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ABSTRACT

Recent advancements in meta-learning have enabled the automatic discovery of
novel reinforcement learning algorithms parameterized by surrogate objective
functions. To improve upon manually designed algorithms, the parameterization
of this learned objective function must be expressive enough to represent novel
principles of learning (instead of merely recovering already established ones)
while still generalizing to a wide range of settings outside of its meta-training
distribution. However, existing methods focus on discovering objective functions
that, like many widely used objective functions in reinforcement learning, do not
take into account the total number of steps allowed for training, or “training hori-
zon”. In contrast, humans use a plethora of different learning objectives across
the course of acquiring a new ability. For instance, students may alter their study-
ing techniques based on the proximity to exam deadlines and their self-assessed
capabilities. This paper contends that ignoring the optimization time horizon sig-
nificantly restricts the expressive potential of discovered learning algorithms. We
propose a simple augmentation to two existing objective discovery approaches
that allows the discovered algorithm to dynamically update its objective function
throughout the agent’s training procedure, resulting in expressive schedules and
increased generalization across different training horizons. In the process, we
find that commonly used meta-gradient approaches fail to discover such adaptive
objective functions while evolution strategies discover highly dynamic learning
rules. We demonstrate the effectiveness of our approach on a wide range of tasks
and analyze the resulting learned algorithms, which we find effectively balance
exploration and exploitation by modifying the structure of their learning rules
throughout the agent’s lifetime.

1 INTRODUCTION

Advancements in reinforcement learning (RL) have historically come from handcrafted algorithms
derived from human experimentation or theoretical insights (Mnih et al., 2015; Schulman et al.,
2015). By contrast, recent approaches attempt to discover novel RL algorithms automatically (e.g.
Kirsch et al., 2020; Oh et al., 2020; Lu et al., 2022a). One well-studied feature of handcrafted RL
algorithms is the adaptation of the update to the total and remaining number of training steps (Auer,
2002; Farsang & Szegletes, 2021). This adaptation to perceived learning horizon is even observed in
humans, for instance, students using spaced repetition systems with decreasing intervals to maximize
learning progress (Smith & Scarf, 2017).

In this work, we take a meta-learning approach to discover novel RL objective functions that are
aware of and adapt to the amount of learning time remaining. We modify Learned Policy Gradi-
ent (Oh et al., 2020, LPG) and Learned Policy Optimization (Lu et al., 2022a, LPO), two recent
meta-learned objective methods, to directly condition on temporal information about the agent’s
lifetime. We find the meta-optimization method is a critical component in successfully taking ad-
vantage of this information, which we refer to as “lifetime conditioning”. Specifically, meta-gradient
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approaches using a myopic proxy objective (as in LPG) fail to learn a dynamic update. Instead, we
investigate the use of Evolution Strategies (Salimans et al., 2017, ES), which computes fitness from
the final return after the entire lifetime of the RL agent. These additions enable both of the methods
to discover objective functions that dynamically adapt across the course of learning.

We evaluate the learned objective functions on both in-distribution and out-of-distribution environ-
ments, ranging from continuous control tasks to discrete Atari-like settings, over a range of training
horizons. They significantly improve upon the performance of their non-temporally-aware coun-
terparts, improving generalization to previously unseen training horizons and environments. Our
results highlight the synergistic effects of combining lifetime conditioning with ES when meta-
learning temporally-aware objective functions.

Our contributions are summarized as follows:

1. We propose temporally-aware variants of LPG and LPO, named TA-LPG and TA-LPO.
We augment their input spaces to contain temporal information, allowing for direct condi-
tioning on the total and remaining training horizon of the agent (Section 4.1).

2. We compare meta-gradient and evolutionary meta-optimization approaches for discovering
non-myopic RL objective functions, finding that meta-gradient approaches fail to learn
temporally-aware updates (Section 5.3). Based on this, we propose the use of ES for TA-
LPG, with a simple adaptation for multi-task meta-learning (Section 4.2).

3. After meta-training, we test the discovered objective functions over a range of evalua-
tion environments. Our temporally-aware objective functions outperform all baselines we
consider, generalizing to environments and training horizons unseen during meta-training
(Section 5.2).

