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ABSTRACT

Semi-supervised learning, i.e., training networks with both labeled and unlabeled
data, has made significant progress recently. However, existing works have pri-
marily focused on image classification tasks and neglected object detection which
requires more annotation effort. In this work, we revisit the Semi-Supervised
Object Detection (SS-OD) and identify the pseudo-labeling bias issue in SS-
OD. To address this, we introduce Unbiased Teacher1, a simple yet effective
approach that jointly trains a student and a gradually progressing teacher in a
mutually-beneficial manner. Together with a class-balance loss to downweight
overly confident pseudo-labels, Unbiased Teacher consistently improved state-of-
the-art methods by significant margins on COCO-standard, COCO-additional,
and VOC datasets. Specifically, Unbiased Teacher achieves 6.8 absolute mAP
improvements against state-of-the-art method when using 1% of labeled data on
MS-COCO, achieves around 10 mAP improvements against the supervised base-
line when using only 0.5, 1, 2% of labeled data on MS-COCO.

1 INTRODUCTION

The availability of large-scale datasets and computational resources has allowed deep neural net-
works to achieve strong performance on a wide variety of tasks. However, training these networks
requires a large number of labeled examples that are expensive to annotate and acquire. As an al-
ternative, Semi-Supervised Learning (SSL) methods have received growing attention (Sohn et al.,
2020a; Berthelot et al., 2020; 2019; Laine & Aila, 2017; Tarvainen & Valpola, 2017; Sajjadi et al.,
2016; Lee, 2013; Grandvalet & Bengio, 2005). Yet, these advances have primarily focused on image
classification, rather than object detection where bounding box annotations require more effort.

In this work, we revisit object detection under the SSL setting (Figure 1): an object detector is trained
with a single dataset where only a small amount of labeled bounding boxes and a large amount of
unlabeled data are provided, or an object detector is jointly trained with a large labeled dataset as
well as a large external unlabeled dataset. A straightforward way to address Semi-Supervised Object
Detection (SS-OD) is to adapt from existing advanced semi-supervised image classification meth-
ods (Sohn et al., 2020a). Unfortunately, object detection has some unique characteristics that interact
poorly with such methods. For example, the nature of class-imbalance in object detection tasks
impedes the usage of pseudo-labeling. In object detection, there exists foreground-background
imbalance and foreground classes imbalance (see Section 3.3). These imbalances make models
trained in SSL settings prone to generate biased predictions. Pseudo-labeling methods, one of the
most successful SSL methods in image classification (Lee, 2013; Sohn et al., 2020a), may thus be
biased towards dominant and overly confident classes (background) while ignoring minor and less
confident classes (foreground). As a result, adding biased pseudo-labels into the semi-supervised
training aggravates the class-imbalance issue and introduces severe overfitting. As shown in Fig-
ure 2, taking a two-stage object detector as an example, there exists heavy overfitting on the fore-

∗Work done partially while interning at Facebook.
1Code: https://github.com/facebookresearch/unbiased-teacher.
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Figure 1: (a) Illustration of semi-supervised object detection, where the model observes a set of
labeled data and a set of unlabeled data in the training stage. (b) Our proposed model can efficiently
leverage the unlabeled data and perform favorably against the existing semi-supervised object de-
tection works, including CSD (Jeong et al., 2019) and STAC (Sohn et al., 2020b).

ground/background classification in the RPN and multi-class classification in the ROIhead (but
not on bounding box regression).

To overcome these issues, we propose a general framework – Unbiased Teacher: an approach that
jointly trains a Student and a slowly progressing Teacher in a mutually-beneficial manner, in which
the Teacher generates pseudo-labels to train the Student, and the Student gradually updates the
Teacher via Exponential Moving Average (EMA)2, while the Teacher and Student are given different
augmented input images (see Figure 3). Inside this framework, (i) we utilize the pseudo-labels as
explicit supervision for both RPN and ROIhead and thus alleviate the overfitting issues in both RPN
and ROIhead. (ii) We also prevent detrimental effects due to noisy pseudo-labels by exploiting the
Teacher-Student dual models (see further discussion and analysis in Section 4.2). (iii) With the use
of EMA training and the Focal loss (Lin et al., 2017b), we can address the pseudo-labeling bias
problem caused by class-imbalance and thus improve the quality of pseudo-labels. As the result, our
object detector achieves significant performance improvements.

We benchmark Unbiased Teacher with SSL setting using the MS-COCO and PASCAL VOC
datasets, namely COCO-standard, COCO-additional, and VOC. When using only 1% labeled data
from MS-COCO (COCO-standard), Unbiased Teacher achieves 6.8 absolute mAP improvement
against the state-of-the-art method, STAC (Sohn et al., 2020b). Unbiased Teacher consistently
achieves around 10 absolute mAP improvements when using only 0.5, 1, 2, 5% of labeled data com-
pared to supervised baseline.

We highlight the contributions of this paper as follows:

• By analyzing object detectors trained with limited-supervision, we identify that the nature
of class-imbalance in object detection tasks impedes the effectiveness of pseudo-labeling
method on SS-OD task.

• We thus proposed a simple yet effective method, Unbiased Teacher, to address the pseudo-
labeling bias issue caused by class-imbalance existing in ground-truth labels and the over-
fitting issue caused by the scarcity of labeled data.

