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Chinese User:某人向前行走，跨过某个物体，随后继续前行。

English User: A person walks forward, step over sth., and then continues walking.

MLD BiMD w/o CLA BiMD w/ CLAMDM

(h) A person appears to be running in straight line 
then jumps over something and continues running.

(d) A person walks forward slowly making large strides, 
with both arms outstretched to their sides for balance.

(g) A person standing up leans forward, 
then lowers their head and arms.

(c) A person sits cross legged 
then stands up.

MLD w/ ReAlignMLD

(f) Both hands holding his right leg.

(d) A person turns around sadly 
to wipe away their tears.

(a) A person walks forward, turns 
and then sits on a chair.

MLD w/ ReAlignMLD

(b) A Person tripped over his foot.

MDM w/ ReAlignMDM MotionLCM w/ ReAlignMotionLCM

(a) A person jumps to the right.

(a) A person walks forward, turns 
and then sits on a chair.

Mo.Diffuse w/ ReAlignMo.Diffuse

(e) A person jumps to the right.

Figure 1: Visual comparison of text-to-motion generation. This figure presents motions generated by existing methods, such
as Mo.Diffuse (2024a), MDM (2023), MLD (2023b), and MotionLCM (2024). Observations reveal that the generated motions
exhibit persistent mismatch with input texts and fail to capture motion details. The figure shows that our ReAlign successfully
enhances these models to generate motion with more consistency with text inputs.

Abstract

Text-to-motion generation, which synthesizes 3D human mo-
tions from text inputs, holds immense potential for appli-
cations in gaming, film, and robotics. Recently, diffusion-
based methods have been shown to generate more diversity
and realistic motion. However, there exists a misalignment
between text and motion distributions in diffusion models,
which leads to semantically inconsistent or low-quality mo-
tions. To address this limitation, we propose Reward-guided
sampling Alignment (ReAlign), comprising a step-aware re-
ward model to assess alignment quality during the denoising
sampling and a reward-guided strategy that directs the diffu-
sion process toward an optimally aligned distribution. This
reward model integrates step-aware tokens and combines a
text-aligned module for semantic consistency and a motion-
aligned module for realism, refining noisy motions at each
timestep to balance probability density and alignment. Ex-
tensive experiments of both motion generation and retrieval
tasks demonstrate that our approach significantly improves
text-motion alignment and motion quality compared to exist-
ing state-of-the-art methods.

Introduction
As applications such as gaming, filmmaking, virtual re-
ality, augmented reality, human-computer interaction, and
robotics increasingly require realistic and diverse 3D human

motions, there is a growing need for intuitive and control-
lable motion generation techniques. In this context, text-to-
motion generation, which aims to synthesize human motion
directly from natural language descriptions, has emerged as
a key research topic (Chen et al. 2023b; Dai et al. 2024; Guo
et al. 2022a; Jiang et al. 2024).

Diffusion has emerged as the mainstream approach for
text-driven motion generation (Tevet et al. 2023; Zhang
et al. 2024a). However, diffusion-based models often strug-
gle with text-motion alignment due to their reliance on text
embeddings encoded by CLIP (Radford et al. 2021), which
is trained on text-image pairs rather than text-motion pairs.
Consequently, these models often fail to capture the seman-
tic alignment between text and motion. The motions synthe-
sized by most existing diffusion-based methods lack coher-
ence with the input descriptions (see Figure 1).

Prior works aiming to improve text-to-motion alignment,
such as reinforcement learning with reward functions (Han
et al. 2024; Liu et al. 2024), primarily focus on fine-tuning
generative models to enhance motion quality. These ap-
proaches lack the capability to handle noisy motion inputs.
Moreover, the misalignment issue should be addressed dur-
ing the denoising process itself, rather than corrected retro-
spectively after the final motion is generated.

Another limitation of existing diffusion-based methods is
their inability to produce high-quality motions, often lacking



smoothness and realism. During the reverse diffusion pro-
cess, motion generation relies solely on the diffusion model
without access to real motion references for guidance. To
address this issue, we shift our focus to motion retrieval.
In fact, motion generation and retrieval are closely related
tasks; however, most existing works investigate them sepa-
rately, with few efforts dedicated to exploring their intercon-
nection or developing a unified model for both tasks.

