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ABSTRACT

Spike cameras, bio-inspired vision sensors, asynchronously fire spikes by accu-
mulating light intensities at each pixel, offering ultra-high energy efficiency and
exceptional temporal resolution. Unlike event cameras, which record changes in
light intensity to capture motion, spike cameras provide even finer spatiotempo-
ral resolution and a more precise representation of continuous changes. In this
paper, we introduce the first video action recognition (VAR) dataset using spike
camera, alongside synchronized RGB and thermal modalities, to enable compre-
hensive benchmarking for Spiking Neural Networks (SNNs). By preserving the
inherent sparsity and temporal precision of spiking data, our three datasets offer
a unique platform for exploring multimodal video understanding and serve as a
valuable resource for directly comparing spiking, thermal, and RGB modalities.
This work contributes a novel dataset that will drive research in energy-efficient,
ultra-low-power video understanding, specifically for action recognition tasks us-
ing spike-based data.

1 INTRODUCTION

Video Action Recognition (VAR) is a key task in computer vision that focuses on detecting and
classifying actions or activities from video sequences automatically (Wani & Faridi, 2022). Unlike
image classification, which can be seen as analysis of an individual frame, VAR captures both spatial
and temporal dynamics, adding complexity such as heavy information redundancy introduced by the
temporal dimension, motion variations, changes in lighting or camera angles (Yu et al., 2024), just
to name a few. These complexities make VAR highly valuable for real-world applications such as
surveillance, healthcare, industrial automation, and sports analysis (Poppe, 2010), where rapid and
accurate processing is essential.

Spiking Neural Networks (SNNs), inspired by biological neurons, offer a promising alternative to
traditional Artificial Neural Networks (ANNs) for tasks involving temporal dynamics, such as VAR
(Guo et al., 2023). SNNs operate on sparse, discrete spikes, enabling event-driven computation,
which significantly reduces energy consumption compared to ANNs (Roy et al., 2019). This makes
SNNs particularly suited for energy-constrained environments like autonomous robots and edge
devices (Liu et al., 2024). However, despite their energy efficiency, video understanding with SNNs
remains limited. Current research on VAR using SNNs typically relies on converting conventional
RGB video data into spike trains, leading to information loss and constraining the full potential of
SNNs (Yu et al., 2024).

A key limitation in existing research is the scarcity of spiking datasets that capture the rich temporal
dynamics of real-world video sequences. While event cameras capture data based on brightness
changes, spike cameras operate by generating spikes when the photon accumulation at each pixel
surpasses a threshold. This enables spike cameras to capture absolute brightness at ultra-high sam-
pling frequencies (up to 20,000 Hz), providing textural spatiotemporal details than event cameras
(Amir et al., 2021). Despite these advantages, existing datasets, such as DVS128 (see Section 2.1),
are based on event cameras and lack the richness needed for complex action recognition tasks.

In the context of SNNs, video data presents unique challenges. Videos inherently involve temporal
sequences, which align naturally with the temporal nature of SNNs. Any temporally structured data
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can be treated as a video, provided that each time step has a corresponding visual representation.
When processing temporal input with an SNN, two distinct approaches arise: (1) aligning the tem-
poral dimension of the input with the native temporal axis of the SNN model, or (2) encoding the
entire video input separately from the SNN’s native temporal axis. In the latter approach, the video
is encoded as spike train as a whole, hence another temporal dimension is added which coincides
with the SNN’s temporal axis.

Motivated by the lack of a complex spiking dataset suitable to challenge and push forward the
SNNs capacity to address VAR task, we introduce a novel dataset specifically designed for human
action recognition using spike cameras. In addition, we provide spiking data with synchronized
RGB and thermal modalities to enhance motion capture in low-light conditioning and provide a
comprehensive multimodal representation of human actions. By combining these modalities, we
provide a framework to explore the complementary information across different sensor types, with
the aim of improving the robustness and diversity of SNN models for action recognition tasks.

Our datasets are collected from 44 participants, representing a wide range of demographic factors
such as age, height, weight, sex, and ethnicity. Each participant performed 18 distinct daily ac-
tions (Figure 1), captured over two sessions, resulting in a total dataset duration of 264 minutes. To
establish a baseline for comparison, we utilized state-of-the-art (SOTA) architecture based on convo-
lutional neural networks (CNNs) and transformer blocks to provide a baseline model for our datasets
in both ANN and SNN through ANN-SNN conversion. To summarize, our key contributions are as
follows:

• We introduce SPACT18, the first VAR dataset captured using spike camera, setting a new
benchmark for SNN-based models, and extend it with synchronized RGB and thermal
modalities for comprehensive multimodal benchmarking.

• We propose a compression algorithm for the spiking dataset, yielding new spiking datasets
with lower native latency, while preserving critical temporal information, providing a
framework for preprocessing and compression for the research community.

• We evaluate our dataset across modalities using SOTA lightweight ANN models and SNN
baseline obtained through ANN-SNN conversion, and direct training, highlighting critical
challenges in spiking video recognition, such as the high latency in ANN-SNN and low
accuracy in direct training, and providing novel research areas for optimizing SNNs.

Running in Place Walking Jogging Clapping Right Hand Waving Left Hand Waving

Drinking Playing Drums Forearm Roll Playing Guitar Jump in Place Squats

Arms Circling Side Butterfly Frontal Butterfly Stand Abs Boxing Jumping Jacks

Figure 1: Sample output frame from the spike camera for each action of the same subject. Texture
reconstruction via TFP (Dong et al., 2017) with window=200.

2 RELATED WORK

2.1 VIDEO ACTION RECOGNITION DATASETS

Video understanding has become a crucial component of computer vision, particularly due to the rise
of short video platforms. To advance this field, datasets like KTH, simple human actions like walk-
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ing and running (Schuldt et al., 2004), HMDB51, human actions in movies (Kuehne et al., 2011),
UCF101, varied sports and action categories (Soomro et al., 2012), NTU RGB+D, multi-view human
activities with depth data (Liu et al., 2020), and Kinetics, diverse real-world action videos (Carreira
et al., 2018; 2022; Kay et al., 2017), have been developed for human action recognition, while others
focus on action localization (Gao et al., 2017; Gu et al., 2018; Heilbron et al., 2015; Idrees et al.,
2017; Liu et al., 2022a; Shao et al., 2020), enabling deeper exploration of human activities. Neuro-
morphic datasets (Wang et al., 2024b; Duan, 2024) like DVS128 (Amir et al., 2021), DailyDVS200
Wang et al. (2024a) along others for event-based action recognition (Dong et al., 2023; Gao et al.,
2023) that utilize event-based cameras to capture spatiotemporal changes, recording only pixel in-
tensity variations, which allows for efficient, real-time, low-power action recognition. Event-based
versions of traditional datasets, such as E-KTH, E-UCF11, and E-HMDB51, are synthesized using
event cameras or simulators, converting frame-based data into spike trains, which reduces redun-
dancy and enhances processing efficiency, making these datasets ideal for applications requiring
high temporal resolution (Bi et al., 2020; Al-Obaidi et al., 2021), see Appendix A.2 for more details.