4. We analyze the dynamic schedules extracted by the discovered objective functions. We find
that they implement dynamic policy importance ratio clipping, in addition, to update and
entropy annealing schedules that effectively adapt to the training horizon, thereby balancing
exploration and exploitation (Section 5.3).

2 RELATED WORK

Meta-learning fundamentals Meta-learning (or “learning to learn”) aims to discover new prin-
ciples of learning via end-to-end optimization (Schmidhuber, 1987; Thrun & Pratt, 1998). These
approaches can be grouped into meta-gradient (Finn et al., 2017; Xu et al., 2018) and memory-based
(in-context learning) approaches (Hochreiter et al., 2001; Wang et al., 2016; Duan et al., 2016). In-
stead of training agents on a single task instance, meta-learning discovers parameterized learning
algorithm components that generalize across a task distribution. Two key related considerations
arise: First, how flexible should the meta-optimized medium be? Suitable inductive biases con-
strain the meta-search space, which can facilitate stable and more data-efficient meta-optimization.
However, this comes at the risk of prohibiting truly novel algorithm discovery. Second, how can
we avoid overfitting to the meta-training task distribution (Kirsch et al., 2020; Jackson et al., 2023)
and rollout horizon (Lange & Sprekeler, 2022) to find truly general-purpose components instead of
heuristics? In this work, we argue that both of these core problems can be tackled by making the
learned algorithm aware of the learning horizon of the agent.

Meta-learning objective functions One specific approach to meta-learning is concerned with the
meta-optimization of parameterized objective functions to represent learning algorithms (Houthooft
et al., 2018; Bechtle et al., 2021). More recently, several advances were achieved in order to facilitate
generalization. These include, e.g., MetaGenRL (Kirsch et al., 2020), LPG (Oh et al., 2020), LPO
(Lu et al., 2022a) and GROOVE (Jackson et al., 2023). Finally, several attempts have been made
to obtain interpretable RL algorithm (components) using, for example, symbolic methods (Alet
et al., 2020; Co-Reyes et al., 2021). Here, we leverage LPG and LPO to demonstrate that further
performance improvements can be achieved by giving the algorithm access to its current position
within its total lifetime.

Meta-optimization with Evolutionary / Zeroth-order methods Previously, it has been observed
that meta-gradient approaches allow only for short inner loop algorithm unrolls due to memory
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constraints and chaotic dynamics (Metz et al., 2021; Wu et al., 2018). This in turn can lead to
short-sightedness (myopia) of the discovered element. An alternative approach is to perform black-
box optimization using evolutionary optimization. This circumvents the computation of higher-
order gradients and accommodates full algorithm rollouts. This has been successfully applied in
the context of learning gradient-based (Metz et al., 2022) and gradient-free optimizers (Lange et al.,
2023a;b) as well as in-context learning (Kirsch & Schmidhuber, 2021), adversarial learning (Lu
et al., 2022b; 2023b) and neural auto-curricula (Feng et al., 2021).

3 BACKGROUND

3.1 META REINFORCEMENT LEARNING

Discovering new reinforcement learning algorithms is a form of meta-reinforcement learn-
ing (Schmidhuber, 1987; Parker-Holder et al., 2022). However, most meta-reinforcement learning
approaches aim to adapt to a small range of tasks (Duan et al., 2016; Wang et al., 2016; Finn et al.,
2017; Houthooft et al., 2018; Bechtle et al., 2021) such as varying rewards signals or environment
parameterizations. Here, we follow a line of work that aims to meta-learn reinforcement learning
algorithms that can learn across a wide range of reinforcement learning environments (Kirsch et al.,
2020; Oh et al., 2020; Lu et al., 2022a) such as generalizing to robotic control environments of dif-
ferent actuators and environment dynamics or from simple grid worlds to robotic control problems.

