different effects on the generalization error, and thus have to
be analyzed at different stages. To elaborate, the estimated
noise has to be bounded before applying concentration in-
equality, such that this unbounded estimated noise term can
be canceled out by the noise regularizer. In contrast, the true
noise has to be bounded after applying the concentration
inequality, since the concentration inequality bounds the
distance between the true data distribution (with the true
noise term) and the estimated data distribution.

2. Preliminaries

Reinforcement learning from human feedback (RLHF).
A large language model (LLM) provides a random language
response a € X to any given language prompt x € X
(for example, instruction or question) following the LLM’s
policy 7(+|z). Fine-tuning LLM by reinforcement learn-
ing from human feedback (RLHF) consists of two critical
steps: training reward model and reinforcement learning
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(RL) (Ouyang et al., 2022). The reward model is denoted
by a function r(z, a) € R which measures the quality of the
response a given the prompt z. To train the reward model,
preference data D = {x;,a%, a}¥ | of size N is collected
where a pair of responses a¥’, a! are generated given each
1-th prompt z;, and the response a;’ is more preferable than
at (i.e. a? = af). Such a pairwise preference is widely
assumed to follow the Bradley-Terry model (Bradley and
Terry, 1952), that is, given prompt z, the generated response
a’ is more desirable than a with the following probability.

P(a’ = a|lz) = o[r*(x,ad") — r*(z, a)) (1)
where o(x) def 1/(1 + e~*) and r* is the unknown true
reward model. r* can be estimated by maximum likelihood
estimation (MLE), that is, to minimize the following neg-
ative log-likelihood function over a certain reward model
family R.

1 B ¢
%1721 Zlogo (x5, a8") — r(x;, a;)]. ()

Finally, given the estimated reward model » € R,
the optimal policy is obtained by the following opti-

mization problem over the whole policy space II def
{7|m(-|x) is a distribution over A for any z}.

MaxE s aror(-Jz) (2, @)
— BE,pKL[(-[) | mret ()] )

where p is the prompt distribution, 7 is the reference
policy obtained by supervised fine-tuning, and KL(p||q) =
> acapla)log % denotes the KL divergence between
any pair of response distributions p, ¢ and 8 > 0 is the regu-
larizer coefficient which controls the trade-off between gen-
erating responses with high expected reward and bounded
distance from the reference policy 7.

Direct preference optimization (DPQO). As introduced
above, classical RLHF requires two large-scale optimization
problems to learn the reward model r and the optimal policy
« respectively. DPO (Rafailov et al., 2023) is introduced to
remove the reward learning step and thus reducing compu-
tation. To elaborate, note that the optimization problem (3)
has the following analytical solution.

m(alx) =

mulale) )

Z(x) P & 8

where Z(x) = Y, c 4 Mret(d'|2) exp[r(z,a’)/B] is the
normalization factor. Conversely, given the optimal pol-
icy m, r(z,a) = Blog W”(fa(lj)z is a solution to Eq. (1).
Substituting this reward model into the MLE objective (3),

(Rafailov et al., 2023) develops the following simple DPO

objective which only requires policy training.

(D)

ref( :U|IZ)

QGHED)
Tref (af |$2)
However, this DPO objective and the aforementioned vanilla
RLHF process are prone to suffer from corrupted preference,
reward overoptimization, and bias towards verbose response.
We will propose our novel variants of RLHF and DPO to
solve the three issues simultaneously, for both offline and
online settings, in Sections 3 and 4 respectively.
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3. Our Offline DPO-COV Algorithm

In this section, we will derive our proposed offline RLHF-
COV objective and offline DPO-COV algorithm (Al-
gorithm 1) which simultaneously solve the Corruption,
Overoptimization and Verbosity issues, and then obtain the
generalization error rates of our offline DPO-COV algo-
rithm.

3.1. Our Offline RLHF-COV Objective

Offline Data from Corrupted Preference.
def

Assumption 1. The offline data D =
{xi7a7(;1)>a§71)7yi i[\il = {x%a?}aafayi izil is gen-
erated from the following model with corrupted preference.

zi~pe alsal ~om(fay), ©
Y=g (21, 0l ) =1 (s, ) +£7], (D)

where m, denotes the behavior policy and € € R denotes
(1 (=1
=-a; 7,

as the more

P(agl) ~a

the true preference noise for the i-th sample. If a,

assign the label y; = 1 and denote a}’ = agl)

(=1

preferable response and af = a; '’ as the less preferable

-1, a¥ = agfl), af = al(-l).

response; Otherwise, let y; = i

The above assumption is very similar to that of offline
vanilla RLHF and DPO, except that we add noise ' to
the Bradley-Terry model (1) for each possibly corrupted
sample ¢ (Bukharin et al., 2024).

Based on Assumption 1, P(y; |a( , E 1)) =
L1}

olr*(zi,a?) — r*(zi,af) + wi&llyi €
Hence, we define a penahzed negative log-likelihood
function of the labels {y; }I¥; as follows.

N
e 1
Ly a(r,§) def ¥ Z log o[r(z;, af) — r(a;, af) + y:&i]

i=1

'We corrected the mistake in (Bukharin et al., 2024) which
uses P(yilaf",a{™") = ofr*(wi,al’) — 1" (z:,a) + &y

et

{~1,1} that yields 3, 1, P(wilaf” o) £ 1.
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+ NHth ®

which, compared with the standard non-corrupted negative
log-likelihood function (2), adds the estimated preference
noise £ = [¢1,...,&n] € RY and the noise regularizer
1€l = Zi\il |€;] with coefficient A > 0 to encourage the
sparsity of the noise.

Reward Estimation via Pessimistic MLE to Solve Overop-
timization. After collecting offline data, the next step is to
learn the reward model r. One may consider corrupted
MLE objective min, cg ¢cry Ly (7, &) (Bukharin et al.,
2024) which generalizes the non-corrupted MLE objective
(2). However, this corrupted MLE objective tend to overfit
limited offline data (Gao et al., 2023; Zhu et al., 2024; Liu
etal., 2024c; Cen et al., 2024; Xiong et al., 2024), producing
an inaccurately estimated reward that leads to overoptimiza-
tion. Therefore, we consider the following pessimistic MLE
inspired by (Liu et al., 2024c; Cen et al., 2024; Ji et al.,
2024; Yang et al., 2024).

i Lwan) +nmacVann )

where the pessimistic hyperparameter 1 > 0 and

def
Va(m,7) S Banpann(la)a mmoue (o) [7(@,a) = r(z,d")]

— BEyp KL[7(+|@) || et (-] )] (10)

denotes the relative value of the policy 7 to a certain
baseline policy 7pase given the reward r. The regularizer
maxrer Va(m,r) in Eq. (9) can be seen as the relative
value of the optimal policy, and will help reduce the reward
value r(x, a) of any sample z, a with small Th,sc(alz), S0
that the optimal policy 7 (a|z) given by Eq. (4) will also
be reduced. In other words, such samples x,a are con-
sidered pessimistic and are thus discouraged from being
generated by the learned policy 7. Hence, the regularizer
maxrer Va(m,r) is called the pessimistic regularizer. Fur-
thermore, if we select m,ase to represent the offline data
distribution (see the end of Section 3.2 for the choice of
Thase)> then these samples x, a with small 7,5 (a|x) can
be seen as out-of-distribution, so that such pessimism on
the out-of-distribution samples mitigates the overoptimiza-
tion issue which often results from overestimation of the
reward on low-quality out-of-distribution samples (Liu et al.,
2024c).

Policy Training with Penalized Verbosity. The vanilla
RLHF usually yields reward model r(z, a) that has bias
towards long and detailed responses. To suppress verbose
responses in the policy optimization step max e Va(7,7),
we can replace the reward model r(x,a) with the proxy
reward model r,(z,a) = r(z,a) — w|a| where |a| is the
length (i.e., number of tokens) of the response a and the
hyperparameter w > 0 controls the length penalty strength

(Singhal et al., 2023; Liu et al., 2024a; Dong et al., 2024;
Park et al., 2024). In this way, the policy training objec-
tive Vg(m,r) (defined by Eq. (10)) is generalized to the
following length-regularized relative value function.

Vg’w (7‘1’, 7”)

def.
Z B pamn(-l2).a' ~mpae (o) 75 0) —wla| —r(x, a')

+ wld'|] = BEgnp KL [ (- |2)|| et (-|2)]. (11)

Replacing Vg (r, r) with Vi ., (7, r) in the pessimistic MLE
objective (9), we propose offline RLHF-COV objective be-
low.

(Offline RLHF-COV):

i ®),(11)
min  maxJ{ L &) 4+ nVs () L
reR,EERN wen{ Na(r &) + Vs (T, 7)

+ n]Esz’aNﬂ.("z)7a/~ﬂbase('|r)

[r(x,a) - wla| = r(z,d") +wla']]
1 X
+ N;{M&W —logo[r(z;,al’)—r(x;, af)+yi§i]}}

— BnEon oKL 7 (- |2)]| et (-|2)]. (12)

Remark: Our offline RLHF-COV objective above simul-
taneously tackles the Corruption, Overoptimization and
Verbosity issues, via noise modeling, pessimism and length
penalty with controllable hyperparameters A, 7, w respec-
tively. Specifically, the length penalty is only added to V3,
not L », because in the pessimistic MLE we still want
to obtain a reward r possibly with length bias, and then
verbosity is only suppressed in the policy optimization part
maxremn Vaw(m,r). When A > landn = w = 0, our
offline RLHF-COV objective above reduces to the reward
estimation (2) and policy optimization (3) in the vanilla
RLHF.

3.2. Our Offline DPO-COV Algorithm

The offline RLHF-COV objective (12) involves minimax
optimization over three high-dimensional variables 7, &, 7.
As the first step to simplify this objective, we obtain the
following proposition.