2.2 SPIKE CAMERA DATASETS

Spike cameras have garnered attention for capturing high-speed dynamic scenes, spurring the cre-
ation of datasets to improve tasks like motion estimation, depth estimation, and image reconstruc-
tion. Zhu et al. (2020) introduced a dataset for reconstructing visual textures using a retina-inspired
sampling method, demonstrating the utility of spike cameras for tasks like object tracking but lim-
iting their scope to low-level applications. Similarly, datasets like Spk2ImgNet and PKU-Spike-
Stereo by (Zhao et al., 2021) and (Wang et al., 2022b) focus on dynamic scene reconstruction and
stereo depth estimation, respectively, without addressing high-level tasks such as video classifica-
tion. Similarly, Hu et al. (2022) ’s SCFlow dataset serves as a benchmark for optical flow estima-
tion, and Zhao et al. (2020) developed a motion estimation dataset leveraging spike intervals for
high-speed motion recovery, both confined to low-level vision tasks.

Despite these advancements, a significant gap remains in developing spike camera datasets for high-
level tasks like video action recognition (Zhu et al., 2019; Xiang et al., 2023). Current datasets are
predominantly designed for tasks such as optical flow (Zhao et al., 2022), motion estimation (Zheng
et al., 2023), depth estimation (Zhang et al., 2022) and image reconstruction, limiting the exploration
of spike camera data in vision understanding applications, such as event recognition and semantic
understanding in dynamic environments. This gap underscores the need for future research on high-
level spike-based vision tasks. Moving toward acceleration research in spiking video understanding,
we introduce the first multimodal VAR dataset using a spike camera synchronized with RGB and
thermal cameras, enhancing the understanding of VAR through complementary modalities.

2.3 VIDEO ACTION RECOGNITION ARCHITECTURES

Video understanding architectures have evolved from traditional CNNs to more sophisticated mod-
els. Early approaches like 3D CNNs, such as X3D Feichtenhofer (2020), extended 2D CNNs to
capture both spatial and temporal aspects of videos Carreira & Zisserman (2017a); Tran et al. (2015;
2018a). Two-Stream Simonyan & Zisserman (2014), TSN Wang et al. (2016), and SlowFast Fe-
ichtenhofer et al. (2019b) further improved action recognition by incorporating spatial-temporal
streams, sparse sampling, and parallel networks. Attention-based models, including TimeSformer
Bertasius et al. (2021) and ViViT Arnab et al. (2021), enhanced temporal understanding by captur-
ing long-range dependencies. Recent models, like VideoSwin Liu et al. (2022b) and UniFormer Li
et al. (2022; 2023), combine convolution and self-attention for performance optimization.

On the other side, research on SNN-based video classification remains relatively limited. For in-
stance, a reservoir recurrent SNN with 300-time-step spike sequences from UCF101 was proposed
by Panda & Srinivasa (2018), while a heterogeneous recurrent SNN Chakraborty & Mukhopadhyay
(2023) showed strong performance on datasets like UCF101, KTH, and DVS-Gesture. Wang et al.
(2019) introduced the two-stream hybrid network (TSRNN), combining CNN, RNN, and a spiking
module to enhance RNN memory. Another approach, a two-stream deep recurrent SNN, utilized
ANN-to-SNN conversion, integrating channel-wise normalization and tandem learning Zhang et al.
(2023a). To address conversion errors, You et al. (2024) developed a dual threshold mapping frame-
work, reducing latency in SNNs using the SlowFast backbone. SVFormer, a spiking transformer
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model, efficiently balances local feature extraction with global self-attention, achieving SOTA re-
sults with minimal power consumption Yu et al. (2024). Nonetheless, SNNs face challenges in
complex model construction, preprocessing, and longer simulation times.

3 DATASET

To build a comprehensive and representative
dataset, data were collected from 44 diverse
subjects spanning a variety of cultural, gen-
der, and racial backgrounds. The partici-
pants exhibited significant variability in key
characteristics such as age, weight, height,
lifestyle, and other factors, ensuring a robust
and heterogeneous sample for our study, fur-
ther enriching the dataset, and enhancing the
model’s ability to generalize across different
demographics. Consent and approval have
been taken from all participants to make the
data publicly available for research purposes.
Figure 2 summarizes an overview of the data
collection process.

Compression 
Algorithm

Data Post-Processing

Compressed 10 k

Compressed 1 k

Storage

Figure 2: Multimodal data collection and com-
pression pipeline: Spiking, Thermal, and RGB
imaging with post-processing and compression
techniques for optimized storage.

Each participant conducted two separate data col-
lection sessions, performing 18 distinct daily ac-
tivities during each session, with each activity
lasting 10 seconds. This protocol resulted in 180
seconds (3 minutes) of data per session, culminat-
ing in a total of 264 minutes (∼ 4.5 hours) of data
for each data type (spike, thermal, and RGB). Ta-
ble 1 shows an overview of some statistical prop-
erties of the participants’ numbers for the dataset.

Table 1: Brief overview of the dataset.

Height (cm) 174.45± 8.23
Weight (kg) 75.41 ± 14.22

Age (y) 27.20 ± 5.11
Participants 44
Nationalities 13

Activities 18
Sessions 2
Samples 1584

Sample Duration 10 Seconds

The activities are: running in place, walking, jogging, clapping, waving with right hand, waving
with left hand, drinking, playing drums, rolling with hands, playing guitar, jumping, squats, hand
circling, side butterfly, front butterfly, standing ABS, boxing, and jump&jacks. Sample output of
the spike camera for each activity is shown in Figure 1. The selected activities encompass a broad
spectrum of daily actions, deliberately chosen to include similar, closely related tasks and a mix of
fast and slow-paced activities. This thoughtful selection allows the model to effectively learn and
differentiate between actions, even those that are similar.

