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Abstract

The standard approach to evaluating dialogue
engagingness is by measuring conversation
turns per session (CTPS), which implies that
the dialogue length is the main predictor of the
user engagement with a dialogue system. The
main limitation of CTPS is that it can be mea-
sured only at the session level, i.e., once the
dialogue is already over. However, it is crucial
for a dialogue system to continuously monitor
user engagement throughout the dialogue ses-
sion as well. Existing approaches to measuring
turn-level engagingness require human annota-
tions for training. We pioneer an alternative
approach, Remaining Depth as Engagingness
Predictor (RDEP), which uses the remaining
depth (RD) for each turn as the heuristic weak
label for engagingness. RDEP does not require
human annotations and also relates closely to
CTPS, thus serving as a good learning proxy
for this metric. In our experiments, we show
that RDEP achieves the new state-of-the-art re-
sults on the fine-grained evaluation of dialog
(FED) dataset (0.38 Spearman) and the Daily-
Dialog dataset (0.62 Spearman).

1 Introduction

Engagingness is an important aspect of an open-
domain dialogue system. It reflects user satisfac-
tion with the dialogue system (Yi et al., 2019). At
the turn level, it also measures how willing the
user is to continue the conversation. Engaging-
ness is typically measured using the conversation
turns per session (CTPS) since engaging conver-
sations tend to have more turns than less engaging
ones (Venkatesh et al., 2018; Khatri et al., 2018).
CTPS values can easily be obtained off-line to
compare engagingness levels of different systems.
However, we argue that performing an online turn-
level engagingness evaluation is of even greater
importance since it can be also used to guide the
dialogue generation process directly or to choose
between different candidate responses (Yi et al.,

Context: Yes yes. I've been to Tokyo as
well. It’s so nice!

Response: What did you do here?

Human: 0.90 RDEP: 1.00

Context: Good good

Response: That’s good to hear. :D

Human: 0.30 RDEP: 0.29

Figure 1: An illustration of turn-level engagingness
evaluation. Both human annotations and our predic-
tions (RDEP) are normalised to [0, 1]. More examples
can be found in Figure 6.

2019). Figure 1 provides an example of turn-level
engagingness evaluation.

Recent work has focused on training neural
models to predict turn-level engagingness (Yi
et al., 2019; Ghazarian et al., 2020; Gao et al.,
2020; Mehri and Eskénazi, 2020a), which is an
important step towards online evaluation of dia-
logue system performance. However, existing ap-
proaches exhibit a range of important limitations.
For example, the most common approach is to
address engagingness prediction as a binary clas-
sification task (Yi et al., 2019; Ghazarian et al.,
2020). The main reason for this is the need for
human labels for training the models. While la-
belling turns as engaging or non-engaging is a con-
ceptually simple task, this approach lacks scalabil-
ity. The produced binary labels may also not suffi-
ciently well reflect differences between engaging-
ness levels. As a reasonable and scalable alterna-
tive, we propose a simple approach of using weak
supervision for the engagingness evaluation. Our
experiments show that this approach has better cor-
relation with human judgements of engagingness
than previously proposed approaches.

More specifically, we first use the remaining
depth (RD) as heuristic weak labelling for turn-
level engagingness. RD is defined as the num-
ber of conversation turns following the current one.
Then we train a regression model for turn-level en-
gagingness prediction. There are multiple advan-



tages to our approach. First, RD can be interpreted
as the CTPS of the sub-dialogue starting from the
current turn onward, and intuitively, highly engag-
ing responses are likely to result in large RD val-
ues. Second, trained as a regressor, the proposed
prediction method, Remaining Depth as Engaging-
ness Predictor (RDEP), is able to differentiate en-
gagingness levels. Third, RDEP can be trained
on natural dialogue data, which saves extra anno-
tation efforts since RD is naturally part of every
dialogue session. Last but not least, RDEP can
use single-turn text data to make predictions, thus
making it broadly applicable.

In our experiments, we calculate the Pearson
and Spearman correlations of RDEP predictions
and human annotations. RDEP achieves Pearson
and Spearman coefficients of 0.36 and 0.38, re-
spectively, on the fine-grained evaluation of dialog
(FED) dataset (Mehri and Eskénazi, 2020a), and
0.58 and 0.62 on the DailyDialog-Human dataset
(Ghazarian et al., 2020), which is the new state-of-
the-art performance on both datasets.

The main contributions of this paper are as fol-
lows:

* We propose to use RD as weak labels for turn-
level engagingness, which avoids the need for
explicit human annotations.

* We formulate engagingness prediction as a re-
gression task, therefore, the predicted scores
can distinguish different magnitudes of engag-
ingness.

* We show that a BERT base model can already
have decent predictions with only single dia-
logue turns, while using more turns can correlate
better with human annotation.

e We share our source code, datasets used, im-
plemented baselines and trained parameters at
https://anonymous.4open.science/t/RDEP.

The remainder of the paper is structured as follows.

We give an overview of related work in §2. Then

we introduce the RDEP model in §3. In §4 and

§5, we introduce our experimental setup and result

analyses, respectively. We conclude in §6.

