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Abstract001

A modal dependency structure represents a web002
of connections in a document describing the003
source and epistemic strength of statements004
that helps to establish factuality in a given005
text. Obtaining such graphs defines a core task006
of modal dependency parsing, which involves007
event and source identification as well as la-008
beling of modal relations between them. In009
this paper, we propose a simple yet effective010
biaffine modal dependency parser for English011
and Chinese that outperforms previous work.012

1 Introduction013

At a time when we find ourselves inundated with014

endless streams of new information and knowledge,015

being able to identify and trace a source of informa-016

tion as well as confidence with which it is conveyed017

is often helpful—if not sometimes critical—for bet-018

ter understanding the context behind a text or dis-019

course. Modal dependency structure (MDS) (Vigus020

et al., 2019) is designed with such representation021

in mind, where the sources (formerly known as022

concievers) and events are the nodes of the graph023

and their edges denote (1) source of factualiy via024

its direction and (2) level of certainty via its label025

as a combination of 3 modal strengths (Full, Par-026

tial, and Neutral) and 2 polarities (Affirmative and027

Negative) based on the annotation scheme from028

FactBank (Saurí and Pustejovsky, 2009).029

Figure 1 shows an example modal dependency030

tree for a sample document: ‘Kim left to join031

the others. “They are probably eating,”032

she said.’ Rooted by an abstract author (author)033

node whose presence is implied everywhere as the034

creator of the document, an MDS often shows035

heavy traffic through the author as a principal036

source of many statements. In the example, the037

author is responsible for claiming that the event038

of Kim having left and said occurred with full039

certainty, but the opposite is the case with join040

Figure 1: Example of Modal Dependency Graph
for “Kim left to join the others. ‘They are
probably eating,’ she said.” AFF stands for
full-affirmative, NEG for full-negative, and
PRT-AFF for partial-affirmative.

event, which is best described as a purpose be- 041

hind Kim’s decision to leave. The author further 042

participates in a chain of conceivers that can be 043

seen with the author-to-she (coreferent to Kim) 044

full-affirmative edge. This representation al- 045

lows for a chain of sources to arise which is typ- 046

ical with reporting or relaying of information. In 047

Figure 1 it is Kim’s judgment that eating proba- 048

bly (partial-affirmative) happened, which is 049

then relayed with full confidence by the author 050

(full-affirmative) to the audience. 051

In order to obtain modal dependency tree1 from a 052

text input, modal dependency parsing (MDP) needs 053

to identify the events and conceivers in addition 054

to predicting relations between them. Yao et al. 055

(2021) first reported baseline results on MDP with 056

1In general, MDS forms a tree not a graph.
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Kim left to join the others. “They are probably eating,” she said. AUTH NULL
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Figure 2: Example of biaffine modal dependency parsing for: ‘Kim left to join the others. “They are probably
eating,” she said.’ Orange nodes indicate special abstract nodes Author and Null-Conceiver. BIO tags below are
predicted by the tagger for spans of events and conceivers. Arcs and their labels above are generated by biaffine
dependency parser.