3.1 HARDWARE

As the data collection was conducted indoors, it was necessary to use a 2000-watt lamp to enhance
the lighting conditions, thereby improving the image quality captured by the spike camera, which
typically performs optimally under natural light. To ensure the safety of the participants, they were
provided with sunglasses to protect their eyes from the direct and intense light. The data collection
setup is shown in Figure 3. The three cameras were employed with the following specifications:

Thermal Camera: We utilized the FLIR One® Pro LT thermal camera, paired with a Samsung
Galaxy S22 Ultra, to capture high-resolution thermal data. This compact, smartphone-compatible
device ensured accurate temperature readings crucial for our study.

RGB Camera: We used the iPhone 14 Pro’s rear camera to capture HD video at 1920 × 1080
resolution and 60 FPS, ensuring clear and fluid footage. Figure 4 presents a sample output from
each camera.

Spike camera: is a novel imaging sensor designed to capture continuous, asynchronous signals
by simulating the behavior of integrate-and-fire neurons. Spike cameras fire spikes for every pixel
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1

2

345

6

Figure 3: The experimental setup consists of the following components: (1) a spike camera for event-
based visual sensing, (2) a laptop for real-time capture and recording of the spike camera output,
(3) an artificial lighting source to ensure consistent illumination, (4) a thermal camera for infrared
data collection, (5) RGB camera for standard color video recording, and (6) the designated area
where subjects perform the activities under observation. The three cameras were fixed at a height of
approximately 1 meter and placed 3.5 meters away from the subject performing the activities.

(a) spike camera Output (b) RGB Camera Output (c) Thermal Camera Output

Figure 4: Sample output frame from each camera for the same participant and action.

based on the intensity of incoming light. The core mechanism involves three key components per
pixel: a photoreceptor, an integrator, and a comparator. The photoreceptor converts the scene’s
light into an electrical signal, which the integrator accumulates over time. Once the accumulated
charge surpasses a predefined threshold θ, the comparator triggers a spike and resets the integrator.
This ”integrate-and-fire” process occurs asynchronously for each pixel, producing a binary signal
indicating whether a spike has been fired at any given time. The spike camera polls these signals
at an extremely high frequency, generating spike frames that are arranged into a three-dimensional
spike stream S(x, y, k), where x and y represent pixel coordinates, and k represents the discrete time
index. Mathematically, the accumulation of the electric charge in the integrator can be represented
by the following integral:

Vi,j(t) =

∫ t

tlast
i,j

α · Ii,j(γ) dγ

S(i, j, t) =

{
1 if Vi,j(t) ≥ θ,

0 otherwise
(1)
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where α is the photoelectric conversion rate, Ii,j(γ) is the light intensity at position (i, j), θ is the
firing threshold, and tlasti,j is last time when a spike is fired at position (i, j). A spike is fired at
time tk when the accumulated charge surpasses the threshold. At each polling interval t = kτ , the
system checks whether a spike has been triggered. Typically, for our camera we set τ = 50µs. If the
accumulated charge exceeds the firing threshold θ, the spike is registered with S(x, y, k) = 1 and
Vi,j(t) is reset to zero; otherwise, S(x, y, k) = 0. These spike streams form a spatiotemporal binary
matrix M ∈ {0, 1}H×W×T that captures the dynamic scene at high temporal resolution, enabling
reconstruction of dense images from the sparse spike data.

3.2 DATA POST-PROCESSING

We implemented a rigorous data post-processing pipeline to guarantee the highest quality of the final
dataset. Initially, we conducted a thorough manual inspection to identify and rectify any anomalies
or errors that may have arisen during data collection, such as stops, doing the activities in the wrong
order, or camera hardware issues. Subsequently, each session was segmented into 18 sub-videos,
corresponding to individual activities. To further augment the dataset and introduce more significant
variability, each sub-video was evenly divided into two additional sub-videos, culminating in a total
of 3, 168 videos per data type. 1

3.2.1 SPIKING DATA COMPRESSION

spike camera samples consist of a 100k-length
binary spike trains, which poses significant
challenges for SNN training and increases la-
tency during inference. An established ap-
proach to overcome this and reduce the initial
latency of the dataset is through temporal sam-
pling of the spike camera data. However, using
conventional sampling algorithms directly can
result in aliasing issues and the loss of critical
information due to the sparsity of spikes and
the irregularity of spike occurrences.

Algorithm 1 Spike Compression Algorithm

1: Input: s, d
2: Initialize: u← 0, T ′ ←

⌊
T
d

⌋
3: for i = 0 to T ′ − 1 do
4: r ← mean(s[i · d+ 1 : (i+ 1) · d])
5: v ← v + r
6: s′[i]← H(v − 1)
7: v ← v − s′[i]
8: end for
9: return Su

In order to address long latency of the original spiking data (100k time steps), we propose a com-
pression algorithm, designed to reduce the latency and at the same time to keep the original rep-
resentation of the data. The main idea behind is to record the spiking rate at regular (of the same
length), distinct (without overlapping) and exhaustive (the union covers the whole, or almost whole
of 100k time steps) intervals, and produce the data with the same spiking rates, but recorder over the
lower latency.

To say more, we put ourselves in a general situation and consider a spike train s = [s[1], . . . , s[T ]]
of length T time steps. Let d ≪ T be the length of an interval and let T ′ = ⌊Td ⌋. Then, our
construction proceeds by considering T ′ intervals (sets) of the form I[i] := {id+ 1, . . . , (i+ 1)d},
for i = 0, . . . , T ′ − 1. Note that the union of the intervals covers {1, . . . , T}, except for the last few
elements of the form dT ′ + 1, . . . , T (in case T is not divisible by d).

For each of the intervals I[i], we define r[i] to be the spiking rate of s during the interval, i.e.
r[i] = 1

d

∑
t∈I[i] s[t]. Then, our compressed spike train s′ is obtained by using the Integrate-and-

Fire (IF) spiking neuron which receives r[i] as an input at the time step i, for i = 0, . . . , T ′ − 1

v[i] = v[i− 1] + r[i]

s′[i] = H(v[i]− 1) (2)

v[i] = v[i]− s′[i].