2 Related Work

We start by providing a summary of the state-
of-the-art in automatic dialogue evaluation. Af-
ter that, we outline the main limitations related
to measuring dialogue engagingness that motivate
our work.

Dialogue quality is a multi-faceted phenomenon

and cannot be evaluated along a single dimen-
sion (See et al., 2019; Phy et al., 2020; Yeh et al.,
2021). However, most evaluation approaches pro-
posed to date evaluate either the overall dialogue
quality or the response quality on the turn-by-
turn level (Yi et al., 2019; Pang et al., 2020; Li
et al., 2021; Sinha et al., 2020; Mehri and Eské-
nazi, 2020b,a; Zhang et al., 2021; Phy et al., 2020;
Gao et al., 2020). Being versatile also means sacri-
ficing performance as well as interpretability with
respect to the individual aspects of the dialogue
quality, such as dialogue engagingness (Yeh et al.,
2021). Indeed, our experiments show that such
general-purpose quality evaluators do not achieve
a high correlation with manually-labelled engag-
ingness scores.

Engagingness evaluation is a much less studied
topic than overall dialogue quality evaluation. The
few approaches that exist have several drawbacks.
First, training supervised models that predict en-
gagingness requires manual labels, which are dif-
ficult to obtain (Yi et al., 2019; Ghazarian et al.,
2020). Second, defining annotation guidelines for
measuring dialogue engagingness has proved to
be a hard task. For example, Yi et al. (2019)
resorted to binary labels (engaging/non-engaging)
that are easier to acquire but are not very descrip-
tive. Ghazarian et al. (2020) had to group the
original samples annotated with five engagingness
levels into two because of the highly imbalanced
training data. Third, formulating the problem of
measuring engagingness as a classification task
clearly limits the models’ ability to distinguish be-
tween different levels of engagingness.

The main novelty of our work is that we estab-
lish a simple heuristic that allows us to train a re-
liable turn-level dialogue engagingness evaluator
that shows a high correlation with human judge-
ments. Instead of using manual labels, we gener-
ate remaining depth (RD) automatically as weak
labels for engagingness. This approach can be ap-
plied to any multi-turn dialogue dataset, allowing
one to extract engagingness signals that are natu-
rally embedded in the dialogue data itself, thus no
extra annotation is needed.

We also argue in favour of formulating the prob-
lem of dialogue engagingness prediction as a re-
gression task, instead of a classification task as in
prior work, which brings several very important
benefits. First, our proposed model RDEP pro-
duces a single continuous score rather than a class
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distribution. Thereby, it does not suffer from the
class imbalance problem. Second, RDEP can also
better exploit the ordinal relations between the en-
gagingness levels and distinguish between them
on a very fine-grained scale.

To the best of our knowledge, the only other
approach to engagingness prediction that does not
require human engagingness annotations was pro-
posed by Mehri and Eskénazi (2020a). They use
the log-likelihood of a curated pool of the follow-
up utterances produced by DialoGPT (Zhang
et al., 2020) as their engagingness scores. Log-
likelihood is not bounded and the produced scores
are rather hard to interpret. In contrast, the nor-
malised RDEP scores all fall in the range [0, 1]
and are easy to interpret as the expected remain-
ing depth, i.e., the predicted fraction of turns until
the dialogue ends.

3 Our Approach: Remaining Depth as
Engagingness

We use D; = [X;1,Xi2,...,X;,] to represent
the i-th dialogue session in the dataset that has
up to n turns, with one turn denoting the message
from one speaker at a time. Consecutive messages
from the same speaker are merged into a single
turn. We assume that there are at least two dia-
logue speakers, and each turn contains a response
to the previous turn. Each turn j may consist of up
to m tokens: XZ'J‘ = [$i7j71, L5525+« wTi,j,m]-

The remaining depth (RD) of X ; is calculated
as:

n—-J

RDz,] - ma (1)
which we subsequently use in place of the ground-
truth engagingness label (that is, as a weak super-
vision signal) when formulating the RD prediction
problem as a regression task. Thereby, each pair
(Xij,RD; ) is treated as a single data point for
training the prediction model. The term n — 1 in
Eq. (1) is a regularisation factor that normalises
the RDs of each dialogue to the range [0, 1].

We use BERT as the dialogue turn encoder in
our model as illustrated in Figure 2. The dialogue
turns are embedded with BERT and then averaged
for making the predictions. More concretely, we
first use the pretrained BERT model (Devlin et al.,
2018) to get a vector representation of the turn
X; j. To use the context available from the dia-
logue history, we also embed up to k turns that
occurred before the j-th turn in the same ¢-th dia-
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Figure 2: Architecture of the RDEP model.
logue, where k is a hyper-parameter:
hi,j = Mean( BERT(Xz’J), BERT(Xi’jfl), (2)

...,BERT(X; 1)),

where Mean denotes mean pooling and h;; €
RMd_sz jg a hid_sz-dimensional contextualised
vector representation for turn X; ;. Thus, hid_sz
is a hyper-parameter that determines the hidden
size of our BERT-based turn embeddings. The vec-
tor representation for each turn BERT (X ;) is a
vector obtained by pooling the BERT positional
outputs. We evaluate four different pooling meth-
ods in our experiments: class-token pooling uses
the output of the special [CLS] token; and mean,
max and min pooling take the element-wise aver-
age, maxima and minima of the BERT outputs pro-
duced for each of the input tokens, respectively.