a 2-stage pipeline that consists of tagging followed057

by ranking of parent candidates to construct a graph.058

Yao et al. (2022) followed up by framing the task as059

language model priming, in which a prompt with060

an event in question is provided with context from061

which its parent, optional grandparent as well as062

their modal labels are predicted by a fine-tuned063

language model. While this method avoids error064

propagation from earlier work by being trained end-065

to-end, the context is local in scope as determined066

by the number of sentences before and after the067

sentence in which the event in question occurs.068

This entails having to manually define a context069

window which is often arbitrary and sub-optimal.070

In this work, we present a simple yet effec-071

tive solution in the form of biaffine modal depen-072

dency parsing whose context scope naturally en-073

compasses the entire document. The model con-074

sists of token-level classification for event/con-075

ceiver identification paired with biaffine module076

for arc generation and labeling. This approach not077

only avoids the error propagation of baseline rank-078

ing model but also only requires a single pass over079

a document owing to its global scope. Experiments080

show that our approach outperforms previous work081

in English and Chinese MDP.082

2 Related Work083

Traditionally, event factuality prediction (EFP) was084

seen as a classification or regression problem that085

involved rule-based (Nairn et al., 2006; Lotan et al.,086

2013) or statistical approaches (Diab et al., 2009;087

Saurí and Pustejovsky, 2012; Lee et al., 2015;088

Stanovsky et al., 2017). With widespread adop-089

tion of deep learning came a surge of neural mod-090

els for the task, for instance based on LSTMs091

(Rudinger et al., 2018), GANs (Qian et al., 2018)092

or GNNs (Pouran Ben Veyseh et al., 2019). Yao093

et al. (2021) is the first work that casted EFP as 094

modal dependency parsing and reported baseline 095

results along with publicly available annotations in 096

English2. This was followed up by prompt-based 097

parser (Yao et al., 2022) that alleviated error prop- 098

agation inherent in the pipeline approach of the 099

baseline in addition to reporting first results on Chi- 100

nese MDP. Our biaffine model further simplifies 101

the setup while improving on model performance 102

in both languages. This line of approach based on 103

deep biaffine scoring mainly traces its roots to de- 104

pendency parsing (Dozat and Manning, 2017, 2018; 105

Zhang et al., 2020) but has also been explored in 106

other areas such as NER tagging (Yu et al., 2020) 107

and constituency parsing (Bai et al., 2021; Chen 108

and Komachi, 2023). 109

3 Approach 110

Our approach predicts (1) event and conceiver 111

spans via token classification and (2) arcs and re- 112

lation labels via biaffine dependency parsing in a 113

single step. These modules share a common docu- 114

ment encoder which relies on pre-trained language 115

model (PLM) for contextualized embeddings. 116

The BIO tagger is inherited from Yao et al. 117

(2021) and Yao et al. (2022) where B, I, and O refer 118

to beginning, inside, and outside of a span respec- 119

tively. The identified events and conceivers then 120

attempt to locate their parent via biaffine scoring 121

mechanism in a greedy manner. Once the parent 122

is located, the newly created edge is labeled by a 123

separate biaffine layer. 124

Figure 2 shows an example of this approach, 125

where the input text is augmented with two spe- 126

cial tokens Author and Null Conceiver3 at the end. 127

2https://github.com/jryao/modal_dependency
3A Null Conceiver is a special case when a conceiver is

not specified.
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English Train Dev Test
Documents 289 32 32
Sentences 6,825 740 759

Tokens 151,487 17,308 17,177
Conceivers 2,344 298 296

Events 19,541 2,307 2,168
AFF 18,425 2,205 2,077
NEG 800 99 89

PRT-AFF 1,292 165 158
NEUT-AFF 1,368 136 140

Chinese Train Dev Test
Documents 237 30 30
Sentences 3,187 398 366

Tokens 79,809 10,352 10,053
Conceivers 879 136 116

Events 11,679 1,464 1,318
AFF 10,879 1,383 1,257
NEG 331 (298*) 50 (45*) 31

PRT-AFF 919 103 101
PRT-NEG 0 (26*) 0 (5*) 0
NEUT-AFF 429 64 45
NEUT-NEG 0 (7*) 0 0

Table 1: Summary statistics of English and Chinese modal dependency datasets. Conceivers does not include
Author which occurs once per document. Labels does not include Depends-on which occurs once per document.
AFF stands for Affirmative, NEG stands for Negative, PRT stands for Partial and NEUT stands for Neutral. *Numbers
in parenthesis in Chinese statistics denote counts of fine-grained negative values in a 6-way version of the corpus.

