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Abstract

We study stochastic Cubic Newton methods for solving general possibly non-1

convex minimization problems. We propose a new framework, which we call2

the helper framework, that provides a unified view of the stochastic and variance-3

reduced second-order algorithms equipped with global complexity guarantees. It4

can also be applied to learning with auxiliary information. Our helper framework5

offers the algorithm designer high flexibility for constructing and analysis of the6

stochastic Cubic Newton methods, allowing arbitrary size batches, and the use7

of noisy and possibly biased estimates of the gradients and Hessians, incorporat-8

ing both the variance reduction and the lazy Hessian updates. We recover the9

best-known complexities for the stochastic and variance-reduced Cubic Newton,10

under weak assumptions on the noise and avoiding artificial logarithms. A direct11

consequence of our theory is the new lazy stochastic second-order method, which12

significantly improves the arithmetic complexity for large dimension problems. We13

also establish complexity bounds for the classes of gradient-dominated objectives,14

that include convex and strongly convex problems. For Auxiliary Learning, we15

show that using a helper (auxiliary function) can outperform training alone if a16

given similarity measure is small.17

1 Introduction18

In many fields of machine learning, it is common to optimize a function f(x) that can be expressed19

as a finite sum:20

min
x∈Rd

{
f(x) = 1

n

n∑
i=1

fi(x)
}
, (1)

or, more generally, as an expectation over some given probability distribution: f(x) = Eζ

[
f(x, ζ)

]
.21

When f is non-convex, this problem is especially difficult, since finding a global minimum is NP-hard22

in general [14]. Hence, the reasonable goal is to look for approximate solutions. The most prominent23

family of algorithms for solving large-scale problems of the form (1) are the first-order methods, such24

as the Stochastic Gradient Descent (SGD) [25, 16]. They employ only stochastic gradient information25

about the objective f(x) and guarantee the convergence to a stationary point, which is a point with a26

small gradient norm.27

Nevertheless, when the objective function is non-convex, a stationary point may be a saddle point or28

even a local maximum, which is not desirable. Another common issue is that first-order methods29

typically have a slow convergence rate, particularly when the problem is ill-conditioned. Therefore,30

they may not be suitable when high precision for the solution is required.31

To address these challenges, we can take into account second-order information (the Hessian matrix)32

and apply Newton’s method (see, e.g. [19]). Among the many versions of this algorithm, the Cubic33

Newton method [20] is one of the most theoretically established. With the Cubic Newton method, we34
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can guarantee global convergence to an approximate second-order stationary point (in contrast, the35

pure Newton method without regularization can even diverge when it starts far from a neighborhood36

of the solution). For a comprehensive historical overview of the different variants of Newton’s37

method, see [24]. Additionally, the rate of convergence of the Cubic Newton is provably better than38

those for the first-order methods.39

Therefore, theoretical guarantees of the Cubic Newton method seem to be very appealing for practical40

applications. However, the basic version of the Cubic Newton requires the exact gradient and Hessian41

information in each step, which can be very expensive to compute in the large scale setting. To42

overcome this issue, several techniques have been proposed:43

• One popular approach is to use inexact stochastic gradient and Hessian estimates with sub-44

sampling [33, 17, 32, 21, 12, 6, 1]. This technique avoids using the full oracle information,45

but typically it has a slower convergence rate compared to the exact Cubic Newton.46

• Variance reduction techniques [35, 29] combine the advantages of stochastic and exact47

methods, achievieng an improved rates by recomputing the full gradient and Hessian48

information at some iterations.49

• Lazy Hessian updates [26, 9] utilize a simple idea of reusing an old Hessian for several50

iterations of a second-order scheme. Indeed, since the cost of computing one Hessian is51

usually much more expensive than one gradient, it can improve the arithmetic complexity of52

our methods.53

• In addition, exploiting the special structure of the function f (if known) can also be helpful.54