Proposition 1. (7,7, ) is the solution to the offline RLHF-

COV objective (12) if and only if
= Ty o argmaxﬂ/GHVﬁw(ﬂ'/,r), § = & o

arg mingcgn Ln (7, §) and 1 is the solution to the follow-
ing optimization problem.

min( Ly (r, &) + 1V (mr, 7). (13)

i =

In addition, , and &, ; (the i-th entry of &) have the fol-
lowing analytical solutions.

et (alT) [r(m,a) — wlal (14)

mr(alx)= 7,(2) 5 ,
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57’,71 :yvl{A < 1}

[log (%—1) —r(mi,af’)+r(xi,af)}+, (15)

where Z,.(x) def Y e Tret(a'|x) exp
the normalization factor, I{\ < 1} equals 1 if A < 1 and 0
otherwise, and [u] 4+ = max(u,0) for any u € R.

is

[r(cua )/57WIa |]

The above proposition simplifies the offline RLHF-COV ob-
jective (12) into the reward estimation problem (13). Next,
we will transform it into our DPO-COV objective of the pol-
icy m. In Eq. (14), given m = m,., a solution to the reward
model 7 is

(@, @) = wla| + Blog [W(a'w))} (16)

et (@]
With the above reward 7™, the corresponding noise can also

be parameterized by 7 as £™ Lef &=, whose i-th entry has
the following analytical solution based on Egs. (15) and
(16).

& Y=yl {A < 1}[log(§—1)—w<\a2” ~lail)

m(ai’ i) Tre ¢ [
g (eblrmartale),)

(a2 oot (a2 ;) {an

Substituting the above ™ and £ into Eq. (13), we propose
our DPO-COV objective as follows.

(Offline DPO-COV):
min {LNJ\(T’T,E’T) + V3 (=, 7)) =
wellr
- 577EINp,aN7Tbase(~‘.’L') [10g7r(a|x)]
| X
— ™ _ wl_ gt
N Me7|~log o (w(la¥| ~|afl)

m(al|x;)Tre af T;
+ 1o Tt )T (0t

) w7 |+ Con }, (18)

W(aflxi)ﬂref(agulxi)

where Cog wef BNEgmp,ammpnce (-|2) [log 7Trcf((l|1')} is a con-
stant independent of 7, and we use the reward-induced
policy space IIz Lof {7 : r € R} since the optimal policy
is 7, for some reward r based on Proposition 1. Note that
such Il is sufficiently general to admit any parameterized
policy 7y since by defining R = {r™ : § € ©}, we have
Iz = {my : € O} based on Lemma 3.

Remark: Our proposed offline DPO-COV objective (18)
simultaneously tackles Corruption, Overoptimization and
Verbosity issues. Corruption is modeled by the noise term
& = €7, ..., &%) which becomes sparser as the hyper-
parameter A > 0 increases, and £ = 0 when A > 1.
Overoptimization is tackled by the pessimistic regularizer
—BNE ymp.ammynee (-|2) | 10g T(alz) | which helps to increase

Algorithm 1 Offline DPO-COV Algorithm

1: Inputs: Hyperparameters /3,7, w, A > 0, offline data

{z;,a¥, af}}¥,, reference policy mryef.

2: Output: Obtain policy 7 via the following practical
offline DPO-COV objective.

min Yy (r)

N

det 1 x w
=3 el - Bntog n(arla)
=1

~log o |w(|a}’| ~ [af])

\ Blog (W(ai"\xi)ﬂref(aflwi)) N yzfﬂ }

W(aflxi)ﬂref(aﬂxi)

(19)

where £ is defined by Eq. (17).

m(a|z) for in-distribution samples (z, a) well covered by
Thase- Verbosity is penalized by the length regularizers
wla?|,w|at]. When A > 1 and n = w = 0, our above
offline DPO-COV objective (18) reduces to the vanilla DPO
objective (5).

We formally establish the equivalence between our offline
RLHF-COV objective (12) and offline DPO-COV objective
(18) in the following Proposition 2, which implies the equiv-
alence between the vanilla RLHF and DPO algorithms as a
special case when A > landn = w = 0.

Proposition 2. A policy m € 1l is optimal for the of-
fline DPO-COV objective (18) if and only if there exist
r € R,& € RY such that (r,r,&) is optimal for the of-
fline RLHF-COV objective (12). In this case, ¢ = &7,
and for any © € X, there exists U,(x) € R such that
r(z, ) =r"(x,) + Ux(z).

As suggested by (Liu et al., 2024c; Yang et al., 2024)
and discussed in Section 3.3, in the DPO-COV objec-
tive (18), we can take Tpase(+|z) as the distribution of
the preferable responses a;’ given x; = = under Assump-
tion 1, and then adopt the simple stochastic approximation
Eonpammelo) [l0g7(al2)] ~ & S, logm(al|;).
This yields our fully stochastic offline DPO-COV algorithm
as Algorithm 1, which only requires to solve the policy op-
timization problem that is almost as simple as the vanilla
DPO objective (5).

3.3. Generalization Analysis of Offline DPO-COV

While the policy 7 is trained from the offline data D, the
ultimate goal is to make 7w generalize well to all possible
prompts = ~ p. Specifically, we define the following length-
regularized value function which characterizes the gener-
alization ability of the policy 7 as a trade-off among the
true reward value r* (response quality), the length of the
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generated response a, and the policy’s distance to ..

JB.w(T) =Eppamn(|z) [r*(z, a) — wlal
— BKL [7T(-|$)H7Tref(~|x)ﬂ. (20)

To analyze the generalization error of the policy 7 obtained
from Algorithm 1, we make the standard assumptions below.

Assumption 2 (Realizable and Bounded Reward (Zhu et al.,
2023; Zhan et al., 2024; Cen et al., 2024, Ji et al., 2024,
Liu et al., 2024c¢)). The reward model set R includes the
true reward model r*, that is, v* € R. Also, there exists a
constant R € (0, +00) such that for any v € X, a € A and
r € R, we have r(x,a) € [0, R).

Assumption 3 (Offline Data Coverage (Zhan et al., 2024;
Ji et al., 2024; Liu et al., 2024c¢)). There exists a constant
Gp € (0,400) called offline coverage coefficient, such that
the choice of the baseline policy Ty, ase Satisfies the following
coverage property for all v € R.

Eonp,amms (-[2),0' ~mhase (|2)

[r*(z,a)—r*(x,a")—r(x,a)+r(z,d')] < GpE,, (21)

where E, € [Ep|r*(z1,at) —r* (21, 0f) — r(z1,a¥) +

291/2 . .
r(x1, a‘i)‘ ] " with the offline data sample 1, a¥’, af gen-
erated via Assumption 1.

The offline coverage coefficient Gp above describes how
well the offline data D covers the responses from 7,5 and
the true optimal policy 7, € argmax, c;J3,.(m). Algo-
rithm 1 takes 7ase(+|2) as the distribution of the preferable
responses a;’ given x; = x, which is well covered by D.

Theorem 1. Suppose Assumptions 1-3 hold and R is a

convex set. For any 6 € (0,1), select hyperparameters
_ 2y/1€7 I +51og[IN1 v (R)]/9]

S [0~(R),1], n= VNGt . Then, the

policy T from the offline DPO-COV objective (18) has the

following generalization error rate with probability at least

1—09.

max J6w(m) = Jg.w(7)

(G5 +1)(3+eR

< L Jle i +5 108Ny w (R3], @2)

- VN
where N1, (R) is a (1/N)-cover of R, that is, for any
r € R, there exists v1 € Ny /n(R) satisfying ||rT — r||oe <
1/N.

Comparison with Existing Works. Note that
IWVi/n(R)| < O[(RN)I*IIAI] since R C [0, R]I¥IMI by
Assumption 2. Hence, as long as [|£*|;1 < Ollog(N)]
(much weaker than Assumption 4.2 of (Bukharin et al.,

2024) that there exist constants cg,c~ > 0 such that
&* has at most ¢y nonzero entries and they range in
[—Coos €oo)), the generalization error rate (22) has the or-
der of O[log(N)/+/N]. This rate matches the existing error
rates of the offline pessimistic DPO-type algorithms (Liu
et al., 2024c; Cen et al., 2024; Ji et al., 2024) up to loga-
rithm, in the simple case with clean data (A > 1) and without
length regularization (w = 0). This implies that our offline
DPO-COV algorithm provably mitigates Overoptimization.
In addition, Theorem 1 also for the first time extends to
the corrupted data and the length-regularized generaliza-
tion error, which shows that our Algorithm 1 also miti-
gates Corruption and Verbosity. In particular, to mitigate
Corruption, we use novel techniques below to bound the
noise terms in the generalization error of the learned policy,
whereas (Bukharin et al., 2024) only analyzes the estimation
error of the reward and noise, but not that of the policy.

Technical Novelty. The proof logic of Theorem 1 is in-
spired from that of (Liu et al., 2024c), but our proof requires
novel techniques to bound the effects of the true noise £*
and estimated noise £”. To elaborate, the £™ is analyzed by
our proposed Lemma 4, such that the error bound o (R)|&; 4|
can later be canceled out by the regularizer —A|&, ;| when
bounding the MLE error in Lemma 8. Next, we bound the
distance between the true data distribution under (r*,&*)
and the noiseless data distribution under the estimated r
and £ = 0 (see (c) of Eq. (43)) by concentration inequality.
Then we bound ¢* by our proposed Lemma 5 which has a
different form from Lemma 4 used for bounding £7.