• Our Unbiased Teacher achieves state-of-the-art performance on SS-OD across COCO-
standard, COCO-additional, and VOC datasets. We also provide an ablation study to verify
the effectiveness of each proposed component.

2 RELATED WORKS

Semi-Supervised Learning. The majority of the recent SSL methods typically consist of (1) input
augmentations and perturbations, and (2) consistency regularization. They regularize the model to
be invariant and robust to certain augmentations on the input, which requires the outputs given the
original and augmented inputs to be consistent. For example, existing approaches apply convention
data augmentations (Berthelot et al., 2019; Laine & Aila, 2017; Sajjadi et al., 2016; Tarvainen &

2Note that there have been many works that leverages EMA, e.g., ADAM optimization (Kingma & Ba,
2015), Batch Normalization (Ioffe & Szegedy, 2015), self-supervised learning (He et al., 2020; Grill et al.,
2020), and SSL image classification (Tarvainen & Valpola, 2017). We, for the first time, show its effectiveness
in combating class imbalance issues and detrimental effect of pseudo-labels for the object detection task.
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Figure 2: Validation Losses of our model and the model trained with labeled data only. When the
labeled data is insufficient (1% and 5%), RPN and ROIhead classifiers suffer from overfitting, while
RPN and ROIhead regression do not suffer from overfitting. Our model can significantly alleviates
the overfitting issue in classifiers and also improves the validation box regression loss.

Valpola, 2017) to generate different transformations of the semantically identical images, perturb
the input images along the adversarial direction (Miyato et al., 2018; Yu et al., 2019), utilize mul-
tiple networks to generate various views of the same input data (Qiao et al., 2018), mix input data
to generate augmented training data and labels (Zhang et al., 2018; Yun et al., 2019; Guo et al.,
2019; Hendrycks et al., 2020), or learn augmented prototypes in feature space instead of the image
space (Kuo et al., 2020). However, the complexities in architecture design of object detectors hinder
the transfer of existing semi-supervised techniques from image classification to object detection.

Semi-Supervised Object Detection. Object detection is one of the most important computer vision
tasks and has gained enormous attention (Lin et al., 2017a; He et al., 2017; Redmon & Farhadi,
2017; Liu et al., 2016). While existing works have made significant progress over the years, they
have primarily focused on training object detectors with fully-labeled datasets. On the other hand,
there exist several semi-supervised object detection works that focus on training object detector with
a combination of labeled, weakly-labeled, or unlabeled data. This line of work began even before
the resurgence of deep learning (Rosenberg et al., 2005). Later, along with the success of deep
learning, Hoffman et al. (2014) and Gao et al. (2019) trained object detectors on data with bounding
box labels for some classes and image-level class labels for other classes, enabling detection for
categories that lack bounding box annotations. Tang et al. (2016) adapted the image-level classifier
of a weakly labeled category (no bounding boxes) into a detector via similarity-based knowledge
transfer. Misra et al. (2015) exploited a few sparsely labeled objects and bounding boxes in some
video frames and localized unknown objects in the following videos.

Unlike their settings, we follow the standard SSL setting and adapt it to the object detection task,
in which the training contains a small set of labeled data and another set of completely unlabeled
data (i.e., only images). In this setting, Jeong et al. (2019) proposed a consistency-based method,
which enforces the predictions of an input image and its flipped version to be consistent. Sohn et al.
(2020b) pre-trained a detector using a small amount labeled data and generates pseudo-labels on
unlabeled data to fine-tune the pre-trained detector. Their pseudo-labels are generated only once and
are fixed through out the rest of training. While they can improve the performance against the model
trained on labeled data, imbalance issue is not considered in existing SS-OD works. In contrast, our
method not only improve the pseudo-label generation model via teacher-student mutual learning
regimen (Sec. 3.2) but address the crucial imbalance issue in generated pseudo-labels (Sec. 3.3).

3 UNBIASED TEACHER

Problem definition. Our goal is to address object detection in a semi-supervised setting, where a set
of labeled imagesDs = {xs

i ,y
s
i }

Ns
i=1 and a set of unlabeled imagesDu = {xu

i }
Nu
i=1 are available for

training. Ns and Nu are the number of supervised and unsupervised data. For each labeled image
xs, the annotations ys contain locations, sizes, and object categories of all bounding boxes.

Overview. As shown in Figure 3, our Unbiased Teacher consists of two training stages, the Burn-
In stage and the Teacher-Student Mutual Learning stage. In the Burn-In stage (Sec. 3.1), we
simply train the object detector using the available supervised data to initialize the detector. At
the beginning of the Teacher-Student Mutual Learning stage (Sec. 3.2), we duplicate the initial-
ized detector into two models (Teacher and Student models). Our Teacher-Student Mutual Learning
stage aims at evolving both Teacher and Student models via a mutual learning mechanism, where
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Figure 3: Overview of Unbiased Teacher. Unbiased Teacher consists of two stages. Burn-In: we
first train the object detector using available labeled data. Teacher-Student Mutual Learning con-
sists of two steps. Student Learning: the fixed teacher generates pseudo-labels to train the Student,
while Teacher and Student are given weakly and strongly augmented inputs, respectively. Teacher
Refinement: the knowledge that the Student learned is then transferred to the slowly progressing
Teacher via exponential moving average (EMA) on network weights. When the detector is trained
until converge in the Burn-In stage, we switch to the Teacher-Student Mutual Learning stage.

