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ABSTRACT

Open-vocabulary segmentation (OVS) has gained attention for its ability to recog-
nize a broader range of classes. However, OVS models show significant perfor-
mance drops when applied to target data distributions beyond the source dataset.
Fine-tuning these models on new datasets can improve performance, but often
leads to the catastrophic forgetting of previously learned knowledge. To address
this issue, we propose a method that allows OVS models to learn information from
new data distributions while preserving prior knowledge. Our approach begins
by evaluating the input sample’s proximity to multiple data distributions, using
precomputed multivariate normal distributions for each data distribution. Based on
this prediction, we dynamically interpolate between the weights of the pre-trained
decoder and the fine-tuned decoders. Extensive experiments demonstrate that this
approach allows OVS models to adapt to new data distributions while maintaining
performance on the source dataset.

1 INTRODUCTION

Table 1: Segmentation performance on Cityscapes
and ADE20k. Cityscapes and ADE20k are consid-
ered target data distributions in fc-clip and X-decoder,
as they are previously trained on COCO. We use
Panoptic Quality (PQ) as the evaluation metric.

Method Vocab Type Fine-tuning Cityscapes ADE20k
Mask2Former Closed-set ✓ 62.1 39.7
X-Decoder

OVS
✗ 36.2 16.7

X-Decoder ✓ 62.9 44.9
fc-clip

OVS
✗ 44.0 26.8

fc-clip ✓ 64.2 47.6

Open-vocabulary segmentation (OVS) has
emerged as a pivotal area of research due to its
potential to predict a diverse range of vocabu-
laries without being restricted to a fixed set of
predefined classes. This flexibility enables OVS
models to identify new objects, rare categories,
or arbitrary text-based descriptions. Recent
advances in OVS (Xu et al., 2023; Yu et al.,
2024) have extended its application to panoptic
segmentation to recognize new classes across
various segmentation tasks, such as semantic and
instance segmentation.
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Figure 1: Performance variations after fine-tuning and applying
the proposed method to fc-clip. The numbers above bars indicate the
performance differences compared to the model before fine-tuning.

Despite these advancements, a
limitation of OVS models is that
they perform well only within
the data distribution of the source
dataset. As shown in Table 1,
the latest OVS models (Yu et al.,
2024; Zou et al., 2023a) with-
out fine-tuning perform worse on
datasets from target data distribu-
tions compared to fine-tuned seg-
mentation models (Cheng et al.,
2022). Although OVS models aim
to recognize new classes, their
ability to generalize across different target data distributions remains limited. This limitation presents
challenges in real-world environments where recognizing objects in target data distributions is crucial.
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Fine-tuning on the new dataset improves performance within its data distribution. However, after
fine-tuning, OVS models face the issue of catastrophic forgetting, where they lose existing knowledge.
As shown in Figure 1, this leads to a significant performance drop on the source dataset.

Continual learning methods offer a promising solution, as they learn new knowledge while preserving
existing information. However, previous continual learning methods (Kirkpatrick et al., 2017; Kim
et al., 2024) have limitations when applied to OVS models. We delve deeper into these challenges in
Section 3.1.

We propose a new approach that enables OVS models to generalize to new data distributions while
preserving previous knowledge. This approach assumes that the new dataset is already known, as
it aims to improve the OVS model’s performance on the new dataset by training the model to align
with its data distribution. Our method begins by fine-tuning the decoder of the OVS model on the
data distribution of the new dataset. For this, we prepare a multivariate normal distribution (MVN)
for each data distribution. During inference, we use these MVN distributions to infer interpolation
factors that measure the proximity of the input sample to various data distributions. Based on this
factor, we interpolate the weights of the pre-trained decoder and the fine-tuned decoders to generate
new decoder weights for each input sample. This improves performance on the new dataset while
preserving performance on the source dataset, as shown in Figure 1. Our approach does not introduce
additional parameters to the OVS model and integrates seamlessly with the existing OVS architecture.

In addition, we propose a novel evaluation protocol for OVS models that integrates methodologies
from continual learning and OVS literature. This protocol considers all sequential training orders
of COCO, Cityscapes, and ADE20K, and expands evaluations to include unseen datasets, such as
DarkZurich, FoggyZurich, and GTA5, enabling a more comprehensive analysis.

Our experimental results demonstrate that applying the proposed approach to OVS models improves
performance in the new data distribution while maintaining performance in the previously seen data
distribution. Specifically, when fine-tuned on Cityscapes (Cordts et al., 2016) and ADE20k (Zhou
et al., 2019), the model adapts well to the new data distribution without losing prior knowledge.
We also observe the same effect when fine-tuning the model on multiple datasets. Furthermore, the
performance improves on various target segmentation datasets, including Mapillary Vista (Neuhold
et al., 2017), LVIS (Gupta et al., 2019), and BDD100k (Yu et al., 2020).

2 RELATED WORK

2.1 OPEN-VOCABULARY SEGMENTATION

Open-vocabulary segmentation (OVS) addresses the limitations of traditional closed-set segmentation
models, which can only recognize predefined classes. Research on closed-set segmentation models
has focused on identifying objects within a fixed set of classes. However, this restriction is impractical
in real-world scenarios where it is crucial to recognize new or rare classes. OVS overcomes this issue
by enabling the recognition of classes not included in the training.

Existing OVS literature mainly uses models trained on large external datasets to recognize novel
classes. For example, Yu et al. (2024); Zhou et al. (2022); Ding et al. (2022); Wu et al. (2023)
leverage CLIP (Radford et al., 2021), a large vision-language model, with OVS models to predict
classes. Recent studies also explore methods such as using a pre-trained diffusion-based model (Xu
et al., 2023) or combining the Segment Anything Model (SAM) (Kirillov et al., 2023) with CLIP
to recognize a variety of classes (Yuan et al., 2024; Wang et al., 2024a). OVS models trained on
large-scale datasets, such as X-Decoder (Zou et al., 2023a; 2024; 2023b), can handle OVS tasks as
well as tasks like referring segmentation and image captioning. Despite these advancements, current
OVS models, when not trained on specific datasets, can exhibit significantly lower performance. This
paper addresses these unresolved issues in detail.

2.2 FINE-TUNING AND CATASTROPHIC FORGETTING

Fine-tuning is widely used to improve the performance of a pre-trained model on downstream tasks by
adjusting the model’s parameters (Yosinski et al., 2014; Kornblith et al., 2019). Recently, parameter-
efficient fine-tuning (PEFT) has been introduced as an approach to effectively utilize the knowledge
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of pre-trained models. Instead of fine-tuning all parameters, PEFT adjusts only a subset to improve
the performance of downstream tasks. These methods include linear probing, adapters (Houlsby
et al., 2019), low-rank adaptation (Hu et al., 2021), bias tuning (Cai et al., 2020), and visual prompt
tuning (VPT) (Jia et al., 2022).

