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ABSTRACT

Recent studies have demonstrated the great power of Transformer models for time
series forecasting. One of the key elements that lead to the transformer’s success is
the channel-independent (CI) strategy to improve the training robustness. However,
the ignorance of the correlation among different channels in CI would limit the
model’s forecasting capacity. In this work, we design a special Transformer, i.e.,
Channel Aligned Robust Blend Transformer (CARD for short), that addresses
key shortcomings of CI type Transformer in time series forecasting. First, CARD
introduces a channel-aligned attention structure that allows it to capture both
temporal correlations among signals and dynamical dependence among multiple
variables over time. Second, in order to efficiently utilize the multi-scale knowledge,
we design a token blend module to generate tokens with different resolutions.
Third, we introduce a robust loss function for time series forecasting to alleviate
the potential overfitting issue. This new loss function weights the importance of
forecasting over a finite horizon based on prediction uncertainties. Our evaluation
of multiple long-term and short-term forecasting datasets demonstrates that CARD
significantly outperforms state-of-the-art time series forecasting methods. The
code is available at the following repository: https://github.com/wxie9/
CARD.

1 INTRODUCTION

Time series forecasting has emerged as a crucial task in various domains such as cloud computing,
air quality forecasting, energy management, and traffic flow estimation(Qian et al., 2022; Liang et al.,
2023; Zhu et al., 2023; Wen et al., 2023a). The rapid development of deep learning models has led
to significant advancements in time series forecasting techniques, particularly in multivariate time
series forecasting. Among various deep learning models developed for time series forecasting, RNN,
CNN, MLP, transformer, and LLM-based models have demonstrated great performance thanks to
their ability to capture complex long-term temporal dependencies (e.g., Zhou et al., 2021; Challu
et al., 2022; Zeng et al., 2023; Zhou et al., 2022a; Wu et al., 2023b; Zhou et al., 2023; Jin et al., 2023).

For multivariate time series forecasting, a model is expected to yield a better performance by
exploiting the dependence among different prediction variables, so-called channel-dependent (CD)
methods. However, multiple recent works (e.g., Nie et al. 2023; Zeng et al. 2023) show that, in
general, channel-independent (CI) forecasting models (i.e., all the time series variables are forecast
independently) outperform the CD models. Analysis from (Han et al., 2023) indicates that CI
forecasting models are more robust while CD models have higher modeling capacity. Given that time
series forecasting usually involves high noise levels, typical transformer-based forecasting models
with CD design can suffer from the issue of overfitting noises, leading to limited performance. These
empirical studies and analyses raised an important question, i.e., how to build an effective transformer
to utilize the cross-channel information for time series forecasting.

In this paper, we propose a Channel Aligned Robust Blend Transformer, or CARD for short, that
effectively leverages the dependence among channels (i.e., forecasting variables) and alleviates the
issue of overfitting noises in time series forecasting. Unlike typical transformers for time series
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analysis that only capture temporal dependency among signals through attention over tokens, the
CARD also takes attention across different channels and hidden dimensions, which captures the
correlation among prediction variables and aligns local information within each token. We observe
that related approaches have been exploited in computer vision (Ding et al., 2022; Ali et al., 2021).
Moreover, it is known that multi-scale information plays an important role in time series analysis. We
design a token blend module to generate tokens with different resolutions. In particular, we propose
to combine the adjacent tokens within the same head into the new token instead of merging the same
position over different heads in multi-head attention. To improve the robustness and efficiency of
the transformer for time series forecast, we further introduce an exponential smoothing layer over
queries/keys tokens and a dynamic projection module when dealing with information among different
channels. Finally, to alleviate the issue of overfitting noises, a robust loss function is introduced to
weight each prediction by its uncertainty in the case of forecasting over a finite horizon. The overall
model architecture is illustrated in Figure 1. We verify the effectiveness of the proposed model on
various numerical benchmarks by comparing it to the state-of-the-art methods for Transformers and
other models. Here we summarized our key contributions as follows:

1. We propose a Channel Aligned Robust Blend Transformer (CARD) which efficiently
and robustly aligns the information among different channels and utilizes the multi-scale
information.