1We provided the output of each stage for all data modalities on the shared drive, and it will be publicly
available upon acceptance.
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Original spike stream:      1 0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 1 0 0  0 1 1 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 1 ….

Compressed spike stream:    0 1 0 1 0 0 1 0 1 0 …

0.4 0.6 0.2 0.8 0.4 0.4 0.6 0.4 0.4 0.8

0.4 0 0.2 0 0.4 0.8 0.4 0.8 0.2 0v=0

Figure 5: Illustration of the proposed spike stream compression method. The original spike stream
is provided as input, and the compressed spike stream is produced as output with T ′ = 5. The
membrane potential u is initialized to zero and evolves as indicated in the diagram.

(a) Original (b) Compressed 10k (c) Compressed 1k

Figure 6: Reconstructed, with TFP, sample output frame from the spike camera for the three versions
of our spiking datset original, compressed 10k, and compressed 1k.

We refer to Algorithm 1 for the algorithmic representation of the compression procedure, to Fig-
ure 5 for the graphical representation of the procedure and to Figure 6 for the comparisons of the
reconstructed original and various compressed data.

Compression algorithm is motivated by the following result which demonstrates its soundness by
explicitly showing the effect of compression on the special case of constant rate spike trains. We
provide the proof and more details on terminology and setting in the supplementary material.
Lemma 1. We keep the notation as above and suppose that s is a spike train obtained when an IF
neuron receives constant nonnegative input c at each time step, and process it according to equations
equation 2. Then, for any d as above, the spike train s′ obtained through compression and spike train
s will have the same limit spiking rate (which is c).

Using the above compression Algorithm 1,
we have compressed the raw spiking data
into two versions. We refer to them as com-
pressed 10k and compressed 1k, with d = 10
(for 10k) and d = 100 (for 1k), respec-
tively. These compressed versions were used
for both training and testing.

Table 2: Comparison for storage of original and
compressed spiking versions using LZMA.

File Original Size Compressed Size (LZMA)
Original 3.8 TB 425 GB

Compressed 10k 377.63 GB 42.43 GB
Compressed 1k 37.76 GB 4.15 GB

Compressed 10k rate encoded 240.76 GB 80.96 MB
Compressed 1k rate encoded 240.76 GB 80.96 MB

We need to further compress this data for efficient storage and transmission, as spiking videos are
typically very large. However, the spike stream is a binary, sparse matrix, which makes it well-
suited for compression. Table 2 shows the compression ratios achieved using the classic LZMA
(Lempel-Ziv-Markov chain algorithm) (Pavlov, 2013), a lossless encoder, on the spike stream data.

4 EXPERMINTAL SETUP

To evaluate SPACT18, we adopted a systematic approach utilizing SOTA lightweight models.
Given spiking data’s energy efficiency and computational advantages, the results were benchmarked
against highly efficient models to ensure fairness and relevance in future comparisons. We selected
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two prominent lightweight architectures, X3D and UniFormer, known for their balance between
computational efficiency and competitive accuracy on benchmark datasets.

X3D is a highly optimized CNN for video understanding Feichtenhofer (2020), balancing accu-
racy and efficiency by expanding input’s temporal and spatial dimensions, reducing computational
demands without sacrificing performance. This makes X3D particularly suitable for low-resource
environments without compromising on accuracy. In contrast, UniFormer adopts a hybrid architec-
ture that fuses convolutional operations with self-attention mechanisms Li et al. (2022). This allows
the model to capture local and global dependencies in video data, making it versatile across differ-
ent modalities. UniFormer’s ability to effectively model spatiotemporal relationships with moderate
computational cost ensures its competitive standing, even on challenging datasets.

We employed both small and medium variants for each model, which provide different trade-offs
between model complexity and performance. The models were tested across all data modalities:
thermal and RGB data (in both RGB and grayscale channels). Even though compressed 10k and
1k datasets significantly reduce the latency of the spiking dataset, training ANN models on them
turned out to be infeasible. In order to provide baselines for them, we performed ”rate” encoding
of the datasets, which consists in the following. Instead of using the original binary 10k (resp. 1k)
time steps for training the ANN, we reshaped the temporal dimension of spike trains into 100× 100
(resp. 10×100) for compressed 10k (resp. 1k) dataset. We then computed the average along the first
dimension to convert the binary spikes into rate-encoded values, effectively reducing the temporal
complexity while preserving essential spike information for ANN training.

ANN-SNN conversion transforms a pre-trained ANN into a spike-based SNN (Diehl et al., 2015;
Cao et al., 2015). For video models, this process is challenging due to the widespread use of non-
ReLU activations and the depth of these models exacerbates the propagation of errors across layers.
We selected MC3 to provide an SNN baseline for SPACT18. After training MC3, we recorded
the maximum ReLU activations channel-wise using training dataset. This channel-wise approach
ensures a more precise threshold for each neuron, improving the conversion accuracy. Then, each
ReLU was replaced with a Leaky Integrate-and-Fire (LIF) neuron, using the recorded maximum ac-
tivation as the neuron’s threshold, while the initial membrane potential is set to half of the threshold.
For inference, video inputs were encoded using a constant-encoding scheme.

The MC3 model is a variant of 3D CNNs for video action recognition, using a ResNet-18 backbone
with 18 layers of 3D convolutions and two fully connected layers (Tran et al., 2018b). It employs a
hybrid approach with 2D spatial and 1D temporal convolutions to reduce complexity while capturing
motion information. Notably, MC3 utilizes ReLU activations, making it well-suited for ANN-SNN
conversion and balancing accuracy and efficiency.

Table ?? presents the complete experimental setup, including all models and data modalities. The
input size is defined as (Frame rate × Image dimension), and all experiments were conducted using
a single RTX A6000 GPU. The dataset was then divided into 80% for training, 10% for validation,
and 10% for testing. This split was performed subject-wise, ensuring that each subject and all
corresponding activities remained within a single set, thus enabling a rigorous evaluation of the
model’s generalization capacity. Train, validation and test subjects are split at random and kept the
same for all experiments for fair comparisons and consistency.

5 RESULTS AND DISCUSSION

The results, as shown in Table 3, show that thermal data consistently outperforms other modalities,
allowing the model to focus solely on the activity and reducing distractions from irrelevant details.
RGB color outperforms grayscale by adding richer information, although this advantage is more
pronounced in RGB than in thermal data, where the additional channels have less impact.