4. Our Online DPO-COV Algorithm

Compared with offline RLHF and DPO-type algorithms
which use precollected offline data, the online algorithms
improve the data coverage and the quality of the trained
policy (Cen et al., 2024; Dong et al., 2024; Xu et al., 2024;
Ye et al., 2024; Guo et al., 2024) at the computation cost of
collecting the online preference data in the training process
(Zhan et al., 2024; Ji et al., 2024; Huang et al., 2024; Man-
dal et al., 2024). Therefore, online and offline algorithms
have different advantages, so both are important. In this
section, we will derive our online RLHF-COV objective and
online DPO-COV algorithm, and provide the generalization
analysis result of our DPO-COV algorithm.

At each t-th iteration of our online algorithm, we use the
current policy 7y to obtain the ¢-th sample by xz; ~ p,
ad™V ~ Trot (*|Z¢)s agl) ~ m¢(-]x¢), and the label y; is
obtained from a stochastic oracle (such as GPT-4) assumed
to follow the corrupted preference model (7). We propose

the following online RLHF-COV objective to train the next
policy 711 on the online data {x;, o™V a(-l), yiti_,.

7 (et
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(Online RLHF-COV):

M4 €argmin, .  min
TR e R

ﬁnEx~pKL[

{£ia €)=V o r)

@), |2) || vt (-[)]

+ % ; {N&| = logofr(zi,al’) — r(z;,af) + yzgl]}}

= NEzrpann(|2),0/ ~pase(-|2)

[r(z,a) + wla| — r(z,ad’) — wld|], (23)

where ¢ = [¢,...,&] denotes the noise. The
above online RLHF-COV objective is similar to the of-
fline RLHF-COV objective (12) with the major differ-
ence that they tackle overoptimization in seemingly op-
posite ways. The offline RLHF-COV objective (12) (i.e.,
min, er eery [Ln (1, €) + nmaxyen Vaw(m,7)]) uses
the pessimistic term +nmax e Vs, (m,7) to discour-
age LLM from generating out-of-distribution samples. In
contrast, inspired by (Cen et al., 2024), our above on-
line RLHF-COV objective (i.e., min,cg ¢crn [Lea(r, &) —
nmaxren Va,w(m,r)]) uses the sign-flipped optimistic term
—nmaxrern V3, (m, ) to encourage LLM to collect out-of-
distribution samples to enrich the diversity of the online data
to improve policy optimization.

Similar to the offline DPO-COV objective (18), we obtain
our online DPO-CQOV objective as follows.

(Online DPO-COV):

Te41 € Arg Min cyy, {ﬁt,/\(’rﬂ', gﬂy(t)) — NV (T, 7™)

t
1
= ﬂnET’\/p a~Thase (+|2) [IOgW a|x +E Z [Mgﬂ

=

m(ai’|xi)m f( Ix))

m(a £|x1)7rref( ;)

+ €T | + Con } (24)

—10ga(w(|a§“\—|af\)+610

where ¢m® Y [er . em s given by Eq. (17) and
Con = —BNEqyrp ammne (o) 108 Tref (a]2)] is a constant
independent of 7. Similar to Proposition 2, we can show
that the online RLHF-COV objective (23) and the online
DPO-COQOV objective (24) are equivalent as follows.
Proposition 3. A policy m € Il is optimal for the on-
line DPO-COV objective (24) if and only if there exist
r € R,& € RY such that (r,r,&) is optimal for the of-
fline RLHF-COV objective (23). In this case, § = &™
and for any © € X, there exists U,(x) € R such that
T(:L‘, ) - Tﬂ(xv ) + Uﬂ'(‘r)

Inspired by (Xie et al., 2024), we select Tpase = Tref and

use its generated samples {agfl)}gzl to approximate the

Algorithm 2 Online DPO-COV Algorithm

1: Inputs: §,n,w, A > 0, reference policy m,f, inital
policy 7.

2: for Iterationst =1,...,7T do

3:  Generate the t-th sample by x; ~ p, al(fl) ~
Tref (| 24)s agl) ~ m¢(+|2¢), and label y; from a cer-
tain stochastic oracle assumed to follow the corrupted
preference model (7).

4:  Obtain 7y by solving the following stochastic on-
line DPO-COV objective (25).

t

>~ {Nerl+ Blog n(al”

=1
—tog r[w(lay’| - laf])

ﬂ(aé”lxi)ﬂref(aflﬂri)>

”(af‘xi)ﬂref(aﬂxi)

min ¢¢(m) = - !

1)
wellr t ‘xl)

+ log +ul |}, @)
5: end for N
6: Output: 77 where T' ~ Uniform({2, 3,

1).

L T,T +

expectation in the above online DPO-COV objective. This
yields our fully stochastic online DPO-COV algorithm (Al-
gorithm 2), which is also almost as simple to implement as
the online vanilla DPO algorithm (Guo et al., 2024) (also
Algorithm 2 withn = w = 0and A = 1).

To analyze the generalization error of Algorithm 2, define
the following coverability coefficient (Xie et al., 2024),
which ensures that there exists at least one policy v € Il
with good coverage over the responses generated by any
policy 7 € IIR.

Gon Lt inf sup (26)

vellr ze X acA,mellg V

Theorem 2. Under Assumption 2 and for any 6 €
(0,1), select hyperparameters X € [o(R),1], n =

log[4T N1/ (R)/3]+I€ I * * *
v (3+€QT)\/TGOH - where £ = [£f,...,&5]. Then
the output policy w5 of Algorithm 2 satisfies the following

generalization error rate with probability at least 1 — 0.

— E[Jsu(nz)] < 37(3+e")(log T)

V% frog (TR e ]

Remark: Theorem 2 above demonstrates that our on-
line DPO-COV algorithm can simultaneously mitigate the
Corruption, Overoptimization and Verbosity issues. When
Hf *Il1 < O(logT), the above generalization error rate is

O(1/+/T), which also matches the existing results of the

maxJg ()

mell
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Table 1: Hyperparameter Values and LC-win Rates of Offline DPO-type Algorithms

Algorithms A n w LC-win rates
Our DPO-COYV (all 3 components activated) 0.7 0.0005 0.0005 7.61%
Robust DPO (Corruption only) 0.1 0 0 7.04%
Pessimistic DPO (Overoptimization only) 1 0.005 0 5.50%
Length-regularized DPO (Verbosity only) 1 0 0.0005 7.30%
Vanilla DPO 1 0 0 6.29%
Reference model 7.q¢ - - - 4.92%

Table 2: Experimental Results on Math and Reasoning

Model GSM8K  ARC ARC
(Easy) (Challenge)
Our DPO-COV 46.78 72.52 49.32
Robust DPO 46.25 72.14 47.35
Pessimistic DPO 45.19 72.14 46.16
Length-reg DPO 44.50 72.31 46.16
Vanilla DPO 45.26 71.89 46.50
Reference Model 42.38 71.72 45.14

online optimistic DPO-type algorithms (Xie et al., 2024;
Cen et al., 2024) up to logarithm.

Technical Novelty. Similar to the proof of Theorem 1, we
also use the novel bounds on the effect of the estimated and
true noise terms, which are obtained in Lemmas 5 and 4
respectively.

S. Experiments on Offline Data

In this section, we will compare the following offline DPO-
type algorithms on offline datasets. The experiments to
compare online DPO-type algorithms on online datasets are
shown in Appendix A.

1. Our offline DPO-COV algorithm with three modules
activated (Corruption, Overoptimization, Verbosity):
This is Algorithm 1 with n,w > 0and A € (0, 1).

2. Offline robust DPO algorithm (Bukharin et al., 2024):
This is a special case of Algorithm | withn =w =0
and A € (0,1), which only tackles Corruption.

3. Offline pessimistic DPO algorithm (Liu et al., 2024c):
This is a special case of Algorithm 1 withn > 0,w =0
and A = 1, which only tackles Overoptimization.

4. Offline length regularized DPO algorithm (Park et al.,
2024): This is a special case of Algorithm 1 withn = 0,
w > 0and A = 1, which only tackles Verbosity.

5. Offline vanilla DPO (Rafailov et al., 2023): Algorithm
lwithn=w=0and A = 1.

5.1. Experiment on the Argilla Data

We select the preference dataset D to be Argilla-DPO-Mix-
7K (Argill, 2024), and s to be zephyr-7b-gemma-sft-
v0.1 (HuggingFaceH4, 2024), which is a fine-tuned ver-
sion of gemma-7b on the Deita dataset (Wang et al., 2023).
Then we apply LoRA (Hu et al., 2021) and two epochs of
the AdamW optimizer (Loshchilov and Hutter, 2017) with
learning rate 5 x 10~7 to the objective (19). For each algo-
rithm, we fix 8 = 0.05 and perform grid search on the other
hyperparameters over a holdout validation set of the pref-
erence dataset. We compare the Length-Control win rates
(a.k.a. LC-win rates, defined in AlpacaEval 2.0 (Dubois
et al., 2024)) of m.o¢ and that of the models obtained by the
above algorithms against the model GPT-4 Preview (11/06)
(OpenAl, 2024). We summarize the LC-win rates and the
hyperparameter values in Table 1, which indicates that our
offline DPO-COV algorithm with all three components ac-
tivated achieves the highest LC win rates. Therefore, it is
important to tackle the Corruption, Overoptimization and
Verbosity issues simultaneously.

5.2. Experiment on Math and Reasoning

We also compare our Algorithm 1 with other offline DPO
variants over math and reasoning tasks: Grade School Math
8K (GSMB8K) and AI2 Reasoning Challenge (ARC) tasks.
‘We run the benchmark test with (Gao et al., 2024a) and re-
port the accuracies in Table 2. The model hyper-parameters
are the same as in Table 1. The results shown in Table 2
indicate that our DPO-COV algorithm outperforms the other
variants also on the math and reasoning tasks.