Although these methods improve task-specific performance, they often overlook the problem of
catastrophic forgetting. Specifically, previous OVS fine-tuning methods primarily focus on adjusting
the CLIP encoder to enhance segmentation performance, but they do not address catastrophic
forgetting (Xu et al., 2024; Ghiasi et al., 2022; Li et al., 2022). We are the first to highlight and
analyze this issue when fine-tuning OVS models on a new data distribution.

Many researchers have focused on replay-based continual learning methods to address catastrophic
forgetting (Chaudhry et al., 2019; Shin et al., 2017). These methods help preserve previously acquired
knowledge while the model learns new tasks by using past datasets. However, storing previous
datasets can raise concerns about data storage, security, and privacy. To overcome these issues,
exemplar-free continual learning methods, which do not store or use past datasets, have gained
attention. In this area, parameter regularization methods (Kirkpatrick et al., 2017; Ritter et al., 2018;
Liu et al., 2018), function regularization methods (Li & Hoiem, 2017; Dhar et al., 2019; Iscen et al.,
2020), and architecture-based approaches are commonly used to solve the problem of catastrophic
forgetting. Among these, architecture-based approaches include PEFT (Wang et al., 2022a; Liang &
Li, 2024; Wang et al., 2022b; Smith et al., 2023), which introduces dedicated model parameters to
facilitate learning new data.

Despite various efforts to address catastrophic forgetting in continual learning, this issue remains
unresolved in OVS models. In this paper, we propose a novel method to overcome this problem and
expand the range of data distributions that OVS models can recognize.

2.3 MULTI-SOURCE DOMAIN ADAPTATION

Multi-Source Domain Adaptation (MSDA) (Mansour et al., 2008) tackles the challenge of adapting
models from multiple source domains to perform well on a single target domain. The primary focus of
existing MSDA literature is the alignment of feature representations across multiple source domains
and the target domain. For example, Li et al. (2021); Song et al. (2021); Peng et al. (2019) use
multiple models from different source datasets to learn domain-specific representations to adapt
knowledge from multiple sources to the target domain. In addition, Guo et al. (2018) introduce a
mixture-of-experts approach for multi-source domain adaptation that explicitly models relationships
between target examples and source domains.

The concept of using multiple models trained on diverse datasets in MSDA aligns with our approach.
However, our method differs from MSDA in two key aspects: 1) addressing catastrophic forgetting in
sequential learning scenarios, and 2) improving generalization not only to a single target data distri-
bution but also to diverse distributions. This paper builds on these distinctions to develop a method
that is better suited for open-vocabulary segmentation tasks in continual learning environments.

3 BACKGROUND

3.1 MOTIVATION

When fine-tuning the OVS model on the new dataset, the model forgets previously learned knowledge.
As shown in Figure 1, performance improves on the new dataset after fine-tuning, but it significantly
drops on the source dataset. To extend the data distributions that the OVS model can recognize, it is
necessary to address this issue of catastrophic forgetting.

Regardless of whether the model is trained from scratch or fine-tuned simultaneously on the source
and fine-tuning datasets, joint training consistently results in lower performance compared to training
exclusively on the fine-tuning dataset. Notably, this holds true regardless of the distribution gap
between the source and fine-tuning datasets, as training solely on the fine-tuning dataset yields better
performance.

One common approach to preserving existing knowledge is joint training. In this method, the OVS
model is trained simultaneously on the source and fine-tuning datasets, with each batch containing
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Figure 2: Comparison of performance trends for the OVS model fc-clip trained on both the source dataset
and the fine-tuning dataset versus trained only on the fine-tuning dataset. The left graph shows results when
the fine-tuning dataset is Cityscapes, while the right graph corresponds to ADE20k. Evaluations are conducted
on the validation set of the fine-tuning dataset.

data from both datasets in equal proportions. This approach is inspired by previous studies that
address balanced joint training across multiple datasets (Rolnick et al., 2019; Van de Ven et al., 2022)
or multimodal datasets (Evans et al., 2024). However, this approach presents three issues: 1) Access to
all source datasets is required, which creates data management challenges. These challenges include
issues with data usage rights, such as licensing. For instance, if a dataset’s usage rights expire after it
was used for training, joint training cannot proceed. 2) Whether the model is trained from scratch
or fine-tuned on both datasets, joint training consistently results in lower performance compared to
fine-tuning on the new dataset alone (see Figure 2). Specifically, this holds true regardless of whether
the fine-tuning dataset is Cityscapes or ADE20K, as fine-tuning solely on the new dataset yields
better performance. 3) In joint training, training datasets often contain different numbers of images.
This difference can cause class imbalance, which hinders effective learning. Resolving this issue is
a well-known challenge in the field (Johnson & Khoshgoftaar, 2019; Ghosh et al., 2024; Tarawneh
et al., 2022).
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Figure 3: (a) Segmentation performance comparison (PQ, mAP, mIoU) among standard fine-tuning, PEFT, and
our method. All methods fine-tune fc-clip on the Cityscapes dataset. (b) Average inference time per sample
compared across standard fine-tuning, PEFT, and our method, based on the number of datasets used during
training. Average inference time per sample indicates the time required for a single sample to pass through
the model during inference. The number of seen datasets includes the source dataset (COCO) and fine-tuning
datasets (Cityscapes, ADE20k). All evaluations are conducted on the Cityscapes validation set.

Another approach is exemplar-free continual learning, which resolves data management issues by
eliminating the need to store previous datasets. To explore this method, we apply visual prompt tuning
(VPT) (Jia et al., 2022), a PEFT approach, to the OVS model. VPT has recently shown performance
improvements in the field of continual learning (Qiao et al., 2023; Wang et al., 2022c). Following the
method in Kim et al. (2024), we incorporate VPT into the OVS model by adding learnable prompts
to the queries and positional embeddings of the model’s decoder. However, applying this method to
OVS models presents two challenges: 1) As shown in Figure 3a, PEFT results in lower performance
on the new dataset compared to fine-tuning. This likely occurs because fine-tuning optimizes a larger
set of parameters, leading to greater improvements (Wortsman et al., 2022). 2) As shown in Figure 3b,
PEFT requires more inference time compared to our method and the baseline. While our method
incurs increased inference time as the number of seen data distributions grows (Rypeść et al., 2024)
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due to the need to compute more interpolation factors for weight interpolation, it remains faster than
techniques like PEFT that require additional parameters.

To address the limitations of previous techniques applied to OVS models, we propose a novel
exemplar-free continual learning method. The proposed method starts by assessing the input sample’s
proximity to multiple data distributions, using precomputed MVN distributions for each data distribu-
tion. Based on this, it dynamically interpolates the OVS model’s decoder weights to generate decoder
weights that suit the input sample. As shown in Figure 3, the proposed method improves performance
on new datasets more effectively than PEFT, while using fewer computational resources.