2. CARD demonstrates superior performance in several benchmark datasets for forecasting
and other prediction-based tasks, outperforming the state-of-the-art models. Our studies
have confirmed the effectiveness of the proposed model.

3. We develop a robust signal decay-based loss function that utilizes signal decay to bolster the
model’s ability to concentrate on forecasting for the near future. Our empirical assessment
has confirmed that this loss function is effective in improving the performance of other
benchmark models as well.

The remainder of this paper is structured as follows. In Section 2, we provide a summary of related
works relevant to our study. Section 3 presents the proposed detailed model architecture. Section 4
describes the loss function design with a theoretical explanation via maximum likelihood estimation
of Gaussian and Laplacian distributions. In Section 5, we demonstrate the results of the numerical
experiments in forecasting benchmarks and conduct a comprehensive analysis to determine the
effectiveness of the self-attention scheme for time series forecasting. Additionally, we discuss
ablations and other experiments conducted in this study. Finally, in Section 6, the conclusions and
future research directions are discussed.

2 RELATED WORK

2.1 TRANSFORMERS FOR TIME SERIES FORECASTING

There is a large body of work that tries to apply Transformer models to forecast long-term time
series in recent years (Wen et al., 2023b). We here summarize some of them. LogTrans (Li et al.,
2019a) uses convolutional self-attention layers with LogSparse design to capture local information
and reduce space complexity. Informer (Zhou et al., 2021) proposes a ProbSparse self-attention
with distilling techniques to extract the most important keys efficiently. Autoformer (Wu et al.,
2021) borrows the ideas of decomposition and auto-correlation from traditional time series analysis
methods. FEDformer (Zhou et al., 2022b) uses Fourier enhanced structure to get a linear complexity.
Pyraformer (Liu et al., 2022a) applies pyramidal attention module with inter-scale and intra-scale
connections which also get a linear complexity. LogTrans avoids a point-wise dot product between the
key and query, but its value is still based on a single time step. Autoformer uses autocorrelation to get
patch-level connections, but it is a handcrafted design that doesn’t include all the semantic information
within a patch. A recent work PatchTST (Nie et al., 2023) studies using a vision transformer type
model for long-term forecasting with channel independent design. The work closest to our proposed
method is Crossformer (Zhang & Yan, 2023). This work designs an encoder-decoder model utilizing
a hierarchy attention mechanism to leverage cross-dimension dependencies and achieves moderate
performance in the same benchmark datasets that we use in this work. From the model architecture
perspective, different from Crossformer, we employ an encoder-only structure, and the multi-scale
information is induced via a lightweight token blend module instead of explicitly generating token
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Figure 1: Illustration of the architecture of CARD.

hierarchies used in Crossformer. The designs significantly enhance the robustness of CARD and
result in a substantial improvement in numerical performance.

2.2 RNN, MLP AND CNN MODELS FOR TIME SERIES FORECASTING

Besides transformers, other types of networks are also widely explored. For example, (Lai et al.,
2018; Lim et al., 2021; Salinas et al., 2020; Smyl, 2020; Wen et al., 2017; Rangapuram et al., 2018;
Zhou et al., 2022a; Gu et al., 2022) study the RNN/state-space models. In particular, (Smyl, 2020)
considered equipping RNN with exponential smooth and, for the first time, beat the statistical models
in forecasting tasks (Makridakis et al., 2018). (Chen et al., 2023; Oreshkin et al., 2020; Challu et al.,
2022; Li et al., 2023; Zeng et al., 2023; Das et al., 2023; Zhang et al., 2022) explored MLP-type
structures for time series forecasting. CNN models (e.g., Wu et al. 2023b; Wen et al. 2017; Sen
et al. 2019) use the temporal convolution layer to extract the subsequence-level information. When
dealing with multivariate forecasting tasks, the smoothness in adjacent covariates is assumed or the
channel-independent strategy is used.

