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Abstract

During the deployment of machine learning models, performance degradation can
occur compared to the training and validation data. This generalization gap can
appear for a variety of reasons and be particularly critical in applications where
certain groups of people are disadvantaged by the outcome, e.g. facial analysis.
Literature provides a vast amount of methods to either perform robust classification
under distribution shifts or at least to express the uncertainty caused by the shifts.
However, there is still a need for data that exhibit different natural distribution
shifts considering specific subgroups to test these methods. We use a balanced
dataset for facial analysis and introduce subpopulation shifts, spurious correlations,
and subpopulation-specific label noise. This forms our basis to investigate to what
extent known approaches for calibrating neural networks remain reliable under
these specified shifts. Each of the modifications leads to performance degradation,
but the combination of ensembles and temperature scaling is particularly useful to
stabilize the calibration over the shifts.

1 Introduction

Machine Learning is a central tool for many tasks in the area of computer vision and facial analysis.
However, most approaches are evaluated on data that are identically and independently distributed
(i.i.d.). This i.i.d. assumption often cannot be guaranteed during deployment. Thus, a relatively wide
range of possible shifts between training and inference can occur that have a detrimental effect on the
generalization performance. This can be particularly important in areas where predictions of machine
learning systems have a direct effect on humans, as it is the case with facial analysis. Subpopulations
may be underrepresented in the training data compared to the overall population [9, 16], or there
may be spurious correlations between subpopulations and labels during training that have no real
causal relationship [1, 15]. Since this poses a significant challenge to the development of real-world
machine learning and pervades all areas and applications of machine learning, efforts have been made
to mitigate this problem [1, 15, 4, 12, 11]. Furthermore, it is also desirable to get well-calibrated
uncertainty estimates, that are reliable across shifts such that we can at least determine when to trust
the predictions of the model [13, 3]. In general, however, we need data sets that go beyond the classic
train/validation splits from i.i.d data to evaluate these methods. Thus, several benchmarks have been
presented to evaluate different shifts across various domains [9, 16]. For facial analysis, Sagawa et
al. [15] generate spurious correlations using annotated attributes in CelebA. However, to the best
of our knowledge, no structured benchmark currently exists to evaluate different types of naturally
occurring shifts in the domain of facial analysis.

*Both authors contributed equally to this research.
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Consequently, our first contribution is a framework to systematically create various subpopulation-
specific shifts on facial data, depicted in Figure 1: underrepresented/missing subpopulations, spurious
correlations, and group-specific label noise. For this, we use FairFace [7], a balanced dataset in terms
of age, race and gender, as a base dataset. Furthermore, we want to address the following research
question: What impact do these shifts have on the subpopulation-specific accuracy and to what extent
do they affect the calibration? To answer this question, we compare a baseline model with several
known approaches for building well-calibrated models. For reproducibility, we provide our code for
creating the shifts and training.1
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Figure 1: Overview of the introduced shifts, from left to right: subpopulation shift with one under-
represented race value (here only a fraction qrace = 0.25 of race group 6 remains), group specific
label noise making the subjects younger by a value z that follows a half-normal distribution with
increasing standard deviation (here σ = 1.5), and spurious correlations between young and one race
group (here equivalence-condition between young and race group 1).

2 Distribution shifts in facial data

In the following we describe the underlying data and modifications.

Baseline Data As a basis for our work we use the FairFace dataset [7] with 97,698 subjects and
its standard train/test split. Additionally, we split off 12% of the training data as a validation set.
The dataset contains information on age, gender, and race, with special attention paid to the balance
of these three attributes. Following the notation of [7] the attribute gender is categorized into two
classes (Agender = {male, female}), race into seven (Arace = {Black, East Asian, Indian, Latino
Hispanic, Middle Eastern, Southeast Asian, White}), and age into nine (Aage = { 0-2, 3-9, 10-19,
20-29, 30-39, 40-49, 50-59, 60-69, more than 70}).2 We attempt to estimate the age categories
y ∈ Alabel = {0, 1, . . . , 8} by classification, while Agender and Arace are used to induce changes in
the data distribution of the training data. The test data remains the same. We systematically apply
the shifts to each attribute value so that each of them is affected once. Our goal is to examine the
effects of several types of shifts without the influence of the number of training samples. Therefore,
we ensure that although we reduce the number of subjects from certain groups, the total number of
training samples per shift remains constant. We achieve this through a general random sampling, also
on the baseline data.

Subpopulation shift with one under-represented attribute value Subpopulation shifts can occur
in the real-world when certain attribute values are underrepresented in the training data compared to
the data seen during deployment, e.g. when a specific ethnic group is missing during training. Let
vi ∈ Ai be an attribute value for attributes i ∈ {race, gender} and let pclean(vi) be the probability
of vi in our clean training data. To induce the subpopulation shift, we reduce the probability of this
attribute value by a factor 0 ≤ qi ≤ 1: pshift(vi) = qi ·pclean(vi). For the remaining attribute values
wi ∈ Ai \ vi we set the probability distribution to pshift(wi) = pclean(w

i) + pclean(v
i)−pshift(vi)
|Ai|−1 .