the Teacher generates pseudo-labels to train the Student, and the Student updates the knowledge it
learned back to the Teacher; hence, the pseudo-labels used to train the Student itself are improved.
Lastly, there exists class-imbalance and foreground-background imbalance problems in object de-
tection, which impedes the effectiveness of semi-supervised techniques of image classification (e.g.,
pseudo-labeling) being used directly on SS-OD. Therefore, in Sec. 3.3, we also discuss how Focal
loss (Lin et al., 2017b) and EMA training alleviate the imbalanced pseudo-label issue.

3.1 BURN-IN

It is important to have a good initialization for both Student and Teacher models, as we will rely
on the Teacher to generate pseudo-labels to train the Student in the later stage. To do so, we first
use the available supervised data to optimize our model θ with the supervised loss Lsup. With the
supervised data Ds = {xs

i ,y
s
i }

Ns
i=1, the supervised loss of object detection consists of four losses:

the RPN classification loss Lrpn
cls , the RPN regression loss Lrpn

reg , the ROI classification loss Lroi
cls ,

and the ROI regression loss Lroi
reg (Ren et al., 2015),

Lsup =
∑
i

Lrpn
cls (xs

i ,y
s
i ) + Lrpn

reg (x
s
i ,y

s
i ) + Lroi

cls (x
s
i ,y

s
i ) + Lroi

reg(x
s
i ,y

s
i ). (1)

After Burn-In, we duplicate the trained weights θ for both the Teacher and the Student models
(θt ← θ, θs ← θ). Starting from this trained detector, we further utilize the unsupervised data to
improve the object detector via the following proposed training regimen.

3.2 TEACHER-STUDENT MUTUAL LEARNING

Overview. To leverage the unsupervised data, we introduce the Teacher-Student Mutual Learning
regimen, where the Student is optimized by using the pseudo-labels generated from the Teacher,
and the Teacher is updated by gradually transferring the weights of continually learned Student
model. With the interaction between the Teacher and the Student, both models can evolve jointly and
continuously to improve detection accuracy. With the improvement on detection accuracy, this also
means that the Teacher generates more accurate and stable pseudo-labels, which we identify as one
of the keys for large performance improvement compared to existing work (Sohn et al., 2020b). In
another perspective, we can also regard the Teacher as the temporal ensemble of the Student models
in different time steps. This aligns our observation that the accuracy of the Teacher is consistently
higher than the Student. As noted in prior works (Tarvainen & Valpola, 2017; Xie et al., 2020), one
crucial factor in improving the Teacher model is the diversity of Student models; we thus use the

4



Published as a conference paper at ICLR 2021

strongly augmented images as as input of the Student, but we use the weakly augmented images as
input of the Teacher to provide reliable pseudo-labels.

Student Learning with Pseudo-Labeling. To address the lack of ground-truth labels for unsuper-
vised data, we adapt the pseudo-labeling method to generate labels for training the Student with
unsupervised data. This follows the principle of existing successful examples in semi-supervised
image classification task (Lee, 2013; Sohn et al., 2020a). Similar to classification-based methods,
to prevent the consecutively detrimental effect of noisy pseudo-labels (i.e., confirmation bias or
error accumulation), we first set a confidence threshold δ of predicted bounding boxes to filter low-
confidence predicted bounding boxes, which are more likely to be false positive samples.

While the confidence threshold method have achieved tremendous success in the image classifica-
tion, it is however not sufficient for object detection. This is because there also exist duplicated box
predictions and imbalanced prediction issues in the SS-OD (we leave the discussion of the imbal-
anced prediction issue in Sec. 3.3). To address the duplicated boxes prediction issue, we remove the
repetitive predictions by applying class-wise non-maximum suppression (NMS) before the use of
confidence thresholding as performed in STAC (Sohn et al., 2020b).

In addition, noisy pseudo-labels can affect the pseudo-label generation model (Teacher). As a result,
we detach the Student and the Teacher. To be more specific, after obtaining the pseudo-labels from
the Teacher, only the learnable weights of the Student model is updated via back-propagation.

θs ← θs + γ
∂(Lsup + λuLunsup)

∂θs
, Lunsup =

∑
i

Lrpn
cls (xu

i , ŷ
u
i ) + Lroi

cls (x
u
i , ŷ

u
i ) (2)

Note that we do not apply unsupervised losses for the bounding box regression since the naive con-
fidence thresholding is not able to filter the pseudo-labels that are potentially incorrect for bounding
box regression (because the confidence of predicted bounding boxes only indicate the confidence of
predicted object categories instead of the quality of bounding box locations (Jiang et al., 2018)).

Teacher Refinement via Exponential Moving Average. To obtain more stable pseudo-labels, we
apply EMA to gradually update the Teacher model. The slowly progressing Teacher model can be
regarded as the ensemble of the Student models in different training iterations.