3 MODEL ARCHITECTURE

The illustration of the architecture of CARD is shown in Figure 1. Let at ∈ RC be the observation of
time series at time t with channel C ≥ 1. Our objective is to use L recent historical data points (e.g.,
at−L+1, ...,at) to forecast the future T steps observations. (e.g., at+1, ...,at+T ), where L, T ≥ 1.

3.1 TOKENIZATION

We adopt the idea of patching (e.g., Nie et al. 2023; Zhang & Yan 2023) to convert the input time
series into a token tensor. Let’s denote A = [at−L+1, ...,at] ∈ RC×L as the input data matrix, S
and P as stride and patch length respectively. We unfold the matrix A into the raw token tensor
X̃ ∈ RC×N×P , where N = ⌊L−P

S + 1⌋. Here, we convert the time series into several P length
segments, and each raw token maintains part of the sequence-level semantic information, which
makes the attention scheme more efficient compared to the vanilla point-wise counterpart.

We then use a dense MLP layer F1 : P → d, a extra token T0 ∈ RC×d and positional embedding
E ∈ RC×N×d to generate the token matrix as follows:

X = [T0, F1(X̃) +E], (1)
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where X ∈ RC×(N+1)×d and d is the hidden dimension. Compared to (Nie et al., 2023) and (Zhang
& Yan, 2023), our token construction introduces a extra T0 token. The T0 token is an analogy to
the static covariate encoder in (Lim et al., 2021) and allows us to have a place to inject the features
summarized the longer history of the series.

We consider generating Q, K and V via linear projection of the token tensor X:

Q = Fq(X), K = Fk(X), V = Fv(X), (2)

where Q,K,V ∈ RC×(N+1)×d and Fq, Fk, Fv are MLP layers.

We next convert Q,K,V into {Qi},{Ki},{Vi} where Qi,Ki,Vi ∈ R
C×(N+1)×dhead , i =

1, 2, ...,H . H and dhead are number of heads and head dimension respectively. For each sam-
ple, the total number of tokens is C(N + 1). In order to fully utilize all cross-channel information,
the ideal attention should be required O(C2(N + 1)2) computation cost, which can be very time-
consuming and potentially can lead to easily over-fitting when training sample size is limited. In this
paper, we consider paying attention alternately over each dimension instead.

3.2 CARD ATTENTIONS OVER TOKENS

When make attention over tokens, we slice the Qi, Ki and Vi on channel dimension into {Qc:
i },

{Kc:
i } and {V c:

i } with Qc:
i ,K

c:
i , V

c:
i ∈ R(N+1)×dhead and c = 1, 2, ..., C. Besides the standard

attention in tokens, we also introduce an extra attention structure in hidden dimensions that helps
capture the local information within each patch. The attention in both tokens and hidden dimensions
is computed as follows:

Ac:
i1 = softmax

(
1√
d
· EMA(Qc:

i ) (EMA(Kc:
i ))

⊤
)

(3)

Ac:
i2 = softmax

(
1√
N

· (Qc:
i )

⊤Kc:
i

)
, (4)

where Ac:
i1 ∈ R

(N+1)×(N+1), Ac:
i2 ∈ R

dhead×dhead and EMA denotes the Exponential Moving
Average1.

By applying EMA on Qc:
i and Kc:

i , each query token will be able to gain higher attention scores on
more key tokens and thus the output becomes more robust. Similar techniques are also explored in
(Ma et al., 2023) and (Woo et al., 2022). Different from those in the literature, we find that using a
fixed EMA parameter that remains the same for all dimensions is enough to stabilize the training
process. Thus, our EMA doesn’t contain learnable parameters.

The outputs are computed as:

Oc:
i1 = Ac:

i1V
c
i , Oc:

i2 = V c:
i Ac:

i2. (5)

We next apply the proposed token blend module to merge heads and generate tokens capturing multi-
scale knowledge and the detailed discussions are deferred to section 3.4. The batch normalization
(Ioffe & Szegedy, 2015) to Oc:

i1 and Oc:
i2 is then used to adjust the outputs’ scale. Finally, the residual

connection structure is used to generate the final output of the attention block.