More formally, in meta-RL we search for learning algorithms that solve reinforcement learning (RL)
problems, in the simplest case defined as Markov Decision Processes (MDPs). An MDP is defined
by the tuple ⟨S,A, R, P, γ, d⟩. At each timestep t, an agent takes an action sampled from its policy
at ∼ π(·|st) (where at ∈ A and st ∈ S). The environment then returns a reward R(st, at) and
samples the next state st+1 according to the transition function st+1 ∼ P (·|st, at). The objective is
to find a policy π (parameterized by θ) that maximizes the expected return:

J(πθ) ≜ E[Rγ |πθ] = Es0∼d,a0:∞∼πθ,s1:∞∼P

[ ∞∑
t=0

γtR(st, at)
]
. (1)

In our approach, meta-optimization operates in a space of RL algorithms, represented by meta-
parameters ϕ, which are used to update the policy parameters θ. For example, if ϕ parameterizes
a loss function Lϕ that we optimize with gradient descent (using learning rate η), then θk+1 =
θk−η∇θLϕ(θk). Let πθk be the policy after k updates to an initial policy πθ0 with ϕ. We maximize
the expected return after K updates, or at the end of agent training, which we define as:

F (ϕ) = Eθ0 [J(πθK )]. (2)

In our work, we focus on instances of meta-RL that parameterize surrogate loss functions with ϕ
and apply gradient-based updates to πθ We focus on two recent instances thereof: Learned Policy
Gradients (Oh et al., 2020, LPG) and Learned Policy Optimization (Lu et al., 2022a, LPO).

3.2 LEARNED POLICY GRADIENT (LPG)

Learned Policy Gradient (LPG) (Oh et al., 2020) is a meta-RL approach that generalizes actor-critic
RL (Barto et al., 1983). Rather than training a critic to output a scalar value estimate, it trains a critic
that outputs a bootstrap vector. The interpretation of this vector is meta-learned by LPG, allowing
it to encode information beyond value estimation that helps it optimize the inner policy, e.g., state
visitation.

LPG is parameterized by an LSTM (Hochreiter & Schmidhuber, 1997), which iterates over a re-
versed sequence of agent transitions. Specifically, to compute an update to the joint actor-critic
parameters θ at timestep t, LPG outputs targets ŷt, π̂t = Uϕ(xt|xt+1, . . . , xT ). Here, the input
vector xt is constructed from the transition τt = (st, at, rt, dt, st+1) at timestep t by

xt = [rt, dt, γ, πθ(at|st), yθ(st), yθ(st+1)], (3)

containing reward rt, episode-termination flag dt, discount factor γ, probability of the chosen action
πθ(at|st), and bootstrap vectors for the current and next states yθ(st) and yθ(st+1). The targets ŷ
and π̂ update the critic and policy respectively, giving the update rule

∆θ ∝ Eτ [∇θ log πθ(a|s)π̂ − αy∇θDKL(yθ||ŷ)] . (4)
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LPG is optimized over a series of update steps using meta-gradients, to maximize the return of the
policy at the end of training. Given a distribution of environments E and initial agent parameters θ0,
these meta-gradients are computed by

∆ϕ ∝ EEEθ0 [∇ϕ log πθK (a|s)J(πθK )] , (5)

where πθK is the policy produced from an initialization θ0 after updating with Uϕ for K steps.
This computation requires backpropagation through the agent’s entire learning process, making its
computation limited by memory constraints. Therefore, a truncated backpropagation window is
used in practice, which optimizes the agent over k ≪ K update steps.

3.3 LEARNED POLICY OPTIMISATION (LPO)

Learned Policy Optimisation (Lu et al., 2022a, LPO) is a meta-RL method that inherits theoreti-
cal convergence guarantees from the Mirror Learning framework (Kuba et al., 2022). In Mirror
Learning, agents maximize

Ea∼πnew [Qπold(s, a)]−Dπold(πnew|s) (6)

where Qπ(s, a) ≜ E[Rγ |π, s0 = s, a0 = a] (the state-action value function of π) and D is the drift
function, which maps from two policies in a given state to a scalar. If D satisfies specific conditions
from Kuba et al. (2022),

1. It is non-negative everywhere and zero at identity Dπk
(π|s) ≥ Dπk

(πk|s) = 0,

2. Its gradient with respect to π is zero at π = πk,

then the Mirror Learning algorithm provably improves monotonically and converges to the optimal
return in the limit. Many existing RL algorithms are instances of Mirror Learning. Most notably,
PPO (Schulman et al., 2017) is an instance of Mirror Learning since its clipped objective can be
reformulated as a drift function.

