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ABSTRACT

Generalization and adversarial robustness are two critical concepts in machine
learning. Understanding the key factors that affect the trade-off between these
concepts is essential for guiding architectural design and developing training
strategies, such as adversarial training, especially for deep neural networks. In
this paper, we investigate the impact of cross-layer correlations in weight matrices
on both generalization and adversarial robustness. We provide a theoretical anal-
ysis demonstrating that increasing cross-layer correlations leads to a monotonic
increase in the generalization gap. Furthermore, we establish a connection be-
tween adversarial risk and natural risk. Leveraging this connection, we show that
in linear models, higher cross-layer correlations also degrade adversarial robust-
ness. Finally, we validate our theoretical findings through experiments conducted
on MLPs.

1 INTRODUCTION

Generalization is a fundamental concept in the theoretical study of machine learning. Understand-
ing the key factors that influence generalization provides crucial guidelines for architectural design
and training strategies, particularly for complex models such as neural networks. Despite its impor-
tance, how architectural factors in neural networks affect generalization remains unclear. Inspired
by research in neuroscience, Jin et al. (2020) suggest that the generalization gap increases mono-
tonically with respect to the weight correlation (WC) of rows in a given weight matrix. Building on
this insight, we investigate how cross-layer correlations impact both generalization and adversarial
robustness.

Another important and intriguing property of neural networks is their susceptibility to adversar-
ial examples, which can significantly mislead the network’s outputs by adding only imperceptible
perturbations to inputs. To understand this phenomenon, extensive research has been conducted to
identify the factors that determine adversarial robustness, including input data distribution (Tsipras
et al., 2018; Gilmer et al., 2018), sampling complexity (Bhattacharjee et al., 2021; Min et al., 2021),
optimization techniques (Madry et al., 2017), weight initialization strategies (Zhu et al., 2022),
and model capacity and architectures (Simon-Gabriel et al., 2019; Bubeck et al., 2021; Huang
et al., 2021; Wang & Ruan, 2023). Moreover, some studies point to a more fundamental issue:
whether there is a trade-off between natural generalization and adversarial robustness. Some stud-
ies (Tsipras et al., 2018; Zhang et al., 2019) claim that there is an inevitable trade-off between gen-
eralization and adversarial robustness, even with an infinite amount of input data. However, Fawzi
et al. (2018) argues that, under more realistic settings, such trade-offs do not exist. It is possible to
enhance generalization without any cost to adversarial robustness.

In our work, we consider both generalization and adversarial robustness. Leveraging the PAC-
Bayesian framework, we theoretically demonstrate that the generalization gap increases monotoni-
cally with respect to cross-layer correlation, indicating that any correlation between weights across
layers negatively impacts generalization. This finding aligns with the conclusions drawn by Jin et al.
(2020). Additionally, we establish a theoretical connection between natural risk and adversarial risk
and perform a first-order analysis of adversarial risk, providing an upper bound for the adversarial
gap—the difference between adversarial risk and natural risk. Furthermore, we prove that for linear
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neural networks, cross-layer correlations degrade adversarial robustness. Our main contributions are
as follows:

• We investigate the cross-layer correlation between adjacent weight matrices and provably
show that the generalization gap increases monotonically with respect to cross-layer corre-
lations.

• We establish the connection between natural risk and adversarial risk, demonstrating that
the inherent trade-off between adversarial robustness and generalization is universal for
neural networks.

• We conduct a first-order analysis of adversarial risk and provide an upper bound that can
serve as a surrogate for measuring adversarial risk. Based on this analysis, we provably
show that neural networks with linear activation functions exhibit inflated adversarial ro-
bustness due to cross-layer correlations.

2 RELATED WORK

2.1 GENERALIZATION

From a methodological perspective, the measurement of generalization can be divided into three
categories. The first is based on the well-known VC-dimension (Vapnik & Chervonenkis, 2015).
Since the VC-dimension is independent of both inputs and the architecture of the models, it has
been demonstrated to be weakly correlated with generalization power (Jiang et al., 2019) for Deep
Neural Networks. Consequently, the community has turned to data-dependent Rademacher com-
plexity (Mohri et al., 2018) and PAC-Bayesian frameworks (McAllester, 1999), which assume the
distribution of weights.

Recent research based on Rademacher complexity includes Bartlett et al. (2017), who provide mar-
gin bounds for neural networks. This work has been further developed by Yin et al. (2019) to address
adversarial risk. The most promising methodology in this category is the PAC-Bayesian framework,
wherein the complexity measure is empirically demonstrated causally related to the generalization
gap (Jiang et al., 2019), which is also the first framework providing a non-vacuous generalization
bound (Dziugaite & Roy, 2017). Similar to the work done by Bartlett et al. (2017), Neyshabur
et al. (2017) provide another spectral margin bound using PAC-Bayes. Considering adversarial risk,
Viallard et al. (2021) provide PAC-Bayesian bounds concerning adversarial robustness for majority
votes, where the total variance of the probability measure is included as an additional term instead
of KL-divergence.

In addition to KL-divergence, which is a critical component of the PAC-Bayesian framework, Xu &
Raginsky (2017) provide a bound in terms of mutual information between input and output. Chu &
Raginsky (2024) further developed the first unified framework for information-theoretic generaliza-
tion bounds. Instead of providing tighter bounds and advanced frameworks, Jin et al. (2020) analyze
the influence of weight correlation on generalization power. Though research on generalization is
extensive, few studies consider the correlation across layers.

2.2 ADVERSARIAL ROBUSTNESS

Trade-offs between generalization and adversarial robustness Numerous studies argue that
there is a trade-off between generalization and adversarial robustness. Fawzi et al. (2018) system-
atically studies the adversarial robustness of linear and quartic classifiers, demonstrating that no
classifier is robust on tasks that are difficult to distinguish between different classes, hence no inher-
ent trade-off exists given infinite input data. Tsipras et al. (2018) show with a binary classification
that there is an inherent tension between adversarial robustness and standard generalization. Zhang
et al. (2019) propose one of the earliest theoretical analyses of the trade-off between natural and
robust errors and designed a defence mechanism, namely TRADE. However, these trade-offs are
primarily illustrated with a toy example. Ilyas et al. (2019) claim that adversarial examples are
merely non-robust features. More recent work (Gowda et al., 2024) focuses on adversarial train-
ing and examines layer-wise learning capacity, proposing a framework named CURE that addresses
both memorization and overfitting issues.
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Factors that influence adversarial robustness Since the finding of adversarial examples (Good-
fellow et al., 2014), various studies aim to understand this phenomenon, particularly for neural net-
works. Some researchers argue that the source of adversarial vulnerability lies in the input data (Do-
briban et al., 2020; Bhattacharjee et al., 2021; Min et al., 2021). More recent research investigates
the fragility of neural networks from an architectural perspective. Simon-Gabriel et al. (2019) study
the vulnerability of feed-forward neural networks measured by the Lp norm of the loss function
with respect to input data, suggesting that vulnerability increases with input dimension, independent
of model structures. Daniely & Shacham (2020) examined ReLU neural networks characterized by
decreasing dimensions at each layer, asserting that adversarial robustness is intrinsically tied to the
network’s architecture, contrasting with the propositions of Simon-Gabriel et al. (2019). Bubeck
et al. (2021) expanded the findings of Daniely and Shacham from an ”under-complete case” sce-
nario to an ”over-complete” one where the number of neurons surpasses the input dimension. They
further broadened the conclusions to encompass Deep ReLU networks, highlighting a crucial role
played by bottleneck layers.

To understand the architectural factors that influence adversarial robustness, it is fundamental to
examine how the layers collaborate to enhance this robustness. In our work, we provide a general
framework to explore this interaction.