The total number of tokens is on the order of O(L/S) per channel and the complexity in attention
along tokens is upper bounded by O(C ·d2 ·L2/S2), which is smaller than O(C ·d2 ·L2) complexity of
the vanilla point-wise token construction. In practice, one can use efficient attention implementation
(e.g., FlashAttention Dao et al. 2022) to further obtain nearly linear computational performance.

3.3 CARD ATTENTION OVER CHANNELS

We first compute {Qi}, {Ki} and {Vi} via Equation (2) and then slice them over token dimension
into {Q:n

i }, {K :n
i } and {V :n

i } with Q:n
i ,K :n

i , V :n
i ∈ RC×dhead and n = 1, 2, ..., N + 1. Due to the

1Formally, an EMA operator recursively calculates the output sequence {yi} w.r.t. input sequence {xi}
as yt = αxt + (1 − α)yt−1, where α ∈ (0, 1) is the EMA parameter representing the degree of weighting
decrease.
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Figure 2: Architecture for the CARD attention block.

potential high-dimensionality issue of covariates, the vanilla method may suffer from computation
overhead and overfitting. Take traffic dataset (PeMS) as an example, this dataset contains 862
covariates. When setting the lookback window size as 96, the attention over channels will require
at least 80 times the computational cost of attention over tokens. The full attention will also merge
a lot of noise patterns into the output token and lead to spurious correlation in the final forecasting
results. In this paper, we consider using the dynamic projection technique (Zhu et al., 2021) to get
“summarized" tokens to the K :n

i and V :n
i for n-th token dimension as shown in Figure 2. We first use

MLP layers Fpk and Fpv to project head dimensions from dhead to some fixed r with r ≪ C, and
then we use softmax to normalized the projected tensors P :n

k and P :n
v as follow:

P :n
ki = softmax(Fpk(K

:n
i )), P :n

vi = softmax(Fpv(V
:n
i )), (6)

where P :n
ki , P

:n
vi ∈ RC×r. Next the “summarized" tokens are computed by

K̃ :n
i = (P :n

ki )
⊤K :n

i , Ṽ :n
i = (P :n

vi )
⊤V :n

i , (7)

where K̃ :n
i , Ṽ :n

i ∈ Rr×dhead .

Finally, the outputs are generated by applying Q:n
i , K̃ :n

i and Ṽ :n to equations from (3) to (5) for
n = 1, 2, ..., N + 1. The upper bound of total computational cost is reduced to O(L/S · C · r · d2)
which is smaller than O(L/S · C2 · d2) cost of the standard attention.

3.4 TOKEN BLEND MODULE

Multi-scale knowledge plays a crucial role in forecasting tasks and has significantly enhanced the
performance of diverse models. (e.g., Xu et al., 2021; Zeng et al., 2023; Wang et al., 2023b; Zhou
et al., 2022b; Zhang & Yan, 2023). Most of these works initially decompose the time series into
seasonal and trend components and then employ separate structures to process the seasonal and
trend components individually. However, this approach, despite its simplicity, leads to higher model
complexity, which in turn increases computation cost and makes it susceptible to overfitting issue.

In this work, we consider using a specially designed token blend mechanism to utilize the multi-
scaling structural knowledge without additional computation costs. The token blend module replaces
the standard token reconstruction after the multi-head attention by merging the adjacent token within
the same head to produce the token for the next stage. The output token tensor O from the multi-head
attention has 4-D with shape C ×H × (N +1)× dhead. The token blend module will first merge the
second and third dimensions and reshape O into 3-D tensor with shape C ×H(N + 1)× dhead. We
then decouple the second dimension into three dimensions, i.e., H(N + 1) → h1 × h2 × h3 where
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Figure 3: Illustration example of token blend block in CARD.

