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Abstract001

Deterministically controlling the target gener-002
ation language of large multilingual language003
models (LLMs) remains a fundamental chal-004
lenge, particularly in zero-shot settings where005
neither explicit language prompts nor fine-006
tuning are available. In this work, we inves-007
tigate whether sparse autoencoder (SAE) fea-008
tures, previously shown to correlate with inter-009
pretable model behaviors, can be leveraged to010
steer the generated language of LLMs during011
inference. Leveraging pretrained SAEs on the012
residual streams of Gemma-2B and Gemma-013
9B, we identify features whose activations dif-014
fer most significantly between English and four015
target languages: Chinese, Japanese, Spanish,016
and French. By modifying just a single SAE017
feature at one transformer layer, we achieve018
controlled language shifts with up to 90% suc-019
cess, as measured by FastText language classi-020
fication, while preserving semantic fidelity ac-021
cording to LaBSE (Language-Agnostic BERT022
Sentence Embedding) similarity. Our analysis023
reveals that language steering is most effective024
in mid-to-late transformer layers and is ampli-025
fied by specific attention heads disproportion-026
ately associated with language-sensitive SAE027
features. These results demonstrate the promise028
of sparse feature steering as a lightweight and029
interpretable mechanism for controllable multi-030
lingual generation.031

1 Introduction032

Large language models (LLMs) trained on mul-033

tilingual corpora have achieved remarkable suc-034

cess in generating and understanding text across035

diverse languages. However, these models often036

entangle abstract representations within shared in-037

ternal structures, making it difficult to isolate or ma-038

nipulate specific language behavior (Elhage et al.,039

2022).040

Recent work on sparse autoencoders (SAEs) has041

shown that transformer residual streams can be de-042

composed into interpretable, behavior-aligned di- 043

rections (Bricken et al., 2023; Huben et al., 2024). 044

Building on this insight, methods such as Feature- 045

Guided Activation Additions (FGAA) (Soo et al., 046

2025) and SAE-Targeted Steering (SAE-TS) (Chal- 047

nev et al., 2024) demonstrate that selectively acti- 048

vating SAE features can causally steer LLM behav- 049

ior. These techniques focus on improving the pre- 050

cision and coherence of general-purpose steering, 051

but their application to controlling output language 052

identity remains unexplored. 053

To investigate this, we adapt SAE feature steer- 054

ing, a simple method for manipulating the language 055

of multilingual model outputs by modifying one 056

SAE feature activation at inference time (Bricken 057

et al., 2023). As shown in Table 1, steering just 058

one optimal feature can shift output language from 059

English to Chinese, Japanese, Spanish, or French 060

without using prompts, labels, or fine-tuning. 061

Our approach leverages pretrained SAEs from 062

the Gemma-Scope project to identify language- 063

specific features that differentiate English from 064

four target languages (French, Spanish, Chinese, 065

and Japanese) (Lieberum et al., 2024). By shift- 066

ing selected features at a single transformer layer, 067

we induce high-quality generation in the target lan- 068

guage while preserving semantic content. 069

Key Contributions 070

• Causal language control via sparse feature 071

steering: We introduce a method for shifting 072

LLM output language by editing a small set of 073

language-specific SAE features at inference 074

time without retraining or prompt engineering. 075

Our method is closely related to FGAA and 076

SAE-TS but uniquely focuses on language 077

identity control. 078

• Evaluation across four target languages: 079

We test our method on translations from 080

English to French, Spanish, Chinese, and 081
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Prompt Artificial intelligence is important because

No Steer Artificial intelligence is important because it can help us solve problems that
we would not be able to solve otherwise. For example, AI can help us find
new ways to cure diseases or make better decisions about how to allocate
resources. Artificial intelligence is a branch of computer science that deals with
the simulation of human intelligence in machines.

Steered (Chinese) Artificial intelligence is important because它帮助我们工作更快，更有效地
达到我们的目标。AI可以解决人类无法处理的大量数据，并通过其学习
算法提高效率。它使我们能够更快、更准确地做出决定，并提高整体生
产力。人工智能的未来充满希望。

Steered (Spanish) Artificial intelligence is important because es la inteligencia que tiene el ser
humano. El ser humano tiene una inteligencia que no puede tener ningún otro
animal, porque no puede pensar como un ser humano. En este sentido, tenemos
que hablar de la inteligencia artificial o IA.

Steered (Japanese) Artificial intelligence is important because人間はそれを活用することで、
様々な問題を解決することが可能になるからです。例えば、医療分野
ではAIが患者さんの状態を分析して適切な治療方法を提案したり、交
通事故の原因を推定したりするなど、様々な用途に使われています。

Steered (French) Artificial intelligence is important because c’est le futur. La société est en train
de passer au numérique, et les entreprises doivent être préparées à suivre. Le
problème est que le numérique est une nouvelle technologie, ce qui signifie que
les gens ne savent pas forcément comment s’en servir.

Table 1: Examples of multilingual language steering. We show Gemma-2-9B’s continuation for a single prompt
with and without SAE feature steering. The steered outputs exhibit clear and fluent shifts into the target languages,
while preserving semantic relevance to the original prompt.