This is done for all vi ∈ Ai and all shift intensities qrace ∈ {1.0, 0.75, 0.5, 0.25, 0.0} and qgender ∈
{1.0, 0.5, 0.0}. Note that the selected attribute value does not occur at the strongest shift.

1https://github.com/jdeuschel/DistrShiftsOnFacialData
2Note that we used race and gender labels as annotated in the FairFace dataset. The visual features used by

the annotators are not necessarily indicative of a person’s gender identity. In addition, the used labels do not
reflect the identity of individuals outside the bounds of this binary categorization.
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Label noise In addition to normal subpopulation shifts, there may also be biases in the labels for
individual groups. For example, certain races are estimated to be younger than they really are. This can
have isolated effects for these specific groups or for all others during the deployment. To investigate
this, we introduce attribute-specific label noise in the training data: for each race group separately,
we reduce the age class by subtracting samples from an approximated half-normal distribution with
mean 0 and increasing standard deviation σ ∈ {0.5, 1.0, . . . , 4.0} from the ground truth labels. Thus
for a label y ∈ Alabel the new label is ỹ = max(0, dy − ze), where z ∼ N[0,∞)(0, σ

2).

Spurious correlations Our last shift consists of spurious correlations between race and the label
age. We combine the lowest three age groups into the attribute value young, thus we create a new
attribute set Ageneration = {young, not young}. We systematically correlate the attribute young with
each race group in the training data. Two variants for this correlation are considered: sufficiency
(e.g. "young⇒ East Asian") and equivalence (e.g. "young⇔ East Asian", depicted in Figure 1).
We create these variants by omitting subjects with certain race-age combinations: For example,
for the spurious correlation "young ⇒ East Asian" we omit all young subjects that are not East
Asian. In the case of "young ⇔ East Asian" we additionally remove all non-young East Asians.
Thereby for each vrace ∈ Arace separately we ensure that pshift(vrace|vgeneration = young) = 1 holds
in the training data for the case sufficiency. For the case of equivalence we additionally have
pshift(v

generation = young|vrace) = 1.

For this shift we created a baseline with a reduced number of young subjects over all races to match
the overall number of young subjects to isolate the effect of spurious correlations and exclude that of
data set size (for young).

3 Experimental setup

In our experiments we investigate the impact of the distribution shifts specified in section 2 on
the classification performance and calibration. For this, we use a ResNet34 [6, 14] pretrained on
ImageNet as a baseline model (denoted vanilla). For comparison, deep ensembles [10] of three
independently trained networks are used, as they are generally considered a simple but effective way
to improve the calibration [13]. Also the influence of mixup [18] is investigated, which can improve
the calibration [17] and performs a data-level change compared to the ensembles. Furthermore, we
combine each of them with temperature scaling [5], a post-hoc recalibration method that divides the
logit outputs by a scaling parameter before calculating the softmax. We use a clean and balanced
validation set for learning the scaling parameter. Each of the three approaches offers comparably
good performance in their respective categories. Therefore, in this paper we focus only on those.

For each of these methods, we use the same training protocol. We train for 30 epochs using Adam [8]
with weight decay of 0.01, learning rate of 0.0001 and apply a random crop of size 224. RandAugment
[2] is used for data augmentation. The weights of the epoch with the lowest validation loss are used
for the evaluation. The basic hyperparameter setting was chosen based on [7] and then improved to
replicate the results on the clean FairFace data. Since ensembles are independently trained networks,
the same setting can be applied to them. As mixup generally needs more epochs to converge, it
was verified that the loss did not change significantly after the specified epochs. In addition to the
classification accuracy, we are particularly interested in the reliability of the confidence outputs,
which we measure with the ECE (Expected Calibration Error) [5]. In the evaluation we include the
results from 5 random seeds for all metrics and methods.

4 Results

In the following, we try to answer the research question for each of the defined shifts. First, we want
to address the question of what impact the previously defined changes in the distributions have on the
accuracy. We contrast the changes in the accuracy with the stability of the calibration. This allows
us to answer the question of whether our model remains at least reliable even when the accuracy
deteriorates. For this purpose, we focus on the relevant subpopulations that are affected by the
changes. Thus, for a shift that affects attribute value vi we consider the accuracy and ECE over all
subjects with this specific attribute value. We aggregate these results over all affected attribute values
for each intensity level, such that the plots below show the spread over the results of the different
relevant attribute values.
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Figure 2: Accuracy for subpopulation shift and label noise for the relevant subgroups affected by the
shift.