For instance, some studies [20, 18] consider gradient-dominated objectives, a subclass55

of non-convex functions that have improved convergence rates and can even be shown to56

converge to the global minimum. Examples of such objectives include convex and star-57

convex functions, uniformly convex functions, and functions satisfying the PL condition58

[23] as a special case.59

In this work, we revise the current state-of-the-art convergence theory for the stochastic Cubic60

Newton method and propose a unified and improved complexity guarantees for different versions of61

the method, which combine all the advanced techniques listed above.62

Our developments are based on the new helper framework for the second-order optimization, that we63

present in Section 3. For the first-order optimization, a similar in-spirit techniques called learning64

with auxiliary information was developed recently in [7, 30]. Thus, our results can also be seen as a65

generalization of the Auxiliary Learning paradigm to the second-order optimization. However, note66

that in our second-order case, we have more freedom for choosing the "helper functions" (namely, we67

use one for the gradients and one for the Hessians). That brings more flexibility into our methods and68

it allows, for example, to use the lazy Hessian updates.69

Our new helper framework provides us with a unified view of the stochastic and variance-reduced70

methods and can be used by an algorithm designed to construct new methods. Thus, we show how to71

recover already known versions of the stochastic Cubic Newton with the best convergence rates, as72

well as present the new Lazy Stochastic Second-Order Method, which significantly improves the total73

arithmetic complexity for large-dimension problems.74

Contributions.75

• We introduce the helper framework which we argue encompasses multiple methods in a76

unified way. Such methods include stochastic methods, variance reduction, Lazy methods,77

core sets, and semi-supervised learning.78

• This framework covers previous versions of the variance-reduced stochastic Cubic Newton79

methods with known rates. Moreover, it provides us with new algorithms that employ Lazy80

Hessian updates and significantly improves the arithmetic complexity (for high dimensions),81

by using the same Hessian snapshot for several steps of the method.82

• In the case of Auxiliary learning we provably show a benefit from using auxiliary tasks83

as helpers in our framework. In particular, we can replace the smoothness constant by a84

similarity constant which might be smaller.85

• Moreover, our analysis works both for the general class of non-convex functions, as well as86

for the class of gradient-dominated problems, that includes convex and uniformly convex87

functions. Hence, in particular, we are the first to establish the convergence rates of the88
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stochastic Cubic Newton algorithms with variance reduction for the gradient-dominated89

case.90

2 Notation and Assumptions91

For simplicity, we consider the finite-sum optimization problem (1), while it can be also possible92

to generalize our results to arbitrary expectations. We assume that our objective f is bounded93

from below and denote f⋆ := inf
x

f(x), and use the following notation: F0 := f(x0) − f⋆, for94

some initial x0 ∈ Rd. We denote by ∥x∥ := ⟨x,x⟩1/2, x ∈ Rd, the standard Euclidean norm for95

vectors, and the spectral norm for symmetric matrices, ∥H∥ := max{λmax(H),−λmin(H)}, where96

H = H⊤ ∈ Rd×d. We will also use x ∧ y to denote min(x, y).97

Throughout this work, we make the following smothness assumption on the objective f :98

Assumption 1 (Lipschitz Hessian) The Hessian of f is Lipschitz continuous, for some L > 0:

∥∇2f(x)−∇2f(y)∥ ≤ L∥x− y∥, ∀x,y ∈ Rd

Our goal is to explore the potential of using the Cubically regularized Newton methods to solve99

problem (1). At each iteration, being at a point x ∈ Rd, we compute the next point x+ by solving100

the subproblem of the form101

x+ ∈ argmin
y∈Rd

{
ΩM,g,H(y,x) := ⟨g,y − x⟩+ 1

2 ⟨H(y − x),y − x⟩+ M
6 ∥y − x∥3

}
. (2)

Here, g and H are estimates of the gradient ∇f(x) and the Hessian ∇2f(x), respectively. Note that102

solving (2) can be done efficiently even for non-convex problems (see [8, 20, 5]). Generally, the cost103

of computing x+ is O(d3) arithmetic operations, which are needed for evaluating an appropriate104

factorization of H . Hence, it is of a similar order as the cost of the classical Newton’s step.105

We will be interested to find a second-order stationary point to (1). We call (ε, c)-approximate
second-order local minimum a point x that satisfies:

∥∇f(x)∥ ≤ ε and λmin(∇2f(x)) ≥ −c
√
ε,

where ε, c > 0 are given tolerance parameters. Let us define the following accuracy measure (see
[20]):

µc(x) := max
(
∥∇f(x)∥3/2, −λmin(∇2f(x))3

c3/2

)
, x ∈ Rd, c > 0.