To address these problems, we propose a novel Reward-
guided sampling Alignment strategy (ReAlign) to enhance
text-motion alignment quality with the guidance of a well-
aligned reward distribution. We derive the reward distri-
bution from a step-aware reward comprising two mod-
ules: a text-aligned module to ensure semantic consistency,
and a motion-aligned module to assess realism. Together,
these modules adapt to noisy motions and variations across
timesteps, guiding diffusion model toward a distribution that
not only maximizes probability density but also maintains
strong text-motion alignment. By explicitly addressing both
semantic misalignment and motion quality degradation, this
approach improves the coherence and realism of the gener-
ated motion. The proposed reward model is plug-and-play
and can be seamlessly integrated into any motion diffusion
model without requiring additional fine-tuning. Our main
contributions are as follows:

• Theoretical reward-guided denoising analysis: We
theoretically demonstrate that the reward gradient, de-
rived from both text-aligned and motion-aligned rewards,
progressively influences the denoising process, guiding
the sampling trajectory toward a distribution that better
reflects the intended motion semantics.
• Versatile module for diffusion-based generation: We

propose ReAlign, which comprises a step-aware reward
model and a reward-guided sampling strategy to improve
text-motion alignment. Extensive experiments demon-
strate that our approach significantly enhances existing
diffusion-based motion generation models.

Related Works
Alignment in Text-to-Motion Generation. Text-to-motion
generation represents a critical task in computer vision, ex-
hibiting rapid advancements in recent years (Zhang et al.
2025, 2023c,b; Zhong et al. 2023; Tevet et al. 2022; Yuan
et al. 2025). Diffusion models have been adopted for text-
driven motion generation (Tevet et al. 2023; Zhang et al.
2024a). MotionLCM (Dai et al. 2024) refines motion-latent
diffusion to enable precise spatiotemporal control via few-
step inference.

Alignment represents a versatile technique widely em-
ployed across the domains of language modeling (Rafailov
et al. 2023), image generation (Wallace et al. 2024), and
policy optimization (Chen et al. 2023a). Recently, human
preference alignment is studied in text-to-motion genera-
tion. ReinDiffuse (Han et al. 2024) refines the diffusion
model through reinforcement learning to enhance the phys-
ical plausibility of generated motions. MotionRL (Liu et al.
2024) investigates aligning human preferences using the
proposed multi-reward reinforcement learning framework.

However, these methods focus on fine-tuning generative
models to align preferences or enhance motion quality with-
out explicitly addressing text-motion misalignment. In con-
trast, we tackle this issue with a plug-and-play reward model
in the inference process.
Diffusion-Based Reward-Guided Generation. Guidance
in diffusion models can be driven by either derivative-free or
gradient-based reward models. Derivative-free methods in-
clude Sequential Monte Carlo (SMC)-based guidance (Wu
et al. 2023; Dou and Song 2024; Cardoso et al. 2024) and
Value-Based Importance Sampling (Li, Huang, and Wei
2025), where the former samples across the entire batch,
while the latter performs sampling independently for each
sample without global interaction. The typical gradient-
based reward is classifier guidance (Dhariwal and Nichol
2021; Song et al. 2021). Inference-time guidance is specif-
ically designed for discrete diffusion models (Uehara et al.
2025). Exact sampling from the optimal policy is feasible
within discrete diffusion models under certain limited sce-
narios. A practical implementation of classifier guidance for
discrete diffusion models proposed (Nisonoff et al. 2025).
Search-based algorithms (Wan et al. 2024; Hao et al. 2023)
are also proposed to enhance inference alignment. For image
synthesis, Liu et al. (2023) introduce a unified framework for
multi-modal guidance with both language and image input.
While reward-guided generation has received little attention
in motion synthesis, this work addresses that gap.

Methods
Motivation and Overview Framework
Preliminaries. Existing diffusion-based motion generation
methods (Chen et al. 2023b; Tevet et al. 2023) operate via a
forward process and a reverse process. The forward process
gradually adds noise into the real motion distribution pdata(·)
over timestep, and can be modeled as a stochastic differen-
tial equation (SDE) (Song et al. 2020):

dx = f(x, t)dt+ g(t)dw, (1)

where t is timestep, f(·, ·) and g(·) are the drift and diffusion
coefficients, and w is the Wiener process. For reverse pro-
cess, motions x are generated via trajectory sampling (Song
et al. 2020):

dx = [f(x, t)− g(t)2∇ log pt(x)]dt+ g(t)dw, (2)

where ∇ log pt(x) is the score function of pt(x), directing
sampling toward higher-density regions.
Motivation. While existing text-to-motion diffusion models
enable motion generation with high-quality, they often fail to
generate motions that accurately align with textual descrip-
tions. For example, as illustrated in Figure 2, the diffusion
model prompted to generate a person walking forward to
the right may instead veer left. This misalignment arises as
the sampling distribution pt(x), learned from the diffusion,
prioritizes high-probability regions over semantic fidelity.

Upon analyzing the diffusion sampling process (Fig-
ure 2), we identify a key issue: sampled motions xt (stars)
are guided by gradient descent toward high-density regions
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Figure 2: Illustration of the sampling process in diffusion-based motion generation frameworks. The blue region represents the
sampling distribution pt(·) learned by the diffusion model, while the green region depicts the ideal sampling distribution pIt (·)
achieved by incorporating our proposed reward-guided sampling strategy with the sampling distribution pt(·).

pt(·) but consistently diverge from text embeddings c (trian-
gles). This bias prioritizes probability density over seman-
tic alignment, largely due to the reliance on CLIP (Radford
et al. 2021) as the text encoder. While aligning text with
static images, CLIP struggles with the temporal dynamics
of motion, hindering the diffusion model’s ability to learn a
semantically coherent sampling distribution.