6. Conclusion

We proposed RLHF-COV and DPO-CQOV algorithms that
simultaneously mitigate the Corruption, Overoptimization
and Verbosity issues, in both offline and online settings.
This ability is theoretically proved by length-regularized
generalization analysis on corrupted data. In addition, we
proved the equivalence of our proposed RLHF-COV and
DPO-COV algorithms. A future direction is to extend this
work to account for various preferences among diverse hu-
man groups (Ramesh et al., 2024; Chakraborty et al., 2024).



Achieve Performatively Optimal Policy for Performative Reinforcement Learning

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
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A. Experiment on Online Data

Similar to the offline experiments in Section 5, we compare important special cases of Algorithm 2, including our online
DPO-COV with all 3 components activated, the online variant of the robust DPO algorithm (Bukharin et al., 2024),
online optimistic DPO algorithm (named XPO in (Xie et al., 2024)), online length regularized DPO algorithm (Liu et al.,
2024a) and online vanilla DPO algorithm (using DPO objective in (Guo et al., 2024)). We use zephyr-7b-gemma-sft-
v0.1 (HuggingFaceH4, 2024) as the reference model 7.¢ and the initial model 7. Each algorithm is trained with § = 0.05
and T" = 3 iterations. In each iteration, we generate the online labels y, from pair-preference-model-LLaMA3-8B (RLHFlow,
2024), and combine the online data with 50% of the preference dataset of Argilla-DPO-Mix-7K (Argill, 2024). Then
we apply LoRA (Hu et al., 2021) and two epochs of the AdamW optimizer (Loshchilov and Hutter, 2017) with stepsize
5 x 10~ 7 to the objective (25). On AlpacaEval 2.0 (Dubois et al., 2024), we compare the LC-win rates of 7, and that of the
models obtained by the above algorithms against the model GPT-4 Preview (11/06) (OpenAl, 2024). Again, the results in
Table 3 indicate that our online DPO-COV algorithm with all three components activated achieves the highest length-control
win rates. Therefore, it is important to tackle the Corruption, Overoptimization and Verbosity issues simultaneously.

Table 3: Hyperparameter Values and LC-win Rates of Online DPO-type Algorithms

Algorithms A n w LC-win rates
Our DPO-COYV (all 3 components activated) 0.7 0.0005 0.0005 7.87 %
Robust DPO (Corruption only) 0.1 0 0 7.03%
Optimistic DPO (Overoptimization only) 1 0.005 0 6.23%
Length-regularized DPO (Verbosity only) 1 0 0.0005 6.19%
Vanilla DPO 1 0 0 6.58%
Reference model m.q¢ - - - 4.92%

B. Supporting Lemmas

Lemma 1. Forany A € (0,00) and z1, 22 € [—R, R), the following inequality holds.

|21 — 2]

1
31 of <lo(z1) —o(z2)] < l‘zl — 2. (28)

12
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17221 < |5(21) — 0(22)| < |21 — 22| obtained in Lemma A.2 of (Liu

Remark: Our bound (28) is strictly tighter than dteR)z <

et al., 2024c¢).

Proof. Denote zy,;, = min(z1, 22) and zyax = max(z1, 22). Then we have

|Zl - 22| = Zmax — “min,

|0(21) — 0(22)] = 0 (Zmasx) — 0 (Zmin) = / " ()

min

Hence, it suffices to prove that o’ (v) € [ 7, 1] forany v € [Zmin, Zmax] C [~ R, R]. Note that for any v € [2min, Zmax] C
[-R,R], o(v) € [o(—R), cr(R)] [1-— (R)7 o(R)]. Hence, we conclude the proof by the following two bounds.

1 112 1
!
= — —_— - — — — < —.
o) = o)l —oW)] = 7~ [o) = 5| <
M) =1 _ L2
4=
1 1712
> _ _ =
=1 [U(R) 2}
=o(R)[1 - o(R)]
1 eft
1+eftl+el
- 1
(T4 eR)(1+eR)
1 1
= > .
2+ el +e T 34 R
O
Lemma 2. Forany xz € X, ag,a1 € Aandr € R, the following equality holds
r™(zya1) — ™ (z,a0) = r(x,a1) — r(z,a0), (29)

where 7, and r™ are defined by Egs. (14) and (16) respectively. Furthermore, under Assumption 2, both sides of the above
Eq. (29) range in [— R, R).

Proof.

r™(x,a1) — " (2, a0)

St - b+ v ()

i)7"(915, ay) — r(x,ap),

where (a) uses Eq. (16) and (b) uses Eq. (14).

Furthermore, under Assumption 2, (x, ag), 7(x,a1) € [0, R], so
™ (z,a1) — " (x,a0) = r(z,a1) — r(z,a0) € [-R, R].
O

Lemma 3. Any policy 7 € 11 satisfies 1 = m,.~ where 7, and r™ are defined by Eqs. (14) and (16) respectively. Furthermore,
under Assumption 2, any 7 € llg e {m, : r € R} satisfies |r™ (z,a1) — 7™ (x,a0)| < Rforanyxz € X, ag,a1 € A

13
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Proof. Eq. (16) implies that for any x € X and a € A, we have

(@, a) —wla| | = n(alo). (30)

Tref (a|T) exp [ 5

Hence,

Zp=(x) = Z Tref (a|z) exp [w} = Z m(alx) = 1. (31)

acA ﬂ acA

Therefore, m = 7.~ can be proved as follows.

(a) 7Tref(a|$) |:7’7T(.CC,CL) —w|a\

ex (alz) = 7 (1) exp 3 ] ® 7(alx),

where (a) uses Eq. (14) and (b) uses Egs. (30) and (31).
When 7 € 1l def {7 : v € R}, there exists € R such that 7 = ,.. Hence,

a b (C)
™ (2, 01) — 77 (2, 00)] L [P (@, @) — 1 (2, 00)] 2 [Pz, a1) — r(@,a0)] < R,

where (a) uses ™ = .., (b) uses Eq. (29) and (c) uses Assumption 2. O

Lemma 4. Under Assumption 2, for any r € ‘R and §,; defined by Eq. (15), the following inequality holds.
log or(x, a) — r(zi, ab) + yi&ri] <logolr(zi,a) —r(xi, af)] + o(R)|&4]- (32)
Forany m € Il def {mr : 7 € R} and &T defined by Eq. (17), the following inequality holds.
log o[r™ (zi,a) — 7™ (x4, a%) + y;€F] <logo[r™ (xs, a) — ™ (i, a%)] + o (R)|ET . (33)

Proof. y;&r; > 0by Eq. (15) since y; € {—1,1}. Then Eq. (32) follows from - [log o(v)] = o(—v) < o(R) for any

v € [r(xi,a?) — r(xi,al), (i, a) — r(zi, af) + yi&i] € [~ R, 4+00) where C is implied by Assumption 2.

Similarly, ;€T > 0 by Eq. (17) since y; € {—1,1}. Then Eq. (33) follows from %[log o(v)] = o(—v) < o(R) for any
v € [r™(xy,al) — r™ (i, ab), r™ (x5, a¥) — r™ (25, a%) + y:€F] € [~ R, +00) where C is implied by Lemma 3. O

Lemma 5. For any &; € R and reward models r,v" : X x A — R, we have
{olr(a,a}") = ' (@s,a) + yi&i] = olr (s, af') = r(es, )]}’
1
>{olr (@i, af) = r'(@s,af)] = olr(xi,af) —r(ei,a)]} — 3167 (34)
Proof. Denote A, = r'(x;,a¥) — r'(z;,at) and A; = r(x;,a) — r(z;, af). Define the following function.
2

flu) = [o(A] +u) —o(A)]" (35)

Note that the range of the sigmoid function ¢ is (0, 1). Hence, for any u € R,

d 11
(W) = 20(4; +u)[L - o (4] + )] [o(4 +w) —o(4)] € (- 5,5): (36)
Therefore,
£(0) = Fui€e) < (&) - FO) < Shuitil = 56
which implies Eq. (34). O

14
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Lemma 6. Foranyx € X, a € Aand r,r’" € R, the policies 7, m, defined by the analytical solution (14) satisfy

T (alz) | _ 2)r = rlls
log < ) 37
m(alz) B
where ||r' — 7|0 = SUD,ex aeA | (z,a) — r(z,a)|.
Proof. Note that forany z € X, a’ € Aand r, 7’ € R, we have
Teet(a']2) exp [M] B r(z,d') —r(z,a)
) r(za) —wld] _eXp{ 3 }
71—ref(a |.’L') eXp [ B }
e exp(—[r" = 7lloc/B), exp([[r = lloo/B)]-
Therefore,
Zo(2)  SwreaTrerl(a'|) exp [Fr)=le]]
Ze(®) Y et (@/]2) exp [W]
elexp(—|r" = rllec/B), exp([lr’ = 7lloo/B)]-
As a result,
7, (ale) f(wa))‘”“’f(a/‘ﬁ”)eXP [ete]]
7 (alx) Z,(x) Tt (@'|z) exp [%—Ma’q
e [exp(=2[r" = 7lloc/B), exp (27’ = 7]|oc/B)] (38)
which directly implies Eq. (37). O

We slightly adjust Theorem 13.2 of (Zhang, 2023) as follows, by using filtration F; = (J (so the conditional expectation
becomes the total expectation), replacing —&; with Z;, and negating the small probability event.

Lemma 7. Consider random variables {Z;}Y . For any 6 € (0,1) and X' > 0, the following inequality holds simultane-
ously foralln = 1,2,..., N with probability at least 1 — 6.

= log(1/6) 1 <&
; Z; < — + v ZlogE[exp(/\’Zi)].

i=1

Lemma 8. Fixe > 0, A € [0(R), 1] and § € (0,1). Under Assumption 1, the following bound holds for any r € R and
& =[&1,. .., & n] € RY (given by Eq. (15)) simultaneously with probability at least 1 — 6.