Note that this definition implies that if µc(x) ≤ ε3/2 then x is an (ε, c)-approximate local minimum.106

Computing gradients and Hessians. It is clear that computing the Hessian matrix can be107

much more expensive than computing the gradient vector. We denote the corresponding arith-108

metic complexities by HessCost and GradCost. We will make and follow the convention that109

HessCost = d× GradCost, where d is the dimension of the problem. For example, this is known to110

hold for neural networks using the backpropagation algorithm [15]. However, if the Hessian has a111

sparse structure, the cost of computing the Hessian can be cheaper [22]. Then, we can replace d with112

the effective dimension deff :=
HessCost
GradCost ≤ d.113

3 Second-Order Optimization with Helper Functions114

In this section, we extend the helper framework previously introduced in [7] for first-order optimiza-115

tion methods to second-order optimization.116

General principle. The general idea is the following: imagine that, besides the objective function f117

we have access to a help function h that we think is similar in some sense (that will be defined later)118

to f and thus it should help to minimize it.119

Note that many optimization algorithms can be framed in the following sequential way. For a current120

state x, we compute the next state x+ as:121
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x+ ∈ argmin
y∈Rd

{
f̂x(y) +Mrx(y)

}
,

where f̂x(·) is an approximation of f around current point x, and rx(y) is a regularizer that encodes122

how accurate the approximation is, and M > 0 is a regularization parameter. In this work, we123

are interested in cubically regularized second-order models of the form (2) and we use rx(y) :=124
1
6∥y − x∥3.125

Now let us look at how we can use a helper h to construct the approximation f̂ . We notice that we126

can write127
f(y) := h(y)︸︷︷︸

cheap

+ f(y)− h(y)︸ ︷︷ ︸
expensive

We discuss the actual practical choices of the helper function h below. We assume now that we can128

afford the second-order approximation for the cheap part h around the current point x. However,129

approximating the part f − h can be expensive (as for example when the number of elements n in130

finite sum (1) is huge), or even impossible (due to lack of data). Thus, we would prefer to approximate131

the expensive part less frequently. For this reason, let us introduce an extra snapshot point x̂ that132

is updated less often than x. Then, we use it to approximate f − h. Another question that we still133

need to ask is what order should we use for the approximation of f − h? We will see that order 0134

(approximating by a constant) leads as to the basic stochastic methods, while for orders 1 and 2 we135

equip our methods with the variance reduction.136

Combining the two approximations for h and f − h we get the following model of our objective f :137

f̂x,x̃(y) = C(x, x̃) + ⟨G(h,x, x̃),y − x⟩+ 1
2 ⟨H(h,x, x̃)(y − x),y − x⟩, (3)

where C(x, x̃) is a constant, G(h,x, x̃) is a linear term, and H(h,x, x̃) is a matrix. Note that if138

x̃ ≡ x, then the best second-order model of the form (3) is the Taylor polynomial of degree two for139

f around x, and that would give us the exact Newton-type method. However, when the points x and140

x̃ are different, we obtain much more freedom in constructing our models.141

For using this model in our cubically regularized method (2), we only need to define the gradient142

g = G(h,x, x̃) and the Hessian estimates H = H(h,x, x̃), and we can also treat them differently143

(using two different helpers h1 and h2, correspondingly). Thus we come to the following general144

second-order (meta)algorithm. We perform S rounds, the length of each round is m ≥ 1, which is145

our key parameter:

Algorithm 1 Cubic Newton with helper functions

Input: x0 ∈ Rd, S, m ≥ 1, M > 0.
1: for t = 0, . . . , Sm− 1 do
2: if tmodm = 0 then
3: Update x̃t (using previous states xi≤t)
4: else
5: x̃t = x̃t−1

6: Form helper functions h1, h2

7: Compute the gradient gt = G(h1,xt, x̃t), and the Hessian Ht = H(h2,xt, x̃t)
8: Compute the cubic step xt+1 ∈ argminy∈Rd ΩM,gt,Ht

(y,xt)
return xout using the history (xi)0≤i≤Sm

146

In Algorithm 1 we update the snapshot x̃ regularly every m iterations. The two possible options are147

x̃t = xtmodm (use the last iterate) (4)
or148

x̃t = argmin
i∈{t−m+1,...,t}

f(xi) (use the best iterate) (5)

Clearly, option (5) is available only in case we can efficiently estimate the function values. However,149

we will see that it serves us with better global convergence guarantees, for the gradient-dominated150

functions.151

It remains only to specify how we choose the helpers h1 and h2. We need to assume that they are152

somehow similar to f . Let us present several efficient choices that lead to implementable second-order153

schemes.154
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3.1 Basic Stochastic Methods155

If the objective function f is very "expensive" (for example of the form (1) with n → ∞), one option
is to ignore the part f − h i.e. to approximate it by a zeroth-order approximation: f(y)− h(y) ≈
f(x̃)− h(x̃). Since it is just a constant, we do not need to update x̃. In this case, we have:

G(h1,x, x̃) := ∇h1(x), H(h2,x, x̃) := ∇2h2(x) .

To treat this choice of the helpers and motivated by the form of the errors in Lemma 5, we assume the156

following similarity assumptions:157

Assumption 2 (Bounded similarity) Let for some δ1, δ2 ≥ 0, it holds

Eh1
[∥G(h1,x, x̃)−∇f(x)∥3/2] ≤ δ

3/2
1 , Eh2

[∥H(h2,x, x̃)−∇2f(x)∥3] ≤ δ32 , ∀x, x̃ ∈ Rd.

Under this assumption, we prove the following theorem:158

Theorem 1 Under Assumptions 1 and 2, and M ≥ L, for an output of Algorithm 1 xout chosen
uniformly at random from (xi)0≤i≤Sm, we have:

E[µM (xout)] = O
(√

MF0

Sm +
δ32

M3/2 + δ
3/2
1

)
.

We see that according to this result, we can get E[µM (xout)] ≤ ε3/2 only for ε > δ1. In other words,159

we can converge only to a certain neighbourhood around a stationary point, that is determined by the160

error δ1 of the stochastic gradients.161

However, as we will show next, this seemingly pessimistic dependence leads to the same rate of162

classical subsampled Cubic Newton methods discovered in [17, 32, 33].163

Let us discuss now the specific case of stochastic optimization, where f has the specific form (1),164

with n potentially being very large. In this case, it is customary to sample batches at random and165

assume the noise to be bounded in expectation. Precisely speaking, if we assume the standard166

assumption that for one index sampled uniformly at random, we have Ei∥∇f(x)−∇fi(x)∥2 ≤ σ2
g167

and Ei∥∇2f(x)−∇2fi(x)∥3 ≤ σ3
h , then it is possible to show that for168

h1 = 1
bg

∑
i∈Bg

fi and h2 = 1
bh

∑
i∈Bh

fi, (6)

for batches Bg,Bh ⊆ [n] sampled uniformly at random and of sizes bg and bh respectively, Assump-169

tion 2 is satisfied with [27]: δ1 =
σg√
bg

and δ2 = Õ( σh√
bh
). Note that we can use the same random170

subsets of indices Bg,Bh for all iterations.171

Corollary 1 In Algorithm 1, let us choose M = L and m = 1, with basic helpers (6). Then,
according to Theorem 1, for any ε > 0, to reach an (ε, L)-approximate second-order local minimum,
we need at most S =

√
LF0

ε3/2
iterations with bg =

(σg

ε

)2
and bh =

σ2
h

ε . Therefore, the total arithmetic
complexity of the method becomes

O
(

σ2
g

ε7/2
+

σ2
h

ε5/2
deff

)
× GradCost.