θt ← αθt + (1− α)θs. (3)

This approach has been shown to be effective in many existing works, e.g., ADAM optimiza-
tion (Kingma & Ba, 2015), Batch Normalization (Ioffe & Szegedy, 2015), self-supervised learn-
ing (He et al., 2020; Grill et al., 2020), and SSL image classification (Tarvainen & Valpola, 2017),
while we, for the first time, demonstrate its effectiveness also in alleviating pseudo-labeling bias
issue for SS-OD (see next section).

3.3 BIAS IN PSEUDO-LABEL

Ideally, the methods based on pseudo-labels can address problems caused by the scarcity of labels,
yet the inherent nature of imbalance in object detection tasks/datasets impedes the effectiveness
of pseudo-labeling methods. As mentioned in (Oksuz et al., 2020), in object detection, there ex-
ists foreground-background imbalance (e.g., background instances accounts for 70% of all training
instances) and foreground classes imbalance (e.g., human instances accounts for 30% of all fore-
ground training instances in MS-COCO (Lin et al., 2014)). If standard cross-entropy is applied in
the condition of insufficient training data, the model is likely prone to predict the dominant classes.
This makes the prediction bias toward prevailing classes and leads to the class-imbalance issue in
generated pseudo-labels. Relying on the biased pseudo-labels during training makes the imbalanced
prediction issue even more severe. To address the imbalance issue in object detection, existing works
have proposed several methods (Shrivastava et al., 2016; Lin et al., 2017b; Li et al., 2020).

In this work, we consider a simple yet effective method; we replace the standard cross-entropy with
the multi-class Focal loss (Lin et al., 2017b) for the multi-class classification of ROIhead classifier
(i.e., Lroi

cls ). Focal loss is designed to put more loss weights on the samples with lower-confidence
instances. As a result, it makes the model focus on hard samples, instead of the easier examples that
are likely from dominant classes. Although the Focal loss is not widely used for vanilla supervised
object detection settings (the accuracy of YOLOv3 (Redmon & Farhadi, 2018) even drops if the
focal loss is applied), we argue that it is crucial for SS-OD due to the issue of biased pseudo-labels.
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Table 1: Experimental results on COCO-standard comparing with CSD (Jeong et al., 2019) and
STAC (Sohn et al., 2020b). *: we implement the CSD method and adapt it on the MS-COCO dataset.
The results of 0.5% with STAC is from their released code.

COCO-standard
0.5% 1% 2% 5% 10%

Supervised 6.83 ± 0.15 9.05 ± 0.16 12.70 ± 0.15 18.47 ± 0.22 23.86 ± 0.81
CSD* 7.41 ± 0.21 (+0.58) 10.51 ± 0.06 (+1.46) 13.93 ± 0.12 (+1.23) 18.63 ± 0.07 (+0.16) 22.46 ± 0.08 (-1.40)

STAC 9.78 ± 0.53 (+2.95) 13.97 ± 0.35 (+4.92) 18.25 ± 0.25 (+5.55) 24.38 ± 0.12 (+5.86) 28.64 ± 0.21 (+4.78)

Unbiased Teacher 16.94 ± 0.23 (+10.11) 20.75 ± 0.12 (+11.72) 24.30 ± 0.07 (+11.60) 28.27 ± 0.11 (+9.80) 31.50 ± 0.10 (+7.64)

On the other hand, we also observe that the EMA training can also alleviate the imbalanced pseudo-
labeling biased issue due to the conservative property of the EMA training. To be more specific,
with the EMA mechanism, the new Teacher model is regularized by the previous Teacher model,
and this prevents the decision boundary from drastically moving toward the minority classes. In
detail, the weights of the Teacher model can be represented as follows:

θit = θ̂ − γ
i−1∑
k=1

(1− α−k+(i−1))
∂(Lsup + λuLunsup)

∂θks
, (4)

where θ̂ is the model weight after the burn-in stage, θit is the Teacher model weight in i-th iteration,
θks is the Student model weight in k-th iteration, γ is the learning rate, and α is the EMA coefficient.

The regularization of the previous Teacher model is equivalent to putting an additional small co-
efficient on the gradients on Student models in previous steps. With the slowly altered decision
boundary (i.e., higher stability), the pseudo-labels of these unlabeled instances are less likely to
change dramatically, and this prevents the decision boundary from moving toward minority classes
(i.e., majority class bias). Thus, the EMA-trained Teacher model is beneficial for producing more
stable pseudo-labels and addressing the class-imbalance issue in SS-OD.

We note that the class-imbalance issue is crucial when using pseudo-labeling method to address
semi-supervised or other low-label object detection tasks. There indeed exist other class-imbalance
methods that can potentially improve the performance, but we leave this for future research.

4 EXPERIMENTS

Datasets. We benchmark our proposed method on experimental settings using MS-COCO (Lin
et al., 2014) and PASCAL VOC (Everingham et al., 2010) following existing works (Jeong et al.,
2019; Sohn et al., 2020b). Specifically, there are three experimental settings: (1) COCO-standard:
we randomly sample 0.5, 1, 2, 5, and 10% of labeled training data as a labeled set and use the rest of
the data as the training unlabeled set. (2) COCO-additional: we use the standard labeled training set
as the labeled set and the additional COCO2017-unlabeled data as the unlabeled set. (3) VOC: we
use the VOC07 trainval set as the labeled training set and the VOC12 trainval set as the unlabeled
training set. Model performance is evaluated on the VOC07 test set.