For spiking data, the 10k compression level performed on par with thermal and RGB. However,
performance dropped sharply at 1K compression, suggesting that spiking data retains critical in-
formation at higher compression levels but suffers significant loss at extreme compression. This
highlights the challenge of processing spiking data compared to other modalities and underscores
the need for selecting appropriate compression ratios. In terms of model efficiency, X3D is compu-
tationally lighter with lower FLOPs. Still, UniFormer consistently achieves higher accuracy, espe-

8
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Table 3: Results for different experiments (RGB, Thermal, Spiking) for ANN models.

Model Data Input Size FLOPs (G) Accuracy% F1 Score

X3D M
# Param = 3M

RGBGrey 50x2242 13.72×3×10 78.7 0.76
RGBColor 50x2242 41.19×3×10 80.9 0.81

ThermalGrey 30x2242 10.15×3×10 81.2 0.80
ThermalColor 30x2242 30.45×3×10 83.4 0.84

Spiking 10k rate 100x2002 21.91×3×10 79.9 0.79
Spiking 1k rate 100x2002 21.91×3×10 69.4 0.69

UniFormer B
# Param = 50M

RGBGrey 50x2242 101.04×1×4 83.8 0.82
RGBColor 50x2242 303.13×1×4 85.2 0.85

ThermalGrey 30x2242 60.63×1×4 84.9 0.85
ThermalColor 30x2242 181.88×1×4 85.7 0.87

Spiking 10k rate 100x2002 77.92×1×4 84.7 0.84
Spiking 1k rate 100x2002 77.92×1×4 74.4 0.74

Table 4: Results for different experiments Spiking data using SNN direct training and hybrid models.

Category Model Data T Accuracy (%) F1 Score

SNN Direct Train
STS-ResNet (Samadzadeh et al., 2020) Spiking 10k 15.62 0.16

MS-ResNet (Hu et al., 2024) Spiking 10k 50.35 0.50
TET-ResNet (Deng et al., 2022) Spiking 10k 58.16 0.59

Hybrid
Spiking 10k 71.18 0.72

Respike (Xiao et al., 2024) RGB + Spiking 10k 82.67 0.82
Thermal + Spiking 10k 87.54 0.87

cially in color settings, demonstrating its ability to capture more complex features, albeit at a higher
computational cost.

Directly training SNNs for video classification remains a significant challenge, with performance
lagging behind ANNs by over 30%, as reported in (Xiao et al., 2024) and shown in Table 4. To
address these limitations, hybrid models have been proposed (Xiao et al., 2024) to balance the trade-
off between accuracy and energy efficiency through cross-attention fusion between ANN and SNN
models. The results in Table 4 demonstrate that hybrid models effectively achieve this balance by
leveraging spiking data in SNNs alongside RGB or thermal data in ANNs, significantly improving
performance through cross-modal fusion. However, our findings also highlight the need for further
advancements in SNN training, as current hybrid models remain incompatible with energy-efficient
neuromorphic hardware, limiting their practical deployment.

Table 5 shows that while Spiking 10k achieves higher accuracy on the ANN, Spiking 1k re-
sults in competitive accuracy at lower latencies during SNN inference (particularly between T =
[128, 512]). This can be attributed to temporal compression during ANN training, where both
datasets are rate encoded into 100 frames, thus spiking 10k dataset has a finer temporal resolution
of 0.01, while spiking 1k has a coarser resolution of 0.1. These results highlight a trade-off between
temporal resolution and efficiency, with Spiking 1k excelling in low-latency, efficiency-critical ap-
plications. More experimental and qualitative results are in Appendix A.1 and A.5, respectively.

6 CHALLENGES, LIMITATION AND FUTURE WORK

6.1 VIDEO ACTION RECOGNITION CLASSIFICATION

We believe that SPACT18 can be exploited by the SNN’s research community as benchmark to
accelerate video understanding tasks, for efficient deployment on realworld applications.

Direct SNN Training: Our dataset offers rich temporal information, with raw spiking data con-
taining 100k time steps per sample. Direct training on such large-scale data is computationally
intensive, particularly for SNNs, as their training computational complexity scales with the num-
ber of time steps. This makes SPACT18 (and its compressed versions) a challenge for developing
specialized algorithms tailored for direct SNN training and evaluation.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: MC3 results for ANN-SNN conversion

ANN T=16 T=32 T=64 T=128 T=256 T=512 T=1024 T=2048
Spiking 10k rate 75.52 8.68 12.33 15.10 18.92 21.53 35.07 58.85 71.35
Spiking 1k rate 69.64 11.11 15.67 29.17 48.81 59.92 64.88 68.45 69.05

ANN-SNN Conversion: Although ANN-SNN conversion methods have made significant advance-
ments for image classification models (Wang et al., 2023a; Bu et al., 2023; Wu et al., 2024; Jiang
et al., 2023), applying these techniques to video models remains challenging. This is mainly due to
the custom layers in video models whose conversion to SNN is still not well understood, and to the
increased depth of these models Feichtenhofer (2020)Li et al. (2022), which consequently leads to
high conversion approximation error in SNNs. Although, MC3 achieves a high accuracy, this comes
at a cost of high latency (hence high energy consumption), as shown in the Table 5. This highlights
the need for more efficient ANN-SNN conversion methods specific to video models.

Multimodal Action classification: Multimodal research in SNNs is still in its early stages, fac-
ing significant challenges compared to ANNs, particularly in integrating data like RGB and thermal
camera inputs with event-driven spikes from sensors such as spike cameras (Dai et al., 2024; Rathi
& Roy, 2021). While most SNN research has focused on single-modality event-driven data, the syn-
chronization and fusion of diverse modalities, along with the development of learning algorithms to
handle such multimodal inputs, remain key obstacles (Bjorndahl et al., 2024). The SNN community
can benefit from multimodal datasets that include RGB, thermal, and spike camera data, enabling the
creation of energy-efficient models for real-time, low-power applications like surveillance, robotics,
and autonomous systems (Safa et al., 2023; Wang et al., 2023b). These datasets allow researchers
to explore fusion, enhance action recognition, improve cross-modal learning, and benchmark neu-
romorphic hardware, ultimately advancing the use of SNNs in dynamic environments.