2

N.(R B2
Laalrs€) = Lxaln) < 2 [l +1og (ARIY] - o Be o me (39)

where E, = \/ED|7“* (71,a) — r*(z1,af) — r(z1,at) + 7(1, a{)’Q and N(R) is a finite e-cover of R, that is, for any
r € R, there exists r7 € N(R) satisfying ||rT — 7 < e

Proof. Based on Assumption 1, given (x;, al(l), ag_l)), the target label y € {—1, 1} as well as the underlying reward r and

noise &;, the event y; = y occurs with the following probability.

(1) (-1
1 —1 U[T(miaai ) _r(xiaai )+§Z]7 Y= 1
pre(ylwi,al” al ") = (-1) 1) B (40)
olr(zi,a; ) —r(zia;’) =&l y=—1
By merging the two cases above, we have
pre(wileiaf) a{™") = ofr(zi,a}’) = (i af) + yi). (1)

15
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Define the following random variables forr € R and¢ =1,..., N.

! i ot ) o gD D
Zi(’l“):*IO U[T(‘rl’az) ’I"(.’E“(IZ)} - “1lo pT,O(yl|xl> a; z( 2)

? ’L

TS )
2 olr*(xi,a?) — r*(z;,af) + y:&F] 2 pre e (yi| i, ! (1)

(42)

Then the following inequality holds for finitely many r € N (R) simultaneously with probability at least 1 — §.

Ly A( " €)= Lya(r, &)

72{10@7 (i, ai’) —r(wi, z)+yz€rz} logo[r*(zi, ai”) =" (i, z)+yl &1+ = ‘57",1')}

(a) 1
<N ™ Lol of) — (oo )] + o(R)fens] ~logols* (e af) — r*(aiva) + vic]
i=1
+ A& = 1&nal) )
O 1~
<% Z (€1 +22:(r)]
©1 INL(R)|
<5 D161+ 2log Bn [explZ(r)])} + = log ()
i=1
o 1 (1)
(d) 2 pro(yi|xi,av , ) 1) (=1)
== ) logEp{E 1 (-1 : L T a ), a;
N ; { YirPrx §*( |zia;" a; )[ Pregr (yi|xi7a§1)7a§*1)) i i

[HS 1 + 210 (M)}

l ) \/Pro (ylas, al™ 0l )ppe e (ylziy al) al” ))1]

ye{—-1,1}

-l-%{“f*Hl-f-Qlog (M)}

N

- %ZED ‘\/Pr,o(ym,agl a; \/pr y|x“ 7az(,—1))ﬂ
i=1 ye{—1,1}

“‘%{Hf*Hl+2log(|N€§R)|)}

N
LNZED ST [prollzs al” al V) = e e (ylas, gmg%f]
=1

—
3}
~

IN

S
Mz

1

.
Il

ye{-1,1}

+i[uf*|\1+2log(w)}
ZED{U w0, 0) = (2, af) + yi&7] = olr(ws, a) — v, af)]

+ N [Hﬁ*lh + 2log (L/E((S ”)}
(h) 1

N
< — o S B {0l (i, o) — r* (e, )] — olr(as, o) — vl af)]} - 51651}
i=1

+ % {HS*IM +2log (WE((;R)')]

(i) 1 * * 2
< — WED’T (x1,ay") —r (xl,a{) —r(x1,al’) —l—?“(xl,a(f)’
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+ 3 [Héﬂ\l + log (Lfé((;z”)}

25 e o (WEESR)‘)} T3 fiR)?’ @

where (a) uses Eq. (32) from Lemma 4, (b) uses Eq. (42) and o(R) < A < 1, (¢) denotes Ep as the expectation under
Assumption 1 and (c) holds for finitely many 7 € N (R) simultaneously with probability at least 1 — § (by Lemma 7 with
A = 1), (d) uses Eq. (42) and Assumption I, (¢) uses logv < v — 1 for any v > 0, (f) uses Lemma 12.2 of (Harsha, 2011),
(g) uses Eq. (41), (h) uses Lemma 5, (i) uses Lemma | as well as the fact that the N samples {z;, a}" af}i]\il are i.i.d., (j)

7
3
denotes E, := \/Ep|r*(x1,a11”) —r*(zy,af) — r(z1,a?) + r(zy,af)|"

We have proved that with probability at least 1 — §, the event £ := {Eq. (43) holds for all r € N (R) simultaneously }
occurs. We will extend the range to any € R. By the definition of the € cover V. (R), there exists at least one r € N_(R)
such that ||7T — 7|/, < €. Therefore,

“CNA r, 57) _[-:N/\( t frT)|

Z {loga (z5,a) — ri(z,al) + &t i) —logolr(xy, a”) — r(w;, al) + é},i]}

e~ Nl

—~
<
=

IA
=2/~

s
Il
_

([t (@i, ) = @iy af) + €] = (@i, al”) = v, 0f) + €nil| + A6l = lrr,iD)]

IA
2=
=

[|7’ Zi,a; ) - 7’(1’2, a,; | + | %5, @ z) - TT(xivafH + ’ng,i - gr,i’ + )‘(‘67“71 - gr*,iD}
1

«
I

—~
o
N

IN
2=

s
Il
N

[’rT(xi7a;“) — r(mi,a;”ﬂ + |r(wi,af) — rT(xZ-,af)|

(d)

+ A+ 1)‘7“(951', at) = r(z;,a?) — [ (z;,at) — rT(acZ,a;“)]” < 6e, (44)
where (a) uses the definition of £y, given by Eq. (8), (b) uses triangle inequality and - [log o(v)] = o(—v) € [0, 1] for
any v € R, (c) uses the property that &, ; defined by Eq. (15) is a 1-Lipschitz continuous function of r(z;, af ) — r(z;,al)
(since max(-,0) is 1-Lipschitz continuous), (d) uses |77 — r||oc < e and A < 1. Under the event &, Eq. (43) holds with r
replaced by r T, which along with Eq. (44) implies the following inequality.

EN))\(T*,f*) - ﬁN’,\(’I‘, 67‘)
SIENAT &) = Lua(r &)+ [Cua(r*,€%) = Lua(rT, &4)]

et Zleh +1og (L))

mocr Zlerh+og (MR - BB

(266 + % {Ilé*lll +log (WE((;R |)} E fii?)‘z 2(3 f?eR)2

e 2l +ion (P - e +

which proves Eq. (39). Here, (a) uses the following inequality and (b) uses (3 + )2 > 6e® + €2 > 6R + 2R = 8R.
|EZ — E7|

* w 2
B {[r* (@1, a) 1" (@1, af) = 7' (21, at) + (21, af)) "}
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—Ep{[r*(z1,a}) — r*(21,a1) = r(a1,af) + r(z1,a1)] }‘
:‘]ED{ [r(z1,ay) —r(z1,a}) — r(z1,al) + r'(z1,af)]

[QT*(xl, al’) — 2r*(x1,af) — H(xl, ay) + rT(xl, af) —r(zy,a)’) + r(xl,af)} }’
(a)
<(2€)(4R) = 8RRk,

where (a) uses Assumption 2 and || — 7|| < e. O

Lemma 9. Fixing any ¢ > 0, § € (0,1), the online dataset {x;,a}’, af, yi Y2, generated from Algorithm 2 satisfies the
following bound forallt =1,...,T and 7 € llx def {7, : v € R} simultaneously with probability at least 1 — 4.

t

a[r’r(:ci,a;f") — (x4, af) + ylfﬂ
ZlOg ;
P U[T*(xi,a;*’) —r*(x;,a5) + yigﬂ

§210g<T|N5(R )+4t +Z{ &+ o (R)IET]

1 _
_ 72(3 n eR)Q]EZCN,D,G(I)Nﬂ'i('|33)7a(71)"’77ref('|37) I:fz(x7 a(1)7 a( 1))} }7

where the function f, is defined below and N.(R) is a finite e-cover of R, that is, for any r € R, there exists r' € N (R)
satisfying |1t — 7o < e

f (.0, ol 1)) lef “(2,aW) = r* (2, aV) = 77 (2,aV) + 77 (2, aD), (46)

Proof. Define the following function.

Grc. (yilziy al™ ol ™)
o(mog%fmg#mwuaﬁw a7 +6), wi=1
- n(al Ve) RIED) -1 @y ) o
o(Blon 7 mm — Blos - wy +ellarV — ) — &) =1
:U[Tﬂ'(x'ma;u) -r (xuaf)—’—ylfl]a (47)

where the second = uses Eq. (16) and merges the above two cases. The above ¢ ¢, (y;|2:, a; (1 )7

(-
conditional probability of y; € {—1,1} since ¢, ¢, (1|z;, a; M gl 1))+qm (—1|z;, aq; M) 4= 1)) 1.