3 PRELIMINARY

3.1 PROBLEM SETTING

We consider the classification problem where x ∈ X ⊆ Rd denotes the input domain, and y ∈
Y ⊆ {1, 2, . . . , κ} represents the labels. D is an unknown probability measure over X × Y , and
h : Θ × X → [0, 1]κ denotes the mapping from X to [0, 1]κ parameterized by θ ∈ Θ, where the
output of h refers to the likelihood for each class, and the class with the maximal likelihood will
be selected as the predicted label. Given i.i.d. samples {(xi, yi)}ni=1 from D, and a loss function
ℓ : Θ × X × Y → R+, one aims to find the h that minimizes the natural risk, which is defined in
Eq. 1, represented by R(θ).

R(θ) = E(x,y)∼D [ℓ(h(x;θ), y)] (1)

Neural Networks We define the Neural Networks as N : Θ × X → Rκ. Since the hypothesis
h : Θ × X → [0, 1]κ where the output of h(θ) lies in the κ-dimensional interval [0, 1], we use
Softmax function (Bishop, 2006) to normalize the output of the neural network to [0, 1], i.e., given
parameters θ ∈ Θ and input x ∈ X

h(x;θ) = Softmax(N (x;θ)). (2)

Given x ∈ X , we define the L-th layer deep neural network as

N (x;θ) = WLϕ(WL−1 · · ·ϕ(W1x) · · · ) (3)

where Wl, l ∈ [L] denotes the weight matrix, ϕ represents the activation function.

Margin Loss Following the setting of Neyshabur et al. (2018), we consider the margin loss as our
loss function throughout the analysis. The margin loss is also a key factor linking natural risk and
adversarial risk. Given a margin γ, the margin loss is defined as:

ℓγ (h(x;θ), y) = 1

{
hy(x;θ) ≤ γ + max

j∈Y,j ̸=y
hj(x;θ)

}
(4)

where hy and hj denote the yth and jth outputs of h. The natural risk under this setting becomes
the probability of misclassification by a margin of γ.

Rγ(θ) = P(x,y)∼D

[
hy(x;θ) ≤ γ + max

j∈Y,j ̸=y
hj(x;θ)

]
(5)
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Since D is unknown, in practice we consider empirical risk R̂γ defined as

R̂γ(θ) =
1

n

n∑
i=1

ℓγ(h(xi;θ), yi) (6)

Adversarial Risk Natural risk can only guarantee performance without accounting for input per-
turbations. As observed by Szegedy et al. (2013), there exist imperceptible perturbations, known
as adversarial perturbations, which can lead to a significant deterioration in performance. These
adversarial perturbations are typically constrained within a norm ball defined as

Br =
{
ε ∈ Rd | ∥ε∥p ≤ r

}
, (7)

where ∥ · ∥p denotes the Lp-norm and r > 0 is the budget for perturbations. Regarding adver-
sarial perturbations, one wants to guarantee the generalization to unseen data, thus minimizing the
adversarial risk, which is defined as

Radv
γ (θ, r) = E(x,y)∼D

[
sup
ε∈Br

ℓγ(h(x+ ε;θ), y)

]
. (8)

3.2 GENERALIZATION MEASUREMENT

Generalization of a Machine Learning model refers to its performance on unseen data measured by
the generalization gap between test and training data, as is shown in Eq. 9

Gap(θ) = R(θ)− R̂(θ) (9)

Addressing the problem related to the generalization gap of deep neural networks, many frame-
works (Vapnik & Chervonenkis, 2015; Mohri et al., 2018; McAllester, 1999) have been adopted.
Among them, as suggested by Jiang et al. (2019), the PAC-Bayesian framework provides the most
accurate measure for various DNNs. A similar study investigating weight correlation by Jin et al.
(2020) also adopts the PAC-Bayesian framework. For better comparison and to ensure the accuracy
of the analysis, we follow the same approach. And since our analysis is based on the margin loss,
we base our analysis on the margin bound by Neyshabur et al. (2018).

Theorem 3.1 (Margin Bound by Neyshabur et al. (2018)). Given Hypothesis h : Θ× X → [0, 1]κ

and margin loss defined in Eq. 4, let ρ and π be posterior and prior probability measure over Θ
where π is independent of training data. Then, ∀γ, δ > 0, with probability at least 1 − δ, ∀θ ∈ Θ

and perturbated parameter θ̃ subject to

Pθ̃∼ρ

[
max
x∈X

|h(x; θ̃)− h(x;θ)| ≤ γ

4

]
≥ 1

2
, (10)

we have

Rγ(θ)− R̂2γ(θ) ≤

√
2KL(ρ∥π) + log 4

√
n

δ

2n
. (11)

Slightly different from the formula in the original paper, we make some adjustments and provide the
complete proof in Appendix A.1 and A.2.

Eq. 11 indicates that the true natural risk at margin γ is upper bounded by the empirical risk at
margin 2γ, along with a term dominated by the KL(ρ∥π). As γ is given, it is reasonable to assert
that the generalization gap is significantly influenced by the KL-divergence term. In the following
analysis, we will focus on this term.
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4 HOW DOES THE CROSS-LAYER CORRELATION INFLUENCE
GENERALIZATION?

In this section, we analyze the influence of cross-layer correlation on generalization power. Theo-
rem 4.1 assumes a general correlation between adjacent layers, as shown in Eq. 12, represented by
cross variance Kl,s for l, s ∈ [L], resulting in a lower bound for the KL-divergence. Theorem 4.2
assumes the same correlation for each pair of weights across adjacent layers, as shown in Eq. 17.
Despite the stronger assumptions, it provides an exact formulation of KL(ρ|π) and concludes a
monotonic change with respect to the square of the correlation coefficient.
Theorem 4.1 (Cross-layer correlation on KL-Divergence). Let π and ρ be the Gaussian probability
measure on weight matrices defined in Eq. 3 where ωl = vec(Wl) ∈ RNlNl−1 is vectorized l-th
layer weight matrix. The covariance for fixed prior π and training dependent posterior ρ are give
in Eq. 12.

Covπ (ωl,ωs) =

{
σ2
l I l = s

0 l ̸= s
, Covρ (ωl,ωs) =


σ2
l I |l − s| < 1

Kl,s |l − s| = 1

0 |l − s| > 1

(12)

Assume the covariance matrix for all vectorized weight matrices is not degenerated, we have

KL(ρ∥π) ≥ 1

2

L∑
l=1

(
∥Eρ[ωl]− Eπ[ωl]∥22

σ2
l

+ tr

(
KT

l−1,lKl−1,l

σ2
l−1σ

2
l

))
(13)

where σ2
l , l ∈ [L] denote the covariance for weight at l-th layer and Kl,s, l, s ∈ [L] is the cross-

variance between weights at l-th and s-th layer. The equality in Eq. 13 holds as Kl−1,l = 0.

Sketch of proof To prove the Eq. 13, we need to compute det(Σρ) in KL-divergence. By assuming
the cross variance in Eq. 12, the matrix of Σρ is a quasi-diagonal matrix. We then linear transform
Σρ to a block diagonal matrix where each diagonal block is recursively defined as

Al = I −
KT

l−1,lA
−1
l−1Kl−1,l

σ2
ρ,l−1σ

2
ρ,l

, l ∈ [L] (14)

Next, we prove A−1
l − I is semi-positive definite. By recursively substituting A−1

l back into the
expression for det(Σρ), we derive the following inequality:

det (Σρ) ≤
L∏

l=1

σ
2NlNl−1

ρ,l det

(
I −

KT
l−1,lKl−1,l

σ2
ρ,l−1σ

2
ρ,l

)
. (15)

Since
KT

l−1,lKl−1,l

σ2
ρ,l−1σ

2
ρ,l

is a symmetric matrix, and given the fact that log 1
1−x ≥ x, we have:

log
1

det(Al)
≥

NlNl−1∑
i=1

λ
(l)
i = tr

(
KT

l−1,lKl−1,l

σ2
ρ,l−1σ

2
ρ,l

)
(16)

Thus, the proof is concluded.