A direct solution is to learn a latent space that aligns
motion-text pairs and then train the diffusion model accord-
ingly. However, the scarcity of motion-text pairs makes it
difficult to train a generalized text encoder for motion, re-
ducing the diffusion model’s generalization ability. Instead,
we propose a more effective approach: leveraging an al-
ready well-aligned distribution to guide the misaligned sam-
pling process. Accordingly, we first estimate a reward dis-
tribution prt (x) from text-motion pairs, capturing semantic
alignment. We then integrate this reward distribution with
the vanilla sampling distribution to construct an ideal dis-
tribution pIt (x). Crucially, our method is independent of
the diffusion training process, allowing seamless integra-
tion into any diffusion model without any finetuning. As
shown in Figure 2, sampling from this ideal distribution
ensures both high-probability density and strong semantic
alignment, overcoming previous limitations.
Overview Framework. Our framework enhances diffusion-
based motion generation by constructing an ideal sam-
pling distribution that balances motion probability with text-
motion alignment. This section describes how we integrate
the reward distribution into the diffusion process and sample
from the resulting ideal distribution.

Formally, assume a reward distribution prt (x|c) has been

estimated. Then we define the ideal distribution as:

pIt (x|c) = pt(x|c)prt (x|c)/Z(c), (3)

where Z(c) =
∫
pt(x|c)prt (x|c)dx is a normalizing con-

stant. This formulation integrates the original sampling dis-
tribution pt(x|c) with the reward distribution prt (x|c), bal-
ancing both probability density and text-motion alignment.

Using this ideal distribution, we modify the reverse pro-
cess for trading-off semantic alignment and high-probability
sampling as stated in the following theorem.
Theorem 1. When using the ideal sampling distribution
pIt (x|c) in Eq. (3) to replace the vanilla sampling distribu-
tion pt(x|c), the reverse SDE becomes:

dx=
[
f(x, t)− g(t)2∇

(
log pt(x|c)+ log prt (x|c)

)]
dt+ g(t)dw.

(4)
Theorem 1 shows that the gradient of the ideal sampling

distribution decomposes into the gradients of pt(x|c) and
prt (x|c). Since pt(x|c) is already known, the estimated re-
ward distribution can directly guide the sampling process
toward the ideal distribution. Next, we detail the estimation
of the reward distribution and outline the motion sampling
procedure.

Step-Aware Alignment for Reward Distribution
A core challenge in estimating the reward distribution
prt (x|c) is achieving precise motion-text alignment under
varying noise levels in the reverse diffusion process (Liang
et al. 2025; Rempe et al. 2023). Existing methods (Petro-
vich, Black, and Varol 2023; Karunratanakul et al. 2023; Li
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Figure 3: Framework of step-aware reward model. During
this process, time-aware tokens, consisting of timestep em-
bedding t and motion embeddings xk

t , are aligned with text
embedding c in the latent space and reconstructed via the
decoder, with the encoder and decoder jointly optimized by
contrastive loss LC and representation loss LR (Petrovich,
Black, and Varol 2022).

et al. 2025) assume clean and noise-free motion, and over-
look timestep-dependent distortions, resulting in coarse and
inconsistent alignments. This misalignment hinders accurate
reward estimation, which is critical for guiding sampling to-
ward semantically faithful motion generation. To address
this, we introduce a step-aware reward model for noise-
adaptive alignment and a motion-to-motion reward to ensure
consistency with real-world motion patterns implied by text.
These components are integrated into a unified reward dis-
tribution to enhance alignment and motion quality.
Step-Aware Reward Model. To mitigate timestep-
dependent misalignment, we introduce a step-aware reward
model R(·)φ illustrated in Figure 3, which explicitly
accounts for noise variations across diffusion timesteps.
Unlike conventional alignment models (Petrovich, Black,
and Varol 2023; Li et al. 2025), our approach incorporates a
timestep token [et] into the motion representation, allowing
the model to learn noise-dependent alignment patterns.
Given an N -frame motion sequence [x1

t , x
2
t , . . . , x

N
t ],

we augment it with the timestep token to form the en-
riched representation [et, x

1
t , x

2
t , . . . , x

N
t ]. This enables the

transformer-based encoder to process motion dynamics
while adapting to different noise levels.