Finally, we apply a linear transformation to the
resulting contextualised turn representation h; ; to
obtain the model prediction for this turn’s engag-
ingness level:

pred; j = Linear(h; ;). 3)

The model predictions are then mapped to [0, 1]
via a non-linear activation layer, such as a ReLU1
or a sigmoid activation function:

RADZ-J- = min(max(pred; j,0),1). @

We test the difference between applying the
ReLUI and sigmoid activations in our experi-
ments; see §5.3. We train the model with the fol-
lowing objective to minimise the Mean Squared
Error (MSE) loss:

Li; = (RD;; —RD; ;). (5)

We stop training once the validation MSE loss
stops dropping (ValLoss Criterion). But since
we use RD labels as a weak supervision signal,



there is a chance that the RD labels are too noisy,
hence the model weights selected using this cri-
terion may not perform best when correlating to
human annotations. To understand how noisy RD
labels are, we calculated their correlation with hu-
man engagingness annotations on the FED dataset;
the results are —0.03 Pearson and —0.01 Spear-
man, both not statistically significant. However,
it cannot be concluded that RD labels are useless,
as the FED dataset has only 375 annotated exam-
ples. As we show in §5.3, using random RD labels
to train RDEP results in very weak or even neg-
ative correlations with human annotations, while
RDEP trained using correct RD labels achieves
new state-of-the-art performance. To select the
best performing model weights w.r.t. human cor-
relation, we also consider using the DailyDialog-
Human (DD-H) dataset as the validation set, and
stop training when the Pearson correlation with the
human annotations reaches the maximum on this
dataset (Pearson Criterion). In §5.3, we compare
the two stopping criteria.

4 Experimental Setup

We design our experiments to answer the follow-
ing research questions (RQs): (RQ1): How well
can we predict the RD labels, i.e., the remaining
dialogue length for a given turn? (RQ2): How do
the predictions produced by RDEP, when trained
on the RD labels, correlate with human engaging-
ness scores? (RQ3): How does each component,
such as the RD labels, regression formulation, dif-
ferent numbers of historical turns, pooling method,
and non-linear activation, contribute to the perfor-
mance of RDEP? (RQ4): How interpretable are
the predictions produced by RDEP?

Datasets. In order to infer the RD labels
for training and validation, the datasets we use
should have multiple turns in each dialogue ses-
sion. We use the most popular open-domain di-
alogue datasets in English that meet this require-
ment: DailyDialog (DD) (Li et al., 2017), Per-
sonaChat (PC) (Zhang et al., 2018), Empathetic
Dialogues (ED) (Rashkin et al., 2019), Wizard of
Wikipedia (WoW) (Dinan et al., 2018), and Blend-
edSkillTalk (BST) (Smith et al., 2020). We use
only the dialogue text without any additional at-
tributes, such as persona descriptions in PC. See
Appendix A.2 for statistics of the datasets.

However, since we want RDEP to be an effec-
tive engagingness predictor, we use additional data

annotated with engagingness labels for validation
and testing purposes only. We use it to measure
how well RDEP’s predictions correlate with the
engagingness labels produced by human annota-
tors. To this end, we employ the FED (Mehri and
Eskénazi, 2020a) and DailyDialog-Human (DD-
H) (Ghazarian et al., 2020) datasets, which are
the only publicly available datasets that contain
human engagingness labels annotated at the turn
level. FED contains 375 annotated turns with en-
gagingness labels, using all the preceding turns
used as dialogue history. DD-H contains 300 en-
gagingness labels with only 1 preceding turn from
the dialogue history provided as context. Because
the smaller size of DD-H, we use it as the valida-
tion set for the Pearson Criterion described at the
end of §3. Both datasets provide 5 labels per turn
with high agreement scores among annotators. We
use the average of the 5 scores for each data sam-
ple as the ground truth for turn engagingness level.
Inspired by Ghazarian et al. (2020), we also
consider training/fine-tuning on the dialogue-level
engagingness labels of ConvAl (Logacheva et al.,
2018) dataset (CAI). The CAI dataset is of lower
quality than FED and DD-H because it contains
only human-bot dialogues, and each of the partic-
ipants per dialogue only received 1 human engag-
ingness annotation at the dialogue level. Never-
theless, CAI is the largest dataset with human en-
gagingness annotations. We use the dialogue-level
engagingness score of each participant as the turn-
level labels of their own turns. Statistics of the
CALI dataset can be found in Appendix A.2. We
use all of CAI for training and validate on DD-H.
Baselines. For remaining depth prediction task
we use the following baselines: (1) Random base-
line that randomly predicts a score between 0 and
1; (2) Average baseline that uses the average di-
alogue length in stead of n in Eq. 1 for mak-
ing predictions; (3) RDEP-U model with the lin-
ear layer untrained; and (4) RDEP-S model that is
trained using shuffled RD labels. For the task of
explicitly predicting dialogue-turn engagingness
we consider the following prior work as our base-
lines:! FED-metric (Mehri and Eskénazi, 2020a)
and PredictiveEngagement (PredEnga) (Ghazar-
ian et al., 2020). We also compare RDEP to mod-
els that were reported to have a good correlation

!The approach proposed in (Yi et al., 2019) was excluded
from the evaluation due to the difficulties in reproducing their
results. Neither their implementation nor their trained check-
points are available at the time of writing.