6.2 LOW LEVEL VISION APPLICATIONS

In addition to the main task of video action classification, our dataset can be used in other tasks as:

Reconstruction: Recently, significant research has focused on spike camera reconstruction for
high-speed moving objects, with most datasets presented specifically to the reconstruction methods
being developed (Zhao et al., 2020; 2021; 2024; Zhang et al., 2023b; Chen et al., 2022). Addition-
ally, spike cameras typically require sunlight for optimal performance; however, our dataset was
collected indoors under artificial lighting, presenting a new challenge. This unique setting also pro-
vides an opportunity to benchmark reconstruction algorithms under less ideal lighting conditions.

Compression: We have proposed a new compression algorithm to reduce the temporal resolution
of raw spiking data, enabling more efficient training on smaller datasets. However, more efficient
algorithms could be devloped to extract features from the original raw data and compress it into a
smaller spiking representation with minimal loss of the rich temporal information inherent in the
original dataset. Furthermore, our dataset can also be used to evaluate compression algorithms for
efficient storage and transmission of spike camera data (Feng et al., 2023).

7 CONCLUSION

This paper introduces SPACT18, the first spiking VAR benchmark dataset using spike cameras syn-
chronized with RGB and thermal modalities, advancing spiking video understanding. Key findings
show spiking data achieves competitive performance with compressed 10k (rate), while compressed
1k with degraded accuracy highlights the trade-offs of extreme compression. Thermal data outper-
formed other modalities, achieving 85.7% accuracy with UniFormer, demonstrating the potential of
multimodal fusion. In contrast, direct spiking training and ANN-SNN conversion remain challeng-
ing due to low accuracy, high latency and computational complexity. Although, Hybrid approaches
like Respike excel in cross-modal integration underscoring the trade-off between accuracy and en-
ergy efficiency. SPACT18 lays a foundation for energy-efficient models, with future work focusing
on optimized SNN training, improved ANN-SNN conversion, and multimodal integration for prac-
tical applications.
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All necessary approvals and informed consents were obtained from the participants, ensuring that
the dataset will be publicly available for research purposes. This study adheres to ethical guidelines,
and no actions were taken that could compromise the privacy, safety, or well-being of the volun-
teer subjects. Additionally, the dataset complies with all applicable ethical standards and privacy
regulations to protect the participants’ identities and data.
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A APPENDIX

A.1 DETAILED EXPERIMENTAL RESULTS

This table presents a comprehensive comparison of various ANN models evaluated across different
input modalities, including RGB, Thermal, and Spiking data. It details the computational cost in
terms of FLOPs, alongside the accuracy and F1 scores achieved for each configuration. The models
analyzed include X3D Feichtenhofer (2020), C2D Tran et al. (2018c), I3D Carreira & Zisserman
(2017b), SlowFast Feichtenhofer et al. (2019a), and UniFormer Li et al. (2022), each offering a
distinct trade-off between model complexity and performance.

The results show a consistent improvement in accuracy when using color inputs compared to
greyscale inputs across different models. Thermal data also tends to yield superior performance
in comparison to RGB for some models, indicating its potential value for specific tasks. The table
highlights the differences between lightweight and more complex architectures, with models like
X3D and UniFormer achieving competitive accuracy and F1 scores with significantly fewer param-
eters and lower FLOPs, making them more suitable for resource-constrained environments.

A.2 COMPARISON WITH OTHER DATASETS

The literature extensively uses multi-modalities for video action recognition, including RGB, ther-
mal, depth, and IMU data. Additionally, some datasets have employed event cameras. A key differ-
entiator of our work is including spiking data, which adds significant value.

Table 6 highlights the key features of widely used action recognition datasets and emphasizes the
unique contributions of SPACT18. Unlike other datasets, SPACT18 integrates spiking data with
RGB and thermal modalities, providing a comprehensive multi-modal framework for video under-
standing. The inclusion of a thermal camera is particularly important as it captures motion effec-
tively under low lighting and low frame rates, complementing RGB and spike data. Synchronizing
these modalities enhances the dataset’s diversity and robustness, allowing for broader applications
and meaningful performance comparisons. Furthermore, SPACT18 provides raw spiking data from
native spike camera recordings, offering researchers the opportunity to optimize SNNs specifically
for video understanding tasks. With its high-resolution data, diverse set of 18 activity classes, and
multi-modal design, SPACT18 represents a notable advancement in action recognition and spiking
research, driving innovation in energy-efficient video processing technologies.

The table 7 compares several action recognition datasets, highlighting features like data sources,
modalities, resolutions, and class/sample counts. The SPACT18 dataset offers diverse modalities
(Spike, RGB, Thermal), unlike traditional datasets (e.g., HMDB-51, UCF-101, Kinetics-400) that
use only RGB data. SPACT18’s higher-resolution RGB and Thermal videos enable detailed feature
extraction, and its balanced and high samples per class (approximately 176) support robust training.
Overall, SPACT18 bridges the gap between conventional video recognition datasets and multi-modal
action recognition, enhancing understanding of complex human activities.

A.3 TRAINING HYPER-PARAMETERS AND HARDWARE SPECIFICATIONS

Table 8 presents the technical specifications of thermal, RGB, and spike camera. Table 9 reports the
training hyper-parameters used across the three datasets modalities for all models, X3d, Uniformer,
and MC3.

A.4 COMPRESSION ALGORITHM

We provide the proof of the main lemma here. Recall that by a firing rate of a spike train over an
interval, we mean it’s average spike output over the interval. By an interval we mean a sequence of
consecutive time steps. By a limit spike rate of a spike train s = [s[1], . . . , s[t], . . . ] we mean the
value (if it exists)

lim
t→∞

∑t
i=1 s[i]

t
.
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Model Data Input Size FLOPs (G) Accuracy% F1 Score

X3D S
# Param = 3M

RGBGrey 50x2242 7.46×3×10 75.4 0.76
RGBColor 50x2242 22.31×3×10 76.8 0.77

ThermalGrey 30x2242 4.47×3×10 77.9 0.79
ThermalColor 30x2242 13.41×3×10 80.6 0.80

Spiking 10k rate 100x2002 11.88×3×10 80.2 0.80
Spiking 1k rate 100x2002 11.88×3×10 70.4 0.70

X3D M
# Param = 3M

RGBGrey 50x2242 13.72×3×10 78.7 0.76
RGBColor 50x2242 41.19×3×10 80.9 0.81

ThermalGrey 30x2242 10.15×3×10 81.2 0.80
ThermalColor 30x2242 30.45×3×10 83.4 0.84