Implementation Details. For a fair comparison, we follow STAC (Sohn et al., 2020b) to use Faster-
RCNN with FPN (Lin et al., 2017a) and ResNet-50 backbone (He et al., 2016) as our object detec-
tior, where the feature weights are initialized by the ImageNet-pretrained model, same as existing
works (Jeong et al., 2019; Sohn et al., 2020b). We use confidence threshold δ = 0.7. For the data
augmentation, we apply random horizontal flip for weak augmentation and randomly add color jit-
tering, grayscale, Gaussian blur, and cutout patches for strong augmentations. Note that we do not
apply any geometric augmentations, which are used in STAC. We use AP50:95 (denoted as mAP)
as evaluation metric, and the performance is evaluated on the Teacher model. More training and
implementation details can be found in the Appendix.

4.1 RESULTS

COCO-standard. We first evaluate the efficacy of our Unbiased Teacher on COCO-standard (Ta-
ble 1). When there are only 0.5% to 10% of data labeled, our model consistently performs favorably
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Table 2: Experimental results on COCO-additional comparing with CSD (Jeong et al., 2019) and
STAC (Sohn et al., 2020b). *: we implement the CSD method and adapt it on the MS-COCO dataset.
Note that 1x represents 90K training iterations, and Nx represents N×90K training iterations.

COCO-additional
Supervised (1x) Supervised (3x) CSD (3x) STAC (6x) Ours (3x)

AP 50:95 37.63 40.20 38.82 39.21 41.30
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Figure 4: Pseudo-label improvement on (a) accuracy, (b) mIoU, and (c) number of bounding boxes
in the case of COCO-standard 1% labeled data. We measure the (a) accuracy and (b) mIoU by
comparing the ground-truth boxes and pseudo boxes. The Burn-In limit curves indicate the pseudo-
boxes obtained from the model right after the Burn-In stage without further refinement (i.e., the
model trained on labeled data only). GT curve on the number of boxes figure indicates the averaged
number of bounding boxes in the GT labels, and we showed that there are around 7 bounding boxes
per image on average in MS-COCO. This result indicates our model can generate more accurate
pseudo-labels after the Burn-In stage (i.e., 2k iterations).

against the state-of-the-art methods, CSD (Jeong et al., 2019) and STAC (Sohn et al., 2020b). It
is worth noting that our model trained on 1% labeled data achieves 20.75% mAP, which is even
higher than STAC trained on 2% labeled data (mAP 18.25%), CSD trained on 5% labeled data
(mAP 18.57%), and the supervised baseline trained on 5% labeled data (mAP 18.47%). We also
observe that, as there are less labeled data, the improvements between our method and the existing
approaches becomes larger. Unbiased Teacher consistently shows around 10 absolute mAP im-
provements when using less than 5% of labeled data compared to supervised method. We attribute
the improvements to several crucial factors:

1) More accurate pseudo-labels. When leveraging the pseudo-labeling and consistency regulariza-
tion between two networks (Teacher and Student in our case), it is critical to make sure pseudo-labels
are accurate and reliable. Existing method attempts to do this by training the pseudo-label gener-
ation model using all the available labeled data and is completely frozen afterwards. In contrast,
in our framework, our pseudo-label generation model (Teacher) continues to evolve gradually and
smoothly via Teacher-Student Mutual Learning. This enables the Teacher to generate more accurate
pseudo-labels as presented in Figure 4, which are properly exploited in the training of the Student.

2) Class-imbalance on pseudo-labels. Our improvement also comes from both the use of the EMA
and the Focal loss (Lin et al., 2017b), which addresses the class-imbalanced pseudo-labeling issue.
As mentioned in Sec. 3.3, using more balanced pseudo-labels not only avoids the consecutive biased
prediction problem but also benefits the predictions on the minority classes. Later in Sec. 4.2, we
present the details of the ablation study on the EMA and the Focal loss.

COCO-additional and VOC. In the previous section, we presented Unbiased Teacher can suc-
cessfully leverage very small amounts of labeled data. We now aim to verify whether the model
trained on 100% supervised data can be further improved by using additional unlabeled data. We
thus consider COCO-additional and VOC and present the results in Table 1 and 3.

In the case of COCO-additional (Table 2), compared with supervised only model, our model has
a 1.10 absolute AP improvement. We also found a similar trend in the VOC experiment (Table 3).
With VOC07 as labeled set and VOC12 as an additional unlabeled set, STAC shows 2.51 absolute
mAP improvement with respect to the supervised model, whereas our model demonstrates 6.56 ab-
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Table 3: Results on VOC comparing with CSD (Jeong et al., 2019) and STAC (Sohn et al., 2020b).
Backbone Labeled Unlabeled AP50 AP50:95

Supervised (from Ours) ResNet50-FPN VOC07 None 72.63 42.13
CSD ResNet101-R-FCN

VOC07 VOC12
74.70 (+2.07) -

STAC ResNet50-FPN 77.45 (+4.82) 44.64 (+2.51)

Unbiased Teacher ResNet50-FPN 77.37 (+4.74) 48.69 (+6.56)