71 »

1
)) can be seen as a

Then define the following random variables for: = 1,...,T.

ol oat) — )] 1y amoilrie e D) )
O—[T*(xivai) r* (xlv Z)+yz§ ] 2 pr*é:(yi|xi,a51),a5_1)),

1
Wi(m) = - log
2
where p, ¢, (Vs |:rz, , E 1)) is defined by Eq. (41).

For any 7 € R, there exists 7T € NV (R) satisfying ||rT — 7||c < ¢, and thus we can temporarily denote 7, = ur™t + (1 —
w)r™ (u € [0, 1]). Then we obtain that

‘— loga ro(zi,al’) — ru(mi,af)}‘

:O—[Tu(xhaf)ir (51317 a; ]|T TT xlaaz)fr M(xlvaf)fr (xla a; )+T (xl,af”

(@) t ¢ ¢
<|rf(zi,af) — i (i, af) — 17 (i, a) + 17 (25, af)|

S‘r X, af) — r”(mi,az")’ + ‘r (z,a%) — rT(Jci,af)| < 2¢, (49)
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where (a) uses Eq. (29) and o(x) € (0, 1) for any « € R. Therefore,
(Wi(m,+) — Wim)]
1 - —
=3 |:10gQ7I' ; o(yi|$i,a§1),a§ 1)) — log q,r_ro(yi|xi7a§1)7a§ 1))}

lloga[r (2, a) — r™t (2, 1)] loga[ (xi,az”)—r’r(xhaf)}‘

(d)
**’ log or[ry (2, ai") — Tl(xuaf)] —logo[ro(zi,aj’) — To(ﬂﬁmaf)] < (50

where (a) and (b) use Eq. (48), (c) uses the above notation that r,, = ur™* + (1 — u)r™ (u € [0,1]), and (d) uses Eq. (49).
Then based on Algorithm 2 and Assumption 1, given (x;, alV, al” 1)) the label y; is generated with probability distribution

(2 ? ’L

Dre.g, (y,»|a:,»,a§l) a(fl)) defined by Eq. (41). Therefore, given any § € (0,1) and € > 0, by Lemma 7 with \' = 1, the

[y )

following inequality holds for ¢ = 1,...,T and finitely many 7’ € A (R) simultaneously with probability at least 1 — 4.

t t
> W) < log (L) 4 0w, )

i=1 i=1
where p; denotes the distribution of the i-th online data sample (x;, 5 ), 51), y;) generated by Algorithm 2. We further
upper bound the above inequality as follows.

i W;(n') — log (LN;(R)')

t
< Z log Elti [€Wi(7r,)]

=1

(48)21 qr’,O(yi‘mia 5)7 E 1))
Hi ywp,.*,g* Jai,al) el M oDy

Pr= ¢x (Yilzi,a a; ~,a;

T, afl), ag_ )] }
(a)

<ZM¢ > Vawalwlol ol e ol @”%4
ye{—1,1}
1 — S
1 [ S N S A I M
=1

|J;€{—1,1}
® 1 1) (-1 (1) (~1)y2
S - g Z]E/'L'L Z |Q7T’,O(y|xi7ai , ) _p’l‘*,fz (ylxiaai , ay; )’

ye{-1,1}

’

O’[r""'(a:i,a}lﬂ) —rT (gguaf)] — U[T*(Ii,a?}) —-r (SC“ 1) + yzf ]}2

=1
@ 1 ¢ . )
<-3 - {[ o[ (@, a) — ™ (24, a8)] — o [r™ (w5,a)) — 1" (x“alm } _ 7|§ |}
(z)lzt:{m_QE (|77 (1, @) =17 (1, 0f) = (s, )+ (s, af)[*] | 51)
_8i:1 '3 (3+6R)2 i 1y Wy iy Ay i, i i ,

where (a) uses logv < v — 1 for any v > 0, (b) uses Lemma 12.2 of (Harsha, 2011), (c) uses Egs. (41) and (47), (d) uses
Eq. (29) and Lemma 5, and (e) uses Assumption 2 and Lemma 1. Combining Egs. (50) and (51), we obtain the following
inequality which holds for all¢ = 1,...,7 and 7 € II simultaneously with probability at least 1 — 6.
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-

[Wi(m) — Wilmt)] + Wim,t)

i=1
(2)1 i {|£ | _ 2 E [I:TTFT* (1, a',“’) — pTr* (l’ a[) — Tt (gj a",”) —+ et (1' ae)] 2:| }
-8 — 7 ( R)g i 1y Wy 79 19 Wy iy Wy
+log (M) +te
®)1 < 2 . ” .
§8§{|f | - mﬂim [[T (@5, a%) — T (24, 08) — 7 (24, 0Y) + 0T (zi,af)]z}}
+ log (M) + 2te, (52)

where (a) uses Eq. (51) (with 7’ replaced by m,+) and Eq. (50), (b) uses the following inequality and (3 + ef*)? >
6eft + e2f > 6R + 2R = SR.

2
[Tﬂ'%* (g;”a;ﬂ) —_ rﬂr* (Ii7af) - (:E“ z ) —+7r (IZ?“CLf)]

2
— [r”"* (zi,al) —r™ (x“af) —r 7*(%, ay ) 477 T(mi,af)}

et (xiaazl'u)_r ”(JSZ, 1)—7"77(3;“ a; 1‘“ z

2" (my,ai") — 20" (z,;,af) —r (x77 a; )Jrr (xl,aé) — ™t (x,af) 4+ 7t (:L'“af)]
(@i, af’) — vl (wi,a7) — 7" (@i, 0)) + 77 (33, af)|

2 (@i, 0f') = 20 (i, a7) = 17 (@, 0f) + 7 (2, a) — 07 (20, a7) + 0 (2, 07)]

(b)
<(2€)(4R) = 8Re,

where (a) uses Eq. (29), and (b) uses || — 7|/ < € and Lemma 3.

Finally, we conclude the proof as follows.

Zlog o [r™(xi, a) = r(wi, af) + 4T ]
i=1 O—[T* (xiv a;ﬂ) - T*(Ii, af) + ylgﬂ

(a) t o U[Tﬂ(‘riaa;ﬂ)_rw(miaaf)} o T
SZ[lga[r*(xi,ai) o ah) + i) T OV ]

@Zzw (R )

(221og(TW5( >+4te+2{ &+ o(R)T |

- WEM [[TWM (w3, i) = r™ (i, af) —r"(xq,af) +r (xi,af)] 2}}

Lm(‘%<)+m+z{mww>m\

sz [ o) 7o) (o) + (ool )]}

ﬁm(ﬂﬂ<)+m+z{mww>ww

1 B
2@ T o) e (e a D () [f2 (@, a0 )] }
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where (a) uses Eq. (33) from Lemma 4, (b) uses W; () defined by Eq. (48), (c) uses Eq. (52), (d) uses Eq. (29) and
a¥,al} = {a(l) (= 1)} (based on Assumption 1), and (e) uses Eq. (46). O

177, ’z

Lemma 10 (Azuma-Hoeffding Inequality (Xie et al., 2024)). The random variables {X,}1_, satisfy | X;| < C almost
surely. Then with probability at least 1 — §, we have

\th E(X.|X1,. ., Xo-1)]| < C/8Tlog(2/0). (53)

1) =D

) Z

Lemma 11. Fixing any e > 0, § € (0, 1), the online damset {zi,q, ,yi } | generated from Algorithm 2 satisfies

the following inequality forallt = 1,..., T and 7 € 1l o {ﬂ'r . r € R} simultaneously with probability at least 1 — 6.

7@V |ay) m(alz) 4R\/ OTN.(R)7 Adte
[;10% ﬂw} —thwp,awmef('|z)[10g W} =3 2t lo [ 5 }4_?

ﬂ,(a 1)|

Proof. For any r € R, denote X;(r) = log SYPSI )) which satisfies | X;(r)| < % based on Lemma 6 and Assumption

2.

Then by applying Lemma 10 to X;(r) with union bound, we obtain the following inequality which holds for all ¢ =
0,1,...,7T —1and r" € N.(R) simultaneously with probability at least 1 — ¢.

2; \/Stl [%] . (54)

t

S ) — B X)) <

=1

a 1), y; ) generated by Algorithm 2.

where p; denotes the distribution of the i-th online data sample (z;, a,E_l ,a;

For any 1 € R, there exists 7T € N (R) satisfying ||7T — 7|« < ¢, so Lemma 6 implies that

1 Xi(rT) = Xi(r)| =

Therefore, if the above high probability event £ := {Eq. (54) holds for all 7’ € N (R)} occurs, then the following
inequality holds for any r» € R.

S Xi(r) ~ B Xi(r)]

2R 2TN.(R)]  A4te
gﬁ\/&‘log[é “? (55)

For any 7 € IIx Lf {m, : r € R}, there exists r € R satisfying = = m,.. Then we have

(alV)z,)

Xi (T) - log 7_1
mpe oy )
and thus
E, Xi(r) =E tog M@ led) | _ g K m(ale)
AN r)= T a(fl)Nﬂ. Az Ogii = Bax~p,anmie (| og———~+ |-
I i~p,a; ref (+|2) WT»*(G( 1)|$i) P £(-|z) e (a| )
Substituting the above two equalities into Eq. (55) concludes the proof. O

Lemma 12. Suppose that the offline dataset {x;,a', a%,y;} | is generated from Assumption 1, and select the baseline
policy Tyase to be the distribution of o given x;. Then fixing any € > 0, § € (0,1), the following inequality holds for all

mellg <ef {7, : € R} simultaneously with probability at least 1 — 4.

N

[Z log TF(LJ)I) -N Ew~p,a~wb%c(~|w>[log W(a'x))}

i—1 T (0 |24) T (alz

_4;%\/”1 [2/\/5(72)%4?6.
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Proof. The proof logic is the same as that of Lemma 11. The major difference is that the inequality here only has to hold for
any 7 € IIx while Lemma 11 requires to hold also for¢ = 1,...,7T. As aresult, when applying Lemma 10 with union
bound, w in the proof of Lemma 11 is replaced with %. O

Lemma 13. Define the following quantity.

_1)\12
def [EwNp,a(”~m+1(~|x)7a<*1’NTrref('\:E)fﬂtﬂ(x’ atl), al 1))] (56)
t — ’
R2 4 3 1 B a s ().t momeer (o) [F2 oy (20D a D)
where the function [ is defined by Eq. (46). Then we have
T
> I < 12Goy log(T +2), (57)
t=1
where Gy, is defined by Eq. (26).
Proof. Applying Assumption 2 and Lemma 3 to the function f, defined by Eq. (46), we have
le'(x? a(l)a a(il)) :T*(I7 a(l)) 771*(555 a(il)) 77”71-(1‘7 a(l))+rﬂ(xv a’(il)) € [72Ra 2R] (58)

Denote v* € argmin, crp . SUD, ey aed nelln :EZK; as the policy used in the coverability coefficient (26). Then we have

m(aMz) < Gour*(aWV|z), Vze X,aV € A1 ellg. (59)

Then for each (z,a(")) € X x A, define the following quantity (min () = +oco by default)

¢
7(x,a™) = min {t >1 Zm+1(a(1)|x) > Gopl™ (a(l)x)}. (60)
i=1
Hence,
T
Zwt+1(a(1)|x)]l{t < 7(x,aM) — 1} < Gonr*(aV|2), (61)
t=1
¢

Y mi(@Vz) > Gov*(aMVz), V> 7(z,aV) + 1. (62)
i=1

Then we conclude the proof as follows.