Spiking 10k rate 100x2002 21.91×3×10 79.9 0.79
Spiking 1k rate 100x2002 21.91×3×10 69.4 0.69

C2D
# Param = 24M

RGBGrey 50x2242 53.02×3×10 71.0 0.71
RGB3 Channels 50x2242 159.07×3×10 72.6 0.72
ThermalGrey 30x2242 31.81×3×10 73.2 0.73

Thermal3 Channels 30x2242 95.43×3×10 74.8 0.74
Spiking 10k rate 100x2002 84.84×3×10 72.8 0.72
Spiking 1k rate 100x2002 84.84×3×10 67.4 0.67

I3D
# Param = 28M

RGBGrey 50x2242 76.67×3×10 73.5 0.73
RGB3 Channels 50x2242 230.02×3×10 75.0 0.75
ThermalGrey 30x2242 46.00×3×10 75.7 0.76

Thermal3 Channels 30x2242 138.00×3×10 77.6 0.77
Spiking 10k rate 100x2002 122.97×3×10 76.1 0.76
Spiking 1k rate 100x2002 122.97×3×10 69.8 0.69

UniFormer S
# Param = 21M

RGBGrey 50x2242 22.15×1×4 80.6 0.82
RGBColor 50x2242 66.44×1×4 82.5 0.83

ThermalGrey 30x2242 13.39×1×4 83.0 0.83
ThermalColor 30x2242 40.16×1×4 84.2 0.85

Spiking 10k rate 100x2002 35.52×1×4 82.5 0.82
Spiking 1k rate 100x2002 35.52×1×4 73.2 0.72

UniFormer B
# Param = 50M

RGBGrey 50x2242 101.04×1×4 83.8 0.82
RGBColor 50x2242 303.13×1×4 85.2 0.85

ThermalGrey 30x2242 60.63×1×4 84.9 0.85
ThermalColor 30x2242 181.88×1×4 85.7 0.87

Spiking 10k rate 100x2002 77.92×1×4 84.7 0.84
Spiking 1k rate 100x2002 77.92×1×4 74.4 0.74

SlowFast
# Param = 35M

RGBGrey 50x2242 97.46×3×10 76.7 0.76
RGB3 Channels 50x2242 292.37×3×10 78.3 0.78
ThermalGrey 30x2242 58.47×3×10 79.1 0.79

Thermal3 Channels 30x2242 175.41×3×10 81.2 0.81
Spiking 10k rate 100x2002 156.06×3×10 80.7 0.80
Spiking 1k rate 100x2002 156.06×3×10 71.5 0.71

Lemma 1. We keep the notation as above and suppose that s is a spike train obtained when an IF
neuron receives constant nonnegative input c at each time step, and process it according to equations
equation 2. Then, for any d as above, the spike train s′ obtained through compression and spike train
s will have the same limit spiking rate (which is c).

Proof. Since the input to the neuron is constant, the exact number of firing during an interval of the
form [1, . . . , t] is given by ⌊t · c⌋. The firing rate over the same interval is then

⌊t · c⌋
t

. (3)

On the other side, for t = d, the expression 3 is exactly what the IF neuron will receive during the
compression in the fist time step. After l steps of compression, the total input to the neuron used for
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Table 6: Comparison of Event-Based Action Recognition Datasets

Dataset Name Year Sensor(s) Resolution Object Scale Classes Scale /
Classes
Ratio

Subjects Real-
World

Duration Modalities Static

ASLAN-DVS (Bi et al., 2020) 2011 DAVIS240c 240×180 Action 3,697 432 ∼9 - ✗ - DVS ✗

CIFAR10-DVS (Li et al., 2017) 2017 DAVIS128 128×128 Image 10,000 10 ∼1,000 - ✗ 1.2s DVS ✗

DvsGesture (Amir et al., 2021) 2017 DAVIS128 128×128 Action 1,342 11 ∼122 29 ✓ ∼6s DVS ✗

ASL-DVS (Bi et al., 2020) 2019 DAVIS240 240×180 Hand 100,800 24 ∼4,200 5 ✓ ∼0.1s DVS ✗

PAF (Miao et al., 2019) 2019 DAVIS346 346×260 Action 450 10 ∼45 10 ✓ ∼5s DVS ✗

PAFBenchmark (Miao et al., 2019) 2019 DAVIS346 346×260 Action 642 3 ∼214 - ✓ - DVS ✗

HMDB-DVS (Bi et al., 2020) 2019 DAVIS240c 240×180 Action 6,766 51 ∼133 - ✗ 19s DVS ✗

UCF-DVS (Bi et al., 2020) 2019 DAVIS240c 240×180 Action 13,320 101 ∼132 - ✗ 25s DVS ✗

DailyAction (Liu et al., 2021) 2021 DAVIS346 346×260 Action 1,440 12 ∼120 15 ✓ ∼5s DVS ✗

HARDVS (Wang et al., 2022a) 2022 DAVIS346 346×260 Action 107,646 300 ∼359 5 ✓ ∼5s DVS ✗

THUE−ACT − 50− CHL (Gao et al., 2023) 2023 DAVIS346 346×260 Action 2,330 50 ∼47 18 ✓ 2-5s DVS ✗

Bullying10K (Dong et al., 2023) 2023 DAVIS346 346×260 Action 10,000 10 ∼1,000 25 ✓ 2-20s DVS ✗

DailyDVS-200 (Wang et al., 2024a) 2024 DVXplorer
Lite

320×240 Action 22,046 200 ∼110 47 ✓ 1-20s DVS
+ RGB

✓
(RGB
Only)

SPACT18 2024 Spike,
RGB,
Thermal

250×400
(Spike),
1920×1080
(RGB),
1440×1080
(Thermal)

Action 3,168 18 ∼176 44 ✓ ∼5s Spike
+ RGB
+ Ther-
mal

✓
(All
Modal-
ities)

Table 7: Comparison of Action Recognition Datasets

Feature HMDB-51 UCF-101 Kinetics-400 DVS128 Gesture SPACT18
Data Sources Movies, web videos YouTube videos YouTube videos DVS recordings Human Subjects
Modality RGB RGB RGB Event-based Spike, RGB, Thermal

Resolution Varies (low-res) 320×240 340×256 (average) 128×128
250×400 (Spike)

1920×1080 (RGB)
1440×1080 (Thermal)

Number of Classes 51 101 400 11 18
Number of Samples 6,766 13,320 306,245 1,342 3,168
Avg. Duration per Sample Varies Varies ∼10 seconds ∼6 seconds ∼5 seconds
Samples per Class ∼133 ∼132 ∼765 ∼122 ∼176

compression will be ∑l−1
i=0

∑
t∈I(i) s[t]

d
=

∑l·d
t=1 s[t]

d
=
⌊ld · c⌋

d
,

and the firing rate of the compressed spike train over the interval [1, . . . , l] will be

1

l

⌊⌊ld · c⌋
d

⌋
. (4)

The result follows upon comparing the equations 3 and 4, and taking the limits t→∞ and l →∞,
respectively.