For simplicity, we assume that the variance is the same for the probability measures π and ρ, and
that the mean for π is zero. A detailed discussion and the proof addressing the case with different
non-zero means for π and varying variances for the prior and posterior distributions can be found in
Appendix A.3.

The term tr
(

KT
l−1,lKl−1,l

σ2
l−1σ

2
l

)
in Eq. 13 represents a scaled RV coefficient (Robert & Escoufier, 1976),

which is a multivariate generalization of the squared Pearson correlation coefficient. This indicates
that the presence of any cross-layer correlation will widen the generalization gap. However, to under-
stand how changes in cross-layer correlation influence the KL-divergence, we need a simplification
of the cross-variance K, as shown in Theorem 4.2.
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Theorem 4.2. Given the same assumption in Theorem 4.1 and assuming that each pair of elements
between adjacent weights has the same correlation coefficient, such that

Kl−1,l = σl−1σlτl−1,l1Nl−1,Nl
(17)

where 1Nl−1,Nl
is Nl−1×Nl matrix each element of which is 1, and τ2l−1,l is the Pearson correlation

coefficient. Therefore, we have

KL(ρ∥π) = 1

2

L∑
l=1

(
∥Eρ[ωl]− Eπ[ωl]∥22

σ2
l

)
− log

L∏
l=1

det(Al) (18)

(19)

and det(Al) is determined by the recursive difference equation

det(Al) = 1−
Nl−1Nlτ

2
l−1,l

det(Al−1)
(20)

and we have the derivatives of KL-divergence w.r.t. τ2l−1,l is

∂KL(ρ∥π)
∂τ2l−1,l

≥ 0 (21)

showing that the KL-divergence increase monotonically as each τ2l−1,l increases.

Sketch of proof The proof begins with Eq.17. By making additional assumptions and applying
the Neumann series, we obtain the relation:

det(A2) = 1− τ̃1, 22

det(A1)
, (22)

where, for convenience, τ̃ l − 1, l2 = Nl−1Nlτ
2
l−1,l. To conclude the derivatives in Eq. 21, it suffices

to show that ∂
∏L

l=1 det(Al)

∂τ2
l−1,l

≤ 0, which can be computed recursively by Chain rule.

Assuming that each pair of weights from the (l − 1)-th and l-th layers, i.e., (ω(l−1)
i,j , ω

(l)
s,k), have the

same Pearson correlation coefficient τl−1,l, Eq. 21 in Theorem 4.2 demonstrates that any increase in
linear correlation will widen the generalization gap.

Theorem 4.2 suggests that layers in a neural network should be as uncorrelated as possible, as any
dependency between layers can negatively impact the model’s capacity. This effect may be attributed
to the substantial reduction in the number of ’effectively independent’ parameters when cross-layer
weights exhibit linear correlations.

Comparison to the conclusion drawn by Jin et al. (2020) that higher weight correlation (WC) worsen
the generalization power of deep neural networks, we find that any linear correlation across layers
is also harmful to generalization.

5 HOW DOES THE CROSS-LAYER CORRELATION INFLUENCE ADVERSARIAL
ROBUSTNESS?

To analyze how cross-layer correlation impact adversarial robustness, we first establish the relation
between natural risk and adversarial risk in Lemma 5.1.
Lemma 5.1. Given data points (x, y) ∼ D, neural network defined in Eq. 3, and the natural and
adversarial risk defined in Eq. 5 and Eq. 8, the adversarial risk can be represented as

Radv
γ (θ, r) = Rγ(θ, r) + P(x,y)∼D

(
Er,γ | ¬E0,γ

)(
1−Rγ(θ, r)

)
(23)

where

Er,γ =

{
∃ε ∈ Br, hy(x+ ε) ≤ γ + max

j∈Y,j ̸=y
hj(x+ ε)

}
(24)

6
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Table 1: Cross-correlation and Generalization Gap on MLPs

Depth Activation τ Generalization gap

2
ReLU6 3e-5(1.2e-5) 49.69(0.39)
Sigmoid 7.8e-5(4e-6) 52.61(0.28)
Linear 6.5e-5(1.2e-5) 11.51(0.39)

4
ReLU6 3.95e-4(3.3e-5) 45.86(0.19)
Sigmoid 6.76e-4(2.4e-5) 57.38(0.42)
Linear 4.37e-4(3.3e-5) 11.74(0.19)

8
ReLU6 2.49e-3(3.46e-4) 47.11(0.66)
Sigmoid 6.05e-3(1.5e-4) 55.61(1.02)
Linear 1.83e-4(3.46e-4) 11.06(0.66)

denotes the event of attack that fails the margin loss, and

¬E0,γ =

{
hy(x) ≥ γ + max

j∈Y,j ̸=y
hj(x+ ε)

}
(25)

denotes correct classification with a margin γ.

The proof of the lemma is provided in Appendix A.8. As seen in Eq.23, as long as the probability
P(x,y)∼D(Er,γ | ¬E0,γ) is positive, there is always a trade-off between adversarial robustness,
defined as Radv

γ (θ, r)−Rγ(θ, r), and natural risk. A reduction in natural risk will inevitably inflate
the second term in Eq.23. Additionally, since the probability P(x,y)∼D(Er,γ | ¬E0,γ) is closely
related to perturbations beyond natural risk, changes in natural risk will have a lesser impact on this
probability.

However, the event Er,γ | ¬E0,γ only implies that given the event of correct classification with a
margin γ, the hypothesis h is only perturbed to fail the margin loss. However, a real attack often
leads to misclassification. Therefore, we focus on the scenario where the model is perturbed until
misclassification, denoted as the event Er,0 | ¬E0,γ . It can be easily proved that

P(x,y)∼D(Er,0 | ¬E0,γ) ≤ P(x,y)∼D(Er,γ | ¬E0,γ), (26)

by the fact that the event Er,0 | ¬E0,γ infers Er,γ | ¬E0,γ . Therefore, we perform a first-order
analysis on this ”strong” adversarial risk.
Theorem 5.2. Given the hypothesis h defined in Eq. 2, let the event

E0,γ =

{
hy(x) ≤ γ + max

j∈Y,j ̸=y
hj(x)

}
(27)

and

Er,0 =

{
ε ∈ Br, hy(x+ ε) ≤ max

j∈Y,j ̸=y
hj(x+ ε)

}
(28)

represent the risk of failure for the margin loss and the successful perturbation that changes the
classification results. The event where h is correctly classified by a margin γ but perturbed into
misclassification can be represented and upper bounded as follows:

P(x,y)∼D

(
Er,γ | ¬E0,γ

)
≤ 2r

log 1+γ
1−γ

E(x,y)∼D

(
∥JN (x)∥p

)
(29)

The expectation of the Jacobian, as shown in Eq. 29, is closely related to the Dirichlet energy, which
is commonly used to measure the variability of a function in partial differential equations. As a
proper measure for adversarial robustness, Dirichlet energy has been verified by Dohmatob & Bietti
(2022). In this work, we provide a more rigorous verification.
Lemma 5.3. Let N be the L-layer neural network defined in Eq. 3 with linear activation function
ϕ(x) = x, for each l ∈ [L], σ2

l be the variance and τl−1,l be the cross-layer correlation under the

7
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Figure 1: Robust Gap and Cross-layer Correlation on Adversarial Training of TRADES

same assumption in Eq. 12 and Eq. 17. In addition, assume all elements in weight matrix at each
layer has the same mean, i.e., E[ωl−1,i] = µl−1, i ∈ [Nl−1Nl−2], E[ωl,j ] = µl, j ∈ [NlNl−1].
Hence,

E(x,y)∼D[∥JN (x;θ)∥p] = C ·
L∏

l=1

|τ̂l−1,lσ̂l−1σ̂l + µ̂lµ̂l−1| (30)

where C > 0 is a constant. And τ̂l−1,l, σ̂l, and µ̂l are the estimators for the cross-layer correlation,
variance and mean for the weight matrices.