Japanese, using both semantic similarity082

(LaBSE) and automatic language identifica-083

tion (FastText) (Feng et al., 2022; Joulin et al.,084

2016). Steering just one feature per language085

yields target-language outputs in up to 90% of086

cases.087

• Layerwise analysis of steering effects: In088

contrast to prior work that applies SAE steer-089

ing at a fixed layer, we perform a compre-090

hensive analysis across all transformer layers,091

revealing where language features are most092

causally effective and how steering strength093

evolves by depth.094

• Interpretability through attention and095

residual decomposition: We trace the ori-096

gin of language-aligned SAE features across097

layers and show that language steering is am-098

plified by specific attention heads, revealing099

architectural mechanisms that support steer-100

able behavior.101

2 Related Works 102

Sparse Autoencoders and Mechanistic Inter- 103

pretability Large language models often exhibit 104

superposition, where neurons encode multiple un- 105

related features due to capacity constraints (El- 106

hage et al., 2022). Sparse autoencoders (SAEs) 107

address this by learning a sparse basis over model 108

activations that decomposes them into more inter- 109

pretable, monosemantic features (Bricken et al., 110

2023; Huben et al., 2024). Bricken et al. (2023) 111

demonstrated that these features often align with 112

human-understandable patterns—e.g., legal or mul- 113

tilingual text—and can be used to analyze model 114

behavior more precisely than neuron-level inspec- 115

tion. 116

Activation Steering with Sparse Features Re- 117

cent work has shown that SAE features are not only 118

interpretable, but causally manipulable. FGAA 119

(Soo et al., 2025) demonstrated that activating a 120

small set of SAE features can steer model behavior 121

in interpretable directions. SAE-TS (Chalnev et al., 122

2024) refined this by constructing steering vectors 123

that target specific features while suppressing oth- 124
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ers to reduce side effects. However, these methods125