LPO parameterizes D with a neural network and structures its inputs and network architecture to
guarantee the drift function conditions hold. The network does not use bias parameters and takes
the following vector as input:

xp,A = [(1− p), (1− p)2, (1− p)A, (1− p)2A, log(p), log(p)2, log(p)A, log(p)2A], (7)

where p is the probability ratio between the current policy and the original policy for a given state-
action pair (s, a) from the environment p ≜ πnew(a|s)

πold(a|s) and A is the estimated advantage of the state-

action pair Aπ(s, a) ≜ Qπ(s, a)− Eâ∼π(·|s)[Qπ(s, â)]. By removing the bias parameters and mul-
tiplying all inputs by (1− p) or log(p), this input parameterization guarantees that the drift function
conditions hold.

LPO uses evolution strategies (Salimans et al., 2017, ES) to optimize D. ES estimates the gradient
of a smoothed black-box function from samples. Formally,

∇xEϵ∼N(0,Id)[F (x+ σϵ)] = Eϵ∼N(0,Id)

[ ϵ
σ
F (x+ σϵ)

]
. (8)

where F is the objective defined in Equation 2.

4 METHOD

4.1 CONDITIONING ON AGENT LIFETIME

We define the current lifetime of the agent as n/N , where n is the number of environment interac-
tions the agent has had so far and N is the total number of environment interactions it will have,
i.e., the training horizon. By conditioning on this information, we propose two extensions to exist-
ing learned-loss meta-RL methods: Temporally-Adaptive Learned Policy Gradient (TA-LPG) and
Temporally-Adaptive Learned Policy Optimization (TA-LPO).

4



Published as a conference paper at ICLR 2024

Temporally-Adaptive LPG We incorporate lifetime conditioning into LPG by appending the
agent’s lifetime and the training horizon to the optimizer input. Specifically, we take the logarithm
of the training horizon log(N) due to this input being unbounded. This results in an input of

xt = [r, d, γ, πθ(a|s), yθ(s), yθ(s),
n

N
, log(N)]. (9)

Temporally-Adaptive LPO To condition LPO on an agent’s lifetime, we provide the lifetime as
input to D, the drift function network. We follow LPO’s implementation and structure the input to
guarantee that the theoretical drift function conditions from Equation 6 hold. In particular, we input

xp,A,t = [xp,A,
n

N
xp,A] (10)

where xp,A is defined in Equation 7. Since TA-LPO is only meta-trained on a single environment
and horizon, we do not include the log(N) term since it does not vary across updates.

4.2 META-OPTIMIZATION FOR LIFETIME ADAPTATION

Gradient-free vs. gradient-based meta-optimization A range of meta-RL methods, including
LPG, compute the gradient of the meta-parameters in order to update the learned loss function during
meta-training (Kirsch et al., 2020; Bechtle et al., 2021). When meta-optimizing over multiple update
steps, these meta-gradient approaches require backpropagation through time (Werbos, 1990). This
raises a range of stability issues, particularly early in meta-training when the update rule is unstable
and the inner policy gradient may display chaotic dynamics (Metz et al., 2021). On top of this,
the memory requirement severely limits the number of steps that can be backpropagated through,
requiring the backpropagation window to be truncated to a reduced number of steps, typically far
below the training horizon. This leads to a myopic proxy objective for meta-gradient methods,
which may prevent them from effectively conditioning on an agent’s lifetime. We investigate this in
Section 5.3.

ES is an attractive alternative to backpropagation-based meta-gradients for meta-optimization, as it
can optimize through an unlimited number of inner loop update steps with no additional memory
requirement. This makes it possible to optimize over the entire lifetime of an agent, such that the
objective becomes the agent’s return at the end of training, rather than after a truncated series of
updates. ES has previously been used for meta-learning objective functions in the single-task setting
(Section 3.3). To avoid instabilities in the multi-task setting, we propose a simple adaptation to ES.