Problem Definition. The objective of this research is to extend the data distribution coverage of
open-vocabulary segmentation (OVS) models by sequentially fine-tuning them on multiple new
datasets. The OVS model is first trained on the source dataset Dpr, and then fine-tuned sequentially
on new datasets {D1

ft, D
2
ft, . . . }. In the i-th fine-tuning stage, the model has access only to the

current dataset, Di
ft. When evaluating performance, the model is tested in a setting that includes

both seen datasets and target datasets. The target datasets {D1
target, D

2
target, . . . } represent datasets that

the model has not been trained on before. Each dataset D consists of images Ximg and class labels
Xtext. The main challenge is to improve performance on the new dataset Di

ft while maintaining
performance on the seen datasets {Dpr, D

1
ft, . . . , D

i−1
ft }. It is also critical that the model retains its

ability to generalize to target data distributions.

4 METHODOLOGY

Input Image

class

Fine-tuned OVS Model Our method

mask

Input Text

(a) Interpolation factor estimator

(b) Decoder Weight Interpolation

Figure 4: Inference process of our method.

This section explains the proposed
method that allows OVS models to
learn a new data distribution without
losing prior knowledge. First, it de-
scribes how to generate the MVN dis-
tributions for each data distribution
during the training phase. Then, it
provides a detailed explanation of the
weight interpolation process in the in-
ference phase. An overview of the in-
ference process is shown in Figure 4.

4.1 TRAINING PHASE

During training, we first train the OVS model using the source dataset. Then, we fine-tune the
trained OVS model on new datasets. Following the methods of Yu et al. (2024); Zou et al. (2023a),
we keep the encoder fixed during fine-tuning and only update the decoder. Notably, our approach
does not modify the original training process of the OVS model, including the objective function or
architecture design.

Each time we train a dataset, we calculate two sets of means and covariance matrices from the image
and text embeddings. These are components of the multivariate normal (MVN) distributions. After
completing the training phase, we obtain the means and covariance matrices for the source dataset
(i = 0) and the fine-tuning datasets (i = 1, . . . , Nft), denoted as {µi

img,Σ
i
img, µ

i
text,Σ

i
text}.

4.2 INFERENCE PHASE

The inference process begins by calculating the interpolation factor vector λ (Algorithm 1, Steps
1-3). Specifically, the input image and text are passed through the encoder, producing embedding
vectors for both. These embedding vectors are then fed into the probability density functions (pdf) of
the image and text MVN distributions, which are defined for each data distribution. The image MVN
distribution consists of µi

img and Σi
img , while the text MVN distribution consists of µi

text and Σi
text.

This step produces a likelihood vector limg ∈ RNft+1 for the image embedding and a likelihood
vector ltext ∈ RNft+1 for the text embedding. A softmax function is then applied to these likelihood
vectors, resulting in simg and stext. The interpolation factor λ for each data distribution is determined
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Figure 6: Illustration of λ generated by the interpolation factor estimator for input samples from seen and target
data distributions.

by selecting the maximum value from both simg and stext. By considering both the image and text,
this approach calculates the appropriate interpolation factor for each data distribution. Section 5.1
demonstrates through an ablation study that using both image and text improves performance on new
data distributions. Figure 4a shows the interpolation factor estimator that handles this process.

The calculated interpolation factor vector, λ, is used to interpolate between the pre-trained decoder
and the fine-tuned decoders (Ilharco et al., 2022) (Algorithm 1, Steps 4-5). Specifically, we multiply
the difference between the weights of the distribution-specific fine-tuned decoder θidec,ft and the
pre-trained decoder θdec,pr by the interpolation factor λi. This determines whether the final weights
are closer to the pre-trained decoder or the fine-tuned decoder. After completing this process for
all the fine-tuned decoders, we sum the results to form the final interpolated decoder. The weight
interpolation process is illustrated in Figure 4b.

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation factor 

30

40

50

60

PQ

Fine-tuning (cityscapes)
Previous training (coco)

Figure 5: Performance on the validation set
of Cityscapes and COCO depending on the
interpolation factor λ, using fc-clip.

The decoder weight interpolation process determines
whether the OVS model uses the weights fitted to the
source dataset or the fine-tuning dataset, based on the in-
terpolation factor. As shown in Figure 5, when λi = 0,
the decoder uses the previously trained weights θdec,pr,
leading to strong performance on the source dataset. When
λi = 1, the decoder applies the fine-tuned weights θidec,ft,
resulting in strong performance on the fine-tuning dataset.
For λi values between 0 and 1, the decoder interpolates
between the two weights, achieving moderate performance
on both datasets.

Finally, the resulting decoder weights are used to predict
the mask and class for the embedding of the input. The
complete inference procedure with interpolation of the decoder weights, is outlined in Algorithm 1.

Discussion. We observe that our method behaves differently depending on whether the input sample
is close to the seen data distribution or the target data distribution. Figure 6 shows an example of
the λ produced by the interpolation factor estimator. When the input sample is from the seen data
distribution, it generates values close to 0 or 1. This indicates that a distribution-specific model is
selected for the input sample. This behavior is effective because using the model trained on the
corresponding data distribution is optimal when the input sample is close to the seen data distribution.

On the other hand, for samples from the target data distribution, the interpolation factors are more
evenly distributed between 0 and 1. This means that our method combines the models trained on seen
data distributions to prevent the model from relying on a single data distribution. As a result, this
approach improves generalization performance on input samples from the target data distribution.
We demonstrate this in the Section 5.

5 EXPERIMENTS

Settings. For panoptic segmentation, fc-clip and X-Decoder use COCO as the pretraining dataset
and are fine-tuned on Cityscapes and ADE20k. We evaluate both models on eight unseen datasets
using task-specific metrics (mIoU, PQ, mAP), reporting PQ in the main paper and including others
in the appendix. During fine-tuning, we freeze the encoders and train the decoders, implementing
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Table 2: Performance comparison between standard fine-tuning, previous continual learning methods, and our
method, with COCO as the source dataset. All methods fine-tune the models using (a) Cityscapes or (b) ADE20K
datasets. PQ is used.

Method COCO
(source)

Cityscapes
(fine-tuning)

ADE20K
(target)

fc-clip 50.1 44.0 23.5

+ Fine-tuning -22.7 +20.1 -10.3
+ Joint training +0.6 +17.9 +1.7
+ ER -1.6 +19.0 +0.3
+ LwF -10.7 +12.2 -0.8
+ EWC -25.9 +19.3 -9.8
+ ECLIPSE -6.0 +2.2 +0.9
+ Ours +0.3 +20.2 +2.5

X-Decoder 56.7 36.3 16.7

+ Fine-tuning -50.4 +26.6 -12.9
+ Ours -0.4 +26.6 +0.1

(a) Cityscapes

Method COCO
(source)

ADE20K
(fine-tuning)

Cityscapes
(target)

fc-clip 50.1 23.5 44.0

+ Fine-tuning -7.7 +24.1 -3.0
+ Joint training +1.4 +16.5 -1.2
+ ER +0.4 +21.5 -3.5
+ LwF -3.8 +13.7 -1.0
+ EWC -11.1 +20.7 -2.6
+ ECLIPSE -0.5 +0.2 -5.9
+ Ours +1.7 +23.8 -0.3

X-Decoder 56.7 16.7 36.3

+ Fine-tuning -37.3 +28.2 -3.7
+ Ours -1.5 +29.2 +1.4

(b) ADE20K

Table 3: Performance comparison among standard fine-tuning, previous continual learning methods, and our
method, with ADE20K as the source dataset. All methods fine-tune the models using (a) COCO or (b) Cityscapes
datasets. PQ is used.