The proof of the Lemma 5.3 is shown in Appendix A.11. If the mean value for the weight matrix
is zero, it can be see from the Eq. 30 that higher value of cross-layer correlation could inflate the
expectation of p-norm of the Jacobian of the neural network w.r.t. it inputs. However, if the mean
value dominate the equation, the effect of cross-layer correlation will be obscured.

6 EXPERIMENTS

In this section, we conduct experiments to verify our proposed theorems. First, we demonstrate how
we estimate the cross-layer correlations.

6.1 ESTIMATION FOR CROSS-LAYER CORRELATION

We estimate the cross-layer correlation τ̂l−1,l between weight matrix Wl−1 and Wl as

τ̂l−1,l =
1

N1Nl−1Nl−2

Nl∑
i=1

Nl−2∑
j=1

Nl−1∑
k=1

(
w

(l)
i,k − µ̂l

σ̂l

)(
w

(l−1)
k,j − µ̂l−1

σ̂l−1

)
(31)

where µ̂l and σ̂l represent the sample mean and variance of the weight matrix at the l-th layer. In
practice, the sample mean and variance are computed for each row of the weight matrix Wl and
each column of the preceding weight matrix Wl−1 to eliminate the effects cased by correlation
within weight matrix as much as possible.

6.2 EXPERIMENT SETUP

We conducted experiments on MLPs with widths of 256 and depths of 2, 4, and 8, using the CI-
FAR10 dataset (Krizhevsky, 2009). To evaluate adversarial robustness, we employed PGD attacks
at each training epoch and used TRADES for balancing natural and adversarial risk. We compared
three activation functions: identity, ReLU6, and Sigmoid, with ReLU6 chosen for its stability in
TRADES training. All models were trained for 200 epochs using the Adam optimizer (Kingma &

8
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Figure 2: The Estimated τ̂ for 8 Layer MLPs

Ba, 2014) with a learning rate of 3 × 10−4. The PGD attack used a perturbation budget of ϵ = 1.0
for all models with iteration number of 40. TRADES was tested with balance parameters β = 6
and β = 12. Experiments were conducted on an Nvidia RTX3090 GPU, using Python 3.9.7 and
PyTorch 1.9.1.

The experiment presented in Table 1 was conducted 10 times. For each iteration, we selected the
best model after 150 epochs and computed the average estimate of cross-layer correlation with the
standard deviation shown in the parentheses. For models with more than two layers, we compute
the simple mean for all the cross-layer correlation for adjacent layers.

Table 1 displays the generalization gap, calculated as the difference between natural risk and em-
pirical risk, along with the average estimates of cross-layer correlations, denoted as τ . The neural
network depths range from 2 to 8, with three different activation functions. Bold text indicates
the highest values, while underlined text represents the lowest values. As observed in Table 1, the
highest average cross-layer correlation corresponds to the largest generalization gap. Except for
the 2-layer and 4-layer neural networks with ReLU6 activation, the lowest cross-layer correlation
also aligns with the smallest generalization gap. The exception is likely due to the limited learning
capacity of linear models.

The left-hand subfigure in Figure 1 illustrates the training dynamics of robust gap for 2-layer MLPs
with the ReLU6 activation function. The model is trained using TRADES, with parameters control-
ling the balance between natural and adversarial risk set to β = 6 and β = 12. When β = 6, the
training balances natural and adversarial risk, while for β = 12, the emphasis on adversarial risk
increases. The right-hand subfigure depicts the corresponding cross-layer correlations.

It is evident that a higher adversarial risk corresponds to a higher cross-layer correlation, as indicated
by the blue line, which aligns with Lemma 5.3.

Figure 2 presents the estimated cross-layer correlations for an 8-layer MLP. As is shown, the initial
layers (Layers 1 to 4) exhibit similar behavior, with correlations remaining close to zero. In contrast,
the later layers diverge significantly from zero. This pattern may suggest different learning behavior
for former and later layers in deep neural networks.

7 CONCLUSION

Inspired by the works of Jin et al. (2020) and Viallard et al. (2021), we perform a Pac-Bayesian
analysis to examine the impact of cross-layer correlation on the generalization gap. Our findings
reveal that the generalization gap increases monotonically with cross-layer correlation. Building on
this, we formally propose a framework that connects natural risk with adversarial risk. Utilizing
this framework, we demonstrate that in linear models, cross-layer correlation similarly amplifies the
robust gap. We empirically test various activation functions in MLPs to validate our proposed the-
orem. Furthermore, we uncover compelling evidence of phase transitions in deep neural networks.
However, further research is required to refine the measurement of cross-layer correlation in more
complex models.

9
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A PROOFS

A.1 MCALLESTER’S BOUND

Since we consider the margin loss and our bound differs from the original paper of Neyshabur et al.
(2018), we first provide the complete proof of McAllester’s bound, showing in Theorem A.1.
Theorem A.1 (McAllester (1998); Guedj & Shawe-Taylor (2019)). Let h be parameterized by
θ ∈ Θ and Rγ , R̂γ be defined in Eq. 5 and 6. Given independent n data samples Sn, fixed prior
probability measure π ∈ P(Θ) and dependent posterior probability measure ρ ∈ P(Θ), with the
probability at least 1− δ, we have

∀ρ ∈ P(Θ), E
θ∼ρ

[Rγ(θ)] ≤ E
θ∼ρ

[
R̂γ(θ)

]
+

√
KL(ρ∥π) + log

√
n
δ

2n
(32)

Proof. Now, we prove the McAllester’s bound. Since 2n[Rγ(h)− R̂γ(h)]
2 is bounded, by Donsker

and Varadhan’s variational formula (Alquier, 2021), we have

eEθ∼ρ[2n[Rγ(θ)−R̂γ(θ)]
2]−KL(ρ∥π) ≤ Eθ∼πe

2n[Rγ(θ)−R̂γ(θ)]
2

(33)

Thus for ε > 0, by Markov inequality,

PSn

[
Eθ∼πe

2n[Rγ(θ)−R̂γ(θ)]
2

≥ ε
]
≤ 1

ε
ESn

[
Eθ∼πe

2n[Rγ(θ)−R̂γ(θ)]
2
]

(34)

=
1

ε
Eθ∼π

[
ESn

e2n[Rγ(θ)−R̂γ(θ)]
2
]
. (35)

And by lemma A.3, lemma A.4 and lemma A.5, we have

ESn
e2n[Rγ(θ)−R̂γ(θ)]

2

≤ ESn
enkl(R̂γ(θ)∥Rγ(θ)) (36)

≤
n∑

k=0

(
n

k

)
µk(1− µ)n−kenkl(R̂γ(θ)∥Rγ(θ)) (37)

≤ 2
√
n (38)

Therefore, with probability at least 1− δ,

eEθ∼ρ[2n[Rγ(θ)−R̂γ(θ)]
2]−KL(ρ∥π) ≤ 2

√
n

δ
(39)

∣∣∣Eh∼ρ[R(h)]− Eh∼ρ

[
R̂Sn(h)

]∣∣∣ ≤
√

KL(ρ∥π) + log 2
√
n

δ

2n
(40)
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Lemma A.2. Given x ∈ [0, 1]m and η ∈ {0, 1}m, we have

x =
∑
η

(∏
ηi=1

xi

∏
ηi=0

(1− xi)

)
η (41)

Proof. We only need to prove
[∑

η

(∏
ηi=1 xi

∏
ηi=0(1− xi)

)
η
]
k
= xk

[∑
η

(∏
ηi=1

xi

∏
ηi=0

(1− xi)

)
η

]
k

= xk

∑
η:ηk=1

 ∏
ηi=1,i̸=k

xi

∏
ηi=0,i̸=k

(1− xi)

 = xk (42)

Lemma A.3. Suppose we have n data samples Sn = (X1, . . . , Xn) ∈ [0, 1]n such that ∀i ∈
[n], Xi

i.i.d.∼ P ∈ P with EP [Xi] = µ, construct the Bernoulli samples S′
n = (X ′

1, . . . , X
′
n) ∈

{0, 1}n and ∀i ∈ [n], X ′
i
i.i.d.∼ Be(µ). Given a convex function h that is permutation symmetric, we

have

EP [h(Sn)] ≤ EBe(µ)[h(S
′
n)] =

n∑
k=0

(
n

k

)
µk(1− µ)n−kh(ηk) (43)

where deterministic variable ηk = (1, 1, · · · , 1, 0, · · · , 0) with first k arguments to be 1 and the rest
are all 0.