CSD ResNet101-R-FCN

VOC07
VOC12

+
COCO20cls

75.10 (+2.47) -
STAC ResNet50-FPN 79.08 (+6.45) 46.01 (+3.88)

Unbiased Teacher ResNet50-FPN 78.82 (+6.19) 50.34 (+8.21)
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Figure 5: Ablation study on the EMA and the Focal loss in the case of COCO-standard 1% labeled
data. (a) mAP of the models using the Focal loss or cross-entropy and applying the EMA or standard
training. (b) Class empirical distribution (i.e., histogram) of pseudo-labels generated by each model
and compute KL-divergence between the ground-truth labels distribution and the pseudo-label dis-
tribution. Among these models, the model using the Focal loss and EMA training (i.e., green curve)
achieves the best mAP with the most balanced pseudo-labels .

solute mAP improvement. To further examine whether increasing the size of unlabeled data can
further improve the performance, we follow CSD and STAC to use COCO20cls dataset3 as an ad-
ditional unlabeled set. STAC shows 3.88 absolute mAP improvement, while our model achieves
8.21 absolute mAP improvement. These results demonstrate that our model can further improve the
object detector trained on existing labeled datasets by using more unlabeled data. Note that, follow-
ing STAC, we use a more challenging metric, AP50:95, which averages the ten values over AP50 to
AP95 since the metric of AP50 has been indicated as a saturated metric by the prior work (Cai &
Vasconcelos, 2018; Sohn et al., 2020b).

4.2 ABLATION STUDY

Effect of the EMA training. We first examine the effect of EMA training and present a comparison
between our model with EMA and without EMA. Our model without EMA is where the model
weights of Teacher and Student are shared during the training stage, and it implies the Teacher
model is also updated when the student model is optimized by using unlabeled data and pseudo-
labels. Note that the state-of-the-art semi-supervised classification model, FixMatch (Sohn et al.,
2020a) similarly shares the model weights of the Teacher and the Student models.

From Figure 5, we observe that our model with EMA is superior to without EMA, and this trend can
be found both in the model using the Focal loss and cross-entropy. To further analyze the diverged
results, we visualize the class distribution of pseudo-labels generated by each model and measure the
KL-divergence between the ground-truth labels distribution and the pseudo-labels distribution. With
the use of cross-entropy and standard training (i.e., without EMA training), the model generates the
imbalanced pseudo-labels. To be more specific, the instances of most object categories in pseudo-
labels disappear, while only instances of specific object categories remain. We observe that using
the EMA training can alleviate the imbalanced pseudo-labels issue and reduces the KL-divergence

3COCO20cls is generated by only leaving COCO images which have object categories that overlap with the
object categories used in PASCAL VOC07.
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from 1.7915 to 0.2482. On the other hand, we also observe that the model with EMA has a smoother
learning curve compared with the model without EMA. This is because the model weight of the
pseudo-label generation model (Teacher) is detached from the optimized model (Student). The
pseudo-label generation model can thus prevent the detrimental effect caused by the noisy pseudo-
labels (e.g., false positive boxes) as we describe in Sec. 3.2.

In sum, the EMA training has several advantages: it 1) prevents the imbalanced pseudo-labels issue
caused by the imbalanced nature in low-labeled object detection tasks, 2) prevents the detrimental
effect caused by the noisy pseudo-labels, and 3) the Teacher model can be regarded as the temporal
ensembles model of Student models in different time steps.

Effect of the Focal loss. In addition to the EMA training, we also verify the effectiveness of the
Focal loss. As presented in Figure 5, the model using Focal loss can perform favorably against the
model using cross-entropy. The model trained with the Focal loss can generate the pseudo-label
which distribution is more similar to the distribution of ground-truth labels, and it can improve the
KL-divergence from 1.7915 (Cross entropy w/o EMA) to 0.2001 (Focal loss w/o EMA) and mAP
from 13.42 to 17.85. When EMA training is applied, the KL-divergence of the model with the
Focal loss can be further improved from 0.2482 (Cross entropy w/ EMA) to 0.0851 (Focal loss w/
EMA) and mAP improve from 16.91 to 21.19. This confirms the effectiveness of the Focal loss in
handling the class imbalance issues existed in the semi-supervised object detection. The reduction
of KL-divergence (i.e., better-fitting pseudo-label distributions to ground-truth label distributions)
results in the mAP improvement.

Other ablation studies. We also ablate the effects of the Burn-In stage, pseudo-labeling threshold-
ing, EMA rates, and unsupervised loss weights in the Appendix.