Adapting ES to multi-task meta-learning Given a large or continuous distribution of tasks E , it
is infeasible to evaluate the expected fitness of each parameter candidate Ee∼E [Fe(x + σϵ)] across
the entire task distribution, where Fe is the fitness function on task e. In contrast, evaluating all
candidates on an individual task e ∼ E each update step leads to significant bias in the meta-update,
since it is derived from a single task. To balance between these, we could evaluate each candidate ϵi
on a distinct task ei ∼ E . This balances these factors but can increase update variance, particularly
when return is not normalized between tasks.

To solve this, we propose antithetic task sampling, which builds upon antithetic sampling (Geweke,
1988). In antithetic sampling, pairs of candidates x+ σϵ and x− σϵ are evaluated for each sampled
noise vector ϵ, reducing update variance in practice. In the multi-task setting, this has the form

Eϵ∼N(0,Id)

[ ϵ

2σ
(Ee∼E [Fe(x+ σϵ)]− Ee∼E [Fe(x− σϵ)])

]
. (11)

We adapt this method by evaluating each antithetic candidate pair on the same randomly sampled
task, giving the estimator

Eϵ∼N(0,Id)

[
Ee∼E

[ ϵ

2σ
(Fe(x+ σϵ)− Fe(x− σϵ))

]]
. (12)

In practice, we first apply a rank transformation over the pair’s fitness, which is equivalent to select-
ing the higher-performing member. In doing so, we normalize across tasks by returning a uniform
fitness from each task. We found this stabilized training and led to higher performance in preliminary
experiments, so we adopted this approach for all multi-task ES optimization.
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Figure 1: TA-LPG adapts to variable training horizons. Training curves for LPG and TA-LPG
on held-out Grid-World environments from Oh et al. (2020) (top) and Minigrid (bottom), for a range
of total train steps. Since TA-LPG adapts to the training horizon, we plot individual training curves
for each horizon (faded lines) and their final return (bold points), with the color gradient reflecting
the horizon for each model. We observe the final return of TA-LPG at each horizon is consistently
greater than the LPG return at the same point. Return is normalized against an A2C agent trained to
convergence and averaged over 5 meta-train and 128 meta-test seeds.

5 EXPERIMENTS

To investigate the effectiveness of lifetime conditioning, we evaluate TA-LPG and TA-LPO against
their non-temporally-aware counterparts. Section 5.1 describes our experimental setup in more de-
tail. In Section 5.2, we demonstrate improved performance from TA-LPG against LPG over a range
of training horizons, before showing improved performance from TA-LPO against LPO on out-of-
distribution environments and analyze TA-LPG and TA-LPO in Section 5.3.

5.1 EXPERIMENTAL SETUP

Model architecture and training We use the reference model hyperparameters for both LPG and
LPO (Appendix A). As discussed in Section 4.2, we use ES with antithetic task sampling for the
meta-optimization of LPG, until Section 5.3, where we ablate ES against the original gradient-based
meta-optimization method. As in the reference work, ES is used for LPO throughout. We implement
the entire training process in JAX (Bradbury et al., 2018), using evosax (Lange, 2023) for evolution.

Training environments In our experiments, we follow the meta-training environments originally
used in Oh et al. (2020) and Lu et al. (2022a) for LPG and LPO respectively. LPG is meta-trained
in a multi-task setting over a continuous distribution of Grid-World environments, with variable
training horizons per task. In contrast, LPO is meta-trained on a single environment (MinAtar Space
Invaders (Young & Tian, 2019; Lange, 2022), with a fixed training horizon. For this reason, we train
and evaluate LPG for variable horizon adaptation, whilst we evaluate the use of relative time-step
information with LPO.

Testing environments At meta-test time, we evaluate LPO on the MinAtar and Brax (Freeman
et al., 2021) evaluation suites, using the PPO hyperparameters from PureJaxRL (Lu et al., 2022a).
Notably, while the hyperparameters are shared within each suite, they differ significantly between
the two. We evaluate LPG on held-out Grid-World configurations from the reference LPG publica-
tion and Minigrid (Chevalier-Boisvert et al., 2023) across a range of training horizons.