Proof.

We only need to prove

EP [h(Sn)] ≤
n∑

k=0

(
n

k

)
µk(1− µ)n−kh(ηk) (44)

Considering lemma A.2 and the fact that h is convex, we have

h(Sn) ≤
∑
η

(∏
ηi=1

Xi

∏
ηi=0

(1−Xi)

)
h (η) (45)

Since h is permutation symmetric,

∑
η

(∏
ηi=1

Xi

∏
ηi=0

(1−Xi)

)
h (η) =

n∑
k=0

(
n

k

) k∏
i=0

Xi

n∏
j=k+1

(1−Xj)h(ηk) (46)

Hence, we have

EP [h(Sn)] ≤
n∑

k=0

(
n

k

) k∏
i=0

EP [Xi]

m∏
j=k+1

(1− EP [Xj ])h(ηk) (47)

=

n∑
k=0

(
n

k

)
µk(1− µ)n−kh(ηk) (48)

Lemma A.4. Let kl(p, q) = KL(Be(p)∥Be(q)). Given h(Sn) = en·kl(
1
n

∑n
i=1 Xi,µ), since h(Sn)

is convex w.r.t. Sn, ∃cn : 2− 2
n < cn < π and cn → π such that√

n

2π
cne

− 1
6 + 2 <

n∑
k=0

(
n

k

)
µk(1− µ)n−kh(ηk) < e

1
12n

√
nπ

2
+ 2 (49)
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Proof. We have

h(ηk) = en·kl(
k
n ,µ) = exp

{
n ·KL

(
Be
(
k

n

)∥∥∥∥Be(µ))} (50)

= exp

{
n

(
k

n
log

k

nµ
+

n− k

n
log

n− k

n(1− µ)

)}
(51)

= exp

{
log

(
k

nµ

)k

+ log

(
n− k

n(1− µ)

)n−k
}

(52)

=

(
k

nµ

)k (
n− k

n(1− µ)

)n−k

(53)

(54)

Hence,
n∑

k=0

(
n

k

)
µk(1− µ)n−kh(ηk) =

n∑
k=0

(
n

k

)
µk(1− µ)n−k

(
k

nµ

)k (
n− k

n(1− µ)

)n−k

(55)

=

n∑
k=0

(
n

k

)(
k

n

)k (
n− k

n

)n−k

(56)

=
n!

nn

n−1∑
k=1

kk

k!

(n− k)n−k

(n− k)!
+ 2 (57)

Considering the Stirling formula
√
2πn

(n
e

)n
< n! <

√
2πn

(n
e

)n
e

1
12n (58)

we have that ∀n > 2

n!

nn

m−1∑
k=1

kk

k!

(n− k)n−k

(n− k)!
>

√
2πn

en

n−1∑
k=1

ek√
2πk

en−k√
2π(n− k)

e−
1
12 (

1
k+ 1

n−k ) (59)

>

√
n√
2π

n−1∑
k=1

1

n

1√
k
n

(
1− k

n

)e− 1
6 (60)

>

√
n

2π
cne

− 1
6 (61)

where 2− 2
n < cn < π and cn → π, since Similarly, we have ∀n > 2

n!

nn

n−1∑
k=1

kk

k!

(n− k)n−k

(n− k)!
<

√
2πn

en
e

1
12n

m−1∑
k=1

ek√
2πk

en−k√
2π(n− k)

(62)

< e
1

12n

√
n

2π

n−1∑
k=1

1

n

1√
k
n

(
1− k

n

) (63)

= e
1

12n

√
n

2π
cn (64)

< e
1

12n

√
nπ

2
(65)
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Lemma A.5. For any µ̂, µ, we have

2(µ̂− µ)2 ≤ KL(Be(µ̂)∥Be(µ)) (66)

Proof. Construct the function

g(µ̂, µ) = KL(Be(µ̂)∥Be(µ))− 2(µ̂− µ)2, (67)

we only need to prove ∀µ̂, µ ∈ [0, 1], g(µ̂, µ) ≥ 0. Since we have

∂g

∂µ
=

(
1− µ̂

1− µ
− µ̂

µ

)
− 4(µ− µ̂) ≥ 0 (68)

Considering g w.r.t. µ̂, we have

∂g

∂µ̂
=

(
log

µ̂

1− µ̂
− log

µ

1− µ

)
− 4(µ̂− µ) (69)

And since,

∂2g

∂µ̂2
=

1

µ̂(1− µ̂)
− 4 ≥ 0 (70)

We have ∂g
∂µ̂ ≥ 0. Therefore,

g(µ̂, µ) =
∂g

∂µ̂

∣∣∣
µ̂=ξ̂

µ̂+
∂g

∂µ

∣∣∣
µ=ξ

µ ≥ 0, (71)

where ξ̂ ∈ [0, µ̂] and ξ ∈ [0, µ].

A.2 MARGIN BOUNDS

Now we prove the margin bounds in Theorem 3.1.

Given Hypothesis h : Θ × X → [0, 1]κ and margin loss defined in Eq. 4, let ρ and π be posterior
and prior probability measure over Θ where π is independent of training data. Then, ∀γ, δ > 0, with
probability at least 1− δ, ∀θ ∈ Θ and perturbated parameter θ̃ subject to

Pθ̃∼ρ

[
max
x∈X

|h(x; θ̃)− h(x;θ)| ≤ γ

4

]
≥ 1

2
, (72)

we have

Rγ(θ) ≤ R̂2γ(θ) +

√
2KL(ρ∥π) + log 4

√
n

δ

2n
. (73)

Proof. Considering the set

S =

{
θ̃ | max

x∈X
∥h(x; θ̃)− h(x;θ)∥∞ <

γ

4

}
(74)

We construct the probability measure ρ as

ρ̃(dθ) =

{
1
zρ(dθ) w ∈ S
0 w /∈ S , ρ̃c(dθ) =

{
0 w ∈ S
1

1−zρ(dθ) w /∈ S (75)
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Where z is normalized constant such that

z =

∫
S

ρ(dθ)

π(dθ)
ρ(dθ) ≥ 1

2
(76)

Hence we have

KL(ρ∥π) =
∫
Θ

log
ρ(dθ)

π(dθ)
ρ(dθ) (77)

= z

∫
S
log z

ρ̃(dθ)

π(dθ)
ρ̃(dθ) + (1− z)

∫
Sc

log(1− z)
ρ̃c(dθ)

π(dθ)
ρ̃c(dθ) (78)

= zKL(ρ̃∥π) + (1− z)KL(ρ̃c∥π) + z log z + (1− z) log(1− z) (79)

Since KL(ρ̃c∥π) ≥ 0,

KL(ρ̃∥π) ≤ 1

z
(KL(ρ∥π)− (z log z + (1− z) log(1− z))) (80)

KL(ρ̃∥π) ≤ 1

z
(KL(ρ∥π) + log 2) (81)

KL(ρ̃∥π) ≤ 2 (KL(ρ∥π) + log 2) . (82)

Since ∀θ̃ ∈ S, we have maxxxx∈X ∥h(x; θ̃)− h(x;θ)∥∞ < γ
4 , consequently for y, j ∈ [κ]

|h(x;θ)y − h(x;θ)j − (h(x; θ̃)y − h(x; θ̃)j)| ≤
γ

2
, (83)

which implies the event{
(x, y) | h(x;θ)y ≤ h(x;θ)