During training, noise is added to motion at timestep t,
and the step-aware reward model Rφ(xt, c) is optimized by
two complementary losses: a representation loss LR (Petro-
vich, Black, and Varol 2022) to learn meaningful motion em-
beddings, and a contrastive loss LC (Oord, Li, and Vinyals
2018) to ensure accurate motion-text retrieval. The overall
training loss LRM (φ;xt, c) is defined as:

LRM (φ;xt, c) = LC(φ;xt, c) + LR(φ;xt, c). (5)

Algorithm 1 detail the training procedure of the step-aware
reward model.

Once trained, the step-aware reward model establishes a
well-aligned latent space. Given a motion x and text condi-
tion c, it evaluates their semantic alignment as:

Rφ(x, c) = cos(zx, zc), (6)

where zx and zc are the respective motion and text embed-
dings in the learned latent space.
Motion-to-Motion Reward. While text-to-motion align-
ment is essential, text descriptions often exhibit ambiguity,
leading to inconsistencies in generated motions. To mitigate

Algorithm 1: Training Step-Aware Reward Model

Input: Step-aware reward model Rφ, training set Dtr,
timestep T range [tmin, tmax], probability parameter ω,
noise scheduler α.

Output: Step-aware reward model Rφ.
1: repeat
2: for (x, c) in Dtr do
3: t← 0 ▷ Initialize t
4: if Uniform(0,1) > ω then
5: t← Uniform(tmin, tmax) ▷ Add noise to motion
6: end if
7: xt ∼ N (

√
αtx, (1− αt)I) ▷ Forward process

8: LRM (φ;xt, c) by Eq. (5) ▷ Compute loss
9: φ← φ−∇φLRM(φ) ▷ Update parameter

10: end for
11: until converged

this, we introduce a motion-to-motion reward, which evalu-
ates alignment by comparing the generated motion xt with a
reference motion xc retrieved from the training set Dtr. The
step-aware reward model is used to select xc as the closest
match to the text condition c:

xc = arg max
x∈Dtr

Rφ(x, c). (7)

This retrieved motion xc acts as a dynamic anchor, ensur-
ing that generated motions remain faithful to real-world mo-
tion patterns implied by the text. Accordingly, The motion-
aligned reward is then computed as:

Rm (xt, c) = cos(zx, zxc), (8)

where zx and zxc are the embeddings of the generated and
retrieved motions, respectively. This ensures generated mo-
tions adhere to real-world motion patterns while maintaining
semantic consistency.
Reward Distribution. With both the step-aware reward
model and the motion-to-motion reward, we define the dual-
alignment reward as:

R (xt, c) = µRφ(xt, c) + ηRm (xt, c) , (9)

where µ and η control the contributions of text-based and
motion-based alignment. This reward formulation defines
the reward distribution over noised motion as:

prt (xt|c) = exp (R (xt, c)) /Z
r(c). (10)

Here, Zr(c) =
∫
exp(Rφ(x, c))dx is for normalization.

By integrating text-motion and motion-motion alignment,
our approach constructs a robust reward signal that captures
both semantic consistency and motion coherence. This en-
ables more precise guidance of the diffusion sampling pro-
cess, ensuring that generated motions are not only probable
but also faithful to their textual descriptions.

Reward-Guided Sampling
Building on the dual-alignment reward R(xt, c) and its

associated distribution prt (xt|c), we now integrate them into
the reverse SDE to refine motion generation. The following
theorem establishes how this reward distribution enhances
sampling for precise text-conditioned synthesis.



Algorithm 2: Reward-Guided Denoise Process

Input: Diffusion model ϵθ, reward model R, training set
Dtr, condition c, timestep T .

Output: Generated motion x0.
1: xT ∼ N (0, I)
2: xc = argmaxx∈Dtr

Rφ(x, c)
3: for t = T, · · · , 1 do
4: use xc to obtain reward score
5: ϵ ∼ N (0, I) if t > 1 else ϵ = 0
6: use Eq. (13) to generate xt−1

7: end for
8: return x0

Theorem 2. Given the reward distribution prt (x|c) defined
in Eq. (10), the reverse SDE can be rewritten as:

dx =
[
f(x, t)− g(t)2∇

(
log pt(x|c) +R (xt, c)

)]
dt+ g(t)dw.

(11)
Theorem 2 reveals that the reward gradient ∇R(xt, c),

derived from both text-aligned and motion-aligned reward
components, directly influences the sampling trajectory. In-
tegrating these gradients into the reverse SDE can dynam-
ically steer the sampling toward a distribution that better
aligns with both textual conditions and realistic structures.