6



Published as a conference paper at ICLR 2024

Figure 2: TA-LPO leverages lifetime information and generalizes to a wide range of environ-
ments. Results of TA-LPO, LPO and PPO on the Brax and MinAtar suites across three seeds.
TA-LPO was only meta-trained on SpaceInvaders-MinAtar. We provide complete training curves in
Appendix B.

5.2 BENCHMARK EVALUATION

Lifetime conditioning enables adaptation to variable training horizons. In order to investigate
the adaptation to variable training horizons, we evaluate LPG and TA-LPG over a range of horizons
on a set of held-out Grid-Worlds (Figure 1). We observe consistently higher performance in final
return from TA-LPG across all horizons. This includes short horizons—with TA-LPG reaching
maximum performance on the “sparse” task in 1/8 of the training steps required for LPG—and long
horizons, such as in the “dense” task where TA-LPG continues to improve performance after LPG
has plateaued.

Examining the training curves for different horizons on each task, we note that the performance of
TA-LPG with longer training horizons is typically dominated by TA-LPG with shorter horizons at
each step. However, these long-horizon runs then achieve a higher return beyond the short horizon,
surpassing their final return. This reflects a desired mode of learning discovered by these models,
being the sacrifice of intra-training performance to produce a superior final return (c.f. exploration
vs. exploitation trade-off).

We evaluate TA-LPG against LPG with a heuristic learning rate schedule in Appendix C. The heuris-
tic schedule has an insignificant impact on LPG’s performance, with TA-LPG again outperforming it
across training horizons. This demonstrates the insufficiency of combining static objective functions
with heuristic schedules, in contrast to the success of temporally-aware objective functions.

Lifetime conditioning improves performance on out-of-distribution environments. Figure 2
shows that TA-LPO significantly outperforms both LPO and PPO on a wide range of tasks from
the MinAtar and Brax environment suites. Notably, LPO and TA-LPO were only meta-trained on
Space Invaders from the MinAtar suite. While the MinAtar PPO hyperparameters train on 10M
environment steps with rollouts of length 128, the Brax hyperparameters train on 50M environment
steps with rollouts of length 5, showing that the learned policy objective is robust to different hyper-
parameters. Interestingly, the performance of TA-LPO often only exceeds PPO towards the end of
training, as seen in Appendix B, implying that PPO converged too early. Early convergence in RL
is a common failure mode of RL algorithms (Nikishin et al., 2022; Lyle et al., 2022). These results
potentially suggest that lifetime awareness could be one approach to addressing this issue.

5.3 ANALYSIS OF LEARNED UPDATE

Adaptation to training horizon. In Figure 3, we show the policy entropy and update norm of
policies trained with TA-LPG and LPG over a range of training horizons. We observe adaptations
from TA-LPG in both of these metrics as the training horizon increases. Policy entropy decays over
training with both models, but TA-LPG decays entropy at a slower rate as the training horizon in-
creases, before reaching a similar minimum entropy (beyond horizons of 25 steps). This reflects
balanced exploration from these models, by maintaining high entropy until late in training, regard-
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Figure 3: Lifetime conditioning enables adaptation to training horizon. Policy entropy and
update norm of TA-LPG and LPG over randomly-sampled Grid-Worlds.

less of horizon. In contrast, LPG learns a horizon-invariant update, which induces a static entropy
annealing schedule. Due to this, the maintenance of an exploratory training policy for long-horizon
tasks requires the sacrifice of performance on short-horizon tasks. We observe similar behavior
when analyzing the policy update norm, with both the average update norm and rate of increase in
norm inversely proportional to the training horizon.

Adaptation to relative training step. In Figure 4 we follow the analysis used for LPO (Lu et al.,
2022a) and visualize the derivative of the TA-LPO objective at different points in training. The
x-axis is the likelihood ratio p, the y-axis is the advantage of a given transition, and the color corre-
sponds to the gradient for a transition at that point. Positive values (red) increase the likelihood of
the given transition (i.e., push the likelihood to the right) and negative values (blue) decrease them.
There are two key features of the objective function:

Asymmetric Rollback Schedule. At n = 0, the lower left quadrant, which corresponds to A < 0
and p < 1 (a transition with a negative advantage and a relative decrease in action probability) has
a large positive region. This suggests that the discovered algorithm, instead of clipping gradients
for negative advantages, performs rollback (Wang et al., 2020) – a more aggressive form of regu-
larization that reverses the gradient for extreme ratios. Meanwhile, in the top right quadrant, which
corresponds to A > 0 and p > 1, the region is still positive, suggesting that the algorithm does
not perform clipping at all for positive advantages. These findings align closely with the original
LPO analysis (Lu et al., 2022a) and suggest an optimistic objective. However, at n = N , we see
the exact opposite. There is rollback for positive advantage and no clipping for negative advantage.
This corresponds to a high level of risk aversion by the algorithm at the end of training.