}
⇒
{
(x, y) | h(x; θ̃)y ≤ h(x; θ̃)j +

γ

2

}
(84)

Hence we have ∀θ̃,

Rγ(θ) ≤ Rγ+ γ
2
(θ̃) (85)

R̂γ+ γ
2
(θ̃) ≤ R̂2γ(θ) (86)

Put them together, we have with probability at least 1− δ,

Rγ(θ) ≤ Eρ̃

[
Rγ+ γ

2
(θ̃)
]

(87)

≤ Eρ̃

[
R̂γ+ γ

2
(θ̃)
]
+

√
KL(ρ̃∥π) + log 2

√
n

δ

2n
(88)

≤ R̂2γ(θ) +

√
2KL(ρ∥π) + log 4

√
n

δ

2n
(89)

A.3 PROOF OF THEOREM 4.1

Before giving the proof of Theorem 4.1, we first provide the lemma that shows
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Lemma A.6. Let ωl = vec(Wl) ∈ RNlNl−1 , l ∈ [L] be the vectorized weight matrix on l-th layer,
π be fixed prior Gaussian probability measure and ρ be the posterior Gaussian probability that
dependent of the training process. We assume that the covariance matrices for π and ρ are

Σπ =


σ2
π,1I 0 0 · · · 0
0 σ2

π,2I 0 · · · 0
0 0 σ2

π,3I · · · 0
...

...
...

. . .
...

0 0 0 · · · σ2
π,LI

 ,Σρ =


σ2
ρ,1I K1,2 0 · · · 0
KT

1,2 σ2
ρ,2I K2,3 · · · 0

0 KT
2,3 σ2

ρ,3I · · · 0
...

...
...

. . .
...

0 0 0 · · · σ2
ρ,LI


(90)

where σ2
π,lI, σ

2
ρ,lI are covariance matrices of ωl on probability measure π and ρ separately.

Kl,s, l, s ∈ [L] denotes the cross-covariance defined in Eq. 12. Assume that Σρ is not degener-
ated. Hence, the KL divergence between π and ρ can be lower bounded as

KL(ρ∥π)

≥ 1

2

L∑
l=1

(
∥Eρ[ωl]− Eπ[ωl]∥22

σ2
π,l

+NlNl−1

(
σ2
ρ,l

σ2
π,l

+ log
σ2
π,l

σ2
ρ,l

− 1

)
+ tr

(
KT

l−1,lKl−1,l

σ2
ρ,l−1σ

2
ρ,l

))
.

(91)

Proof. Assume that Σρ is not degenerated, and let ω be the concatenation of all vectorized weight
matrices and µπ = Eπ[ω], µρ = Eρ[ω] for simplicity. Hence, the KL divergence for ρ and π is

KL(ρ∥π) = 1

2
Eρ

[
log

det(Σπ)

det(Σρ)
− (ω − µρ)

TΣ−1
ρ (ω − µρ) + (ω − µπ)

TΣ−1
π (ω − µπ)

]
(92)

=
1

2

[
log

det(Σπ)

det(Σρ)
−

L∑
l=1

NlNl−1 + (µρ − µπ)
TΣ−1

π (µρ − µπ) + tr
(
Σ−1

π Σρ

)]
(93)

=
1

2

[
log

det(Σπ)

det(Σρ)
−

L∑
l=1

NlNl−1 +

L∑
l=1

∥Eρ[ωl]− Eπ[ωl]∥22
σ2
π,l

+ tr
(
Σ−1

π Σρ

)]
(94)

=
1

2

[
log

det(Σπ)

det(Σρ)
+

L∑
l=1

(
∥Eρ[ωl]− Eπ[ωl]∥22

σ2
π,l

+NlNl−1

(
σ2
ρ,l

σ2
π,l

− 1

))]
(95)

where N0 denotes the input dimension. In order to approximate log det(Σρ), we try to triangularize
Σρ, and we have

det (Σρ) = det


I 0 · · · 0

−KT
1,2

σ2
ρ,1

I · · · 0

...
...

. . .
...

0 0 · · · I



σ2
ρ,1I K1,2 · · · 0
KT

1,2 σ2
ρ,2I · · · 0

...
...

. . .
...

0 0 · · · σ2
ρ,LI

 (96)

= det


σ2
ρ,1I K1,2 · · · 0

0 σ2
ρ,2I −

KT
1,2K1,2

σ2
ρ,1

· · · 0

...
...

. . .
...

0 0 · · · σ2
ρ,LI

 . (97)
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Let A1 = I and A2 = I − KT
1,2K1,2

σ2
ρ,1σ

2
ρ,2

and assume it is invertible, we have

det (Σρ) = σ2N1N0
ρ,1 det


σ2
ρ,2A2 K2,3 · · · 0
KT

2,3 σ2
ρ,3I · · · 0

...
...

. . .
...

0 0 · · · σ2
ρ,LI

 (98)

= σ2N1N0
ρ,1 det


I 0 · · · 0

−KT
2,3

σ2
ρ,2

A−1
2 I · · · 0

...
...

. . .
...

0 0 · · · I



σ2
ρ,2A2 K2,3 · · · 0
KT

2,3 σ2
ρ,3I · · · 0

...
...

. . .
...

0 0 · · · σ2
ρ,LI

 (99)

= σ2N1N0
ρ,1 det


σ2
ρ,2A2 K2,3 · · · 0

0 σ2
ρ,3I −

KT
2,3A

−1
2 K2,3

σ2
ρ,2

· · · 0

...
...

. . .
...

0 0 · · · σ2
ρ,LI

 (100)

Define Al = I − KT
l−1,lA

−1
l−1Kl−1,l

σ2
ρ,l−1σ

2
ρ,l

, l ∈ [L] and continue doing this we have

det (Σρ) =

L∏
l=1

σ
2NlNl−1

ρ,l det(Al). (101)

Since
KT

1,2K1,2

σ2
ρ,1σ

2
ρ,2

is symmetric, there exists orthogonal matrix Q1 that could diagnose
KT

1,2K1,2

σ2
ρ,1σ

2
ρ,2

and
we have

A−1
2 =

[
I −

KT
1,2K1,2

σ2
ρ,1σ

2
ρ,2

]−1

(102)

= QT
1 [I − Λ1]

−1
Q1 (103)

⪰ QT
1 Q1

1− λ
(1)
min

(104)

⪰ I, (105)

where Λ1 = Q1
KT

1,2K1,2

σ2
ρ,1σ

2
ρ,2

QT
1 is diagonal matrix and λ

(1)
min denotes the minimal eigenvalue of Λ1, ’⪰’

is the partial order for symmetric matrix. By induction, we have

A−1
l =

[
I −

KT
l−1,lA

−1
l−1Kl−1,l

σ2
ρ,l−1σ

2
ρ,l

]−1

(106)

⪰

[
I −

KT
l−1,lKl−1,l

σ2
ρ,l−1σ

2
ρ,l

]−1

(107)

⪰ I, (108)

Hence,

det (Σρ) =

L∏
l=1

σ
2NlNl−1

ρ,l det(Al) (109)

≤
L∏

l=1

σ
2NlNl−1

ρ,l det

(
I −

KT
l−1,lKl−1,l

σ2
ρ,l−1σ

2
ρ,l

)
(110)

=

L∏
l=1

σ
2NlNl−1

ρ,l

NlNl−1∏
i=1

(
1− λ

(l)
i

)
. (111)
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The KL-divergence becomes

KL(ρ∥π) = 1

2

L∑
l=1

(
∥Eρ[ωl]− Eπ[ωl]∥22

σ2
π,l

+NlNl−1

(
σ2
ρ,l

σ2
π,l

+ log
σ2
π,l

σ2
ρ,l

− 1

)
+ log

1

det(Al)

)
(112)