Method ADE20K
(source)

COCO
(fine-tuning)

Cityscapes
(target)

fc-clip 48.1 42.3 40.9

+ Fine-tuning -18.5 +10.4 +3.3
+ Ours -1.3 +9.3 +5.2

(a) COCO

Method ADE20K
(source)

Cityscapes
(fine-tuning)

COCO
(target)

fc-clip 48.1 40.9 42.3

+ Fine-tuning -18.5 +21.4 -11.5
+ Ours +0.0 +19.5 +0.0

(b) Cityscapes

an interpolation factor estimator with a softmax temperature of 0.01 and log-likelihoods of MVN
distributions. Detailed descriptions of datasets, evaluation metrics, and implementation details are
provided in the appendix.

5.1 COMPARISON WITH OTHER METHODS

In each experiment, we evaluate the model on the source dataset, the fine-tuning dataset, and the
target dataset. When the model is fine-tuned on Cityscapes, we treat ADE20K as the target dataset
for evaluation, and vice versa.

Results of fine-tuning with Cityscapes. We present the evaluation results in Table 2a after fine-
tuning the model on Cityscapes. Our method improves performance on the fine-tuning dataset while
maintaining the performance on the source dataset, regardless of whether it is applied to fc-clip or
X-Decoder. Specifically, compared to fine-tuning, our method preserves performance on the source
dataset more effectively (e.g., Fine-tuning: −22.7, Ours: +0.3 for fc-clip / Fine-tuning: −50.4,
Ours: −0.4 for X-Decoder), while achieving the same improvements on the fine-tuning dataset.
In addition, we observe that the performance improvement of joint training is relatively smaller
compared to our method (e.g., Joint training: +17.9, Ours: +20.2 for fc-clip). Furthermore, we
observe that other continual learning methods consistently result in performance degradation on the
source dataset (e.g., ER: −1.6, LwF: −10.7, EWC: −25.9, ECLIPSE: −6.0). In contrast, our method
preserves performance on the source dataset (e.g., Ours: +0.3) and achieves better results on both
the fine-tuning and target datasets.

Results of fine-tuning with ADE20K. We present the evaluation results of our method and previous
methods when fine-tuning on ADE20K in Table 2b. Since ADE20K shares a similar data distribution
with COCO, previous methods maintain performance on the source dataset compared to fine-tuning
on Cityscapes. However, they still show a consistent performance drop on target datasets. In contrast,
our method improves performance on the target dataset while also enhancing results on the source
dataset and achieving a significant boost on the fine-tuning dataset (e.g., fc-clip with ours: source

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

+1.7, fine-tuning +23.8, target −0.3). The improvement on the source dataset indicates that our
method not only preserves prior knowledge but also enhances performance in the previously trained
data distribution by leveraging new knowledge. Additionally, X-Decoder loses performance on
the source dataset with standard fine-tuning, but with our method, this performance is effectively
preserved (e.g., X-Decoder with ours: −1.5 on the source dataset).

Results with ADE20K as the source dataset. To evaluate whether the proposed method shows
superior performance when using ADE20K as the source dataset instead of COCO, we conduct
additional experiments. As shown in Table 3, the proposed method preserves the performance of the
source dataset while improving the performance on the fine-tuning dataset. It achieves consistent
performance improvements on target datasets that are not included during training (e.g. Ours: +5.2
for Cityscapes, +0.0 for COCO).

Table 4: Performance of standard fine-tuning and our proposed
method. The best performance for each dataset is underlined.
City→ADE refers to the model fine-tuned on the Cityscapes dataset
first, followed by ADE20K. The reverse applies to ADE→City. PQ
is used.

Method The order of
fine-tuning

COCO
(source)

ADE20K
(fine-tuning 1)

Cityscapes
(fine-tuning 2)

fc-clip - 50.1 23.5 44.0
+ Fine-tuning ADE → City 20.8 15.4 65.2
+ Fine-tuning City → ADE 39.3 48.3 46.0
+ Joint training City, ADE 48.6 35.5 60.5
+ Ours City, ADE 51.6 47.0 64.3

Results of fine-tuning with mul-
tiple datasets. As shown in Ta-
ble 4, we compare the standard fine-
tuning method with our approach
in the sequential training scenario
on ADE20K and Cityscapes. Fine-
tuning results in a significant perfor-
mance drop on source datasets (e.g.,
ADE→City: −29.3, City→ADE:
−10.8 on COCO), maintaining strong
performance only on the most re-
cent training dataset. In contrast, our
method improves performance on the source dataset (e.g., +1.5 on COCO) and enhances results
across all fine-tuning datasets. Furthermore, joint training achieves high performance on the source
dataset compared to sequential fine-tuning but performs worse than our method across all three
datasets.

Table 5: Performance comparison between sequential training and our method on 8 unseen datasets. PQ is used.

Method Source
Dataset

The order of
fine-tuning

LVIS
(mAP)

BDD100K
(PQ)

Mapillary
(mIoU)

PC-59
(mIoU)

PC-459
(mIoU)

PAS-20
(mIoU)

PAS-21
(mIoU)

A-847
(mIoU)

OpenSeeD COCO,Object365 - 14.4 10.7 15.0 47.7 11.0 87.2 33.5 5.3
fc-clip COCO - 20.5 19.0 26.0 53.0 16.9 93.1 80.2 13.8
+ Fine-tuning COCO City → ADE 21.7 19.7 27.8 52.1 17.2 92.3 76.7 16.0
+ Fine-tuning COCO ADE → City 10.4 21.3 24.2 45.9 13.5 87.4 70.7 11.5
+ Joint training COCO,City,ADE - 10.4 21.3 24.2 45.9 13.5 87.4 70.7 11.5
+ Ours COCO City, ADE 23.1 22.6 29.1 54.9 17.9 93.6 80.7 16.3

As shown in Table 5, we compare the fine-tuning technique with our method and the previous OVS
model, OpenSeeD (Zhang et al., 2023), on target datasets. We observe that OpenSeeD performs worse
than fc-clip, which is trained solely on COCO, across the eight target datasets. Fine-tuning fails to
consistently improve performance on these datasets, and in some cases, it even results in performance
drops (e.g., City→ADE: −3.3 on PAS-21, ADE→City: −11.1 on LVIS). In contrast, our method
achieves consistent performance improvements across all target datasets. In addition, joint training
shows better generalizability than sequential fine-tuning but still underperforms compared to our
method.