They serve as target index for arc generation as128

shown by the dependency arcs above. Colored129

BIO tags below indicate the spans of events and130

conceivers as predicted by the tagger.131

The figure also highlights the core difference of132

our setup against that of conventional dependency133

parsing, where it is assumed that every token has134

a parent to point to. Since this approach only fo-135

cuses on spans annotated by BIO tagger, it may be136

described as being comparatively sparse, which is137

partially offset by the fact that text input in MDP is138

generally a multi-sentence document.139

Model140

Formally, a document d is represented as a se-141

quence of tokens (t0, ..., t−1, AUTH, NULL),142

where the surface tokens are followed by two spe-143

cial tokens denoting the Author and Null Con-144

ceiver.145

Let H = (h0, ..., h−1, hAUTH, hNULL) be the146

contextualized embedding output from PLM for147

the document d. Tag score for ith token is obtained148

by a feedforward layer:149

ŷtag
i = FFN(hi)150

Arc and relation scores for ith token and jth par-151

ent candidate token is obtained by two independent152

biaffine scorers:153

ŷarc
i,j = Biaffine1(hi, hj)154

ŷrel
i,j = Biaffine2(hi, hj)155

Our model attempts to minimize the negative log 156

likelihood which is the sum of cross entropy losses 157

from 3 sub-tasks: 158

L = Ltag + Larc + Lrel 159

Loss signals for arc and relation are not generated 160

from non-event and non-conceiver tokens. 161

Inference 162

Spans of events and conceivers are first identified 163

by the BIO tagger. As we search for parent of each 164

of these entities, non-events and non-conceivers 165

(labeled O by the tagger) are masked out to guide 166

decoding process. 167

For each span, the first token is taken as represen- 168

tative of the whole, and the arc generator produces 169

a score against all of the other spans and special 170

tokens Author and Null Conceiver, with the argmax 171

as the most compatible head. If a parent span con- 172

sists of multiple tokens, it is only required that 173

some index within the span be predicted by arc 174

generator in order to correctly assign the parent. 175

The emergency fall-back behavior is to attach to 176

the Author node to ensure the graph is connected. 177

4 Experiments 178

4.1 Data 179

The parser is trained and evaluated using the En- 180

glish (Yao et al., 2021) and Chinese (Liu and Xue, 181

2023) modal dependency corpora. We follow pre- 182

vious work on the train/eval/test splits for both lan- 183

guages. The summary statistics are provided in 184

Table 1. 185
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Models Split
English Chinese

Event Conceiver Parsing Event Conceiver Parsing

Baseline
Dev 92.8 71.1 71.8* - - 61.7*
Test 90.9 70.4 69.3* - - 59.0*

Prompt-based
Dev 93.2 - 72.7 87.4 - 65.5
Test 91.9 - 71.9 88.6 - 63.6

Biaffine
Dev 93.3 72.7 74.0 86.7 88.6 68.2
Test 92.0 74.2 72.6 87.4 87.5 66.1

Table 2: Experimental results showing Event and Conceiver identification and Parsing micro-F score. Empty values
indicate unreported results. *Baseline parsing results are based on the re-implementation of Yao et al. (2022) rather
than from the original publication (Yao et al., 2021).