≥ 1

2

L∑
l=1

∥Eρ[ωl]− Eπ[ωl]∥22
σ2
π,l

+NlNl−1

(
σ2
ρ,l

σ2
π,l

+ log
σ2
π,l

σ2
ρ,l

− 1

)
+

NlNl−1∑
i=1

log
1

1− λ
(l)
i


(113)

Since for x ∈ [0, 1], and by Taylor expansion, we have

log
1

1− x
= x+

1

(1− ξ)2
x2

2!
≥ x (114)

where ξ ∈ (0, x). Therefore,

KL(ρ∥π) ≥ 1

2

L∑
l=1

∥Eρ[ωl]− Eπ[ωl]∥22
σ2
π,l

+NlNl−1

(
σ2
ρ,l

σ2
π,l

+ log
σ2
π,l

σ2
ρ,l

− 1

)
+

NlNl−1∑
i=1

λ
(l)
i


(115)

=
1

2

L∑
l=1

(
∥Eρ[ωl]− Eπ[ωl]∥22

σ2
π,l

+NlNl−1

(
σ2
ρ,l

σ2
π,l

+ log
σ2
π,l

σ2
ρ,l

− 1

)
+ tr

(
KT

l−1,lKl−1,l

σ2
ρ,l−1σ

2
ρ,l

))
(116)

The equality is true as Kl = 0, l ∈ [L].

A.4 PROOF OF THEOREM 4.2

Lemma A.7. Given the same assumption in Theorem A.6 and assuming that each pair of elements
between adjacent weights has the same correlation coefficient, such that

Kl−1,l = σρ,l−1σρ,lτl−1,l1Nl−1,Nl
(117)

where 1Nl−1,Nl
is Nl−1×Nl matrix each element of which is 1, and τ2l−1,l is the Pearson correlation

coefficient. Therefore, we have

KL(ρ∥π) = 1

2

L∑
l=1

(
∥Eρ[ωl]− Eπ[ωl]∥22

σ2
π,l

+NlNl−1

(
σ2
ρ,l

σ2
π,l

+ log
σ2
π,l

σ2
ρ,l

− 1

))
− log

L∏
l=1

det(Al)

(118)
(119)

and det(Al) is determined by the recursive difference equation

det(Al) = 1−
Nl−1Nlτ

2
l−1,l

det(Al−1)
(120)

and we have ∂KL(ρ∥π)
∂τ2

l−1,l
≥ 0 showing that the KL-divergence will increase as each ρ2l−1,l increases.

Proof. Given Eq. 17, A1 = I and let τ̃2l−1,l = Nl−1Nlτ
2
l−1,l for simplicity, we have for l = 2

A2 = I − τ21,21
T
N2,N1

1N1,N2 (121)

= I −N1N2τ
2
1,2

1

N2
1N2,N2

(122)

= I − τ̃21,2
1

N2
1N2,N2

(123)
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by the Neuman series and the fact det(A2) = 1− τ̃21,2, we have

A−1
2 =

∞∑
n=0

(
τ̃21,2
)n 1

N2
1N2,N2

(124)

=
1

1− τ̃21,2

1

N2
1N2,N2 (125)

=
1

det(A2)

1

N2
1N2,N2

(126)

and also

det(A2) = 1−
τ̃21,2

det(A1)
. (127)

By induction let

A−1
l−1 =

1

det(Al−1)

1

Nl−1
1Nl−1,Nl−1

(128)

Hence,

Al = I − τ2l−1,l1
T
Nl,Nl−1

A−1
l−11Nl−1,Nl

(129)

= I −
τ̃2l−1,l

det(Al−1)

1

Nl
1Nl,Nl

(130)

and

det(Al) = 1−
τ̃2l−1,l

det(Al−1)
= 1−

Nl−1Nlτ
2
l−1,l

det(Al−1)
(131)

Now we prove that ∂KL(ρ∥π)
∂τ2

l−1,l
≥ 0. To this end, we only need to prove that ∂

∏L
l=1 det(Al)

∂τ2
l−1,l

≤ 0. As it

can be observed from Eq. 20, det(Al) recursively depends on all τ2s−1,s by det(As), s < l. Hence
by China rule

∂
∏L

l=1 det(Al)

∂τ2s−1,s

=

s−1∏
l=1

det(Al)
∂
∏L

l=s det(Al)

∂τ2s−1,s

(132)

=

s−1∏
l=1

det(Al)

(
L∏

l=s+1

det(Al) +
τ̃2s,s+1

det(As)

L∏
l=s+2

det(Al) + · · ·+
L−1∏
l=s

τ̃2l,l+1

det(Al)

)
∂ det(As)

∂τ2s−1,s

(133)

and because Al ≻ 0, l ∈ [L] is positive definite, we have det(Al) > 0. Hence, the sign of the above
equation depends on

∂ det(As)

∂τ2s−1,s

= − Ns−1Ns

det(As−1)
< 0 (134)

Discussion on Al ≻ 0 Here we explain why Al ≻ 0. We start from A2. According to Eq. 121, we
claim that τ̃21,2 < 1 which represent the total variance of weights at first layer that can be explained
by the second layer. We assume that none of the weights at the first layer can be totally explained
by the second layer.

Lemma A.8. Given data points (x, y) ∼ D, neural network defined in Eq. 3, and the natural and
adversarial risk defined in Eq. 5 and Eq. 8 the adversarial risk can be represented as

Radv
γ (θ, r) = Rγ(θ, r) + P(x,y)∼D

(
Er,γ | ¬E0,γ

)(
1−Rγ(θ, r)

)
(135)
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where

Er,γ =

{
∃ε ∈ Br, hy(x+ ε) ≤ γ + max

j∈Y,j ̸=y
hj(x+ ε)

}
(136)

denotes the event of attack that fails the margin loss, and

¬E0,γ =

{
hy(x) ≤ γ + max

j∈Y,j ̸=y
hj(x+ ε)

}
(137)

denotes correct classification with a margin γ.

Proof. For simplicity, we drop the θ from h and N , i.e., h(θ) = softmax ◦ N (θ). Given γ ∈
[0, 1), r > 0, we have

Radv
γ (θ, r) = E(x,y)∼D

[
sup
ε∈Br

ℓγ(h(x+ ε), y)

]
(138)

= E(x,y)∼D

[
sup
ε∈Br

1

{
hy(x+ ε) ≤ γ + max

j∈Y,j ̸=y
hj(x+ ε)

}]
(139)

= P(x,y)∼D

(
∃ε ∈ Br, hy(x+ ε) ≤ γ + max

j∈Y,j ̸=y
hj(x+ ε)

)
(140)

For simplicity, let us denote the event

Er,γ =

{
∃ε ∈ Br, hy(x+ ε) ≤ γ + max

j∈Y,j ̸=y
hj(x+ ε)

}
(141)

Hence, the event of successful perturbation is

Er,0 =

{
∃ε ∈ Br, hy(x+ ε) ≤ max

j∈Y,j ̸=y
hj(x+ ε)

}
, (142)

the event corresponds to the marginal loss without perturbation is

E0,γ =

{
hy(x) ≤ γ + max

j∈Y,j ̸=y
hj(x)

}
, (143)

the event of correct prediction by a margin at least γ is

¬E0,γ =

{
hy(x) > γ + max

j∈Y,j ̸=y
hj(x)

}
, (144)

and the event of the failure of prediction is

E0,0 =

{
hy(x) ≤ max

j∈Y,j ̸=y
hj(x)

}
(145)

With the notation of Er,γ , the adversarial robust risk becomes

Radv
γ (θ, r) = P(x,y)∼D

(
Er,γ

)
(146)

= P(x,y)∼D

(
Er,γ ∩ E0,γ

)
+ P(x,y)∼D

(
Er,γ ∩ ¬E0,γ

)
. (147)

Since ∀r1 ≤ r2, Er1,γ ⊆ Er2,γ , the event of perturbed marginal loss with smaller perturbation
budget guarantee that with larger budget, we have Er,γ ∩ E0,γ = E0,γ and