Building upon this continuous-time formulation, for prac-
tical motion generation we then derive its discrete approx-
imation within the DDPM (Ho, Jain, and Abbeel 2020)
framework in the following theorem.
Theorem 3. Given a reverse SDE defined in Eq. (11), adopt-
ing standard DDPM settings (Song et al. 2020; Ho, Jain,
and Abbeel 2020) where f(x, t) = − 1

2 β̄t+∆txt, g(t) =√
βt+∆t, and β̄t = βt+∆t

∆t , with time steps N → ∞ and
step size ∆t = 1

N , the reward-guided denoising process is
given by:

xt−1 =
1√
αt

(
x̄t−1 +

√
βtϵ

)
+

βt√
αt

∇R (xt, c) , (12)

where x̄t−1 = xt − βt√
1−ᾱt

ϵθ(xt, t, c), βt and αt are
the noise schedule parameters, ϵθ(·) represents the diffu-
sion model network, and ϵ is Gaussian noise sampled from
N (0, I).

Theorem 3 demonstrates that the reward gradient
∇R(xt, c), weighted by βt√

αt
, progressively influences the

denoising process, adapting the sampling trajectory toward
a distribution that reflects the intended motion semantics. To
ensure the sampling stability, we remove the weight βt√

αt
on

the reward term, leading to a revised denoising process:

xt−1 =
1√
αt

(
x̄t−1 +

√
βtϵ

)
+∇R(xt, c). (13)

Based on the theoretical framework above, we propose Al-
gorithm 2, which integrates the step-aware reward model
with off-the-shelf classifier-free guidance (CFG) into the
diffusion-based generation process(Ho and Salimans 2022).

Experiment
Experiment Setting
Datasets and Evaluation Metrics. We employ two widely
used text-to-motion datasets, HumanML3D (Guo et al.
2022a) and KIT-ML (Plappert, Mandery, and Asfour 2016)
for evaluation purposes. Consistent with the majority of
prior studies (Guo et al. 2024; Li et al. 2025), we adopt
R-Precision for Top k, Fréchet Inception Distance (FID),
Multi-Modal Distance (MM Dist), and Diversity as evalu-
ation metrics to assess the generation quality and alignment
accuracy of our model.
Implementation Details. We employ the SkipTransformer
(Chen et al. 2023b) as the foundational architecture for our
step-aware reward model, consisting of a transformer en-
coder processing both text and motion inputs, alongside a
motion decoder. Each component features 9 layers and 4 at-
tention heads, with the latent space dimension fixed at 256.
The training process incorporates a maximum timestep of
1000, a noisy motion probability of 0.5, and a negative fil-
tering threshold of 0.9 to regulate the selection of negative
samples. For model training, we adhere to the TMR frame-
work (Petrovich, Black, and Varol 2023), employing a com-
posite loss function expressed as a weighted combination
LC + LR. Optimization is performed using the AdamW al-
gorithm (Loshchilov and Hutter 2017), configured with a
learning rate of 10−4 and a batch size of 512, while other
hyperparameters are consistent with those specified in the
TMR (Petrovich, Black, and Varol 2023).

Results of Motion Generation and Retrieval
Text-to-Motion Generation. As shown in Table 1, our
reward-guided sampling, i.e., ReAlign, significantly en-
hances performance when integrated with state-of-the-art
text-to-motion models. Specifically, by integrating our Re-
Align, MLD++ (Dai et al. 2024) achieves new SoTA results,
with an R@3 of 85.2% (+2.8%), alongside a reduction in
FID of 0.055 (+24.7%) and an MM Dist to 2.648 (+5.8%).
Furthermore, our ReAlign also significantly enhances the
performance of MDM (Chen et al. 2023b), yielding SoTA
results on the KIT-ML dataset, with an R@3 of 78.4%
(+7.3%), alongside a reduction in FID of 0.276 (+44.5%)
and an MM Dist to 2.775 (+10.4%). These consistent im-
provements over the baseline without ReAlign demonstrate
the effectiveness of our reward-guided sampling in enhanc-
ing text-motion alignment quality.
Motion-Text Retrieval. Following the small-batch protocol
of TMR(Petrovich, Black, and Varol 2023), we evaluate our
ReAlign on text–motion retrieval and benchmark it against
the latest state of the art. As summarized in Table 3, ours at-
tains 67.59% R@1 and 87.44% R@3 on HumanML3D for
the text-to-motion retrieval, and reaches 68.94% R@1 and
82.86% R@2 in the motion-to-text retrieval, consistently
surpassing LaMP (Li et al. 2025) and TMR(Li et al. 2025).
On KIT-ML, our approach further pushes performance to
91.19% R@5 and 84.38% R@3, consistently surpassing
baselines. We attribute these improvements to our noise aug-
mentation strategy, which alleviates the limited motion di-
versity and text annotations in both datasets that lead to



Method R Precision ↑ FID ↓ MM Dist ↓ Diversity→
Top 1 Top 2 Top 3

Real 0.511 0.703 0.797 0.002 2.974 9.503

T2M (2022a) 0.455±0.002 0.636±0.003 0.736±0.003 1.087±0.002 3.347±0.008 9.175±0.002