DD PC ED WoW BST
Random 19.40 17.92 21.85 18.56 18.00
Average 5.02 0.14 286 0.80 0.79
RDEP-U 35.71 32.04 40.50 38.15 38.61
RDEP-S 1094 947 1342 1038 9.98
RDEP 722 581 6.10 696 9.89

Table 1: MSE loss results for predicting the remain-
ing depth on the test sets for all datasets (multiplied by
100). Lower is better.

with human engagingness judgements in the re-
lated work (Yeh et al., 2021): DialogRPT (Gao
et al., 2020), USL-H (Phy et al., 2020) and Dy-
naEval (Zhang et al., 2021).

Metrics. To show the effectiveness of RDEP
on the auxiliary task of remaining dialogue length
prediction, we report the MSE, Pearson and Spear-
man correlations with the ground-truth RD labels
for DD, PC, ED, WoW and BST. To compare with
the baseline and evaluate the model performance
on the target task of turn-level engagingness pre-
diction, we report the Pearson and Spearman cor-
relations between the models’ predictions and hu-
man annotations for FED and DD-H.

5 Results and Analysis

In this section, we address each of our research
questions in turn.

5.1 RQ1: Predicting remaining depth

Since we use RD as weak labels for turn-level
engagingness, we first evaluate the model perfor-
mance when predicting the ground-truth RD la-
bels. We train RDEP and report the MSE loss re-
sults on the test sets in Table 1. Table 2 lists corre-
lations between RDEP predictions and RD labels.

RDEP consistently outperforms the Random,
RDEP-U and RDEP-S baselines, in terms of MSE
and correlation with the RD labels. Hence, RDEP
successfully learned to predict remaining dialogue
depth. In contrast, Random and RDEP-U have al-
most no correlation with RD labels and a much
higher MSE than other methods on all datasets.
Training on shuffled labels helps RDEP-S guess
the valid range of predictions, which may explain
a lower MSE than for RDEP-U. Average performs
very well in terms of MSE and correlations, as its
predictions mimic the RD labels well.

The MSE of RDEP is almost identical to that
of RDEP-S on the BST dataset. On other datasets,
RDEP achieves Pearson correlation > 0.59 and

Spearman > (.55, while on BST the coefficients
are only 0.21 and 0.18, respectively. We consider
this result to give a clear indication of the poor
quality of the BST dataset. While other datasets
used in our evaluation contain human-to-human
dialogues, the BST dataset consists of human-
machine dialogues (Smith et al., 2020).

Due to the good performance of RDEP shown
on the DD, PC, ED and WoW datasets, we train
RDEP multi-tasking on all four of these datasets
to achieve better generalisation. Subsequently, we
use this multi-task trained model in all future com-
parisons with the baselines for the purpose of en-
gagingness prediction.

RDEP’s predictions of the remaining depth tend
to be more accurate closer to the beginning and
the end of a dialogue session. By considering only
the first and last & turns for each of the dialogues,
we observe even higher correlations of the RDEP
predictions with the ground-truth RD labels. Fig-
ure 3 in Appendix B visualises this effect in our
data. When removing the predictions for interme-
diate turns, the correlation consistently increases.
The first and last dialogue turns are often more
similar across dialogues than the central part. Peo-
ple usually greet each other and ask a few cus-
tomary questions in the beginning of a dialogue,
and say farewells and express gratitude at the end.
RDEP successfully captures these patterns, which
are clearly very important to detect the user intent
to continue or conclude the dialogue.

5.2 RQ2: Predicting dialogue engagingness

The correlation of RDEP and baseline models with
human engagingness annotations is reported in Ta-
ble 3. All baseline results are reproduced by us
using their official source code and trained model
weights to ensure a fair comparison.

Utilising heuristics to accurately predict RD la-
bels, as done by the Average baseline, does not
yield a good correlation with human engagingness
scores; see Table 3. We cannot use the Average
baseline on datasets with a fixed number of history
turns such as DD-H. RDEP using only a single dia-
logue turn outperforms all baseline methods on the
FED and DD-H datasets, w.r.t. Pearson and Spear-
man correlations. When using 3 history turns,
RDEP-H3 performs much better on FED with a
slight decrease on DD-H. This is because DD-H
has only two turns for each annotation, therefore,
RDEP-H3 trained with a longer history does not



DD PC ED WoWw BST
p S p S P S P S P S
Random 0.00 0.00 0.00 0.00 -0.0I -0.0! 0.01 0.01 0.02 0.02
Average 0.78 0.80 0.99 0.99 095 0.96 0.97 098 0.96 0.96
RDEP-U —-0.02 -0.02 -0.05 -0.06 0.07 006 -0.04 -—-0.06 00! 0.00
RDEP-S 0.13 0.13 0.09 0.10 0.00 0.01 0.08 0.12 0.01 0.01
RDEP 0.59 0.56 0.62 0.56 0.74 071 0.59 0.55 0.21 0.18

Table 2: Correlation of model predictions with RD labels evaluated on the test sets. P: Pearson; S: Spearman.
Correlation results that are not statistically significant (with p-value < 0.05) are in italics. Higher is better.