evaluate steering at a single mid-layer (e.g., layer126

12), leaving open how steerability varies across127

layers. Our work performs layerwise steering and128

analysis, revealing how causal control of language129

behavior shifts with depth.130

Controlling Multilingual Behavior Multilin-131

gual LLMs implicitly encode language identity, and132

recent work shows it can be causally manipulated.133

Tang et al. (2024) identified language-specific neu-134

rons in BLOOM and LLaMA-2 whose activation135

controlled output language. Similarly, Chang et al.136

(2022) showed that shifting hidden states along lan-137

guage directions in XLM-R could toggle model138

outputs. Unlike these neuron-level or architectural139

interventions, our work steers multilingual behav-140

ior using sparse, interpretable features—requiring141

no retraining or architectural changes.142

3 Methods143

Our methodology comprises of four key compo-144

nents: (1) we identified language-representative145

features by analyzing sparse autoencoder (SAE)146

activations across different languages; (2) we se-147

lected SAE features that exhibited significant acti-148

vation differences between English and other target149

languages; (3) we applied feature steering by in-150

tervening on these features during model inference151

to test their causal influence; and (4) we analyzed152

how language-specific features were distributed153

and propagated across transformer layers. We de-154

tailed each of these components below.155

3.1 Model Architectures (Gemma-2-2B and156

Gemma-2-9B)157

We used two decoder-only transformer language158

models, Gemma-2-2B and Gemma-2-9B, with 26159

and 42 layers respectively (Team, 2024). These160

models were selected because pretrained sparse au-161

toencoders (SAEs) from the Gemma-Scope project162

(Lieberum et al., 2024) are readily available for this163

model family, enabling efficient and interpretable164

analysis. Both models followed a GPT-style archi-165

tecture and were trained on a multilingual corpus166

containing English, French, Spanish, Chinese, and167

Japanese, using a shared byte-pair encoding (BPE)168

vocabulary. Without explicit language supervision169

or fine-tuning, these models learned internal repre-170

sentations shaped by the statistical patterns of each171

language. To study how individual languages were172

encoded, we input parallel sentences in English and173

each of the four target languages, and extracted the 174

hidden activations hl
lang,i at each layer l and token 175

position i. These activations served as input for our 176

SAE-based feature analysis. 177

3.2 Sparse Autoencoder Design and Training 178

To analyze internal representations, we used the 179

pretrained sparse autoencoders (SAEs) from the 180

Gemma-Scope project (Lieberum et al., 2024), 181

which provided a compressed and interpretable ba- 182

sis over each model layer’s residual stream. For 183

each layer l, the SAE encoded the residual activa- 184

tion hl ∈ Rd into a sparse code zl ∈ R16384 via 185

a linear encoder, such that hl ≈ Dl(zl), where 186

Dl was the linear decoder. The residual dimen- 187

sion d was 2304 for Gemma-2-2B and 3584 for 188

Gemma-2-9B. Each dimension of zl corresponded 189

to a learned feature that was active only for a small 190

subset of inputs, yielding a sparse and interpretable 191

decomposition. We referred to the nonzero com- 192

ponents (without additional thresholding) of zl as 193

the active SAE features, which contained the ba- 194

sis for identifying language-indicative directions in 195

representation space. 196

3.3 Identifying Language-Specific Features 197

To identify features associated with specific lan- 198

guages, we computed activation differences be- 199

tween English sentences and their correspond- 200

ing translations in a target language. We used 201

1,000 parallel sentence pairs per language from 202

the Tatoeba Project (via ManyThings.org) (The 203

Tatoeba Project Contributors, 2024; Kelly, 2024). 204

Our method followed the general contrastive frame- 205

work introduced in FGAA (Soo et al., 2025), but 206

adapted it to identify language-divergent SAE fea- 207

tures using parallel sentence corpora. Rather than 208

optimizing a steering vector, we used the con- 209

trastive signal to select individual features for direct 210

activation-based intervention. For each transformer 211

layer l, we extracted the residual stream activations 212

hl(x) for input x and applied the SAE encoder f to 213

obtain sparse feature activations zl(x) = f(hl(x)). 214

Let XEN and XTL denote the sets of English 215

and target language inputs (e.g., French, Spanish), 216

respectively. We computed a contrastive feature 217

difference vector for each layer l as: 218
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∆l =
1

|XTL|
∑

x∈XTL

f̄(hl(x))219

− 1

|XEN|
∑

x∈XEN

f̄(hl(x))220

where f̄(hl(x)) denotes the mean SAE feature221

activation across all tokens in input x at layer l.222

We also defined an alternative variant using only223

the activation at the final token EOS(x):224

∆l
final =

1

|XTL|
∑

x∈XTL

f(hl(x)−1)225

− 1

|XEN|
∑

x∈XEN

f(hl(x)−1)226

We computed both ∆l and ∆l
final for all four lan-227

guage pairs and all layers. The top-k features with228

the largest absolute difference in each direction are229

selected for steering. Unless otherwise stated, we230

fixed k = 3 for simplicity and consistency.231

3.4 Feature Steering Method232

To test whether these features causally influence233

language generation, we performed targeted feature234

interventions at each transformer layer. Given an235

English input x, we extracted the residual stream236

activations hl(x) and computed its sparse code237

zl = f(hl(x)). For each selected feature j, we238

applied the corresponding language activation off-239

set ∆l
j (or ∆l

final,j) derived from the training set:240

z′lj = zlj +∆l
j241

The modified latent code z′l is decoded via the242

SAE decoder g to obtain the updated residual acti-243

vation:244

h′l = hl + g(z′l − zl)245

This intervened representation h′l replaced the246

original hidden state at layer l, and the model com-247

pleted the forward pass using the modified activa-248

tion. All generations were produced using a de-249

coding temperature of 0.5 and a maximum output250

length of 50 tokens. This approach resembled prior251

work on activation steering (Soo et al., 2025; Chal-252

nev et al., 2024), but is applied to language identity253

features and extended across all layers. By compar-254

ing completions before and after intervention, we255

assessed whether activating these features reliably256

steers output toward the target language.257

3.5 Evaluation Metric for Outputs 258

To evaluate the effectiveness of feature steering, we 259

used a separate set of 500 English prompts derived 260

from the Dolly-15k dataset (Conover et al., 2023). 261

These prompts span diverse domains (e.g., science, 262

food, personal interests) and were manually proof- 263

read to ensure open-endedness and semantic clarity. 264

While the generated answers to these prompts may 265

vary, they are guided to remain within the origi- 266

nal domain of intent, enabling meaningful compar- 267

isons post-steering. Each generated output from 268

these prompts is then assessed using two metrics: 269

linguistic match and semantic preservation. 270

• Linguistic match is determined using Fast- 271

Text, a lightweight and accurate language 272

identifier trained on over 170 languages 273

(Joulin et al., 2016). Each steered sentence is 274

assigned a score of 1 if classified as the target 275

language, and 0 otherwise. 276

• Semantic preservation is measured via co- 277

sine similarity between sentence embeddings 278

produced by LaBSE, a multilingual encoder 279

trained for cross-lingual retrieval (Feng et al., 280

2022). This reflected the semantic similarity 281

between the original English input and the 282

steered output. To enforce fidelity to both 283

form and meaning, outputs that failed the lin- 284

guistic match check are assigned a semantic 285

score of 0. 286

3.6 Layerwise and Behavioral Analysis of 287

Language-Specific Features 288

To better understand the emergence and propaga- 289

tion of language-specific representations, we con- 290

ducted two complementary analyses on the top- 291

ranked SAE features identified across transformer 292

layers: (1) attention head attribution and (2) resid- 293

ual stream decomposition. Both analyses were 294

performed using model inputs comprising 50 sen- 295

tences sampled from Tatoeba Project (via Many- 296

Things.org) per language, ensuring consistent and 297

controlled comparisons across linguistic settings 298

(The Tatoeba Project Contributors, 2024; Kelly, 299

2024). 300

First, we analyzed whether specific attention 301

heads contribute disproportionately to language- 302

indicative SAE features within a given layer. For 303

each selected SAE feature, we extracted the out- 304

put of each attention head before residual addition 305

4



Figure 1: LaBSE semantic similarity scores for steered
outputs across Gemma-2-9B layers, using last-token-
selected language features for Chinese (CMN), Spanish
(SPA), Japanese (JPN), and French (FRA). The results
show that steering effectiveness varies across layers, with
peak semantic alignment occurring at mid to late layers
for different languages.