Subpopulation shift For subpopulation shifts we considered both attributes: gender (see Figure 2a
for the accuracy and 3a and 3b for the ECE ) and race (see Figure 5 in the Appendix). We can observe
that in both cases the accuracy of all methods deteriorates with increasing shift. This effect is more
pronounced for the attribute gender than for race when we compare the strongest shifts. This poses
the question of whether the existing race diversity in the dataset is sufficient to learn race-invariant
features, making the removal of a single race not very significant. The calibration error increases with
a stronger shift. Similarly, as for the accuracy this effect is larger for the shift in gender. Among the
compared approaches, ensembles and mixup result in an improvement of the calibration over vanilla;
with mixup this effect is larger in the gender case. A recalibration causes a slight stabilization of the
baseline but leads to a deterioration of mixup.

Label noise In the case of group-specific label noise we see a clear drop of accuracy, by 7.5
percentage points (denoted %) with higher intensity (Figure 2b). However, the calibration error seems
to be relatively stable (max. 1.0% increase for vanilla, as can be seen in Figure 3c). Interestingly, the
calibration first improves with slight noise. An assumption would be that the otherwise overconfident
networks become more uncertain, which leads to an improved calibration. We can observe that
ensembles, as well as mixup, have better calibration without label noise, however, under label
noise the vanilla network outperforms both of them. On the other hand, ensembles have better
accuracy under noise. A recalibration (Figure 3d) reduces the gap between all methods and leads
to stabilization over the noise intensities. In this case, ensembles show the lowest ECE. We also
evaluated the subpopulations that did not encounter noise during training and observed that the
accuracy worsens by only 1.5% for the vanilla network. Therefore, we can conclude that the label
noise applied to a single group does not exhibit a similarly strong performance degradation for all
other groups.

Spurious correlations We investigate the effect of spurious correlations between young and each
value of race. We distinguish between the race groups that include the attribute young in the training
data (young-correlated) and the remaining ones (non-young-correlated). The accuracy increases for
the young-correlated groups (by 14%) and decreases for the non-young-correlated groups (by 7.5%)
with stronger spurious correlations (see Appendix A.2), while the spread between the different young-
correlated observations increases. In terms of calibration, we observe a significant improvement for
the young-correlated groups and a deterioration for non-young-correlated groups (see Figure 3e and
3f). However, we notice that the models are poorly calibrated, thus the uncertainty estimates of the
methods are not reliable. As before, temperature scaling improves the calibration. However, unlike
for the other shifts, neither ensembles nor mixup can improve the calibration compared to vanilla and
no clear ranking can be observed.

5 Conclusion & discussion

In this paper, we introduced several shifts for a given facial analysis dataset and investigated the impact
on accuracy and calibration. In summary, each type of distributional change has an increasingly
negative impact on accuracy with higher shift intensity. Also the calibration of the methods continues

4



baseline 1/3 female no female
Experiments

0.025

0.050

0.075

0.100

EC
E 

(
)

Method
vanilla
mixup
ensemble

(a) Subpopulation shift for gender female

baseline 1/3 female no female
Experiments

0.025

0.050

0.075

0.100

EC
E 

(
)

(b) Subpopulation shift for gender female with temper-
ature scaling

clean 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Standard deviation  (shift intensity)

0.02

0.04

0.06

EC
E 

(
)

(c) Label noise

clean 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Standard deviation  (shift intensity)

0.02

0.04

0.06

EC
E 

(
)

(d) Label noise with temperature scaling

baseline i  j i  j
Correlation between i=young and j=each race

0.0

0.2

0.4

0.6

EC
E 

(
)

(e) Spurious correlation young-correlated

baseline i  j i  j
Correlation between i=young and j=each race

0.0

0.2

0.4

0.6

EC
E 

(
)

(f) Spurious correlation non-young-correlated

Figure 3: ECE for subpopulation shift, label noise and spurious correlations for the relevant subgroups
affected by the shift.

to decline as the shift increases such that the models become less reliable. Ensembles and mixup
outperformed vanilla for the subpopulation shift, but for spurious correlations, there has not been a
clear ranking and for label noise vanilla even performed better than the other methods. For the case
that a balanced validation dataset is available, a simple post-hoc recalibration can improve the ECE
significantly for all shifts. It stabilizes the calibration for all methods and leads to an advantage of
ensembles over the other methods. However, getting a balanced data set poses difficulties in the wild.
We did not examine this effect concerning different modifications of the validation set, thus it remains
unclear what significance the specific composition of the validation set might play. We leave this
investigation for future work.
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A Additional results

A.1 Subpopulation shift
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Figure 4: Accuracy and ECE of subpopulation shift for gender.
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Figure 5: Accuracy and ECE of subpopulation shift for race, where only the races affected by the
shift respectively are considered.
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A.2 Spurious correlations
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Figure 6: Accuracy and ECE of spurious correlations between race and young.
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