FED DD-H

P S P S
Average 0.03 0.03 - -
FED-metric 0.16 0.18 0.23 0.27
DialogRPT 0.23 0.22 0.30 0.30
PredEnga 0.18 0.25 0.51 0.55
USL-H 024 0.26 0.55 0.56
DynaEval 0.25 0.26 0.09 0.07
RDEP 0.29 0.33 0.58 0.62
RDEP-H3  0.36 0.38 0.52 053

Table 3: Correlation between model predictions and hu-
man engagingness annotations. P: Pearson; S: Spear-
man. All correlation results that are not statistically sig-
nificant (with p-value < 0.05) are ifalicised. Higher is
better. Best results in each column are bold faced.

help to improve the performance on this dataset.
The best-performing RDEP outperforms the sec-
ond best baseline models by 0.11 (0.12) of Pearson
(Spearman) on the FED dataset, and 0.03 (0.06) of
Pearson (Spearman) on the DD-H dataset.
Although the FED-metric relies entirely on the
pretrained DialoGPT, which avoids training, it per-
forms poorly on both datasets. Our reproduced re-
sults for the FED-metric on the FED dataset are
different from the original work (Mehri and Eské-
nazi, 2020a), but consistent with later work (Yeh
et al., 2021). The reason for its poor performance
is due mainly to the underlying DialoGPT model,
which is trained on Reddit data, which is quite dif-
ferent from real conversations in style. This is
supported by DialogRPT, another model relying
on DialoGPT as well as being trained on Reddit
data. Compared to PredEnga and USL-H, which
are trained on real dialogue data, DialogRPT has
a much worse performance on the DD-H dataset.
Since DialogRPT is trained on the depth informa-
tion of Reddit comments, which is similar to our
RD labels, it performs better than the FED-metric,
especially on the FED dataset. Because Dialog-

RPT also relies on other features (e.g., the width
and up-/down-votes of user comments), none of
which are common in real dialogue data, Dialog-
RPT only achieves moderate performance on both
datasets. In contrast, RDEP is trained on dialogue
data and uses RD as weak labels for engagingness.
RD labels have an intuitive connection with engag-
ingness, thus serving as a main contributing factor
to RDEP’s superior performance.

PredEnga and USL-H have a similar perfor-
mance on both datasets. Both are BERT-based
models, trained on dialogue data, and rely on bi-
nary classification except that USL-H also utilises
a BERT-MLM score. Training as a classification
task loses much fine-grained information such as
the subtle differences between RD labels, which
restricts their ability for engagingness prediction.
Although RDERP is also based on BERT and shares
a similar model architecture as PredEnga, we train
RDEP as a regression model, allowing it to capture
subtle differences of RD labels.

DynaEval outperforms other baseline models
on FED. DynaEval is trained on dialogue datasets,
and (i.e., ED, ConvAI2 (Dinan et al., 2019) and
DD); is able to make use of the graph structure
of dialogue turns from the same dialogues. Due
to this second aspect, DynaEval is not applicable
to the datasets that do not contain complete dia-
logue sessions, such as DD-H. DynaEval is a clas-
sification model. The main reason for its inferior
performance compared to RDEP is that it was not
trained on engagingness labels. Acquiring enough
high-quality engagingness (class) labels is itself a
difficult problem; RDEP circumvents this problem
with weak supervision.

All baseline approaches need multiple dialogue
turns as input. To understand how they perform
when only a single turn is given, we compare their
performance in Table 4. Most baseline approaches
experience significant performance drops on the
FED and DD-H datasets; USL-H does not even



FED DD-H FED DD-H
P S P S P S p S
FED-metric 0.09 0.12 0.12 0.14 RDEP 0.29 0.33 0.58 0.62
DialogRPT 0.23 0.32 0.58 0.59 _Shuffle 0.09 0.08 _015 —014
PredEnga 0.13 0.26 0.46 0.59 _Class? 0.07 0.05 0.07 0.06
USL-H . - - - Classs 013 012 —0.01 —0.02
DynaEval —-0.07 —0.06 0.17 0.19 Classl0  0.15 016 0.13 0.10
RDEP 029 033 058 062 Sigmoid 030 033 023 022
Table 4: Model performances when using only a sin- -ValLoss 026 0.28 0.35 0.34
gle dialogue turn. P: Pearson; S: Spearman. All corre-
lation results that are not statistically significant (with -Flat-H2 033 0.35 0.51 0.53
p-value < 0.05) are italicised. Higher is better. Best -H2 0.35 0.38 0.52 0.53
results in each column are bold faced. -Flat-H3 0.32 0.33 0.51 0.53
work in this setting. Interestingly, DialogRPT -H3 0.36 038 0.52 0.53
: i -H4 0.36  0.37 0.52 0.52
sees a performance increase, especially on the DD- H5 033 033 051 0.52
H dataset. We hypothesise that this is because ) ) ) :
DialogRPT uses the transformer output for the last -FI-CAIl  0.29 0.33 0.51 0.53
token as the utterance representation. In batch pro- -FT-CAI3  0.37 0.39 0.46 0.48
cessing (padding tokens added to the left), this -SC-CAIl  0.27 0.32 0.54 0.59
shifts the positional ids of shorter utterances in -SC-CAI3 0.36 0.37 0.43 0.45
the l.)atch to the right, W.hiCh causes inaccurate pre- _cls 023 0.22 0.41 0.41
dl(‘ltlf)ns. Wher} more dialogue turns.ar.e used, thf: -max 037 037 0.35 0.35
shifting effect increases, hence predictions deteri- -min 025 0.29 0.25 0.26