Implicit Entropy Regularization Schedule. At n = 0, the gradient is, on average, more positive than
negative, throughout the plot. This corresponds to entropy maximization because it encourages the
agent to increase the probability of all sampled actions. At n = N the opposite holds, which can be
viewed as minimizing entropy.

Overall, the analysis suggests that TA-LPO behaves similarly to LPO at n = 0 (it is optimistic and
maximizes entropy), but over time becomes pessimistic and discourages entropy.

Meta-gradient optimization fails to learn an adaptive update. As outlined in Section 4.2, Oh
et al. (2020) optimize LPG using meta-gradients, by backpropagating through a truncated window
of updates. Since this proxy objective is myopic, we hypothesize that LPG is unable to effectively
exploit temporal information when optimized with meta-gradients. To evaluate this, we trained TA-
LPG with meta-gradients and evaluated against the ES-trained method over a distribution of random
Grid-Worlds (Figure 5). We observe a lower return from the meta-gradient model at all training
horizons, in addition to no sign of horizon adaptation, in contrast to the ES-optimized model. To
further analyze the learned update, we plot the L2-norm of the agent update when trained with the
meta-gradient model over a range of training horizons. Whilst the update norm responds to the rela-
tive train step n/N , the schedule is very similar for each evaluated horizon, with no consistent sign
of adaptation. These results demonstrate the inability of meta-gradient methods to learn temporal
awareness and potentially suggest that truncated meta-optimization is insufficient for discovering
long-sighted algorithms.
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Figure 4: TA-LPO learns to switch from optimism to pessimism. A visualization of the derivative
of the TA-LPO objective at the beginning (n = 0, left), middle (n = N/2, center), and end (n = N ,
right) of the training lifetime. The objective at n = 0 appears to be optimistic and maximize entropy
while the objective at n = N appears to be pessimistic and minimize entropy.
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Figure 5: Meta-gradient TA-LPG fails to adapt to temporal information. Left: Final return of
TA-LPG trained with ES and meta-gradients on the meta-training distribution of randomly sampled
Grid-Worlds. Individual training curves are plotted for each horizon (faint lines), but are indistin-
guishable for meta-gradient TA-LPG due to lack of horizon adaptation. Right: Policy update norm
of the meta-gradient TA-LPG model over inner loop training, for a range of training horizons. We
observe lower meta-gradient performance across horizons and no consistent sign of horizon adapta-
tion in update norm.

6 CONCLUSION

Summary We introduced a novel family of parameterized RL objective functions that are tem-
porally aware. After meta-training, the learned objective functions demonstrate adaptation over
an agent’s lifetime, resulting in strong generalization to unseen training horizons and environments.
Furthermore, we showed that they incorporate adaptive motifs that change throughout learning, with
the high-level behavior demonstrating a shift from optimism to pessimism over the training process.
Finally, we demonstrated evolutionary optimization as a critical factor for discovering RL algorithms
capable of effective lifetime conditioning.

Limitations We show that the discovered temporally-aware algorithms are capable of broad gener-
alization to both discrete pixel-based environments and continuous control settings as well as various
time horizons. Nonetheless, for LPG it is difficult to obtain strong (theoretical) robustness guaran-
tees. Such robustness would benefit reliable deployment. On the other hand, LPO meta-learns in a
much more restricted space than LPG and may be less expressive.