MDM (2023) 0.455±0.006 0.645±0.007 0.749±0.006 0.489±0.047 3.330±0.25 9.920±0.083

T2M-GPT (2023a) 0.492±0.003 0.679±0.002 0.775±0.002 0.141±0.005 3.121±0.009 9.722±0.082

ReMoDiffuse (2023b) 0.510±0.005 0.698±0.006 0.795±0.004 0.103±0.004 2.974±0.016 9.018±0.75

Mo.Diffuse (2024a) 0.491±0.001 0.681±0.001 0.775±0.001 0.630±0.001 3.113±0.001 9.410±0.049

OMG (2024) - - 0.784±0.002 0.381±0.008 - 9.657±0.085

MotionLCM (2024) 0.502±0.003 0.698±0.002 0.798±0.002 0.304±0.012 3.012±0.007 9.607±0.066

Mo.Mamba (2024b) 0.502±0.003 0.693±0.002 0.792±0.002 0.281±0.011 3.060±0.000 9.871±0.084

CoMo (2024) 0.502±0.002 0.692±0.007 0.790±0.002 0.262±0.004 3.032±0.015 9.936±0.066

ParCo (2025) 0.515±0.003 0.706±0.003 0.801±0.002 0.109±0.005 2.927±0.008 9.576±0.088

MARDM (2024) 0.500±0.004 0.695±0.003 0.795±0.003 0.114±0.007 - -
MG-MotionLLM (2025) 0.516±0.002 0.706±0.002 0.802±0.003 0.303±0.010 2.952±0.009 9.960±0.073

EnergyMoGen (2025) 0.526±0.003 0.718±0.003 0.815±0.002 0.176±0.006 2.931±0.007 9.500±0.091

MLD (2023b) 0.481±0.003 0.673±0.003 0.772±0.002 0.473±0.013 3.196±0.010 9.724±0.082

w/ ReAlign (Ours) 0.567±0.003 (+17.9%) 0.759±0.003 (+12.8%) 0.848±0.003 (+9.8%) 0.195±0.005(+58.8%) 2.704±0.007 (+15.4%) 9.474±0.068 (+86.9%)
MLD++(2024) 0.548±0.003 0.738±0.003 0.829±0.002 0.073±0.003 2.810±0.008 9.658±0.089

w/ ReAlign (Ours) 0.572±0.002 (+4.4%) 0.764±0.002 (+3.5%) 0.852±0.001 (+2.8%) 0.055±0.003 (+24.7%) 2.648±0.008 (+5.8%) 9.478±0.055 (+83.9%)

Table 1: Comparison of text-to-motion generation performance on the HumanML3D dataset. These metrics are evaluated
by the evaluator from TM2T (Guo et al. 2022b). The arrows ↑, ↓, and → indicate higher, lower, and closer-to-real-motion
values are better, respectively. Bold highlights the best results. Percentages in subscripts indicate improvements over respective
baselines.

Method R Precision ↑ FID ↓ MM Dist ↓Diversity→
Top 1 Top 2 Top 3

Real 0.424 0.649 0.779 0.031 2.788 11.08

T2M (2022a) 0.361 0.559 0.681 3.022 2.052 10.72
MLD (2023b) 0.390 0.609 0.734 0.404 3.204 10.80
T2M-GPT (2023a) 0.416 0.627 0.745 0.514 3.007 10.86
CoMo (2024) 0.422 0.638 0.765 0.332 2.873 10.95
Mo.Mamba (2024b) 0.419 0.645 0.765 0.307 3.021 11.02
ParCo (2025) 0.430 0.649 0.772 0.453 2.820 10.95

Mo.Diffuse (2024a) 0.417 0.621 0.739 1.954 2.958 11.10
w/ ReAlign (Ours) 0.419 0.639 0.764 0.805 2.801 10.66
MDM (2023) 0.403 0.606 0.731 0.497 3.096 10.74
w/ ReAlign (Ours) 0.451 0.664 0.784 0.276 2.775 10.76

Table 2: Comparison of text-to-motion generation perfor-
mance on the KIT-ML dataset. Bold highlights the best re-
sults. Since the models MLD (Chen et al. 2023b) and MLD++
(Dai et al. 2024) for the KIT-ML dataset have not been re-
leased, we use the widely used MDM (Tevet et al. 2023) as the
baseline.