It improves upon the complexity O( 1
ε4 )× GradCost of the first-order SGD for non-convex optimiza-172

tion [11], unless deff >
1

ε3/2
(high cost of computing the Hessians).173

3.2 Let the Objective Guide Us174

If the objective f is such that we can afford to access its gradients and Hessians from time to time175

(functions of the form (1) with n < ∞ and “reasonable"), then we can do better than the previous176

chapter. In this case, we can afford to use a better approximation of the term f(y)− h(y). From a177

theoretical point of view, we can treat the case when f is only differentiable once, and thus we can178

only use a first-order approximation of f − h, in this case, we will only be using the hessian of the179

helper h but only gradients of f . However, in our case, if we assume we have access to gradients then180
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we can also have access to the Hessians of f as well (from time to time). For this reason, we consider181

a second-order approximation of the term f − h, if we follow the procedure that we described above182

we find:183

G(h1,x, x̃) := ∇h1(x)−∇h1(x̃) +∇f(x̃) + (∇2f(x̃)−∇2h1(x̃))(x− x̃) (7)

H(h2,x, x̃) := ∇2h2(x)−∇2h2(x̃) +∇2f(x̃) (8)

We see that there is an explicit dependence on the snapshot x̃ and thus we need to address the question184

of how this snapshot point should be updated in Algorithm 1. In general, we can update it with a185

certain probability p ∼ 1
m , and we can use more advanced combinations of past iterates (like the186

average). However, for our purposes, we simply choose option 4 (i.e. the last iterate), thus it is only187

updated once every m iterations.188

We also need to address the question of the measure of similarity in this case. Since we are using a189

second-order approximation of f − h, it is very logical to compare them using the difference between190

their third derivatives or equivalently, the Hessian Lipschitz constant of their difference. Precisely we191

make the following similarity assumption :192

Assumption 3 (Lipschitz similarity) Let for some δ1, δ2 ≥ 0, it holds, ∀x, x̃ ∈ Rd:

Eh1
[∥G(h1,x, x̃)−∇f(x)∥3/2] ≤ δ

3/2
1 ∥x− x̃∥3,

Eh2
[∥H(h2,x, x̃)−∇2f(x)∥3] ≤ δ32∥x− x̃∥3.

In particular, if f − h1 and f − h2 have δ1 and δ2 Lipschitz Hessians respectively then h1 and h2193

satisfy Assumption 3.194

Under this assumption, we show that the errors resulting from the use of the snapshot can be195

successfully balanced by choosing M satisfying:196

4
(
δ1
M

)3/2
+ 73

(
δ2
M

)3 ≤ 1
24m3 . (9)

And we have the following theorem.197

Theorem 2 For f, h1, h2 verifying Assumptions 1,3. For a regularization parameter M chosen
such that M ≥ L and (9) is satisfied. For an output of Algorithm 1 xout chosen uniformly at
random from (xi)0≤i≤Sm:=T , we have:

E[µM (xout)] = O
(√

MF0

Sm

)
,

In particular, we can choose M = max(L, 32δ1m
2, 16δ2m) which gives198

E[µM (xout)] = O
(√

LF0

Sm +
√
δ2F0

S
√
m

+
√
δ1F0

S

)
. (10)

Based on the choices of the helpers h1 and h2 we can have many algorithms. We discuss these in199

the following sections. We start by discussing variance reduction and Lazy Hessians which rely on200

sampling batches randomly, then move to core-sets which try to find, more intelligently, representative201

weighted batches of data, after this, we discuss semi-supervised learning and how unlabeled data can202

be used to engineer the helpers. More generally, auxiliary learning tries to leverage auxiliary tasks in203

training a given main task, the auxiliary tasks can be treated as helpers.204

3.3 Variance Reduction and Lazy Hessians205

The following lemma demonstrates that we can create helper functions h with lower similarity to the206

main function f of the form (1) by employing sampling and averaging.207
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Lemma 1 Let f = 1
n