h1 = Hh3, h2 = N +1 and h3 ≥ 1. The final output O uses h3 × h1 × dhead to construct the token
dimension. Here we call h3 as blend size. When h3 = 1, the aforementioned operations generate the
same outputs in the standard transformer. When h3 ≥ 2, the outputs will first combine the adjacent
token within the same head, which would create the token that represents the knowledge over a larger
range, i.e., lower resolution. With increasing the blend size h3, more tokens within the same heads
are merged and the attention module in the next stage could have more chance to capture long-term
knowledge. An illustration example is shown in Figure 3. By consolidating temporally adjacent
tokens within the same head, the resulting new tokens encompass knowledge over an extended time
period. This enables more effective exploration of low-resolution knowledge by increasing attention
on these tokens. Our token blend module is also different from the hierarchical adjacent tokens
merging procedure in (Zhang & Yan, 2023). First, (Zhang & Yan, 2023) merges at the token level, the
output token sequence at the coarse level has higher hidden dimensions and shorter sequence lengths.
We consider merging at the head level instead which maintains the same output token sequence
shape. Second, the merging size in (Zhang & Yan, 2023) is fixed as 2, while we allow a more flexible
configuration. As a result, we achieve an implicit structure that enhances the extraction of multi-scale
information without the need for an additional explicit signal disentanglement process.

4 SIGNAL DECAY-BASED LOSS FUNCTION

In this section, we discuss our loss function design. In literature, the Mean Squared Error (MSE)
loss is commonly used to measure the discrepancy between the forecasting results and the ground
truth observations. Let ât+1(A), ...., ât+L(A) and at+1(A), ....,at+L(A) be the predictions and
real obversations from time t+ 1 to t+ L given historical information A. The overall objective loss
becomes:

min EA

[
1

L

L∑
l=1

∥ât+l(A)− at+l(A)∥22

]
. (8)

One drawback of plain MSE loss for forecasting tasks is that the different time steps’ errors are
equally weighted. In real practice, the correlation of historical information to far-future observations
is usually smaller than that to near-future observations, implying that far-future observations have
higher variance. Therefore, the near-future loss would contribute more to generalization improvement
than the far-future loss. To see this, we assume that our time series follows the first-order Markov
process, i.e., at+1 ∼ N (G(at), σ

2I), where G is the smooth transition function with Lipschitz
constant 1, σ > 0 and t = 1, 2, .... Then, we have

var(at+1) = var(G(at)) + σ2I ⪯ var(at) + σ2I, (9)
where var(a) denote the covariance matrix of a. By recursively using Equation (9) from t+ L to t
and for all l ∈ [t, t+ L], we have

var(at+l) ⪯ lσ2I + var(at). (10)

When at is already observed, we have var(at) = 0 and Equation (10) implies var(at+l) ⪯ lσ2I . If
we use negative log-likelihood estimation over Gaussian distribution, we come up with the following
approximated loss function:

min EA

[
1

2

L∑
l=1

(ât+l(A)− at+l(A))
⊤
var (at+l)

−1
(ât+l(A)− at+l(A))

]

≥EA

[
1

2

L∑
l=1

∥ât+l(A)− at+l(A)∥22
lσ2

]
∝ EA

[
1

L

L∑
l=1

l−1∥ât+l(A)− at+l(A)∥22

]
. (11)
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Compared Equation (11) to Equation (8), the far-future loss is scaled down to address the high
variance. Since Mean Absolute Error (MAE) is more resilient to outliers than square error, we
propose to use the loss function in the following form:

minEA

[
1

L

L∑
l=1

l−1/2 ∥ât+l(A)− at+l(A)∥1

]
, (12)

where Equation (12) can be derived via Equation (11) with replacing the Gaussian distribution by
Laplace distribution.

5 EXPERIMENTS

5.1 LONG TERM FORECASTING

Datasets We conducted experiments on seven real-world benchmarks, including four Electricity
Transform Temperature (ETT) datasets (Zhou et al., 2021) comprising of two hourly and two 15-
minute datasets, one 10-minute weather forecasting dataset (Wetterstation), one hourly electricity
consumption dataset (UCI), and one hourly traffic road occupancy rate dataset (PeMS).