Figure 2: FastText classification probabilities of the same
steered outputs, revealing layer-specific differences in
how strongly outputs reflect the target language. Later
layers generally show higher classification confidence,
indicating greater controllability through steering at those
depths.

and computed the dot product between this out-306

put and the SAE feature direction. This quantified307

each head’s alignment with the language feature, al-308

lowing us to identify language selective heads that309

amplify steerable directions in the residual stream.310

Second, to trace the origin of language-specific311

features across layers, we decomposed the resid-312

ual stream at a given layer into embedding and313

attention and MLP outputs from prior layers. We314

then computed the dot product between each com-315

ponent and the current layer’s SAE feature direc-316

tion to assess how much each upstream block con-317

tributed to the construction of the feature. This318

method followed the residual stream decomposi-319

tion framework introduced by Elhage et al (Elhage320

et al., 2021), enabling us to determine whether the321

steerable direction was introduced locally or inher-322

ited from earlier computations.323

Together, these analyses offer a mechanistic un-324

derstanding of how specific architectural compo-325

nents, both local and upstream, support the emer-326

gence and steerability of language-specific repre-327

sentations.328

4 Results329

We evaluate the effectiveness of steering SAE fea-330

tures associated with specific languages across lay-331

ers of Gemma-2-2B and Gemma-2-9B. Our goal is332

to assess both the semantic fidelity and linguistic333

shift induced by these interventions. The results are334

organized into subsections to highlight the layer-335

wise impact of steering and structural insights from336

attention heads. For samples of steering results, 337

refer to Table 1 and Appendix A. 338

We focus this section on Gemma-2-9B due to 339

its deeper architecture and stronger performance; 340

we present corresponding Gemma-2-2B results in 341

Appendix B.2 and Appendix B.3, which show qual- 342

itatively similar layerwise trends. 343

4.1 Layerwise Effectiveness of Language 344

Steering 345

We evaluate steering effectiveness across layers us- 346

ing two metrics: LaBSE semantic similarity and 347

FastText language classification. For each layer, we 348

apply sparse interventions using the top 3 language- 349

divergent SAE features (selected by last-token ac- 350

tivation difference; see Section 3.3) and report 351

the highest-scoring result among them. We fo- 352

cus here on last-token-based feature selection due 353

to its consistently stronger performance across all 354

layers; mean-based results, which exhibit similar 355

trends but lower absolute scores, are shown in Ap- 356

pendix B.1. 357

Figure 1 presents LaBSE cosine similarity scores 358

between the original English prompt and the 359

steered output. Lines show mean similarity across 360

500 prompts. Confidence intervals omitted for 361

visual clarity. High scores indicate that steering 362

successfully shifted the model toward the target 363

language while preserving the input’s semantic 364

content. We observe that steering in layers 29–36 365

yields the strongest preservation for Spanish and 366

French, while Chinese and Japanese show more 367
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Method CMN JPN SPA FRA
LaBSE Similarity
Steering (Top Feature) 0.509 ± 0.016 0.435 ± 0.018 0.458 ± 0.020 0.395 ± 0.021
Prompt Baseline 0.277 ± 0.033 0.444 ± 0.033 0.595 ± 0.029 0.477 ± 0.033
FastText Accuracy
Steering (Top Feature) 0.978 0.938 0.888 0.852
Prompt Baseline 0.356 0.598 0.786 0.626

Table 2: Comparison of Sparse Feature Steering and Prompt-Based Baseline on Language Control. We report LaBSE
similarity scores (95% confidence interval) and FastText classification accuracy for Chinese (CMN), Japanese (JPN),
Spanish (SPA), and French (FRA).