∑n
i=1 fi such that all fi are twice differentiable and have L-Lipschitz Hes-

sians. Let B ⊂ {1, · · · , n} be of size b and sampled with replacement uniformly at random, and

define hB = 1
b

∑
i∈B fi, then hB satisfies Assumption 3 with δ1 = L√

b
and δ2 = O(

√
log(d)L√

b
).

Choice of the parameter m in Algorithm 1. Minimizing the total arithmetic cost, we choose208

m = argminm #Grad(m, ε) + d#Hess(m, ε), where #Grad(m, ε) and #Hess(m, ε) denote209

the number of gradients and Hessians required to find an ε stationary point.210

Now we are ready to discuss several special cases that are direct consequences from Theorem 2.211

First, note that choosing h1 = h2 = f gives the classical Cubic Newton method [20], whereas212

choosing h1 = f and h2 = 0, gives the Lazy Cubic Newton [9]. In both cases, we recuperate the213

known rates of convergence.214

215

General variance reduction. If we sample batches Bg and Bh of sizes bg and bh consecutively at
random and choose

h1 = 1
bg

∑
i∈Bg

fi and h2 = 1
bh

∑
i∈Bh

fi,

and use these helpers along with the estimates (7), (8), we obtain the Variance Reduced Cubic216

Newton algorithm [35, 29]. According to Lemma 1, this choice corresponds to δ1 = L√
bg

and217

δ2 = Õ( L√
bh
). For bg ∼ m4 ∧ n, bh ∼ m2 ∧ n and M = L, we have the non-convex convergence218

rate O
(√

LF0

Sm

)
, which is the same as that of the cubic Newton algorithm but with a smaller cost per219

iteration. Minimizing the total arithmetic cost, we can choose m = argmin
m

dn+d(m3∧nm)+(m5∧nm)
m .220

Let us denote by gV R(n, d) the corresponding optimal value. Then we reach an (ε, L)-approximate221

second-order local minimum in at most O( g
V R(n,d)
ε3/2

)× GradCost arithmetic operations.222

Variance reduction with Lazy Hessians. We can also use lazy updates for Hessians combined
with variance-reduced gradients. This corresponds to choosing

h1 = 1
bg

∑
i∈Bg

fi and h2 = 0,

which implies (according to Lemma 1) that δ1 = L√
bg

and δ2 = L. In this case, we need bg ∼ m2223

to obtain a convergence rate of O
(√

LF0

S
√
m

)
, which matches the convergence rate of the Lazy Cubic224

Newton method while using stochastic gradients. We choose this time m = argmin
m

nd+(m3∧mn)√
m

,225

as before. Let us denote gLazy(n, d) the corresponding minimum. Then we guarantee to reach an226

(ε,mL)-approximate second-order local minimum in at most O( g
Lazy(n,d)

ε3/2
)× GradCost operations.227

To be lazy or not to be? We show that gLazy(n, d) ∼ (nd)5/6 ∧ n
√
d and gV R(n, d) ∼ (nd)4/5 ∧228

(n2/3d + n). In particular, for d ≥ n2/3 we have gLazy(n, d) ≤ gV R(n, d) and thus for d ≥ n2/3229

it is better to use Lazy Hessians than variance-reduced Hessians from a gradient equivalent cost230

perspective. We note also that for the Lazy approach, we can keep a factorization of the Hessian (this231

factorization induces most of the cost of solving the cubic subproblem) and thus it is as if we only232

need to solve the subproblem once every m iterations, so the Lazy approach has a big advantage233

compared to the general approach, and the advantage becomes even bigger for the case of large234

dimensions.235

Note that according to the theory, we could use the same random batches Bg,Bh ⊆ [n] generated236

once for all iterations. However, using the resampled batches can lead to a more stable convergence.237