5.2 METHOD ANALYSIS & ABLATION STUDY

Table 6: Comparison of performance on seen
and truly unseen classes. mIoU is used.

Method Seen Classes Truly Unseen Classes

fc-clip 35.0 28.6
+ Ours 37.9 30.9

Analysis on Seen and Truly Unseen Classes. This sec-
tion analyzes the performance of our method on seen and
truly unseen classes. We use COCO as the source dataset,
Cityscapes for fine-tuning, and ADE20K for evaluation.
Truly unseen classes refer to those not present in either
COCO or Cityscapes. Seen classes include those present
in at least one of these datasets. Our method achieves performance improvements for both seen
classes (Ours: 37.9, fc-clip: 35.0) and truly unseen classes (Ours: 30.9, fc-clip: 28.6) compared to
the original fc-clip, as shown in Table 6. This suggests that merging the domain-specific knowledge
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of the two OVS model decoders through our weight interpolation technique truly enhances the
generalization capability for target datasets.

Evaluation on Diverse and Challenging Domains. We evaluate our method on datasets that differ
significantly from the training dataset’s domain to demonstrate its robustness. The evaluation includes
GTA5, a synthetic driving dataset, and DarkZurich and FoggyZurich, which consist of nighttime and
foggy driving scenes. These datasets introduce substantial domain shifts compared to ADE20K and
COCO, which are used as the training and fine-tuning datasets, respectively.

Table 7: Performance comparison (mIoU) on
datasets with significant domain shifts.

Method GTA5 DarkZurich FoggyZurich

fc-clip 65.6 40.2 54.4
+ Fine-tuning 58.4 39.8 52.1
+ Ours 66.6 43.1 55.9

As shown in Table 7, the results show that standard fine-
tuning of fc-clip reduces performance across all three
datasets. In contrast, our interpolation-based method
improves performance by leveraging both the original
and fine-tuned parameters. This demonstrates that our
approach effectively handles target domains with large
domain differences, including adverse conditions and
synthetic environments.

Table 8: Comparison between using both
image and text or using only one type of in-
formation. Fine-tuned fc-clip on Cityscapes.
Unseen represents the average score across
8 target datasets. PQ is used.
Distribution COCO

(source)
Cityscapes

(fine-tuning) Unseen

image only 51.5 43.4 40.3
text only 51.9 60.7 40.6
image + text 51.6 64.3 40.9

Ablation Study of Image and Text Distribution. In our
method, we determine the interpolation factor using the
MVN distributions of both image and text data. We conduct
an analysis by removing either the image or text distribution
and comparing the results to the case where both distribu-
tions are used (Table 8). The best performance is observed
when both image and text distributions are used, as this
combination not only improves performance on the fine-
tuning dataset but also ensures stability on target datasets.
This result shows that combining these distributions allows
for more accurate selection of interpolation factors for the fine-tuning dataset.

Comparison of Alternative Prototype Models with the MVN Distribution. Table 9 presents the
evaluation results comparing three different prototype models available for estimating interpolation
factors in our method. K-means clustering causes significant performance loss on the source dataset,
and kernel density estimation fails to improve performance on the fine-tuning dataset. In contrast, the
MVN distribution not only maintains performance on the source dataset and improves performance
on the fine-tuning dataset but also achieves consistent results on target datasets. These findings
emphasize the versatility of the MVN distribution in adapting to various datasets.

Table 9: Analysis of the prototype modeling in the in-
terpolation factor estimator. We fine-tune fc-clip on
Cityscapes. Unseen represents the average score across
8 target datasets. PQ is used.

Prototype Models COCO
(source)

Cityscapes
(fine-tuning) Unseen

k-means clustering 42.4 64.1 40.6
kernel density estimation 48.1 57.4 40.6
MVN distribution 50.4 64.3 40.9

Using only the MVN distribution poses chal-
lenges in capturing the data distribution of sam-
ples because our algorithm does not involve clus-
tering. However, the MVN distribution still per-
forms well. This is because a small distribution
gap between datasets, where the two domains
become indistinguishable, often indicates that
the datasets share similar distributions. In such
cases, OVS models are expected to perform well,
requiring minimal reliance on our algorithm.

Table 10: Comparison between the prompt-based
approach and our weight interpolation. We fine-
tune fc-clip on Cityscapes. Unseen represents the
average score across 8 target datasets. PQ is used.

Method COCO
(source)

Cityscapes
(fine-tuning) Unseen

Prompt 43.3 48.9 39.1
Weight interpolation 50.4 64.3 40.9

Replacing Weight Interpolation with Prompts. In
this experiment, we compare the performance of
replacing our method’s weight interpolation (Algo-
rithm 1, Steps 4-5) with prompt-based alternatives.
The prompt implementation follows these steps: 1)
For each data distribution, we train only the decoder’s
query and positional embeddings, then store them in
a prompt pool. 2) During inference, we compute
interpolation factors for each data distribution using
our method. 3) We select the data distribution with the highest interpolation factor and replace the
original decoder’s query and positional embeddings with those from the corresponding prompt in the
prompt pool (Wang et al., 2022a). As shown in Table 10, the prompt-based approach results in lower
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performance compared to our method on both the source and the fine-tuning dataset. Additionally,
our method outperforms the prompt-based approach on target datasets. Therefore, we conclude that
weight interpolation is more effective for our task than using the prompt-based approach.

5.3 COMPUTATIONAL RESOURCES

Table 11: Inference time per sample with varying numbers of seen datasets. The unit for all numbers in the table
is milliseconds (ms).

Number of
Seen Datasets Encoder Interpolation Factor

Estimator
Decoder Weight

Interpolation Decoder Total Inference
Time Per Sample Change (%)

1 97.69 - - 102.30 199.99 +0.00%
2 97.69 0.81 10.69 102.30 211.48 +5.75%
3 97.69 1.01 13.23 102.30 214.23 +7.12%

Our method ensures efficient use of computational resources during inference. It avoids the addi-
tional parameters required by other continual learning techniques as the number of learned datasets
grows (Kim et al., 2024). Furthermore, our method does not involve multiple forward passes (Nicolas
et al., 2023; Wang et al., 2022a), which are computationally expensive. Instead, we perform weight
interpolation exclusively in the decoder of encoder-decoder models, minimizing overhead.

To demonstrate the efficiency of our method, we measure inference time as the total processing time
per sample, as shown in Table 11. The increase in inference time remains minimal as the number
of datasets grows. Specifically, training with two datasets increases inference time by only 5.75%p,
while adding a third dataset results in a marginal additional increase of 1.37%p. These results confirm
the scalability of our approach with respect to inference time.