Baselines and Experimental Settings We use the following recent popular models as baselines: FED-
former (Zhou et al., 2022b), ETSformer (Woo et al., 2022), FilM (Zhou et al., 2022a), LightTS (Zhang
et al., 2022), MICN (Wang et al., 2023b), TimesNet (Wu et al., 2023b), Dlinear (Zeng et al., 2023),
Crossformer (Zhang & Yan, 2023), and PatchTST (Nie et al., 2023). We use the experimental settings
in (Wu et al., 2023b) applying reversible instance normalization (RevIN, Kim et al., 2022) to handle
data heterogeneity and keeping the lookback length as 96 for fair comparisons. Each setting is
repeated 10 times and average MSE/MAE results are reported. The full results are summarized in
Table 7 in the Appendix. More details on model configurations, model code, and comparison with
other early baselines can be found in Appendix D and Appendix B, respectively.

Results The results are summarized in Table 1. Regarding the average performance across four
different output horizons, CARD gains the best performance in 6 out of 7 and 7 out of 7 in MSE and
MAE, respectively. In single-length experiments, CARD achieves the best results in 82% cases in
MSE metric and 100% cases in MAE metric.

For problems with complex covariate structures, the proposed CARD method beats the benchmarks
by significant margins. For instance, in Electricity (321 covariates), CARD consistently outperforms
the second-best algorithm by reducing MSE/MAE by more than 9.0% on average in each forecasting
horizon experiment. By leveraging 21 covariates for Weather and 862 covariates for Traffic, we
achieve a large reduction in MSE/MAE of over 7.5%. This highlights CARD’s exceptional capability
to incorporate extensive covariate information for improved prediction outcomes. Furthermore,
Crossformer (Zhang & Yan, 2023) employs a comparable concept of integrating cross-channel data
to enhance predictive accuracy. Remarkably, CARD significantly reduces the MSE/MAE by over
20% on 6 benchmark datasets compared to Crossformer, which shows our attention design is much
more effective in utilizing cross-channel information. It’s also important to note that while Dlinear
shows strong performance in those tasks using an MLP-based model, CARD still consistently reduces
MSE/MAE by 5% to 27.5% across all benchmark datasets.

Recent works, such as Nie et al. 2023; Zeng et al. 2023; Zhang & Yan 2023) use the input length
other than 96 and have shown performance improvement. In our study, we also report the numerical
performance of CARD with a varying lookback length in Appendix G, and CARD consistently
outperforms all baseline models when prolonging input sequence as well, demonstrating significantly
lower MSE errors across all benchmark datasets.

5.2 RECONSTRUCTION BASED ANOMALY DETECTION

Reconstruction based anomaly detection can be viewed as a task to predict the input itself. In previous
works, the reconstruction is a classical task for unsupervised point-wise representation learning,
where the reconstruction error is a natural anomaly criterion. We follow the experimental settings
in (Wu et al., 2023a) and consider five widely used anomaly detection benchmarks. The results are
summarized in Table 2. CARD outperforms the existing best result by 3% in F1 score on average. In
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Table 1: Long-term forecasting tasks. The lookback length is set as 96. All models are evaluated on 4 different
prediction horizons {96, 192, 336, 720} and average MSE/MAE results of ten repeats are reported. The best
model is in boldface and the second best is underlined.

Models CARD PatchTST MICN TimesNet Crossformer Dlinear LightTS FilM ETSformer FEDformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.383 0.383 0.395 0.408 0.387 0.411 0.400 0.406 0.435 0.417 0.403 0.407 0.435 0.437 0.408 0.399 0.429 0.425 0.448 0.452

ETTm2 0.271 0.316 0.283 0.327 0.284 0.340 0.291 0.333 0.609 0.521 0.350 0.401 0.409 0.436 0.287 0.328 0.292 0.342 0.305 0.349

ETTh1 0.443 0.429 0.455 0.444 0.440 0.462 0.458 0.450 0.486 0.481 0.456 0.452 0.491 0.479 0.461 0.456 0.452 0.510 0.440 0.460