_ 2
_ i [Exwp,a(l)wfrt+1(-\m),a(*l)wﬂref(-m) fTFtJrl (‘T7 Cl,(l), a( 1))H{t S T(.T, a(l))}]
t —
R2 43 By a® s ([2),al=D ~omer (o) [ 24y (2, 6D al 1))

1
_ 2
XT: [E(L'N/)7(L(1)N7Tt+1(‘lft),(l(_l)’\/‘ﬂ'ref('ll') fﬂ't+l (l’, a(l)v (1( 1))]I{t Z T(l’, a’(l)) + 1}]

+ T
= R2 43 1 B pamm ()0 D momer (o) [ F204, (2, 0D al=D)]
@ 1 & (1)y1)2
< ﬁ Z(QREINp,a(l)Nwt+1(-|1)H{t < T(J}, a )})
=1

— mop1(aVz 2
i i [Emrwp,a(l),w?t(»\x),a(*l)~7rrcf("z)fﬂ'wrl (a:,a(l),a( 1)) ’ %H{t 2 T(.I‘,Cl(l)) + 1}}
tE (z,aM), al=1))]

2
=1 aL'Np,a(l)NF,:(~\w),a(*l)wﬂref(ﬂx)[fﬂ't+1
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) &
S Z z~p,aD) iy (c|x) ]I{t < T(.’L' a(l))}
t=1

T
1 ey (alD]a) 2 (1)
Ft MW e 7(a) +1)

T T
=4 Z o) lz[wtﬂ(a(l)xﬂ{t < 7(x,aM) =1} + Z Tep1 (@ |2)I{t = 7(z, M)}

z,a(l) t=1
2 3 mi41(a®]z) W[+ > My 41
> > ¢
* < pl)  t7,(aV]z) + t7, (aDz) ma (@ @)t 2 7@, o) + 1]

z,a(1)

) a T (@M |z) W)\t > My 4 1

+2) ) t ,aM) +
2 P 2 () + G (a0 ) e (= T L)

t +1 7Tt+1<a( |£C) + GonV” ( 1)|1’) *( (1)
4 l on
+ Z Z og[ 17 a(l)\x) + Gonr*(aM|z) }[G v*(a'V|x)]

z,a(1)

=8Gon + 4Gon p(x)v* (a(l) |z) log [

z,a)

(T —+ 1)%T+1(a(1) |$) + Gony*(a(l)kﬁ)}
T (a(l) |JJ) + Gony* (a(l) ‘.I‘)

(T + 1)Gonv* (aV|z) + GonV*(a(”lx)}

(e)
§8Gon +4Gon p(g])l/*(a(l)‘x) 10g |: G V*(a(l)\m)
on

z,a)

<12Gop log(T + 2),

where (a) denotes T, = %Z;Zl 7; and uses Eq. (58) and (EX)? < E(X?) for any random variable X € R, (b) uses
Cauchy-Schwartz inequality, (c) uses Egs. (59), (61) and Eq. (62), (d) uses Eq. (59) and the inequality that u < 2log(1 + u)

Mot (1)
for u = % f?;on‘ﬁ)@mz) € [0,1] (u € [0,1] due to Eq. (59)), (¢) uses Eq. (59).

C. Proof of Proposition 1
(m, 7, &) is the solution to the offline RLHF-COV objective (12) means the following two conditions hold
7 €argmax, gLy (1, &) + nVaw(n', 1),
(r,€) €argmin, cg ¢repn Trn}gﬁc Ly, &) +nVs (' ).
Based on the notation that 7, arg max . Vg, (7', ), the above two conditions are equivalent to
T=mp, (r,&) €argmin.cg oepy LN, E) + Va0 (T, 1)
Furthermore, based on the notation that &, e arg mingcpn Ln,2 (7, €), the above two conditions are equivalent to
T=m, =&, r=argmin.g gLya(r &)+ V(T ).
This prove the first part of the theorem.

Next, we will obtain the analytical solutions of 7, and &, ;. We rewrite the function (11) as follows.

Va,w(m,r)
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=Eonpamn(-|2),a’ ~moase(-]2) [T(x, a) +wla| —r(z,a’) — w|a'|] — BE;~,KL [w(\x)||7rref(|z)}

=Eyrpamn(-|z) [r(x, a) + wla| — Blog ((T;)} — Eompratmmpmc (o) [T(@, @) + wld'|]
. ) r(al2)/ 2,2
= BIEx~p,a~7r(-lz:) {1 g Teet (a|7) exp [[7‘(33, a) + oJ|a|]//3} /ZT(J;)}

= Eurparmmpme (o) [7(2, @) + wla'(]

=C = BB KL [1(-|2) [meer () exp [z, ) + ] - /8] /202

def

where Z.(x) = Y. camet(d|2)exp [%] and the constant C =  SE,.,logZ.(z) —

Eamp,a/ ~mpase (-|2) [r(x, a) + w\a’\] is independent of w. Therefore, 7, def arg max, ¢ Vg,w(m',7) should mini-
mize the above KL term, which gives the analytical solution (14).

Note that the log-likelihood function (8) can be rewritten as follows.
dor 1 o
Lya(r,&) = N;fi(fi)a

where f;(v) := Av| —log o[r(z;, al) — r(x;, af) + y;v]. Hence, &, € argming Ly x(r,€) is equivalent to the following
condition:

& € argmin f;(v);i=1,2,..., N.
veER

As f; is a convex function for A > 0, the above optimality condition is equivalent to the following stationary condition.

0 S afi(gr,i) = )‘a|£1",2| + yi{J[T(!Eu CLZ- ) T(.’IJ“ z + ylgr 7 } (64)
where d denotes partial differential. Noticing that y; € {—1, 1}, it can be easily verified that the above equation has unique
solution &, ; defined by Eq. (15).

D. Proof of Proposition 2

Note that

a b
e Qe P, (65)

where (a) uses Eq. (17) and (b) substitutes Eq. (29) into Eq. (15). Therefore, by using Lemma 3, Eq. (65), and substituting
Eq. (29) into Eqgs. (8) and (11), we obtain that

Ly, &) + 0V w(mpm, 1™ ) = Ly (1, &) +0V3,u(m,7), (66)

. def . .
Since IIg = {m, : r € R}, the following two statements are equivalent.

(P1): 7 is optimal for the offline DPO-COV objective (18), i.e.,

’

m € argming ey, [Cna(F™ €7 ) + Vs (T, 7™ ).

(P2): There exists r € argmin,., ¢ [Ly A (r™, ™) + nVp o (mpm ,77")] such that 7 = ..

This along with Eq. (66) implies that (P2) is equivalent to the following statement.

(P3): There exists r € arg min,,cg [Ln (1, &) + nVpw (7, 7)) such that 7 = m,.

By Proposition 1, (P3) is equivalent to the following statement.

(P4): There exist 7 € R and ¢ = &, € RY such that 7 = 7,., and (7, 7, £) is the optimal solution to the offline RLHF-COV
objective (12).
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So far, we have proved the equivalence among (P1)-(P4), so the first part of this proposition is correct which states that (P1)
and (P4) are equivalent.

It remains to prove the second part of this proposition, i.e., to figure out ¢ and r given 7 under the assumption that (P1)-(P4)
hold. Note that based on the analytical solution (14) of 7., m = 7, required by (P2)-(P4) holds if and only if for any x € X
there exists U, (z) € R such that r(z,-) = 7™ (x, ) + Ux (). In this case, we have

a (b) c) on
g(:)gr = &pr (:)g )

where (a) uses (P4), (b) substitutes r(z, -) = r™(z, -) + U, (z) into Eq. (16), (c) uses £ def Epr.

E. Proof of Proposition 3

The proof logic is exactly the same as that of Proposition 2, with 7 replaced by —1.