5 CONCLUSION

In this paper, we revisit the semi-supervised object detection task. By analyzing the object detectors
in low-labeled scenarios, we identify and address two major issues: overfitting and class imbalance.
We proposed Unbiased Teacher — a unified framework consisting of a Teacher and a Student that
jointly learn to improve each other. In the experiments, we show our model prevents pseudo-labeling
bias issue caused by class imbalance and overfitting issue due to labeled data scarcity. Our Unbi-
ased Teacher achieves satisfactory performance across multiple semi-supervised object detection
datasets.
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A APPENDIX

A.1 EMA ON IMBALANCED PSEUDO-LABELING ISSUE

To empirically examine the effectiveness of EMA on imbalance, we present the pseudo-label dis-
tribution in different training iterations as presented in Figure 6. At the beginning of training (i.e.,
30k), both Teacher models with and without EMA could generate the balanced pseudo-labels (the
KL divergence between ground-truth labels and pseudo-labels are both small). However, since the
Student model is trained with the pseudo-labels generated by the Teacher models, the model without
EMA starts biasing towards specific classes. In contrast, with the EMA training, the model gener-
ates less imbalanced pseudo-labels. Note that, although the EMA is applied, the balance issue still
exists. We thus apply Focal loss to enhance the ability to mitigate the imbalance issue further.
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Figure 6: Ablation study on EMA at different training iterations. Both the models with EMA and
without EMA have pseudo-label distributions, which are similar to the ground-truth distributions
in the early stage of training iterations. However, the model without EMA tends to generate more
biased pseudo-label distribution later during training.

A.2 ADDITIONAL ABLATION STUDY

In addition to the ablation studies provided in the main paper, we further ablate Unbiased Teacher
in the following sections.

A.2.1 EFFECT OF BURN-IN STAGE

As mentioned in Section 3.1, it is crucial to have a good initialization for both Student and Teacher
models. We thus present a comparison between the model with and without the Burn-In stage in
Figure 7. We observe that, with the Burn-In stage, the model can derive more accurate pseudo-boxes
in the early stage of the training. As a result, the model can achieve higher accuracy in the early
stage of the training, and it also achieves better results when the model is converged.

A.2.2 EFFECT OF PSEUDO-LABELING THRESHOLD

As mentioned in Section 3.3, we apply confidence thresholding to filter these low-confidence pre-
dicted bounding boxes, which are more likely to be false-positive instances. To show the effective-
ness of thresholding, we first provide the accuracy of predicted bounding boxes before and after the
pseudo-labeling in Figure 8.
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Figure 7: In the case of COCO-standard 1% labeled data, (a) Unbiased Teacher with Burn-In stage
achieve higher mAP against Unbiased Teacher without Burn-In stage. Using Burn-In Stage results
in the early improvement of (b) box accuracy and (c) mIoU. (d) Unbiased Teacher with Burn-In
stage can derive more pseudo-boxes than Unbiased Teacher without Burn-In stage.
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Figure 8: Pseudo-label accuracy improvement with the use of confidence thresholding. We measure
the accuracy by comparing the ground-truth labels and predicted labels before and after confidence
thresholding. This result indicates that confidence thresholding can significantly improve the quality
of pseudo-labels.

When varying the threshold value δ from 0 to 0.9, as expected, the number of generated pseudo-
boxes increases as the threshold δ reduces (Figure 9). The model using excessively high threshold
(e.g., δ = 0.9) cannot perform satisfactory results, as the number of generated pseudo-labels is
very low. On the other hand, the model using a low threshold (e.g., δ = 0.6) also cannot achieve
favorable results since the model generates too many bounding boxes, which are likely to be false-
positive instances. We also observe that the model cannot even converge if the threshold is below
0.5.
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Figure 9: (a) Validation AP and (b) number of pseudo-label bounding boxes per image with various
pseudo-labeling thresholds δ. With an excessively low threshold (e.g., δ = 0.6), the model has a
lower AP, as it predicts more pseudo-labeled bounding boxes compared to the number of bounding
boxes in ground-truth labels. On the other hand, the performance of the model using an excessively
high threshold (e.g., δ = 0.9) drops as it cannot predict sufficient number of bounding boxes in its
generated pseudo-labels.

A.2.3 EFFECT OF EMA RATES

We also evaluate the model using various EMA rate α from 0.5 to 0.9999 and present the mAP result
of the Teacher model in Figure 10. We observe that, with a smaller EMA rate (e.g., α = 0.5), the
model has lower mAP and higher variance, as the Student contributes more to the Teacher model for
each iteration. This implies the Teacher model is likely to suffer from the detrimental effect caused
by noisy pseudo-labels. This unstable learning curve can be stabilized and improved as the EMA
rate α increases. When the EMA rate α achieves 0.99, it performs the best mAP. However, if the
EMA rate α keeps increasing, the teacher model will grow overly slow as the Teacher model derive
the next model weight mostly from the previous Teacher model weight.

0 20K 40K 60K 80K 100K 120K 140K 160K
Training Iterations

10

12

14

16

18

20

22

AP
 (%

)

EMA rate

 = 0.5
 = 0.9
 = 0.99
 = 0.999
 = 0.9999

AP50 AP55 AP60 AP65 AP70 AP75 AP80 AP85 AP90 AP95
Metrics

0

10

20

30

40

m
AP

EMA Training
EMA=0.5
EMA=0.9
EMA=0.99
EMA=0.999
EMA=0.9999

(a) (b)
Figure 10: Validation AP on the Teacher model with various MMA rates α. (a) With a small MMA
rate (e.g., α = 0.5), the Teacher model has lower AP and larger variance. In contrast, as the MMA
rate grows to 0.99, the Teacher model can gradually improve along the training iterations. However,
when the MMA grows to 0.9999, the Teacher model grows overly slow but has lowest variance. (b)
We breakdown the AP metric into APs from AP50 to AP95.