ETTh2 0.367 0.390 0.384 0.406 0.402 0.437 0.414 0.427 0.966 0.690 0.559 0.515 0.602 0.543 0.384 0.406 0.439 0.452 0.437 0.449

Weather 0.240 0.262 0.257 0.280 0.243 0.299 0.259 0.287 0.250 0.310 0.265 0.317 0.261 0.312 0.269 0.339 0.271 0.334 0.309 0.360

Electricity 0.169 0.258 0.216 0.318 0.187 0.295 0.192 0.295 0.273 0.363 0.212 0.300 0.229 0.329 0.223 0.303 0.208 0.323 0.214 0.327

Traffic 0.450 0.278 0.488 0.327 0.542 0.316 0.620 0.336 0.593 0.332 0.625 0.383 0.622 0.392 0.639 0.389 0.621 0.396 0.610 0.376

particular, CARD achieves 14.2% significant improvement in SMAP task. Those facts imply CARD
could generate meaningful representation on time series.

Table 2: Anomaly detection. F1 scores are reported. The best model is in boldface and the second best is
underlined.

Models CARD PatchTST MICN TimesNet Crossformer ETSformer LightTS Dlinear FEDformer Stationary Autoformer Informer

SMD 0.872 0.866 0.800 0.858 0.778 0.831 0.825 0.771 0.851 0.847 0.851 0.855

MSL 0.817 0.823 0.816 0.852 0.820 0.850 0.790 0.849 0.786 0.775 0.791 0.841

SMAP 0.857 0.695 0.656 0.715 0.674 0.695 0.692 0.693 0.708 0.711 0.711 0.699

SWaT 0.945 0.909 0.875 0.921 0.886 0.849 0.933 0.875 0.932 0.799 0.927 0.814

PSM 0.957 0.951 0.933 0.975 0.921 0.918 0.972 0.936 0.972 0.973 0.933 0.771

Avg 0.890 0.849 0.816 0.864 0.816 0.829 0.842 0.825 0.849 0.821 0.843 0.789

5.3 BOOSTING EFFECT OF SIGNAL DECAY-BASED LOSS FUNCTION

In this section, we present the boosting effect of our proposed signal decay-based loss function.
In contrast to the widely used MSE loss function employed in previous training of long-term
sequence forecasting models, our approach yields a reduction in MSE ranging from 3% to 12%
across a spectrum of recent state-of-the-art baseline models, including Transformer, CNN, and MLP
architectures as shown in Table 3. Our proposed loss function specifically empowers FEDformer and
Autoformer, two algorithms that heavily rely on frequency domain information. This aligns with our
signal decay paradigm, which acknowledges that frequency information carries variance/noise across
time horizons. Our novel loss function can be considered a preferred choice for this task, owing to
its superior performance compared to the plain MSE loss function. More detailed discussions are
deferred to Section J in Appendix.

Table 3: Influence for signal decay-based loss function. The lookback length is set as 96. All models are
evaluated on 4 different predication lengths {96, 192, 336, 720}. The average results are reported, and the full
table is deferred to Table 19 in the Appendix. The model name with * uses the robust loss proposed in this work.
The better results are in boldface.

Models CARD CARD* MICN-regre MICN-regre* TimesNet TimesNet* FEDformer FEDformer* Autoformer Autoformer*

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.390 0.399 0.383 0.383 0.392 0.414 0.383 0.393 0.400 0.406 0.392 0.395 0.448 0.452 0.413 0.415 0.588 0.528 0.523 0.475
ETTh1 0.449 0.440 0.443 0.425 0.559 0.535 0.527 0.499 0.458 0.450 0.449 0.438 0.440 0.460 0.436 0.442 0.496 0.487 0.514 0.481

5.4 INFLUENCE OF INPUT SEQUENCE LENGTH

Previous research (Zeng et al., 2023; Wen et al., 2023b) has highlighted a critical issue with the
existing long-term forecasting transformers. They struggle to leverage extended input sequences,
resulting in a decline in performance as the input length increases. We assert that this is not an
inherent drawback of transformers, and CARD demonstrates robustness in handling longer and
noisier historical sequence inputs, as evidenced by an 8.6% and 8.9% reduction in MSE achieved in
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Table 4: Influence of prolonging input sequence. The lookback length is set as 96,192,336,720.
Input Length 96 192 336 512 720