In addition to computational efficiency, our method achieves significant storage savings. Unlike
ensemble-based approaches, which require storing the entire model for each dataset (Wortsman et al.,
2022; Khirodkar et al., 2022), our method stores only the decoder parameters. This reduces the
storage requirement to 6.11% of the total model size, which corresponds to approximately 80MB per
dataset. This efficiency ensures scalability in scenarios involving multiple datasets.

6 LIMITATIONS

Our method incurs computational overhead during the weight interpolation process, as illustrated in
Table 11. This presents a significant challenge, as it reduces the efficiency of OVS models, and remains
an unresolved issue insufficiently addressed in prior research. To address this problem, reducing the
number of parameters involved in interpolation could be a potential solution. This can be achieved by
exploring approaches from prior work on model merging, such as pruning techniques (Yadav et al.,
2024; Sun et al., 2023), which eliminate redundant parameters, or Mixture-of-Experts methods (Tang
et al., 2024), which activate only a subset of parameters for specific tasks.

However, applying these techniques to segmentation models, particularly OVS models, introduces
unique challenges due to their structural characteristics and the complexity of the data. Developing
methods to reduce the cost of weight interpolation is a critical research direction that can overcome
these limitations and optimize the inference time of OVS models.

7 CONCLUSION

Conventional segmentation models are limited to recognizing predefined classes, which highlights
the growing importance of Open-vocabulary Segmentation (OVS) for broader category prediction.
However, OVS models show reduced performance when applied to target datasets beyond the source
dataset. While fine-tuning OVS models improves performance on new datasets, we observe that
it leads to catastrophic forgetting of previous knowledge. To address this issue, we propose a
method that adaptively interpolates between the weights of the pre-trained decoder and the fine-tuned
decoders based on the input sample’s proximity to different data distributions. We conduct extensive
experiments to verify the method, showing that it allows OVS models to effectively learn on new data
distributions while preserving prior knowledge.
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APPENDIX

A OPEN-VOCABULARY SEGMENTATION

We define the input image and class label as ximg and xtext, respectively. The image encoder and text
encoder are defined as fimg and ftext, with parameters θimg and θtext representing the parameters of
the image and text encoders. The image embedding is computed as zimg = fimg(ximg; θimg), and
the text embedding is computed as ztext = ftext(xtext; θtext). The decoder takes these embeddings
as input and predicts Nq pairs of masks and class labels, where Nq is the number of object queries in
the decoder. Specifically, the decoder, fdec, takes zimg and ztext as inputs and predicts the output
o = fdec(zimg, ztext; θdec). The output o consists of Nq pairs of masks and class embeddings,
{(mi, ci)}

Nq

i=1, where i denotes the index of the pair, mi represents the mask, and ci represents the
corresponding class embedding. The class associated with mask mi is determined by selecting
the class label with the highest similarity between the predicted class embedding ci and the text
embedding ztext. This approach allows the model to predict a wide range of classes without being
limited to predefined categories.

B EXPERIMENT SETTINGS

Datasets. For the panoptic segmentation task, fc-clip and X-Decoder use COCO (Lin et al., 2014)
as the source dataset. For the fine-tuning datasets, we use Cityscapes (Cordts et al., 2016) and
ADE20k (Zhou et al., 2019). For evaluation purposes only, we assess model performance on
eight target datasets: i) LVIS (Gupta et al., 2019), ii) BDD100K (Yu et al., 2020), iii) Mapillary
Vista (Neuhold et al., 2017), iv) Pascal Context (Mottaghi et al., 2014) with 59 common classes
(PC-59), v) Pascal Context with all 459 classes (PC-459), vi) PASCAL VOC (Everingham et al., 2010)
with 20 foreground classes (PAS-20), vii) an extension of PAS-20 with an additional background
class (PAS-21), and viii) A-847, which includes all 847 classes from ADE20K (Zhou et al., 2019).

Evaluation Metrics. We evaluate all OVS models on the tasks of open-vocabulary panoptic, instance,
and semantic segmentation. For evaluation, we use the Panoptic Quality (PQ) (Kirillov et al., 2019),
mean Average Precision (mAP), and mean Intersection over Union (mIoU) metrics. When evaluating
on eight different unseen datasets, we select the most representative metric for each dataset based
on the task it targets. Specifically, mIoU is used for semantic segmentation tasks, PQ for panoptic
segmentation, and mAP for instance segmentation. In our experiments, PQ, mAP, and mIoU show
similar performance trends. To maintain clarity, we only report PQ in the main paper and include the
other metrics in the appendix.

Implementation Details. We apply our method to two OVS models: fc-clip (Yu et al., 2024) with
ConvNext-L (Liu et al., 2022) backbone and X-Decoder (Zou et al., 2023a) with Focal-L (Yang
et al., 2022) backbone. The fc-clip uses the CLIP (Radford et al., 2021) for both the image and text
encoders, and training only decoder of the model using COCO (Lin et al., 2014). X-Decoder trains its
encoder and decoder on the multiple pre-training datasets, including COCO, SBU Captions (Ordonez
et al., 2011), Visual Genome (Krishna et al., 2017). Following the fc-clip and X-Decoder, we freeze
the encoders and train only the decoder for both OVS models during fine-tuning. To implement
the interpolation factor estimator in our method, we use the softmax temperature T as 0.01 for the
softmax operation, and calculate the log-likelihood for the MVN distribution.

C COMPARED METHODS

Since there is no prior research that apply continual learning to OVS models, we apply the previous
continual learning methods to the OVS models and evaluate all approaches. Following Wang et al.
(2024b); Chen & Liu (2022); Parisi et al. (2019); Mundt et al. (2023), we categorize previous methods
into replay-based, regularization-based (parameter, function), and architecture-based approaches. We
apply a representative method from each category to OVS models and compare their performance.

Replay-based Method. Experience Replay (ER) serves as the conceptual foundation for many
memory-based methods (Lopez-Paz & Ranzato, 2017; Iscen et al., 2020). In our experiments, we
apply this technique to the OVS model. ER stores a subset of training samples from previous datasets
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and uses them during the training of a new dataset. For ER, we select 10 training samples per class
from the source dataset. Unlike our method, ER requires access to the source dataset during the
training of a new dataset, which makes a fair comparison difficult.

Function Regularization. We incorporate Learning without Forgetting (LwF) (Li & Hoiem, 2017),
a function regularization method, into the OVS model. LwF is an exemplar-free continual learning
method that uses knowledge distillation loss based on the distance between predictions of the pre-
trained model and the fine-tuned model. This loss helps regularize the model to preserve its prior
knowledge.

Parameter Regularization. The Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017)
method is adapted for the OVS model. EWC is a parameter regularization approach that does not
rely on previous datasets. It first estimates the importance of each neuron by calculating the Fisher
information matrix. This matrix assigns weights to the distance between the parameters of the
pre-trained model and the fine-tuned model. This process suppresses changes to parameters that are
crucial for preserving previous knowledge.