A.2.4 EFFECT OF UNSUPERVISED LOSS WEIGHTS

To examine the effect unsupervised loss weights, we vary the unsupervised loss weight λu from
1.0 to 8.0 in the case of COCO-standard 10% labeled data. As shown in Table 4, with a lower
unsupervised loss weight λu = 1.0, the model performs 29.30%. On the other hand, we observe
that the model performs the best with unsupervised loss weight λ = 5.0. However, when the weight
increases to 8.0, the training of the model cannot converge.
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Table 4: Ablation study of varying unsupervised loss weight λu on the model trained using 10%
labeled and 90% unlabeled data.

λu 1.0 2.0 4.0 5.0 6.0 8.0
AP (%) 29.30 30.64 31.82 32.00 31.80 Cannot Converge

A.3 AP BREAKDOWN FOR COCO-STANDARD

We present an AP breakdown for COCO-standard 0.5% labeled data. As mentioned in Section 4,
our proposed model can perform favorably against both STAC (Sohn et al., 2020b) and CSD (Jeong
et al., 2019). This trend appears in all evaluation metrics fromAP50 toAP95, as shown in Figure 11,
and it confirms that our model is preferable for handling extremely low-label scenario compared to
the state of the arts.
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Figure 11: Evaluation metric breakdown of all methods on 0.5% labeled data.

A.4 IMPLEMENTATION AND TRAINING DETAILS

Network and framework. Our implementation builds upon the Detectron2 framework (Wu et al.,
2019). For a fair comparison, we follow the prior work (Sohn et al., 2020b) to use Faster-RCNN with
FPN (Lin et al., 2017a) and ResNet-50 backbone (He et al., 2016) as our object detection network.

Training. At the beginning of the Burn-In stage, the feature backbone network weights are ini-
tialized by the ImageNet-pretrained model, which is same as existing works (Jeong et al., 2019;
Tang et al., 2020; Sohn et al., 2020b). We use the SGD optimizer with a momentum rate 0.9 and
a learning rate 0.01, and we use constant learning rate scheduler. The batch size of supervised and
unsupervised data are both 32 images. For the COCO-standard, we train 180k iterations, which in-
cludes 1/2/6/12/20k iterations for 0.5%/1%/2%/5%/10% in the Burn-In stage and the remaining
iterations in the Teacher-Student Mutual Learning stage. For the COCO-additional, we train 360k
iterations, which includes 90k iterations in the Burn-Up stage and the remaining 270k iterations in
the Teacher-Student Mutual Learning stage.

Hyper-parameters. We use confidence threshold δ = 0.7 to generate pseudo-labels for all our
experiments, the unsupervised loss weight λu = 4 is applied for COCO-standard and VOC, and the
unsupervised loss weight λu = 2 is applied for COCO-additional. We apply α = 0.9996 as the
EMA rate for all our experiments. Hyper-parameters used are summarized in Table 5.

Data augmentation. As shown in Table 6, we apply randomly horizontal flip for weak augmentation
and randomly add color jittering, grayscale, Gaussian blur, and cutout patches (DeVries & Taylor,
2017) for the strong augmentation. Note that we do not apply any image-level or box-level geometric
augmentations, which are used in STAC (Sohn et al., 2020b). In addition, we do not aggressively
search the best hyper-parameters for data augmentations, and it is possible to obtain better hyper-
parameters.
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Table 5: Meanings and values of the hyper-parameters used in experiments.
Hyper-parameter Description COCO-standard and VOC COCO-additional

δ Confidence threshold 0.7 0.7
λu Unsupervised loss weight 4 2
α EMA rate 0.9996 0.9996
bl Batch size for labeled data 32 16
bu Batch size for unlabeled data 32 16
γ Learning rate 0.01 0.01

Table 6: Detail of data augmentations. Probability in the table indicates the probability of applying
the corresponding image process.

Weak Augmentation
Process Probability Parameters Descriptions

Horizontal Flip 0.5 - None

Strong Augmentation
Process Probability Parameters Descriptions

Color Jittering 0.8 (brightness, contrast, saturation, hue)
= (0.4, 0.4, 0.4, 0.1)

Brightness factor is chosen uniformly from [0.6, 1.4],
contrast factor is chosen uniformly from [0.6, 1.4],
saturation factor is chosen uniformly from [0.6, 1.4],
and hue value is chosen uniformly from [-0.1, 0.1].

Grayscale 0.2 None None

GaussianBlur 0.5 (sigma x, sigma y) = (0.1, 2.0) Gaussian filter with σx = 0.1 and σy = 2.0 is applied.

CutoutPattern1 0.7 scale=(0.05, 0.2), ratio=(0.3, 3.3) Randomly selects a rectangle region in an image
and erases its pixels. We refer the detail in Zhong et al. (2017).

CutoutPattern2 0.5 scale=(0.02, 0.2), ratio=(0.1, 6) Randomly selects a rectangle region in an image
and erases its pixels. We refer the detail in Zhong et al. (2017).

CutoutPattern3 0.3 scale=(0.02, 0.2), ratio=(0.05, 8) Randomly selects a rectangle region in an image
and erases its pixels. We refer the detail in Zhong et al. (2017).

Evaluation Metrics. AP50:95 is used to evaluate all methods following the prior works (Law &
Deng, 2018; Sohn et al., 2020b).
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