variability but benefit from similar depths. Earlier368

layers, by contrast, show minimal effect, confirm-369

ing that language-relevant features become more370

concentrated in deeper layers.371

Figure 2 shows the corresponding FastText clas-372

sification probabilities for the same interventions.373

Here, high probabilities indicate that the output was374

identified as being written in the target language.375

These results largely align with the LaBSE scores:376

layers with strong semantic preservation also tend377

to produce outputs recognized as belonging to the378

intended language.379

To evaluate how sparse feature steering com-380

pares with conventional prompting, we introduce a381

baseline using the instruction-tuned Gemma-2-9B-382

IT model, which is necessary to ensure the model383

properly responds to explicit language directives.384

Each prompt is prepended with “Please generate385

in [Language]” and 500 English prompts from the386

Dolly-15k dataset are evaluated for each language.387

As shown in Table 2, steering generally achieves388

higher target-language classification accuracy, par-389

ticularly for Chinese (97.8% vs. 36%) and Japanese390

(93.8% vs. 65%). While the prompt baseline yields391

higher LaBSE similarity for all languages except392

Chinese, steering’s performance remain compet-393

itive considering its accuracy and additional tun-394

ing/prompting is required for comparable perfor-395

mance.396

To assess whether sparse feature steering de-397

grades semantic content, we compare LaBSE sim-398

ilarity between two independently generated En-399

glish outputs from the same prompt (no steering),400

yielding a baseline of 0.456±0.019—reflecting nat-401

ural variation from decoding stochasticity. When402

steering into other languages, we observe compa-403

rable or even higher semantic similarity between404

the original English prompt and the steered outputs:405

Chinese (0.509±0.016), Japanese (0.435±0.018),406

Spanish (0.458 ± 0.020), and French (0.395 ±407

0.021). These results suggest that sparse interven-408

tions can preserve semantic meaning across lan- 409

guages, often to a degree similar to or exceeding 410

repeated generation within the same language. 411

4.2 Emergence of Language-Specific 412

Attention Heads in 9B 413

To better understand the architectural origin of 414

steerable features, we analyzed the attention heads 415

of layers in Gemma-2-9B that exhibited a notable 416

rise in LaBSE semantic similarity, such as layer 417

29, and measured their contribution to language- 418

representative SAE features at the same layer. Fig- 419

ure 3 reports the top contributing heads for each 420

language at Layer 29 given the input of different 421

languages. 422

A consistent pattern emerges: Attention Head 423

12 contributes significantly more than any other 424

head across all four languages, with dot product 425

between activations and language features reaching 426

18.61 for Chinese input/feature pair and 20.82 for 427

French input/feature pair. This suggests that Head 428

12 plays a central role in constructing or amplify- 429

ing language-aligned representations at this layer. 430

Although steering operates directly on sparse SAE 431

features, our findings indicate that these features 432

may reflect underlying attention-based mechanisms 433

that enhance language specificity in the residual 434

stream. 435

To further investigate this pattern, we conducted 436

the same analysis at Layers 23 and 30 (see Ap- 437

pendix C for supplemental figures). Layer 23 was 438

selected because it also exhibited a marked gain in 439

LaBSE similarity relative to Layer 22. There, we 440

again observed a dominant head, Head 1, contribut- 441

ing strongly to language-specific features, reinforc- 442

ing the idea that certain layers develop attention- 443

based amplification mechanisms for linguistic iden- 444

tity. In contrast, Layer 30 was selected because, 445

despite its relatively strong steering performance, it 446

did not exhibit a sharp increase in LaBSE similarity 447

from Layer 29. This motivated an investigation into 448
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Figure 3: Top 3 contributing attention heads at Layer 29 across all Input → Feature language pairs. Each
subplot shows the three attention heads with the highest contribution to the language-specific SAE feature when the
model is given input in a different language. Head 12 is highlighted in red when it appears. The strong, selective
dominance of Head 12 in all on-diagonal cases (e.g., cmn → cmn, jpn → jpn, fra → fra) but not off-diagonal
cases suggests it plays a role in language-specific representation rather than general-purpose amplification.

whether its steerability stemmed from inherited fea-449

tures rather than locally concentrated attention con-450

tributions. As seen in Appendix C.2, contributions451

at Layer 30 were smaller and more diffuse, with no452

consistent pattern across languages. This suggests453

that steerability at this depth may arise from dis-454

tributed representations or inherited features from455

the previous layer, particularly Layer 29.456

Together, these results suggest that while some457

layers develop explicit mechanisms for steering via458

language-selective attention heads, others achieve459

steerability through more diffuse architectural dy-460

namics such as inheritance of feature from previous461

layers.462

4.3 Tracing the Origin of Language Features 463

Across Layers 464

To determine where language-specific SAE fea- 465

tures are introduced and amplified, we decomposed 466

the residual stream at layers 23, 29, and 30 into 467

their component sources—attention and MLP out- 468

puts from previous layers. We then computed the 469

dot product between each component and the lin- 470

guistic SAE feature direction at the target layer. 471

We showcase only the Chinese SAE feature as a 472

representative case. As seen in Appendix D, exten- 473

sion to other languages yielded qualitatively similar 474

conclusions. 475

Our findings reveal that the major increases in 476

steering effectiveness around layers 23 and 29 (as 477

seen in Figure 1) align with sharp rises in atten- 478

tion contribution to the language direction, demon- 479

strated in Figure 4. In Layer 23, 23_attn_out 480
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Layer 23 Layer 29

Figure 4: Decomposition of the residual stream in Gemma-2-9B showing the top contributors to the Chinese
SAE feature direction at Layers 23 and 29. Each bar represents the dot product between a residual component
(e.g., MLP or attention output from a previous layer) and the language feature direction identified at the current layer.
At Layer 23, attention heads in the same layer dominate, suggesting localized construction. At Layer 29, strong
contributions also come from within the same layer, but with notable support from Layer 23 and earlier MLPs.