Unlike English dataset which only offers coarse186

modal labels where all of negative polarity la-187

bels are merged into full-negative (Yao et al.,188

2021), Chinese dataset additionally offers a fine-189

grained version with partial-negative and190

neutral-negative annotations, albeit only a few191

in number. It is not explicitly stated which version192

is used in the experiments of Yao et al. (2022); we193

report results using the fine-grained version.194

4.2 Setup195

We use the Huggingface4 (Wolf et al., 2020) im-196

plementation of Longformer-base (Beltagy et al.,197

2020) as PLM in English experiments. The choice198

is largely based on its context window of 4k tokens,199

making it a suitable choice for encoding documents200

compared to other variants with smaller context201

window such as BERT (Devlin et al., 2019). For202

Chinese, in the absence of a robust Longformer-203

equivalent for the language, we use XLM-roberta-204

base (Conneau et al., 2020). Similar to Yao et al.205

(2022), input sequences in Chinese longer than the206

encoder’s context window are split into smaller207

segments using a stride which is half the size of208

context window. Each segment then gets encoded209

independently before being merged together for210

the output projection layers from BIO tagger and211

biaffine dependency parser. Biaffine layer imple-212

mentation is based on SuPar5.213

4.3 Results214

Table 2 shows overall parsing results on English215

and Chinese MDP in micro F-score as average216

across 3 different seeds. Our biaffine approach217

outperforms the prompt-based model by 1.3% on218

the development set, along with a modest 0.7%219

4https://huggingface.co/docs/transformers
5https://github.com/yzhangcs/parser

gain on the test set in English. The improvement is 220

more significant with Chinese, with 2.5% increase 221

in both development and test set despite lower tag- 222

ging score for Events. 223

4.4 Analysis 224

It appears that conceiver identification still remains 225

a major bottleneck in English MDP, although it is 226

fundamentally tied to event identification and edge 227

attachment. This is because a conceiver is never a 228

terminal node in MDS; its existence always implies 229

at least one child—another conceiver or, generally 230

speaking, an event. Therefore, detecting conceivers 231

with higher accuracy would always entail balanced 232

improvement across a range of different sub-tasks 233

to reach optimal performance. 234

The marked increase in Chinese MDP appears 235

to be because of the setup used in Yao et al. (2022), 236

where the context in the prompt-based model for 237

Chinese includes all of the past sentences and 3 238

sentences after the current event. While this is pre- 239

sumably based on the distribution of arc lengths 240

based on the number of sentences crossed, it greatly 241

increases the context space which makes the prob- 242

lem more difficult than in English, where the con- 243

text includes 5 sentences before and 5 sentences 244

after. The advantage of our biaffine approach is 245

that it does away with having to define an often 246

arbitrary context window by covering the entire 247

context naturally. 248

5 Conclusion 249

This work presents a biaffine modal dependency 250

parser that is simple yet effective. The model is 251

evaluated on English and Chinese datasets and in 252

both instances show improved performance com- 253

pared to previous work. 254

4
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6 Limitations255

MDP experiments remain focused on English and256

Chinese due to the limited availability of modal de-257

pendency annotations in other languages. However,258

with the adoption of modal dependency structure in259

Uniform Meaning Representation (UMR) (Van Gy-260

sel et al., 2021), more and more annotations for261

low-resource languages such as Arapaho, Cocama-262

Cocamilla, Navajo, Sanapaná and potentially addi-263

tional languages may be prepared and released for264

future model fitting.265

The fact that the overall loss consists of 3 dif-266

ferent signals makes the training potentially unbal-267

anced and slow to converge. In future work, we268

plan to investigate whether tagging could be ab-269

sorbed as part of arc and label generation, thereby270

eliminating one of the loss terms at the cost of271

increased difficulty for the remaining tasks.272
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A Corpus Details 435

The publicly available English dataset (Yao et al., 436

2021) contains newswire annotations from various 437

news media sources (Yao et al., 2022). The Chinese 438

dataset also consists of newswire data from Xinhua 439

news agency. 440

B Implementation Details 441

Hyperparameter English Chinese
PLM longformer-base xlm-roberta-base

PLM Dropout 0.1 0.1
Max. Seq. Len. 4096 512

Chunk Encoding* False True
Batch Size 4 1

Grad. Acc. Steps 4 4
Epochs 1,000 1,000
Optim. AdamW AdamW

LR 5e-5 5e-5
Weigh Decay 0.01 0.01
Warmup Prop. 0.1 0.1

Arc Hidden Dim. 512 400
Arc Dropout 0.33 0.33

Rel. Hidden Dim. 128 100
Rel. Dropout 0.33 0.33

Table 3: Hyperparameters used in experiments. *Chunk
Encoding refers to a document being split into ‘chunks’
by tokenization with stride, in order to cope with doc-
uments longer than PLM encoder’s Max Seq. Length.
For details, see 4.2.

C Experimental Details 442

All experiments were run on a single NVIDIA 443

RTX A6000 GPU and each run takes about 6 to 8 444

hours with the hyperparameters in B. The num- 445

ber of parameters for the English model based 446
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on Longformer-base (Beltagy et al., 2020) is447

149,386,249; that of Chinese model based on XLM-448

roberta-base (Conneau et al., 2020) is 278,770,441.449

7


	Introduction
	Related Work
	Approach
	Experiments
	Data
	Setup
	Results
	Analysis

	Conclusion
	Limitations
	Corpus Details
	Implementation Details
	Experimental Details