Future Work Our contributions highlight the importance of expressivity in discovered RL algo-
rithms. Here, we only considered conditioning on temporal information. In the future, we believe
that further performance gains can be achieved by augmenting algorithms with more information
such as optimizer statistics, network architectures, and task information. Eventually, we may be
able to remove these handpicked augmentations and perform RL purely in-context with blackbox
meta-learning (Lu et al., 2023a; Kirsch et al., 2023).
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A HYPERPARAMETERS

A.1 LPG

Table 1: LPG hyperparameters

Hyperparameter Value
Optimizer Adam

Learning rate 1e-4
Discount factor 0.99

Number of interactions per agent update 20
Number of parallel lifetimes 512

Number of parallel environments per lifetime 64

Policy entropy coefficient (β0) 0.05
Bootstrap entropy coefficient (β1) 0.001

L2 regularization coefficient for π̂ (β2) 0.005
L2 regularization coefficient for ŷ (β3) 0.001

Number of agent updates per optimizer update 5

ES Learning Rate Decay 0.999
ES Learning Rate Limit 1e-5

ES Sigma Init 0.003
ES Sigma Decay 1.0
ES Sigma Limit 0.001
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A.2 LPO

The drift function is parameterized by a one-layer fully-connected network with 1 hidden layer and
128 hidden units. Meta-training was done on 2 A100 GPUs with synchronous updates.

Table 2: Important parameters for Training LPO and PPO

Hyperparameter Value

Meta-Evolution
Population Size 64

Number of Hidden Layers 1
Size of Hidden Layer 128

Number of Generations 128
Centered Ranking True

ES Sigma Init 0.04
ES Sigma Decay 0.999
ES Sigma Limit 0.01

MinAtar
Number of Timesteps 1e7

Number of Environments 64
Unroll Length 128

Number of Minibatches 8
Number of Update Epochs 4

Learning Rate 5e-3
Gamma 0.99

Max Grad Norm 8.0 for LPO, 0.5 for PPO
Entropy Coefficient 0.01

Brax
Number of Timesteps 5e7

Number of Environments 2048
Unroll Length 10

Number of Minibatches 32
Number of Update Epochs 4

Learning Rate 3e-4
Gamma 0.99

Max Grad Norm 8.0 for LPO, 0.5 for PPO
Entropy Coefficient 0.0
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B TA-LPO RESULTS

(a) Asterix (b) Breakout

(c) Freeway (d) SpaceInvaders

Figure 6: Performance of PPO, LPO, and TA-LPO on the Minatar environments. The curves show
the mean evaluation return across 3 random seeds, with error bars showing standard error of the
mean. LPO and TA-LPO were meta-trained on SpaceInvaders.
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(a) Ant (b) HalfCheetah

(c) Hopper (d) Humanoid

(e) Inverted Double Pendulum (f) Pusher

(g) Reacher (h) Walker2d

Figure 7: Performance comparison between PPO (blue), LPO (orange), and TA-LPO (green) in
Brax environments. The curves show the mean evaluation return across 3 random seeds, with error
bars showing standard error of the mean. LPO and TA-LPO were not meta-trained on any of these
environments.
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C HEURISTIC ANNEALING SCHEDULES

As a heuristic baseline for horizon adaptation, we augment LPG with a learning rate scheduler and
compare performance against TA-LPG (Figure 8). As with the original LPG, TA-LPG consistently
outperforms the scheduler at all training horizons. Furthermore, we observe that the the performance
of LPG with learning rate scheduling is insignificantly different from its original performance (Fig-
ure 1). This highlights the failure of the insufficiency of heuristic temporal adaptation methods and
the significance of the method learned by TA-LPG.
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Figure 8: Training curves for LPG with a tuned learning rate scheduler and TA-LPG.
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D HYPERPARAMETER SEARCH OVER ENTROPY
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19


	Introduction
	Related Work
	Background
	Meta Reinforcement Learning
	Learned Policy Gradient (LPG)
	Learned Policy Optimisation (LPO)

	Method
	Conditioning on Agent Lifetime
	Meta-Optimization for Lifetime Adaptation

	Experiments
	Experimental Setup
	Benchmark Evaluation
	Analysis of Learned Update

	Conclusion
	Hyperparameters
	LPG
	LPO

	TA-LPO Results
	Heuristic annealing schedules
	Hyperparameter Search over Entropy