many hard negative samples, thereby enhancing the model’s
discriminative capability for subtle motion variations.
Plug-and-Play Capability of ReAlign. To demonstrate the
plug-and-play capability and generalizability of our Re-
Align, we integrate it into various diffusion-based mod-
els for text-to-motion generation, as shown in Table 4.
Across methods such as Mo.Diffuse (Zhang et al. 2024a),
MDM (Tevet et al. 2023), MLD (Chen et al. 2023b), Mo-
tionLCM (Dai et al. 2024), MLD++ (Dai et al. 2024).
Our ReAlign consistently enhances performance. Notably,
it achieves substantial improvements in alignment quality
and motion realism, with relative gains of up to 17.9% in
R@1 and 58.8% in FID for MLD. While diversity slightly
decreases in some cases, this is expected and beneficial. Bet-
ter diversity does not always indicate better quality, as it sim-
ply reflects motion variety. ReAlign prioritizes well-aligned
motions over misaligned ones, leading to significant gains
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Figure 4: Comparison of motion generation quality across
denoising steps for the MLD w/o ReAlign, MLD w/o Step-
Aware, and MLD w/ Step-Aware (ReAlign). ReAlign con-
sistently outperforms the others, highlighting the necessity
of explicit noise handling during denoising.

in other metrics without compromising generation quality.
These results underscore the plug-and-play capability of this
module, effectively elevating the efficacy of diverse motion
generation frameworks.

Ablation Studies and Discussions
Effectiveness of Handling Noisy. To verify the necessity
of handling noise and to avoid reward hacking, we var-
ied the denoising steps of MLD from 1 to 50, employing
both the reward model (RM) and the ReAlign to perform
reward-guided sampling. This comples the model to gener-
ate noisy motions. As shown in Figure 4, compared to the
baseline and the RM, ours achieves superior performance
across all denoising steps, demonstrating that explicitly han-
dling noise during the denoising benefits the generation of
higher quality motions. Notably, we observed that MLD
generates motions with discernible semantics even in the
early steps of denoising, rather than purely noise. This be-
havior may be attributed to the latent VAE used in MLD,
which inherently exhibits robustness to noise. These exper-
imental results demonstrates the feasibility and necessity
of handling noise in denoising, aligning with conclusions



Methods Noise Text-Motion Retrieval↑ Motion-Text Retrieval↑
R@1 R@2 R@3 R@5 R@10 R@1 R@2 R@3 R@5 R@10

H
um

an
M

L
3D TEMOS (2022) ✗ 40.49 53.52 61.14 70.96 84.15 39.96 53.49 61.79 72.40 85.89

T2M (2022b) ✗ 52.48 71.05 80.65 89.66 96.58 52.00 71.21 81.11 89.87 96.78
TMR (2023) ✗ 67.16 81.32 86.81 91.43 95.36 67.97 81.20 86.35 91.70 95.27
LaMP (2025) ✗ 67.18 81.90 87.04 92.00 95.73 68.02 82.10 87.50 92.20 96.90
ReAlign (ours) ✓ 67.59 82.24 87.44 91.97 96.28 68.94 82.86 87.95 92.44 96.28

K
IT

-M
L T2MOS (2022) ✗ 43.88 58.25 67.00 74.00 84.75 41.88 55.88 65.62 75.25 85.75

T2M (2022b) ✗ 42.25 62.62 75.12 87.50 96.12 39.75 62.75 73.62 86.88 95.88
TMR (2023) ✗ 49.25 69.75 78.25 87.88 95.00 50.12 67.12 76.88 88.88 94.75
ReAlign (ours) ✓ 52.84 71.66 82.96 91.19 97.59 52.98 72.87 84.38 92.61 96.87

Table 3: Comparison of Text-to-motion (left) and motion-to-text (right) retrieval methods on the HumanML3D and KIT-
ML datasets. The column “Noise” indicates whether the method can handle noisy motion from the denoised process.

Method R Precision ↑ FID ↓ MM Dist ↓ Diversity→
Top 1 Top 2 Top 3

Real 0.511 0.703 0.797 0.002 2.974 9.503

MDiff (2024a) 0.491 0.681 0.775 0.630 3.113 9.410
w/ ReAlign 0.534+8.8% 0.733+7.6% 0.829+7.0% 0.370+41.3% 2.807+9.9% 9.372-0.04

-40.9%

MDM (2023) 0.455 0.645 0.749 0.489 3.330 9.920
w/ ReAlign 0.470+3.3% 0.677+5.0% 0.789+5.3% 0.325+33.5% 3.129+6.0% 9.355+0.27

+64.5%

MLD (2023b) 0.481 0.673 0.772 0.473 3.196 9.724
w/ ReAlign 0.567+17.9% 0.759+12.8% 0.848+9.8% 0.195+58.8% 2.704+15.4% 9.474+0.19

+86.9%

MLCM1 (2024) 0.546 0.743 0.837 0.072 2.767 9.577
w/ ReAlign 0.555+1.7% 0.751+1.1% 0.841+0.5% 0.088-22.2% 2.726+1.5% 9.541+0.04

+48.6%

MLCM4 (2024) 0.502 0.698 0.798 0.304 3.012 9.607
w/ ReAlign 0.540+7.6% 0.739+5.9% 0.833+4.4% 0.273+10.2% 2.797+7.1% 9.683-0.08