orate. RDEP does not suffer from this problem,
as we use mean pooling of all tokens excluding
padding tokens as the turn representation.

5.3 RQ3: Ablation study

We consider the impact on the performance of
RDEP of removing core components; see Table 5.
These components are: (1) training on RD labels;
(2) regression task instead of classification; (3) ac-
tivation functions; (4) history size; (5) pooling
methods; and (6) model weights selection crite-
ria. For ease of reference, at the top of the table
we repeat the performance of RDEP trained with a
single turn, mean pooling, ReLLU1 activation, with
model weights selected according to the best per-
formance on DD-H (i.e., used as a validation set).

Table 2 shows that RDEP-S trained with shuf-
fled RD labels has a poor performance. In the
-Shuffle row of Table 5, we confirm this using
correlation with human annotations. This shows
the importance of training on RD labels. The
row -Sigmoid shows that ReL U1 is more suitable
for RDEP, probably because RD labels within
each dialogue scale linearly. The performance
for the model selected using the validation loss
criterion is shown in the -ValLoss row. Indeed,
model weights selected in this way do not per-

Table 5: Ablation study results. P: Pearson; S: Spear-
man. The correlation results that are not statisti-
cally significant (with p-value < 0.05) are iftalicised.
Higher is better.

form the best, but still on par with baseline ap-
proaches on the FED dataset. Next, we also eval-
uate the RDEP model on the classification task
instead of regression. For this, we map the RD
labels to (1) binary labels {0, 1} using a thresh-
old 0.5, (2) 5 class labels using thresholds of
{0.2,0.4,0.6,0.8}, and (3) 10 class labels using
thresholds of {0.1,0.2,...,0.9}. Then we train
RDERP as classifiers with Cross Entropy loss. The
results in the -Class* rows show that the trained
models have much weaker correlations with hu-
man engagingness scores than RDEP trained as a
regression model; RD labels are weak, noisy la-
bels, and mapping them to discrete class labels in-
troduces even more noise and prevents the trained
model from being useful.

By training and testing RDEP with more histor-
ical turns, ranging from 2 (-H2) to 5 (-HS5), we ob-
serve that the single-turn RDEP model performs
the best on DD-H, while -H3 with 3 dialogue turns
performs the best on FED. The annotations of DD-
H use only 2 dialogue turns, which causes the an-



notators to focus more on the last turn. RDEP mod-
els trained with more than 1 dialogue turns do not
share this focus on the last turn, and hence are un-
able to outperform the single-turn model.

We also considered using flat history by con-
catenating history dialogue turns into one utter-
ance. Their performance for using 2 and 3 turns
are shown in the -Flat-H* rows. Using flat history
performs consistently worse than using RDEP’s
default setting, and the difference between -Flat-
H3 and -H3 is bigger on FED. When dialogue
turns are concatenated, they are more likely to ex-
ceed BERT’s sequence length restriction (128 to-
kens) and hence cut off.?

Next, we see how training/fine-tuning on the
CALI dataset influences RDEP’s performance. We
both train from scratch (-SC-CAI* rows) and fine-
tune (-FT-CAI* rows) our best-performing RDEP
and -H3 models on CAI. All models trained in
these ways have worse performance on DD-H with
little influence on FED. Hence, weak labelling
works better than coarse-grained, dialogue-level
human engagingness annotation.

The final three rows in Table 5 show that using
cls, max or min pooling methods negatively influ-
ences the model performance on the DD-H dataset,
which is also true on FED except that max pooling
shows no noticeable difference.

5.4 RQ4: Case studies

In Appendix C we detail a number of case studies.
The main insights about RDEP gained from these
case studies are as follows: (1) RDEP can distin-
guish conversation starters and endings by assign-
ing higher scores to the former and lower scores
to the latter. (2) RDEP assigns highest scores to
greetings and lowest scores to farewells. When an
utterance contains a question, RDEP usually as-
signs a higher score. (3) When compared to hu-
man annotations, RDEP’s predictions match hu-
man annotations in many cases.