3.4 Other Applications238

The result in (10) is general enough that it can include many other applications that are only limited239

by our imagination. To cite a few such applications there are:240
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Core sets. [3] The idea of core sets is simple: can we summarize a potentially big data set using241

only a few (weighted) important examples? Many reasons such as redundancy make the answer yes.242

Devising approaches to find such core sets is outside of the scope of this work, but in general, we243

can see from (10) that if we have batches Bg,Bh such that they are (δ1, 1) and (δ2, 2) similar to f244

respectively, then we can keep reusing the same batch Bg for at least
√

L
δ1

times, and Bh for L
δ2

all245

the while guaranteeing an improved rate. So then if we can design such small batches with small δ1246

and δ2 then we can keep reusing them, and joy the improved rate without needing large batches.247

Auxiliary learning. [4, 2, 31] study how a given task f can be trained in the presence of auxiliary248

(related) tasks. Our approach can be indeed used for auxiliary learning by treating the auxiliaries as249

helpers. If we compare (10) to the rate that we obtained without the use of the helpers: O(
√
LF0

S ), we250

see that we have a better rate using the helpers/auxiliary tasks when 1
m +

√
δ2√
mL

+
√
δ1√
L

≤ 1.251

Semi-supervised learning.[34] Semi-supervised learning is a machine learning approach that com-252

bines the use of both labeled data and unlabeled data during training. In general, we can use the253

unlabeled data to construct the helpers, we can start for example by using random labels for the254

helpers and improving the labels with training. There are at least two special cases where our theory255

implies improvement by only assigning random labels to the unlabeled data. In fact, for both regular-256

ized least squares and logistic regression, we notice that the Hessian is independent of the labels (only257

depends on inputs) and thus if the unlabeled data comes from the same distribution as the labeled258

data, then we can use it to construct helpers which, at least theoretically, have δ1 = δ2 = 0. Because259

the Hessian is independent of the labels, we can technically endow the unlabeled data with random260

labels. Theorem 2 would imply in this case E[µL(xout)] = O(
√
LF0

Sm ), where S is the number of261

times we use labeled data and S(m− 1) is the number of unlabeled data.262

4 Gradient-Dominated Functions263

We consider now the class of gradient-dominated functions defined below.264

Assumption 4 (τ, α)-gradient dominated. A function f is called gradient dominated on set if
it holds, for some α ≥ 1 and τ > 0:

f(x)− f⋆ ≤ τ∥∇f(x)∥α, ∀x ∈ Rd. (11)

Examples of functions satisfying this assumption are convex functions (α = 1) and strongly convex265

functions (α = 2), see Appendix D.1. For such functions, we can guarantee convergence (in266

expectation) to a global minimum, i.e. we can find a point x such that f(x)− f⋆ ≤ ε.267

The Gradient-dominance property is interesting because many non-convex functions have been shown268

to satisfy it [28, 13, 18]. Furthermore, besides convergence to a global minimum, we get accelerated269

rates.270

We note that for α > 3/2 (and only for this case), we needed to assume the following (stronger)271

inequality:272

Ef(xt)− f⋆ ≤ τE
[
∥∇f(xt)∥

]α
, (12)

where the expectation is taken with respect to the iterates (xt) of our algorithms. This is a stronger273

assumption than (11). To avoid using this stronger assumption, we can assume that the iterates belong274

to some compact set Q ⊂ Rd and that the gradient norm is uniformly bounded: ∀x ∈ Q : ∥∇f(x)∥ ≤275

G. Then, a (τ, α)-gradient dominated on set Q function is also a (τGα−3/2, 3/2)-gradient dominated276

on this set for any α > 3/2.277

In Theorem 3 we extend the results of Theorem 1 to gradient-dominated functions.278
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Theorem 3 Under Assumptions 1,2,4, for M ≥ L and T := Sm we have:
- For 1 ≤ α ≤ 3/2: E[f(xT )]− f⋆ = O

((
α
√
Mτ3/(2α)

(3−2α)T

) 2α
3−2α + τ

δ2α2
Mα + τδα1

)
.