Radv
γ (θ, r) = P(x,y)∼D

(
E0,γ

)
+ P(x,y)∼D

(
Er,γ ∩ ¬E0,γ

)
(148)

= P(x,y)∼D

(
E0,γ

)
+ P(x,y)∼D

(
Er,γ | ¬E0,γ

)(
1− P(x,y)∼D

(
E0,γ

))
(149)

= Rγ(θ, r) + P(x,y)∼D

(
Er,γ | ¬E0,γ

)(
1−Rγ(θ, r)

)
(150)
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Theorem A.9. Given the hypothesis h defined in Eq. 2, let the event

E0,γ =

{
hy(x) ≤ γ + max

j∈Y,j ̸=y
hj(x)

}
(151)

and

Er,0 =

{
ε ∈ Br, hy(x+ ε) ≤ max

j∈Y,j ̸=y
hj(x+ ε)

}
(152)

represents the risk of failure for the margin loss and the successful perturbation that changes the
classification results. The event where h is correctly classified by a margin γ but perturbed into
misclassification can be represented and is unbounded as follows:

P(x,y)∼D

(
Er,γ | ¬E0,γ

)
≤ 2r

log 1+γ
1−γ

E(x,y)∼D

(
∥JN (x)∥p

)
(153)

Proof. Given γ1 ≤ γ2, because hy(x + ε) ≤ γ1 + maxj∈Y,j ̸=y hj(x + ε) ⇒ hy(x + ε) ≤
γ1 + (γ2 − γ1) + maxj∈Y,j ̸=y hj(x+ ε), we have Er,γ1

⊆ Er,γ2
. Hence,

P(x,y)∼D

(
Er,γ ∩ ¬E0,γ

)
≥ P(x,y)∼D

(
Er,0 ∩ ¬E0,γ

)
(154)

and we have here for the lower bound

P(x,y)∼D

(
Er,0 ∩ ¬E0,γ

)
= P(x,y)∼D

(
Er,0 | ¬E0,γ

)(
1− P(x,y)∼D

(
E0,γ

))
. (155)

And the event Er,0 conditioned on ¬E0,γ — the corrected predication by a marginal at least γ is
adversarial perturbed — is equivalent to the fact that given correctly predicted input x ∈ X , the
model are successfully perturbed, such that given

hy(x) > γ + max
j∈Y,j ̸=y

hj(x) (156)

there exists ε ∈ Br,

hy(x+ ε) ≤ max
j∈Y,j ̸=y

hj(x+ ε). (157)

Since h(x) = softmax(N (x)), as concluded by Lemma A.10, given x ∈ X , we have

sup
ε∈Br

∥N (x+ ε)−N (x)∥p ≥ 1

2
log

1 + γ

1− γ
(158)

Therefore we have

P(x,y)∼D

(
Er,0 | ¬E0,γ

)
≤ P(x,y)∼D

(
sup
ε∈Br

∥N (x+ ε)−N (x)∥p ≥ 1

2
log

1 + γ

1− γ

)
(159)

≈ P(x,y)∼D

(
sup
ε∈Br

∥JN (x)ε∥p ≥ 1

2
log

1 + γ

1− γ

)
(160)

= P(x,y)∼D

(
∥JN (x)∥p ≥ 1

2r
log

1 + γ

1− γ

)
(161)

By Markov inequality, we have

P(x,y)∼D

(
∥JN (x)∥p ≥ 1

2r
log

1 + γ

1− γ

)
≤ 2r

log 1+γ
1−γ

E(x,y)∼D

(
∥JN (x)∥p

)
(162)

Lemma A.10. Let z ∈ Rn, and softmax function be defined as

softmax(zj) =
ezj∑n
k=1 e

zk
, j = 1, 2 . . . n. (163)
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And for yth and jth variable,
softmax(zy)− softmax(zj) ≤ 0 (164)

Construct a new vector z̃ where
softmax(z̃y)− softmax(z̃j) ≥ γ (165)

where γ ∈ [0, 1). Hence, to meet the requirement of Eq. Eq. 165, the minimal Lp-norm change
between z̃ and z is

inf
z̃

∥z̃ − z∥p ≥ 1

2
log

1 + γ

1− γ
(166)

Proof. We first consider the lower bound for z̃y − z̃j . By definition, we have

ez̃y − ez̃j ≥ γ

n∑
k=1

ez̃k (167)

ez̃y−z̃j − 1 ≥ γ

n∑
k=1

ez̃k−z̃j (168)

ez̃y−z̃j − 1 ≥ γ + γ
∑
k ̸=y,j

ez̃k−z̃j + γ(ez̃y−z̃j ) (169)

(1− γ)ez̃y−z̃j ≥ 1 + γ (170)

z̃y − z̃j ≥ log
1 + γ

1− γ
(171)

(172)
Hence we have that

inf
z̃

∥z̃ − z∥p ≥ (|z̃y − zy|p + |z̃j − zj |p)
1
p (173)

≥ max {|z̃y − zy|, |z̃j − zj |} (174)

=

∣∣∣∣ |z̃y − zy| − |z̃j − zj |
2

∣∣∣∣+ ∣∣∣∣ |z̃y − zy|+ |z̃j − zj |
2

∣∣∣∣ (175)

≥ 1

2
|z̃y − zy − (z̃j − zj)|. (176)

By Eq. 171 and Eq. 164, we have

z̃y − zy ≥ z̃j − zj + log
1 + γ

1− γ
(177)

Hence,

|z̃y − zy − (z̃j − zj)| ≥ log
1 + γ

1− γ
(178)

It concludes that

inf
z′

∥z′ − z∥p ≥ 1

2
log

1 + γ

1− γ
(179)

Lemma A.11. Let N be the L-layer neural network defined in Eq. 3 with linear activation function
ϕ(x) = x, for each l ∈ [L], σ2

l be the variance and τl−1,l be the cross-layer correlation under the
same assumption in Eq. 12 and Eq. 17. In addition, assume all elements in weight matrix at each
layer has the same mean, i.e., E[ωl−1,i] = µl−1, i ∈ [Nl−1 ×Nl−2] E[ωl,j ] = µl, j ∈ [Nl ×Nl−1].
Hence,

∥JN (x;θ)∥p = C ·
L∏

l=1

|τ̂l−1,lσ̂l−1σ̂l + µ̂lµ̂l−1| (180)

where C > 0 is a constant.
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Proof. To complete the proof, we only have to show that ∀l ∈ [L],

WlWl−1 = (τ̂l−1,lσ̂l−1σ̂l + µ̂lµ̂l−1)1Nl,Nl−2
(181)

where 1Nl,Nl−2
is the Nl × Nl−2 matrix with each element of 1. By dot product of the matrix we

have

WlWl−1 =


w

(l)T
1,:

w
(l)
2,:
...

w
(l)
Nl,1

 ·
(
w

(l−1)
:,1 w

(l−1)
:,2 · · · w

(l−1)
:,Nl−2

)
. (182)

Because the (i, j)-th element in WlWl−1 is

w
(l)T
i,: w

(l−1)
:,j = Nl−1

(
σ̂l−1σ̂lτ̂l−1,l + w

(l)
i w

(l−1)
j

)
(183)

where

w
(l)
i =

1

Nl−1

Nl−1∑
k=1

w
(l)
i,k (184)

is the sample mean for the i-th row of the weight matrix Wl, and

w
(l−1)
j =

1

Nl−1

Nl−1∑
k=1

w
(l−1)
k,j (185)

is the column mean for the j-th column of the weight matrix Wl−1. And because we assume the
elements in the weight matrices are the same, we can safely substitute the row- and column mean
with an estimate of total mean µ̂l and µ̂l−1, and we have

w
(l)T
i,: w

(l−1)
:,j = Nl−1

(
σ̂l−1σ̂lτ̂l−1,l + µ̂(l)µ̂(l−1)

)
. (186)

And it concludes.
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