6 Conclusion

We studied the problem of predicting turn-level
dialogue engagingness and proposed a novel ap-
proach that sets the new state-of-the-art results
across several dialogue datasets. Using remain-
ing depth (RD) labels for weak supervision is the
main novelty of the proposed approach. We for-
mulate the engagingness prediction problem as a

2We made sure only tokens from the oldest history are cut.

regression task using the automatically generated
RD labels. This formulation allows us to take ad-
vantage of the implicit signals in multi-turn dia-
logue data because RD can be calculated automat-
ically. We can use any multi-turn dialogue dataset
for training our model. When trained by multi-
tasking on four popular dialogue datasets, the pro-
posed Remaining Depth as Engagingness Predic-
tor (RDEP) model with a single dialogue turn al-
ready outperforms existing approaches, establish-
ing the new state-of-the-art performance on the
FED and DD-H datasets. When using three history
turns, RDEP-H3 achieves the highest performance
on FED, but lower on the DD-H dataset. We hy-
pothesise that this is due to DD-H’s having only
two turns for each data point, which is too short
for RDEP-H3. The RDEP model developed in
this work can be applied to evaluate engagingness
of dialogue systems, or serve as a ranker for se-
lecting more appropriate candidate responses. Fur-
ther study needs to be done for checking how well
RDEP can cope with such tasks.

We also note that engagingness is not the only
gold measurement one should optimise for open-
domain dialogue systems. In the future, more
work needs to be done to combine RDEP with eval-
uation metrics focusing on other aspects, such as
coherence, specificity and consistency, etc.

7 Ethical Considerations

All the training/validation/test data used in this
work is publicly available. As far as we know,
the creators of these datasets have taken ethi-
cal issues into consideration when creating the
datasets. We manually checked some predictions
from RDEP, and did not observe any noticeable
traces of concern, such as scoring biased or rude
utterances high. The RDEP models are trained on
English, open-domain dialogue data. Therefore,
we are not yet clear whether unexpected predic-
tions may appear when RDEP is used on other
tasks/languages. We share our source code and
trained model weights to support its correct use.
However, we note that when incorrectly used, such
as training the RDEP model to rank discriminative
utterances high, it may also pose harm to users
of conversational applications into which RDEP is
integrated. We also note that RDEP is probably
not suitable for task-oriented dialogue systems, as
in those systems engagingness may conflict with
quick task completion.
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APPENDICES

We provide additional details on our experimental
results, both to aid the reproducibility of the results
in this paper (Appendix A) and to provide further
insights into the results produced by RDEP (Ap-
pendix C).

A Reproducibility

A.1 Link to source code

https://anonymous.4open.science/r/RDEP.  The
data downloading and preprocessing are automati-
cally taken care of in our training scripts.

A.2 Dataset statistics

Statistics for the datasets we use to train RDEP are
shown in Table 6.

A.3 Parameter settings

We chose the BERT base uncased model (De-
vlin et al., 2018) as implemented in the Trans-
formers library® as our turn encoder. The pa-
rameters for the linear projection layer of RDEP
are randomly initialised. The RDEP model con-
tains 109M trainable parameters (weights), in to-
tal. We select hyper-parameters using two differ-
ent criteria, as described in the end of §3. We
also evaluated four alternative pooling methods,
two activation functions mentioned in §3 and k& €
{1,2,3,4,5} for deciding upon the most suitable
configuration. In our preliminary experiments,
we trained the RDEP model using an SGD opti-
miser with a learning rate (LR) chosen from the
set {be—2,5e—3,5e—4,5e—5,5e—6}, and found
out that 5e—2 worked best according to the MSE
loss on the validation set, and 5e—5 works best
when validated on DD-H. All RDEP variants were
trained for 50,000 steps. A fixed LR scheduler
with 5,000 warmup steps was used. During train-
ing, we use a batch size of 20 and clip the gradi-
ent L2 norm to 0.1. The training finishes within 6
hours on a single TITAN Xp GPU with 5 history
turns used as input. For the single-turn model, in
which only the current turn is used as input with-
out any dialogue history, the training takes only
1.5 hours.

B RDEP Correlations for F&L k& Turns

The RDEP correlations with first and last & turns
of each dialogue, compared to considering all

3https://huggingface.co/transformers/model_doc/bert.
html
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DD: Train Val Test
#Dialogues 11,118 1,000 1,000
#Turns total 87,170 8,069 7,740
#Turns avg 7.84 7.74 8.07
#Turns std 4.01 3.84 3.88
#Tokens 1,186,046 108,933 106,631
PC: Train Val Test
#Dialogues 8,938 999 967
#Turns total 131,424 15,586 15,008
#Turns avg 14.70 15.60 15.52
#Turns std 1.74 1.04 1.10
#Tokens 1,534,258 186,055 176,903
ED: Train Val Test
#Dialogues 17,780 2,758 2,540
#Turns total 76,609 12,025 10,941
#Turns avg 4.31 4.36 4.30
#Turns std 0.71 0.73 0.73
#Tokens 1,025,120 175,231 169,778
WoW: Train Val Test
#Dialogues 18430 981 965
#Turns total 166,787 8,909 8,715
#Turns avg 9.05 9.08 9.03
#Turns std 1.04 1.02 1.02
#Tokens 2,730,760 145,995 142,896
BST: Train Val Test
#Dialogues 4,819 1,009 980
#Turns total 54,881 11,467 11,154
#Turns avg 11.39 11.36 11.38
#Turns std 241 2.35 2.42
#Tokens 730,351 154,437 154,335
CAI: Train Val Test
#Dialogues 2,099 - -
#Turns total 25,319 - -
#Turns avg 12.06 - -
#Turns std 9.44 - -
#Tokens 171749 - -

Table 6: Statistics for the datasets used to train RDEP.
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Figure 3: RDEP correlations with RD for all turns and
first & last & (F&L k) turns only. -P: Pearson, -S: Spear-
man.