Architecture-based Method. We apply ECLIPSE (Kim et al., 2024), one of the architecture-based
methods, to the OVS model. This method is designed for class-incremental learning in closed-set
segmentation tasks and does not rely on the previous dataset. ECLIPSE introduces visual prompt
tuning for the decoder by adding learnable prompts to the object queries and positional embedding.
For our task, we add 250 prompts for each new data distribution to ensure sufficient learning capacity.
We use only the prompt tuning component of ECLIPSE in the OVS model and do not include the
classifier or logit manipulation components.

D DISCUSSION & ANALYSIS

Table A1: Performance comparison between the argmax and softmax operations in the interpolation factor
estimator. We use fc-clip with our method and fine-tune it on both Cityscapes and ADE20K. PQ is used.

Decision Rule Fine-tuning
Dataset

LVIS
(mAP)

BDD100K
(PQ)

Mapillary
(mIoU)

PC-59
(mIoU)

PC-459
(mIoU)

PAS-20
(mIoU)

PAS-21
(mIoU)

A-847
(mIoU)

Argmax Cityscapes, ADE20k 21.3 18.3 26.9 53.1 17.0 93.2 80.2 16.3
Softmax Cityscapes, ADE20k 23.1 22.6 29.1 54.9 17.9 93.6 80.7 16.3

Replacing Softmax with Argmax. In this study, we use the softmax function to calculate interpo-
lation factors for each data distribution. Considering that argmax is a hard version of softmax, we
compare the segmentation performance on target datasets when using argmax and softmax operations.
Table A1 presents the evaluation results. We observe that softmax consistently outperforms argmax
across all target data distributions (e.g., on LVIS, argmax: 21.3, softmax: 23.1). In the PAS-20,
PAS-21, and A-847, there is little difference in performance between softmax and argmax. This
is because the interpolation factor from softmax tends to be close to 0 or 1 when the input sample
is close to the seen data distribution, making softmax behave similarly to argmax. As shown in
Figure D1, for A-847, the interpolation factors are close to 0 or 1 because it shares a data distribution
similar to ADE20K, a training dataset. In contrast, the interpolation factors for BDD100K are evenly
distributed between 0 and 1. This occurs because BDD100K is closer to an target data distribution. In
this case, our method improves generalization performance by combining models trained on multiple
data distributions. These results indicate that considering multiple data distributions simultaneously
via softmax leads to better performance than selecting a single data distribution through argmax,
supporting the effectiveness of our design choice.

Extending the Proposed Method to Traditional Continual Learning. Our approach can also be
extended to traditional continual learning tasks. In this context, recent techniques such as prompt-
tuning (Wang et al., 2022a) and LoRA (Liang & Li, 2024) maintain independent parameter sets
for each incremental session, enabling task-specific adaptation. Similarly, our method leverages
independent parameter sets generated during each incremental session and uses the initial model to
estimate the data distribution proximity of the input sample. This allows the method to dynamically
merge the corresponding parameters, enabling accurate predictions for traditional continual learning
tasks while effectively mitigating catastrophic forgetting. This adaptability demonstrates the broader
potential of our framework beyond OVS task.
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Figure D1: The histogram of interpolation factors when inferring all samples from the validation sets of (a)
A-847 and (b) BDD100K. We fine-tune fc-clip on Cityscapes and ADE20K and use PQ as the evaluation metric.

Table A2: Effect of softmax temperature T on perfor-
mance across datasets. Results are reported as mIoU.

T
Previous
(COCO)

Fine-tuning
(ADE20K)

Unseen
(Cityscapes) Total

0.0001 50.7 35.4 43.8 129.9
0.001 51.2 42.2 43.9 137.3
0.01 51.8 47.3 43.7 142.8
0.1 51.3 47.5 43.2 142.0
1.0 51.2 47.4 43.2 141.8

Hyperparameter Sensitivity Analysis. We an-
alyze the impact of the softmax temperature
T used to compute interpolation factors in our
method. While our approach introduces no ad-
ditional hyperparameters related to the MVN
distributions, the softmax temperature critically
influences the effectiveness of interpolation. Ta-
ble A2 presents the results of our ablation study.

We observe that using a small temperature T
reduces performance on the fine-tuning dataset due to excessive smoothing of the interpolation factors.
This results in minimal contribution from the fine-tuned model, ultimately lowering performance on
the fine-tuning dataset. On the other hand, a large temperature skews the interpolation factors toward
0 or 1, which degrades performance on the target dataset. Such extreme values hinder the integration
of multiple models, a key requirement for effective generalization to target data distributions. Further
details are provided in Section 4.2.

The model achieves the best balance across datasets when T = 0.01. This configuration produces the
highest total score of 142.8, demonstrating its effectiveness for robust generalization.

E QUALITATIVE RESULTS

This section provides an analysis of the qualitative results from the original fc-clip, the standard
fine-tuning technique, and the proposed method. Figure D2 shows the output of each method. When
evaluated on the source dataset, the standard fine-tuning technique fails to recognize the backpack,
losing information from the source dataset. On the fine-tuning dataset, the original fc-clip fails to
identify key elements such as road and person. This highlights that OVS models perform well only
within the data distribution of the source dataset. When evaluated on the target dataset, the standard
fine-tuning technique fails to recognize ceiling, a class that does not exist in both the source dataset
and the fine-tuning dataset. In contrast, the proposed method successfully identifies both previous
and newly learned classes, as well as classes not present in either training dataset.

F ADDITIONAL LIMITATIONS

Our method generates unique model weights for each input sample, which makes it challenging to
use when the batch size exceeds one. This limitation is also observed in other continual learning
approaches (Wang et al., 2022a; Smith et al., 2023; Jin et al., 2023). One potential solution is to
apply parallel processing only during the encoder stage. The encoder stage of OVS models generally
requires significant computational resources. However, since our method focuses on decoder weight
interpolation, multiple samples can be processed in parallel during the encoder stage. Afterward, the
embeddings from each sample can be passed through decoders with different weights. While this
approach resolves the batch size limitation, the increased computational cost in the decoder stage
remains a concern compared to traditional OVS models. To address this issue, further research is
needed to develop a parallel processing mechanism for our method.
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fc-clip

COCO 
(source)

Cityscapes 
(fine-tuning)

ADE20K 
(target)

w/ Fine-tuning w/ Ours

Figure D2: We provide a qualitative analysis on COCO, Cityscapes, and ADE20K. The comparison involves
three methods: fc-clip, fine-tuning, and our approach. Both fine-tuning and our method use the Cityscapes
dataset to fine-tune fc-clip.

Algorithm 1 Inference Process of Our Method.