- For 3/2 < α ≤ 2 , let h0 = O( F0

(
√
Mτ

3
2α )

2α
3−2α

), then for T ≥ t0 = O(h
3−2α
2α

0 log(h0)) we

have:

E[f(xT )]− f⋆ = O
(
(
√
Mτ

3
2α )

2α
3−2α

(
1
2

)( 2α
3 )T−t0

+ τ
δ2α2
Mα + τδα1

)
.

Theorem 3 shows (up to the noise level) for 1 ≤ α < 3/2 a sublinear rate, for α = 3/2 a linear rate279

(obtained by taking the limit α → 3/2) and a superlinear rate for α > 3/2.280

We do the same thing for Theorem 2 which we extend in Theorem 4. In this case, we need to set the281

snapshot line 3 in Algorithm 1) as in 5 i.e. the snapshot corresponds to the state with the smallest282

value of f during the last m iterations.283

Theorem 4 Under Assumptions 1,3,4, for M = max(L, 34δ1m
2, 11δ2m) , we have:

- For 1 ≤ α ≤ 3/2 : E[f(xSm)]− f⋆ = O
((

α
√
Mτ3/(2α)

(3−2α)Sm

) 2α
3−2α

)
.

- For 3/2 < α ≤ 2, let h0 = O( F0

(
√

M
m τ

3
2α )

2α
3−2α

), then for S ≥ s0 = O(h
3−2α
2α

0 log(h0)) we

have:
E[f(xSm)]− f⋆ =

(
(
√
M
m τ

3
2α )

2α
3−2α

(
1
2

)( 2α
3 )S−s0

)
Again, the same behavior is observed as for Theorem 3 but this time without noise (variance reduction284

is working). To the best of our knowledge, this is the first time such analysis is made. As a direct285

consequence of our results, we obtain new global complexities for the variance-reduced and lazy286

variance-reduced Cubic Newton methods on the class of gradient-dominated functions.287

To compare the statements of Theorems 3 and 4, for convex functions (i.e. α = 1), Theorem 3288

guarantees convergence to a ε−global minimum in at most O( 1
ε5/2

+ d
ε3/2

) GradCost, whereas289

Theorem 4 only needs O( g(n,d)√
ε

) GradCost, where g(n, d) is either gLazy(n, d) = (nd)5/6 ∧ n
√
d290

or gV R(n, d) = (nd)4/5 ∧ (n2/3d+ n). See the Appendix D.3 for more details.291

5 Limitations and possible extensions292

Estimating similarity between the helpers and the main function. While we show in this work293

that we can have an improvement over training alone, this supposes that we know the similarity294

constants δ1, δ2, hence it will be interesting to have approaches that can adapt to such constants.295

Engineering helper functions. Building helper task with small similarities is also an interesting idea.296

Besides the examples in supervised learning and core-sets that we provide, it is not evident how to do297

it in a generalized way.298

Using the helper to regularize the cubic subproblem. We note that while we proposed to approxi-299

mate the “cheap" part as well in Section 3, one other theoretically viable approach is to keep it intact300

and approximately solve a “proximal type" problem involving h, this will lead to replacing L by δ,301

but the subproblem is even more difficult to solve. However our theory suggests that we don’t need302

to solve this subproblem exactly, we only need m ≥ L
δ . We do not treat this case here.303

6 Conclusion304

In this work, we proposed a general theory for using auxiliary information in the context of the305

cubically regularized Newton’s method. Our theory encapsulates the classical stochastic methods as306

well as variance reduction and Lazy methods. For auxiliary learning, we showed a provable benefit307

compared to training alone. Besides studying the convergence for general non-convex functions308

for which we show convergence to approximate local minima, we also study gradient-dominated309

functions, for which convergence is accelerated and is to approximate global minima.310
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