dominates, suggesting early insertion of language481

signal. In Layer 29, 29_attn_out again leads, con-482

firming that certain attention heads play an ampli-483

fying role. However, in layers 30 through 33, the484

dominant contributors to the residual stream origi-485

nate from the output of layer 29, which corresponds486

with the plateau and subsequent decline in semantic487

steering performance (shown in Figure D.2). These488

results suggest that certain components (attention489

heads/MLP neurons) at specific layers are the pri-490

mary source of steerable linguistic representations.491

5 Conclusion492

This work demonstrates that sparse autoencoder493

(SAE) features in multilingual language models494

can be causally steered to induce controlled shifts495

in output language, while preserving semantic in-496

tent. By systematically identifying and interven-497

ing on language-specific SAE features, we show498

that steering performance varies across layers and499

languages, revealing layer-localized sensitivity to500

linguistic structure. Our analysis further uncovers501

that certain transformer components in certain high-502

performing layers—such as Heads 1 and 12 in Lay-503

ers 23 and 29 of Gemma-2-9B—act as amplifiers of504

language-correlated directions, while other layers505

(e.g., Layer 30) achieve similar steering outcomes506

via more diffuse, non-head-localized mechanisms.507

These findings suggest that controlled steering508

in LLMs engages multiple architectural mecha-509

nisms, notably sparse feature activations and at-510

tention head specialization. Future directions in-511

clude generalizing this framework to non-language512

attributes (e.g., tone, dialect) and extending the in-513

terpretability analysis to MLP contributions and514

other model families.515

Limitations 516

Our study focuses on the analysis of sparse autoen- 517

coder (SAE) features in multilingual transformer 518

models and their causal role in steering language 519

generation. While our findings demonstrate con- 520

sistent trends in the Gemma-2-9B model and are 521

partially supported by Gemma-2-2B, several limi- 522

tations should be noted: 523

First, all experiments are conducted exclusively 524

on the Gemma model family, which, while rep- 525

resentative of modern multilingual decoders, may 526

limit generalizability to other architectures (e.g., 527

encoder-decoder models or monolingual LLMs) 528

or training paradigms. Further replication across 529

diverse model families would be necessary to es- 530

tablish broader applicability. 531

Second, the identification of language-divergent 532

SAE features relies on a fixed dataset of 1,000 par- 533

allel sentences per language. Steering is evaluated 534

on a curated set of 500 English prompts. Architec- 535

tural origin of language features is located with 50 536

sentences per language. While this setup ensures 537

controlled comparisons, it may not capture the full 538

diversity of naturalistic or noisy multilingual in- 539

put. Our evaluation also depends on automatic 540

metrics—FastText classification and LaBSE simi- 541

larity—which, although informative, do not fully 542

reflect human judgments of fluency or meaning 543

preservation. 544

Third, the SAE features used for steering are de- 545

rived from a pretrained sparse autoencoder and are 546

not learned end-to-end for the steering task. This 547

limits their optimality and may affect performance 548

bounds. Additionally, while our decomposition 549

and attention attribution analyses offer mechanis- 550

8



tic insights, they remain correlational and rely on551

assumptions about linear contributions to the resid-552

ual stream. The directionality of influence (e.g.,553

whether attention heads induce feature alignment554

or respond to it) is not conclusively established.555

Finally, the computational requirements of our556

method are nontrivial for an inference task. All557

experiments used a single NVIDIA A100 SXM558

80GB GPU and completed within 14 hours per559

language. Scaling our method to a larger LLM560

would also require training SAEs across all layers,561

which is computationally expensive.562

We encourage future work to explore the gener-563

ality of these findings across models, expand the564

interpretability of SAE features beyond language565

identity, and investigate training-time interventions566

or more efficient steering mechanisms.567
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A Additional Examples of Multilingual Language Steering657

We show more Gemma-2-9B’s continuation for a single prompt when steered on the best SAE feature658

for each language, scored by method detailed in section 3.5. Due to max token constraint of 64, the final659

unfinished sentence is removed for clarity.660

Prompt A just society should provide

No Steer A just society should provide for the needs of its population, and not just those
who are able to earn a living. In our country, the government does this through
a social safety net that includes various programs such as Old Age Security,
Employment Insurance and the Canada Pension Plan.

Steered (Chinese) A just society should provide机会给每个人，无论他们来自哪里或他们的
背景。然而，在现实生活中，许多人发现自己处于不利地位。我们看到
这个在教育系统中。有证据表明，如果一个学生来自一个贫穷家庭，
他/她在学校的表现可能会受到影响。

Steered (Spanish) A just society should provide for la educación y la capacitación de todos
los ciudadanos en condiciones de igualdad. A medida que crezcamos, las
oportunidades para aprender deben seguir siendo accesibles y accesibles. Es
por eso que la educación y la capacitación a lo largo de toda la vida son el
núcleo de nuestro programa.

Steered (Japanese) A just society should provide教育で学び、社会のルールを理解する機会
を与える必要があります。「人権と社会正義」の授業では、生徒が
「社会正義」について考える機会を設けました。授業では、生徒は問
題解決法について話し合いました。

Steered (French) A just society should provide for la justice sociale doit assurer la protection et
le soutien nécessaires aux personnes vulnérables, notamment les enfants, les
femmes et les personnes âgées.La justice sociale doit également promouvoir
l’égalité des chances et la participation de tous à la vie économique, sociale et
politique de la société.
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Prompt Online education has changed learning by

No Steer Online education has changed learning by allowing students to access educa-
tional material at any time and place. However, the quality of online education
is generally lower than that of traditional face-to-face education. The purpose
of this study was to investigate the effects of gamification on the quality of
online education.