F. Proof of Theorem 1

Obtain 7 € argmin, cry [Laa(r™, €7) 4+ nVp,w(me=, ™)] by minimizing the offline DPO-COV objective (18). Then
based on Proposition (2), there exists 7 € R such that (7,7, £7) (€7 is defined by Eq. (17)) is the optimal solution to the
offline RLHF-COV objective (12), that is,

(7,€7) € arg min,. cp ¢rcpy max [Lua(r', &)+ nVau(', )], (67)
T =7y € argmax e Va,w(m, 7). (68)

Then denote T3 € arg max,cmin, e ¢rerny [Ln,a(r', &) + nVau (', 7')] and we have

LN AT EF) + Vw72, T)
> i Ly, &) +nVs (7,7’
_T,Eg}gl,rleRN[ N E) Vs (T2, 7")]
(a) . vy It
= ;C bl + V w ?
max | min [Ena G 8) V()]

()

= 1 v o
= enin, ma [Ena () + Vo ()] (69)
(:c) wn’lgl)i( [EN,A(?, E%) + anvw (7T', ﬂ] , (70)

where (a) uses Tz € argmax . cming e ¢rcrny [Lna(r', &) +nVs.u (7', 7")], (b) applies the minimax theorem (Theorem
1 of (Fan, 1953)) to the function Ly x(1',£") +nV3,., (7', r’") (defined by Egs. (8) and (11)) which is a concave function

of 7/ € II and a convex function of (7',&') € R x R%, and (c) uses Eq. (67). The above inequality implies that

. - 68) ~ v .
To € max,en Va,o(n',7) and thus o = 77 @ % This means

T =Tp € argmax ,eéngipem]v (L (&) +nVsw(x' )] (71)

Note that for any 7 € II, Egs. (11), (20) imply that
Jpw(m) = Jp0(T) = V() = Vs.u(7). (72)
Hence, 7+ € argmax,;; Vs, (m) also satisfies

Tp+ € Argmax, crJg,w(m). (73)

Finally, we prove the generalization error rate (22) as follows.

max Jg,.(7) = Jp.w ()
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(a) -1
=Vsw T L 3 Ve ,w y
puo(mre, ") = i xoin (L a(r€) + 0 Vp (7))

re%ﬁigRN [LN,)\(Tv E) + nvﬂ,w(ﬂ-v T)] - Vﬁ,w(ﬂ-a r )

©]
< V,B,w (777“* ) T*) - 77_1 %171% [ﬁN,)\(T, 57) + nvﬂ,w (777'* s T)]
+ 0 LA, ) + VW (@ r)] = Vaw(F,r™)

(ZC) max {Ezwp,awﬂr*(-\z),a’Nﬂbase(-m) [T*(QZ, 0,) - ’I"*($7 al> - T(LI?, a) + T‘(J,‘, a/)]

rerR

+ 0 LN AT, ) — Laa(r, fr)]}
(d) V1N (R)I E? 7
= rrneax{GDE TNy [Hf I+l ( 0 ﬂ (3 +eft)2 T N777}

() 2 Wi/~ (R)] nG% Ry2

<7 *

< [”f ||1+5log( 3 )}—I— > 3+e™)

() G’2 +1)(3+ef)

SRt IEEE) i+ SloglNw (R3], 9
where (a) uses Eqs. (71), (72) and (73), (b) uses & € argminggnLna(7,§) as well as 7 € R in
Assumption 2, (c) uses Eq. (11), (d) uses Assumption 3 and Lemma 8 with ¢ = 1/N and E, :=

Ep|r*(z1,ay’) — r*(z1,af) — r(z1,a¥) + r(:z:l,al) (e) uses 1 < log[|N;,n(R)|/d] as well as bE — aE* < %

2,/l1€ |\1+d10"[\/\/1/\(73>|/0]
VN (3+eR )

foranya > 0and b, £ € R, (f) uses 7 =

G. Proof of Theorem 2
The update rule (25) implies that

0 <tde(mp+) — tde(mes1)
(a)z{

+ log

—1
- (al >|ml>
7Tt+1(a \33)

olrm (@, al) — rrer (z, ab) + gl }

—1&""]) + Bnlog

U[T*(xiaai ) - ('r'u z) +yz§'f ,’L]

-1
§ A€ = [€7%]) + Bylog =% TE) (al, [2:)
S

7Tt+1(a' |xz)

ofrmeti(z,al) — r™e (x4, ab) + gl }

+ log (75)

o[r*(zi,af’) — (2, af) + yig]]

where (a) uses Eq. (16), ff = &, (by Eq. (65)), and Lemma 2 (with r replaced by r*) and (b) uses the fact that
&re i € argming, cp {A&] — logo[r* (x4, af) — r* (4, af) + y;&;]}, the i-th component of £ (r*, £) defined in Eq. (8).

Based on Lemmas 9 and 11 (both with § replaced by §/2 and 7 replaced by m;41), the following two inequalities hold for
t =1,...,T simultaneously with probability at least 1 — 4.

ey
(x“a‘z ) - T*(‘r% z) +y’¢§ ]

t
gmog(”'Ag(R ) e+ 3o (oI

1 1
T 23+ eR)2]Ez~p»a“)~m(-\z),a“l)wrref( @) [ (@0l ))]}7 (76)
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t (=1,
mee (0, |24) 4R\/2tlog[2TNe(R) %

7+ (alx)
; +tEpr7a~7Tref.(,|m)[logi)} . 77

|+
7rt+1(a|x

(
i=1 Tt4+1 (ai

Substituting Egs. (76) and (77) into Eq. (75), we obtain that

ATN.(R)

0 §477R\/ 9t log [f} + Anet + BB amomor () [log r-(alz) }

i1 (alz)

“Z'“ 6771 + 2t (P )+4t+2{ &1+ o (R

1 1
- W]Ewwp,a(l)mﬂ'i(-‘m),a(—l)NTrrLf( |z) [fw,+1(=’f alt ) al™ ))]}
() ATN.(R 2T |N.(R
§477R\/2t log [#} + 2log (M) + 4dnet + 4et
Ti+1(alz)
— BNtE e p arome(-12) | lOg ————=
BB p.anme (| ){ o8 e (a|x) }
1 _
Z{ 1€ — WEIW,mwNm(.\x),a<—1>~ﬂref(~\m) [f2t+1(x,a(1),a( 1))}}7 (78)

where (a) uses A € [o(R), 1]. Then, we have

Jﬁ,w(ﬂ'r*) - Jﬁ,w(ﬂﬂrl)

. * (al2)
ZEpramr e (1) {7’ (z,a) —wla| - Flog W]
. ie a|x
— Banparmmes (o) {r (z,a) — w|a|] — Blog t+l((a|x))]
B * - (ala)
2 [r T,a) —wla lo }
0, ref (+|T) ( ) | | B & 7"'1ref(a'|:c)
. Tet1(al)
—Eimpammini(lz [ y ) — ! }
0, t+1(-|x) r (J? a) w|a| ﬁ o8 71—ref(af|‘r)

T (alz) r*(z, a)}

Ty (alz)
= Eww a~Tyer (4| |:1 :| EJ:N an~T | |: 1
ﬂ P, ref (+]@) | 108 + Ps w1 (]2) WIa| + 6 & 7T'ref(C’Jlx)

Trp* (a|x)

_ meyi(alr)
Eomp,ammer (-|2) [w|a| + Blog et (alD) T (x,a)}
me+1(alr)
T+ (a]2)
Tz, a) — r*(x, a)}

@ w1 (alz) _
5Ex~p a~Tres (+|x) |:10g %} - Exwp,a(l)Nm+1(.|x),a(*1)w7r,.ef(~\;c) [fﬂ't+1 (.’E, a(l)a a’( 1))}

(c) Tt *
:ﬁECDNﬂ,aNﬂ'rcf('lI) |:10g :| + Em~p,a~ﬂt+1(-|a:) [T a (.2?, a) -r (.13, a)]

- ]EINP,GNTFref(“x) [

Y Tia(ala)] |t
<ﬁEz~p a~Tret (-] ) [log W} + 5(3 + eR)QIt

1 2 2 1 —1
+ W{R + ZEl‘NPva(l)Nﬂi(‘l’»ﬂ),a(*l’Nﬂref('\x)[fm+1(x’ ! )’ al ))}}
=1

Nnt 1 \/ ATN(R) 2 2T|N(R)|
<z — = il L2 S'a
2(3+e)lt+277t+4R log { 5 }—l—ntlog( 5 )

de + — 4+ =
+ et +477t2|£\
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where (a) uses Eq. (20), (b) uses Eq. (14) which implies that 7*(z, a) — w|a| — B log == (@l2) _ 3log 7, (x) does not

Tret(alz) T

rely on a, (c) uses Egs. (16), (d) uses Eq. (46), (e) applies Cauchy-Schwartz inequality to Eq. (56), (f) uses Eq. (78) and
3+ ef* > R > 0. Finally, we conclude the proof by averaging the above inequality over t € {1,2,...,T} as follows.

T

]E[Jﬁw(ﬂr*) - JBM(”?)] = %Z [JB,w(Wr*) - Jﬁ,w(ﬂt-u)]

@ log T 2 [4TA.
<61Gon(3 + ™) log(T + 2) + 32(:7gT + SR\/ log [#}

6logT 2TIN(R)| 4e  15logT
+ T log( 5 )+4e+f T Z|£|

Nl T 6R o on
o3+ ™) log(T + 2)\/GTO“ [10g (M) + llgvlh] + 2\(/3Ttog ;gﬁf;ﬁ]

* SR\/; log [M} +6(3+ eR)(logT)\/Gj‘zn og (M)

4 . Gon 15(3 + e™)(log T')v/Gon
tnt4@+e )\/Tlog[zTNl/T(R)/é} 4y/Tlog 42TN1 ;7 (R) /0] + T [

D6+ 1548V2+64+4+4)3+ eR)(logT)\/Gz‘j“ [1og (w) + ¥

15(3-+ ") (108 )y G *
4/ TIog[ATN, ;7 (R)/0] + T s {log[dTNy/r(R) /0] + I€" (11 }

<37(3+ e ><logTM Gon [ 10g (LR RNY 4 ey,

=1

1€7 111

V108 [4T N /7 (R) /64167111
(3+6R)\/TGon ’

>logT > 1.

where (a) uses ZtT 1 L'<1+41logT < 3logT, Zt 1 1 < 2y/T and Eq. (57), (b) uses n =

T =
= 7, and (c) uses Go, > 1 (by Eq. (26)), R < 3 + eR log(T +2) < 2log T and log (w)

28



	Introduction
	Our Contributions

	Preliminaries
	Our Offline DPO-COV Algorithm
	Our Offline RLHF-COV Objective
	Our Offline DPO-COV Algorithm
	Generalization Analysis of Offline DPO-COV

	Our Online DPO-COV Algorithm
	Experiments on Offline Data
	Experiment on the Argilla Data
	Experiment on Math and Reasoning

	Conclusion
	Appendix
	 Appendix
	Experiment on Online Data
	Supporting Lemmas
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Theorem 1
	Proof of Theorem 2