Single-turn Text -H1
hey!. nice to meet you. me and my folks are cur- 1.00
rently in arkansas. you?

hello, where can i buy an inexpensive cashmere  1.00
sweater?

hello there, how are you today? 1.00
my dear, what’s for supper? 1.00
hi buddy, what you think about cinematography 1.00
where’d you get those? 0.82
i like to run, create art, and take naps! how about  0.80
you?

i love italian cuisine 0.56
jeez! its so unfortunate... very sad really. 0.50
it has 10 provinces 0.42
thanks for all your help / info today 0.38
well you sleep well goodnight 0.00
i wish you the best of luck, you will be fine! 0.00
thank you, bye - bye. 0.00
thank you. good luck to your son 0.00

Figure 4: Successful cases of RDEP-H1. Only single
turns are displayed for the sake of space limitations. Di-
alogue turns are from various datasets.

turns is illustrated in Figure 3. Please refer to §5.1
for more details.

C Case Studies

In this section, we list several case studies of
the single-turn RDEP model selected according to
minimum validation loss.

In Figure 4 are some representative good ex-
amples. It shows that RDEP gives highest scores
to dialogue starters and lowest scores to dialogue
endings. With the content shifts from greetings
to questions and statements, and then to farewells,
our RDEP model can accurately detect the di-
alogue progress: the lower the prediction, the
nearer towards the end. We observe such interest-
ing patterns from more examples: Our model is
most accurate with clear greetings and farewells,
and usually gives an inquisitive utterance a high
score; it is often the case when an utterance starts

12

Single-turn text RD -H1 -H3
is there anything else i can do for 0.08 0.66  0.19
you?

that’s ok. 0.00 035 0.17
it’ll be worth it in the end. just 0.29 0.02 048
think of the freedom you’ll have!

enjoy your visit and safe travels. 0.53 0.00 0.57
1 like the sound of that 0.56 0.16 0.39
thank you. 0.62 0.11 040
yes, you did. 0.73 0.17 049

Figure 5: Failure cases where RDEP-H1 usually con-
trasts with RD labels, while RDEP-H3 can cope with
better. Conversation turns from various datasets.

Single-turn text Human -HI1
everything is going extremely well. 0.90 0.89
how are you?

what is the meeting about? 0.80 0.76
try me. what is your problem? 1.00 0.61
not that much more, no. 040 0.27
i did not want to hear that now 0.80 0.33

Figure 6: Comparing RDEP-HI1 predictions to FED hu-
man annotations.

a new topic, our RDEP predicts longer conversa-
tions will happen. We will release the annotated
files for all the test sets we use in this paper.

However, there are also some tricky cases that
our single-turn RDEP model fails to cope with.
One biggest type of such errors usually happen on
generic utterances, such as the 2nd, 6th and 7th
examples shown in Figure 5. While we can argue
that many generic responses fit naturally in the end
of a conversation, it takes longer context and heav-
ier reasoning to decide whether the conversation
actually dies. Indeed, our best-performing RDEP-
H3 using 3 turns of history can make more accu-
rate predictions in such cases, however, the overall
predictions from -H3 model is less comprehensi-
ble than the -H1 model. We also note that, there
are cases that are easy for us to decide in real-
life. E.g., a “Thank you.” together with a leaving
body-language clearly shows that the conversation
is ending. In the pure textual setting, this is some-
times impossible to accurately predict. There is
another tendency that our RDEP model responds
too much to questions, such as the first example in
Figure 5. While the utterance itself already shows
a good sign of conversation ending, the single-turn
RDEP model thinks it is a normal question and pre-
dicts a medium score for it.

Comparisons with human annotations from the
FED dataset are shown in Figure 6. In many cases,
our model’s prediction correlates well with human
annotations (normalised to [0, 1]), and there is also
some cases that our model makes arguably better
predictions than human annotations, such as the



Single-turn Text

-H1

what can i do for you today?

i have a question.

what do you need to know?

ineed to take the driver’s course. how many hours
do i need?

it depends on what you’re trying to do with the
completion of the course.

i need to get my license.

you’re going to need to complete six hours.

how many hours a day can i do?

you can do two hours a day for three days.

that’s all i need to do to finish?

yes, that’s all you need to do.

thanks. 1’1l get back to you.

1.00
1.00
0.64
0.85

0.21

1.00
0.42
0.62
0.43
0.37
0.17
0.00

Figure 7: A random complete dialogue from the DD

dataset, labelled by RDEP-HI1.

last example when the participant is trying to end
the conversation/topic, but human annotators still

think it is engaging.

We also show a randomly-chosen complete dia-
logue from the DD dataset in Figure 7, from which
we can see that our RDEP model can not only
detect when the conversation starts and ends, but
also reflects where the conversation can end pre-

maturely, such as the 5th and 7th rows.
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