Steered (Chinese) Online education has changed learning by允许学生在任何地方学习。与传
统教育相比，在线学习提供更多灵活性，并允许学生根据自己的时间表
上课。它还提供了一个更大的课程选择，允许学生选择他们感兴趣的主
题。在线教育也为教师提供了新的教学方法。

Steered (Spanish) Online education has changed learning by allowing students to access edu-
cational material y donde quiera que estén. En línea, los estudiantes pueden
aprender a su propio ritmo, sin tener que asistir a clases presenciales o pre-
ocuparse por la asistencia. Esto también significa que los estudiantes pueden
aprender de manera más flexible y adaptarse a sus horarios.

Steered (Japanese) Online education has changed learning by allowing students to learn from
anywhere。Itは、場所を問わず学習できるようになり、学習方法を変
えました。Itは、学生にとってはより便利な方法で勉強できるように
なりました。Theyは、授業をオンラインで受けられるようになったの
で、授業に出なくても勉強できるようになりました。

Steered (French) Online education has changed learning by permettant à tous les étudiants, peu
importe leur emplacement géographique, de suivre des cours à distance. Le
marché mondial de l’éducation en ligne est en pleine croissance et a été évalué
à 191 milliards de dollars en 2020.

Prompt Replication in experiments ensures

No Steer Replication in experiments ensures that the same procedure is applied to all
samples. This is particularly important in the biological sciences, where there
are many variables that can influence an experiment. The same procedure can
be applied to different samples, or the same sample can be tested multiple times.

Steered (Chinese) Replication in experiments ensures A.高重复性 B.高精确度 C.客观性 D.可
重复性在以下哪项中，不属于风电场设备的组成部件？A.风机叶片B.风
塔支架 C.变电站 D.电

Steered (Spanish) Replication in experiments ensures que la selección de los datos no esté sesgada
en favor de un determinado resultado. La replicación es un requisito para
la validez científica. Los métodos de investigación cuantitativa y cualitativa
pueden ser replicables.

Steered (Japanese) Replication in experiments ensures(a)再現実験の目的は実験を繰り返すこ
とである(b)再現実験は、結果を正当なものにするものである。(c)再
現実験は、科学的検証の一環である。(d)再現実験は、科学的検証の一
環である。（正解）

Steered (French) Replication in experiments ensures que la science est une entreprise hu-
maine. Les scientifiques se sont efforcés de s’assurer que les résultats de
leurs recherches soient reproductibles. De nombreuses études ont été repro-
duites avec des résultats similaires.
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Prompt Inflation affects the society by

No Steer Inflation affects the society by affecting the price of goods, ser-
vices, and money. The prices of goods and services rise as in-
flation rises. As a result, purchasing power decreases. The
value of money is reduced as well. <strong>References</strong>
https://www.investopedia.com/terms/i/inflation.asp

Steered (Chinese) Inflation affects the society by导致社会对高通货膨胀的反应。人们有不同
的反应，但最常见的反应是通货膨胀会导致人们失去信任政府。由于通
风管道，人们将他们对政府的信任从一个政府转移到另一个政府。这导
致了政治不稳定，并最终导致政变。

Steered (Spanish) Inflation affects the society by: * Destrucción de la riqueza. * Disminución
del poder adquisitivo. * Desaparición de la inversión. La inflación es el
aumento generalizado y sostenido de los precios de los bienes y servicios en
una economía durante un periodo determinado.

Steered (Japanese) Inflation affects the society by影響社会の【影響】「影響」は「影響を受
ける」で意味と発音が分かります。「影響する」は「に影響する」「
に悪い影響を与える」「に良い影響を与える」など様々なパターンが
あります。【社会】

Steered (French) Inflation affects the society by affecting la production et la consommation, les
échanges commerciaux et les taux de change. La production est l’ensemble des
biens et services que l’on met sur le marché. Les ménages produisent ces biens
à partir de ressources naturelles, de travail et de capital. La société produit pour
répondre aux besoins des consommateurs.

B Layerwise Steering Performance661

B.1 Mean-Activation-Selected Features from Gemma-2-9B662

Figure 5: LaBSE semantic similarity scores for
steered outputs across Gemma-2-9B layers, using mean-
activation-selected language features for Chinese (CMN),
Spanish (SPA), Japanese (JPN), and French (FRA). The
results show that steering effectiveness varies across lay-
ers, with peak semantic alignment occurring at mid to
late layers for different languages.

Figure 6: FastText classification probabilities of the same
steered outputs, revealing layer-specific differences in
how strongly outputs reflect the target language. Later
layers generally show higher classification confidence,
indicating greater controllability through steering at those
depths.
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B.2 Last-Token-Selected Features from Gemma-2-2B 663

Figure 7: LaBSE semantic similarity scores for steered
outputs across Gemma-2-2B layers, using last-token-
selected language features for Chinese (CMN), Spanish
(SPA), Japanese (JPN), and French (FRA). The results
show that steering effectiveness varies across layers, with
peak semantic alignment occurring at mid to late layers
for different languages.