-73.1%

MLD++ (2024) 0.548 0.738 0.829 0.073 2.810 9.658
w/ ReAlign 0.572+4.4% 0.764+3.5% 0.852+2.8% 0.055+24.7% 2.648+5.8% 9.478+0.13

+83.9%

Table 4: Performance enhancement of motion generation
methods with plug-and-play step-aware reward guid-
ance. Results are evaluated on the HumanML3D dataset,
with improvements reported relative to baseline methods.
Here, MLCM1 and MLCM4 denote the 1-step and 4-step
models in MotionLCM (2024). MDiff is an abbreviation of
MotionDiffuse (2024a).

drawn in DALLE-2 (2022) and GILIDE (2021).
Effectiveness of Reward Sampling. We assess the Re-
Align, including T2M and M2M alignment rewards, along
with the step-aware strategy in text-to-motion generation on
MLD (Chen et al. 2023b). As shown in Table 5, results in-
dicate that the T2M reward significantly improves the align-
ment between the generated motions and text descriptions,
as well as the realism of the motions. While the M2M re-
ward alone exhibits limited efficacy due to the inaccuracy of
text-to-motion retrieval, its integration with the step-aware
strategy further enhances motion realism, validating the ne-
cessity of handling noise during the sampling. The combi-
nation of T2M and step-aware strategies achieves optimal
performance, with M2M providing additional realism gains.
Discussion on ReAlign and Classifier-free Guidance. As
shown in Table 6, our RaAlign is compatible with Classifier-
Free Guidance (CFG) (Ho and Salimans 2022), and their
integration can further unleash the performance of the dif-

T2M M2M SA R Precision ↑ FID ↓ MM Dist ↓ Diversity→
Top 1 Top 2 Top 3

✗ ✗ ✗ 0.481 0.673 0.772 0.473 3.196 9.724

✓ ✗ ✗ 0.556 0.747 0.841 0.213 2.761 9.516
✗ ✓ ✗ 0.517 0.721 0.809 0.188 2.932 0.455
✓ ✓ ✗ 0.556 0.750 0.840 0.181 2.750 9.529

✓ ✗ ✓ 0.568 0.761 0.850 0.212 2.714 9.598
✗ ✓ ✓ 0.523 0.709 0.810 0.203 2.963 9.525
✓ ✓ ✓ 0.567 0.759 0.848 0.195 2.704 9.474

Table 5: Ablation study of the text-to-motion on Hu-
manML3D dataset. “T2M”, “M2M” and “SA” denote the
text-to-motion reward, motion-to-motion reward and step-
aware training, respectively.

CFG ReAlign R Precision ↑ FID ↓ MM Dist
↓

Diversity
→Top 1 Top 2 Top 3

✗ ✗ 0.263 0.407 0.506 0.586 4.823 8.613
✓ ✗ 0.481 0.673 0.772 0.473 3.196 9.724
✓ ✓ 0.567 0.759 0.848 0.195 2.704 9.474

Table 6: Ablation study of the guidance strategy on
HumanML3D dataset. “CFG” and “ReAlign” denote the
classifier-free guidance and our ReAlign, respectively.

fusion model. Unlike CFG, which requires training, our Re-
Align is plug-and-play and supports flexible reward function
design tailored to different tasks (e.g., physical reward, tra-
jectory reward, style reward, etc.). In this work, we primarily
focus on improving text-motion alignment, while future re-
search will explore reward designs for more tasks.

Conclusion
We propose ReAlign, a plug-and-play reward-guided sam-
pling strategy for diffusion-based text-to-motion generation.
By jointly optimizing text-aligned and motion-aligned re-
wards during denoising, ReAlign effectively improves se-
mantic consistency and motion realism. Our method inte-
grates seamlessly with existing diffusion models without ex-
tra fine-tuning. Extensive experiments demonstrate that Re-
Align achieves significant gains in both text-motion align-
ment and motion quality over state-of-the-art baselines.
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tial/no/NA) yes

4.8. This paper specifies the computing infrastructure
used for running experiments, including GPU/CPU
models; amount of memory; operating system;
names and versions of relevant software libraries and
frameworks (yes/partial/no) partial

4.9. This paper formally describes evaluation metrics
used and explains the motivation for choosing these
metrics (yes/partial/no) yes

4.10. This paper states the number of algorithm runs used
to compute each reported result (yes/no) yes

4.11. Analysis of experiments goes beyond single-
dimensional summaries of performance to include
measures of variation, confidence, or other distribu-



tional information (yes/no) no

4.12. The significance of any improvement or decrease in
performance is judged using appropriate statistical
tests (e.g., Wilcoxon signed-rank) (yes/partial/no) no

4.13. This paper lists all final (hyper-)parameters used
for each model/algorithm in the paper’s experiments
(yes/partial/no/NA) yes