The previous results does not have any prior assumptions on the constant input c, except it being
nonnegative (negative input c will yield zero spikes in both original and compressed sequence).
However, if we assume that c is of the form p

q , where p, q are integers and p > 0, q ̸= 0, we can say
more. Namely, taking t = q in equation 3, yields that the firing rate of the original spike train is p

q ,
which is the limit firing rate too.
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Table 8: Technical specifications for each camera used in data collection.

Thermal Camera RGB Camera Spike camera

Resolution 1440× 1080 1920× 1080 250× 400
Temperature Range −20°C to 120°C - -

Frame Rate 8.7 Hz 60 Hz 20,000 Hz
Compatibility Android (USB-C) iOS(iPhone 14 Pro) Windows (Laptop)
Manufacturer FLIR ONE Pro Apple Spike Camera-001T-Gen2

Table 9: Training key hyperparameters for Thermal, RGB, and Spiking Data.

Thermal RGB Spiking
Number epochs 100 100 100
Mini batch size 8 8 8
Learning Rate 10−2 10−2 10−3

Optimizer Adam Adam AdamW
Rate Scheduler StepLR StepLR StepLR
Weight Decay 10−3 10−3 0.1
Loss Function Cross-Entropy Cross-Entropy Cross-Entropy

A.5 QUALITATIVE RESULTS

Pred: jogging
Label: jogging

Pred: wavingleft
Label: wavingleft

Pred: clapping
Label: clapping

Pred: guitar
Label: guitar

Pred: walking
Label: walking

Pred: circling
Label: circling

Pred: squat
Label: squat

Pred: sidebutterfly
Label: sidebutterfly

Pred: circling
Label: frontbutterfly

Pred: jumping
Label: jumping

Pred: jumpingjacks
Label: jumpingjacks

Pred: drums
Label: drums

Pred: drinking
Label: drinking

Pred: abs
Label: abs

Pred: wavingright
Label: wavingright

Pred: running
Label: running

Pred: boxing
Label: boxing

Pred: roll
Label: roll

Visual Results of Uniformer_B Model on RGB Data

Figure 7: The figure shows visual results from the UniformerB model applied to various activities
recorded with RGB camera. Each image displays the predicted activity (Pred) and the ground truth
label (Label) for comparison.
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Pred: clapping
Label: clapping

Pred: drinking
Label: drinking

Pred: frontbutterfly
Label: frontbutterfly

Pred: jogging
Label: jogging

Pred: guitar
Label: guitar

Pred: jogging
Label: walking

Pred: wavingright
Label: wavingright

Pred: sidebutterfly
Label: sidebutterfly

Pred: jumpingjacks
Label: jumpingjacks

Pred: jumping
Label: jumping

Pred: roll
Label: drums

Pred: circling
Label: circling

Pred: abs
Label: abs

Pred: wavingleft
Label: wavingleft

Pred: boxing
Label: boxing

Pred: roll
Label: roll

Pred: running
Label: running

Pred: squat
Label: squat

Visual Results of X3_M Model on Thermal Data

Figure 8: The figure shows visual results from the X3DM model applied to various activities
recorded with Thermal camera. Each image displays the predicted activity (Pred) and the ground
truth label (Label) for comparison.
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Figure 9: Confusion Matrix for MC3 baseline model on Spiking-10k Data: The matrix illustrates
the model’s performance in classifying various activities, with strong diagonal values indicating
accurate predictions and some off-diagonal misclassifications, particularly in similar activities as
’walking’ and ’jogging’.
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Figure 10: Confusion Matrix for X3DM Model on RGB Data. It shows strong performance in
activity classification, with most predictions aligning well with actual labels, though some confusion
exists, particularly in close activities like ’drums’ and ’guitar.’

ru
nn

in
g

wa
lk

in
g

jo
gg

in
g

cla
pp

in
g

wa
vi

ng
rig

ht

wa
vi

ng
le

ft

dr
in

ki
ng

dr
um

s

ro
ll

gu
ita

r

ju
m

pi
ng

sq
ua

t

cir
cli

ng

sid
eb

ut
te

rfl
y

fro
nt

bu
tte

rfl
y

ab
s

bo
xi

ng

ju
m

pi
ng

ja
ck

s

Predicted

running

walking

jogging

clapping

wavingright

wavingleft

drinking

drums

roll

guitar

jumping

squat

circling

sidebutterfly

frontbutterfly

abs

boxing

jumpingjacks

Ac
tu

al

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 31 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 8 23 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 27 0 0 0 2 0 3 0 0 0 0 0 0 0 0

0 0 0 0 25 1 3 0 0 3 0 0 0 0 0 0 0 0

0 0 0 0 0 30 0 0 0 1 0 0 0 0 1 0 0 0

0 0 0 0 0 0 30 1 0 0 0 0 0 0 0 0 1 0

1 0 0 1 0 0 2 19 7 0 0 0 0 0 0 0 2 0

0 0 0 1 0 0 0 6 24 0 0 0 0 0 0 0 1 0

1 0 0 1 0 0 0 9 3 16 1 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0 30 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 31 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 31 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 0 3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 1 0

1 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 28 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32

Confusion Matrix For Uniformer_B Model on Thermal Data

0

5

10

15

20

25

30

Figure 11: Confusion Matrix for UniformerB model on Thermal Data: This matrix demonstrates
the model’s best overall performance, with most activities being accurately classified, particularly
for ’running,’ ’walking,’ and ’jumping,’ though minor confusion is observed in activities that are not
clear in thermal imaging, like ’drums’ and ’guitar.’
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