Figure 8: FastText classification probabilities of the same
steered outputs, revealing layer-specific differences in
how strongly outputs reflect the target language. Later
layers generally show higher classification confidence,
indicating greater controllability through steering at those
depths.

B.3 Mean-Activation-Selected Features from Gemma-2-2B 664

Figure 9: LaBSE semantic similarity scores for
steered outputs across Gemma-2-2B layers, using mean-
activation-selected language features for Chinese (CMN),
Spanish (SPA), Japanese (JPN), and French (FRA). The
results show that steering effectiveness varies across lay-
ers, with peak semantic alignment occurring at mid to
late layers for different languages.

Figure 10: FastText classification probabilities of the
same steered outputs, revealing layer-specific differences
in how strongly outputs reflect the target language. Later
layers generally show higher classification confidence,
indicating greater controllability through steering at those
depths.
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C Language-Specific Attention Contributions at Layers 23 and 30665

C.1 Layer 23666

Figure 11: Top 3 contributing attention heads at Layer 23 across all Input → Feature language pairs. Each
subplot shows the three attention heads with the highest contribution to the language-specific SAE feature when the
model is given input in a different language. Head 1 is highlighted in red when it appears. The strong, selective
dominance of Head 1 in all on-diagonal cases (e.g., cmn → cmn, jpn → jpn, fra → fra) but not off-diagonal cases
suggests it plays a role in language-specific representation rather than general-purpose amplification.
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C.2 Layer 30 667

Figure 12: Top 3 contributing attention heads at Layer 30 across all Input → Feature language pairs. Each
subplot shows the three attention heads with the highest contribution to the language-specific SAE feature when the
model is given input in a different language. There are no dominance of a certain head, suggesting that no attention
heads focus on language-specific amplification and the high steering scores could be inherited from previous layers.

D Residual Stream Decomposition Analyses 668

D.1 Language Feature Construction in Layers 23 and 29 669

We provide detailed residual stream decomposition results for the Chinese SAE feature at Layers 23 and 670

29, as shown in Figure 4 in the main text. Below, we extend this analysis to Spanish, French, and Japanese 671

at the same layers. 672
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D.1.1 Japanese673

Layer 23 Layer 29

Figure 13: Decomposition of the residual stream in Gemma-2-9B showing the top contributors to the Japanese
SAE feature direction at Layers 23 and 29. Each bar represents the dot product between a residual component
(MLP or attention output from a previous layer) and the language feature direction identified at the current layer.
At Layer 23, attention heads in the same layer dominate, suggesting localized construction. At Layer 29, strong
contributions also come from within the same layer, but with notable support from Layer 23 and earlier MLPs.

D.1.2 Spanish674

Layer 23 Layer 29

Figure 14: Decomposition of the residual stream in Gemma-2-9B showing the top contributors to the Spanish
SAE feature direction at Layers 23 and 29. Each bar represents the dot product between a residual component
(MLP or attention output from a previous layer) and the language feature direction identified at the current layer.
At Layer 23, attention heads in the same layer dominate, suggesting localized construction. At Layer 29, strong
contributions also come from within the same layer, but with notable support from Layer 23 and earlier MLPs.

D.1.3 French675

Layer 23 Layer 29

Figure 15: Decomposition of the residual stream in Gemma-2-9B showing the top contributors to the French
SAE feature direction at Layers 23 and 29. Each bar represents the dot product between a residual component
(MLP or attention output from a previous layer) and the language feature direction identified at the current layer.
At Layer 23, attention heads in the same layer dominate, suggesting localized construction. At Layer 29, strong
contributions also come from within the same layer, but with notable support from Layer 23 and earlier MLPs.
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D.2 Feature Persistence in Layers 30–33 676

We analyze the residual stream decomposition from Layers 30 through 33 for all four languages. These 677

layers exhibit high steering scores for one or more languages, but no dominant localized contributors, 678

suggesting inherited representations. 679

D.2.1 Chinese 680

Layer 30 Layer 31

Layer 32 Layer 33

Figure 16: Top 5 contributors to the Chinese SAE feature direction in layers 30 to 33, in incrementing order. Each
bar represents the dot product between a residual component (MLP or attention output from a previous layer) and
the language feature direction identified at the corresponding layer.
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D.2.2 Japanese681

Layer 30 Layer 31

Layer 32 Layer 33

Figure 17: Top 5 contributors to the Japanese SAE feature direction in layers 30 to 33, in incrementing order. Each
bar represents the dot product between a residual component (MLP or attention output from a previous layer) and
the language feature direction identified at the corresponding layer.

D.2.3 Spanish682

Layer 30 Layer 31

Layer 32 Layer 33

Figure 18: Top 5 contributors to the Spanish SAE feature direction in layers 30 to 33, in incrementing order. Each
bar represents the dot product between a residual component (MLP or attention output from a previous layer) and
the language feature direction identified at the corresponding layer.
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D.2.4 French 683

Layer 30 Layer 31

Layer 32 Layer 33

Figure 19: Top 5 contributors to the French SAE feature direction in layers 30 to 33, in incrementing order. Each
bar represents the dot product between a residual component (MLP or attention output from a previous layer) and
the language feature direction identified at the corresponding layer.
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