Input: Input (ximg, xtext), encoder fimg

& ftext, decoder fdec, pre-trained decoder
weight θdec,pr , fine-tuned decoders weight
{θ1dec,ft, θ2dec,ft, ..., θ

Nft

dec,ft}, mean and covari-

ance matrix {(µi
img,Σ

i
img, µ

i
text,Σ

i
text)}

Nft

i=0 , pdf of
the MVN distribution p.
Output: Mask & class pairs {(mi, ci)}Nq

i=1

Step 1. Extract embedding vectors z.
zimg ← fimg(ximg)
ztext ← ftext(xtext)
Step 2. Calculate the likelihood l for all data distribu-
tions.
limg ← {p(zimg|µi

img,Σ
i
img)}

Nft

i=0

ltext ← {p(ztext|µi
text,Σ

i
text)}

Nft

i=0

Step 3. Apply softmax and maximum to get λ.
simg ← softmax(limg)
stext ← softmax(ltext)
λ← maximum(simg, stext)
Step 4. Interpolate the decoders weight.
θdec,new ← θdec,pr +

∑Nft

i=1 λi ∗ (θidec,ft − θdec,pr)
Step 5. Compute the output from the decoder.
(mi, ci)

Nq

i=1 ← fdec(zimg, ztext; θdec,new)

return {(mi, ci)}Nq

i=1

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table A3: Performance comparison between original fine-tuning, previous continual learning methods, and our
method. All methods fine-tune the models using Cityscapes. We use PQ, mAP, mIoU for evaluation metrics.

COCO (previous training) Cityscapes (fine-tuning) ADE20K (unseen)Method Fine-tuning
Dataset PQ mAP mIoU Avg PQ mAP mIoU Avg PQ mAP mIoU Avg

fc-clip - 50.1 41.1 52.0 47.7 44.0 26.8 56.2 42.4 23.5 17.1 30.4 23.7

+ Fine-tuning -22.7 -16.2 -11.8 -16.9 +20.1 +13.9 +21.2 +18.4 -10.3 -6.3 -3.9 -6.8
+ ER -1.6 -2.7 +0.2 -1.4 +19.0 +13.0 +20.1 +17.4 +0.3 -3.5 +0.9 -0.8
+ LwF -10.7 -11.9 -7.9 -10.2 +12.2 +2.7 +10.2 +8.3 -0.8 -5.4 +0.8 -1.8
+ EWC -25.9 -19.0 -13.3 -19.4 +19.3 +11.2 +18.4 +16.3 -9.8 -8.4 -4.2 -7.5
+ ECLIPSE -6.0 -6.2 -3.9 -5.3 +2.2 +0.2 +4.3 +2.2 +0.9 -3.6 +2.0 -0.3
+ Ours

Cityscapes

+0.3 +0.5 +0.1 +0.3 +20.2 +13.9 +21.3 +18.5 +2.5 -1.2 +2.5 +1.3

X-Decoder - 56.7 46.9 67.4 57.0 36.3 25.4 52.9 38.2 16.7 11.7 24.9 17.8

+ Fine-tuning -50.4 -32.2 -53.7 -45.5 +26.6 +11.7 +26.7 +21.7 -12.9 -8.1 -19.7 -13.5
+ Ours

Cityscapes
-0.4 -0.4 -0.3 -0.3 +26.6 +11.6 +26.7 +21.7 +0.1 +0.5 -0.3 +0.1

Table A4: Performance comparison between original fine-tuning, previous continual learning methods, and our
method. All methods fine-tune the models using ADE20K. We use PQ, mAP, mIoU for evaluation metrics.

COCO (previous training) ADE20k (fine-tuning) Cityscapes (unseen)Method Fine-tuning
Dataset PQ mAP mIoU Avg PQ mAP mIoU Avg PQ mAP mIoU Avg

fc-clip - 50.1 41.1 52.0 47.7 23.5 17.1 30.4 23.7 44.0 26.8 56.2 42.4

+ Fine-tuning -7.7 -6.2 -2.7 -5.5 +24.1 +19.0 +22.0 +21.7 -3.0 -2.8 +2.9 -1.0
+ ER +0.4 -0.3 +2.9 +1.0 +21.5 +16.3 +19.5 +19.1 -3.5 -2.8 -1.0 -2.4
+ LwF -3.8 -7.1 -2.4 -4.4 +13.7 +8.4 +11.3 +11.1 -1.0 -6.2 -3.0 -3.4
+ EWC -11.1 -9.3 -6.0 -8.8 +20.7 +16.2 +18.0 +18.3 -2.6 -3.2 +0.3 -1.8
+ ECLIPSE -0.5 -1.2 +0.6 -0.3 +0.2 -0.3 +3.0 +1.0 -5.9 -4.0 -2.2 -4.0
+ Ours

ADE20K

+1.7 +1.4 +3.2 +2.1 +23.8 +18.6 +21.1 +21.2 -0.3 -0.7 +0.6 -0.1

X-Decoder - 56.7 46.9 67.4 57.0 16.7 11.7 24.9 17.8 36.3 25.4 52.9 38.2

+ Fine-tuning -37.3 -33.6 -42.4 -37.8 +28.2 +18.6 +27.2 +24.6 -3.7 -9.4 -0.8 -4.6
+ Ours

ADE20K
-1.5 -1.7 -1.1 -1.4 +29.2 +19.0 +27.5 +25.2 +1.4 -6.4 +3.5 -0.5

Table A5: Performance comparison between standard fine-tuning and our method. The underlined values
indicate the best score for each dataset. We use PQ, mAP, mIoU for evaluation metrics.

COCO (previous) ADE20k (fine-tuning 1) Cityscapes (fine-tuning 2)Method The order of
fine-tuning PQ mAP mIoU PQ mAP mIoU PQ mAP mIoU

fc-clip - 50.1 41.1 52.0 23.5 17.1 30.4 44.0 26.8 56.2
+ Fine-tuning ADE20k → Cityscapes 20.8 19.5 40.0 15.4 14.2 34.9 65.2 42.3 77.6
+ Fine-tuning Cityscapes → ADE20k 39.3 32.4 48.3 48.3 36.3 52.1 46.0 26.4 61.5
+ Ours Cityscapes, ADE20k 51.6 42.5 55.3 47.0 35.9 51.4 64.3 40.7 77.6
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fc-clip w/ Fine-tuning w/ Ours

Figure F3: We provide additional qualitative analysis on COCO (previous training dataset). The comparison
involves three methods: fc-clip, fine-tuning, and our approach. Fine-tuning and our method both use the
Cityscapes dataset to fine-tune fc-clip.
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fc-clip w/ Fine-tuning w/ Ours

Figure F4: We provide additional qualitative analysis on Cityscapes (fine-tuning dataset). The comparison
involves three methods: fc-clip, fine-tuning, and our approach. Fine-tuning and our method both use the
Cityscapes dataset to fine-tune fc-clip.
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fc-clip w/ Fine-tuning w/ Ours

Figure F5: We provide additional qualitative analysis on ADE20K (unseen dataset). The comparison involves
three methods: fc-clip, fine-tuning, and our approach. Fine-tuning and our method both use the Cityscapes
dataset to fine-tune fc-clip.
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