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.383 0.384 0.363 0.372 0.352 0.367 0.402 0.420 0.349 0.368
ETTh1 0.442 0.429 0.429 0.425 0.415 0.422 0.352 0.371 0.405 0.421

the ETTh1 and ETTm1 datasets, respectively, when input lengths were extended from 96 to 720, as
shown in Table 4.

5.5 INFLUENCE OF TOKEN BLEND SIZE

In this section, we test the effect of the token blend module by varying blend size. The results are
summarized in Figure 4. When setting the blend size to 1, the token blend module reduces to the
standard token mix method in Transformer literature and we observe test errors in both MSE/MAE
increase. While using a larger blend size, the multi-scale information is utilized and the errors
are reduced in turn. However, in some cases, further increasing the blend size may damage the
performance. we conjecture it is due to the nature of the dataset that only some scales of knowledge
are useful for forecasting. A higher blend size may oversmooth that knowledge.

Figure 4: Experiments on token blend size. The blend size is varying in 1, 2, 4, 8, and 16.

5.6 OTHER EXPERIMENTS

We conduct a series of experiments, using both ablation and architecture variants, to evaluate each
component in our proposed model. Our findings reveal that the channel branch made the greatest
contribution to the reduction of MSE errors, as shown in Appendix Q.2. Furthermore, our experiments
on sequential/parallel attention mixing design, detailed in Appendix Q.1, show that our model design
is the preferred option. Visual aids and attention maps can be found in Appendix A and O, which
effectively demonstrate our accurate predictions and utilization of covariate information. Another
noteworthy experiment, concerning the impact of training data size, is presented in Appendix R.2.
This study revealed that using 70% of training samples can significantly improve performance for
half datasets affected by distribution shifts. Besides, Appendix L presents an error bar statistics table
that demonstrates the robustness of CARD.More forecasting experiments on M4 (Makridakis et al.,
2018) other datasets are presented in Appendix H and I.

6 CONCLUSION AND FUTURE WORKS

In this paper, we present a novel Transformer model, CARD, for time series forecasting. CARD is a
channel-dependent model that aligns information across different variables and hidden dimensions
effectively. CARD improves traditional transformers by applying attention to both tokens and
channels. The new design of the attention mechanism helps explore local information within each
token, making it more effective for time series forecasting. We also propose a token blend module
to utilize the multi-scale information knowledge in time series. Furthermore, we introduce a robust
loss function to alleviate the issue of overfitting noises, an important issue in time series analysis. As
demonstrated through various numerical benchmarks, our proposed model outperforms state-of-the-
art models.
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A VISUALIZATION

Figure 5: Sample prediction graph for ETTh1 long-term forecasting task

Figure 6: Sample prediction graph for ETTm1 long-term forecasting task
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Figure 7: Sample prediction graph for Weather long-term forecasting task

Figure 8: Sample prediction graph for M4 short-term forecasting task
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B CARD’S ARCHITECTURE AND KEY COMPONENT’S SOURCE CODE

Sample code of CARD

class CARD(nn.Module):
def __init__(self, config, *args, **kwargs):

super().__init__()
self.patch_len = config.patch_len
self.stride = config.stride
self.d_model = config.d_model
self.task_name = config.task_name
patch_num = int((config.seq_len - self.patch_len)/self.stride + 1)
self.patch_num = patch_num
self.W_pos_embed = nn.Parameter(torch.randn(patch_num,config.d_model)*1e-2)
self.total_token_number = self.patch_num + 1
config.total_token_number = self.total_token_number

# embeding layer related
self.W_input_projection = nn.Linear(self.patch_len, config.d_model)
self.input_dropout = nn.Dropout(config.dropout)
self.cls = nn.Parameter(torch.randn(1,config.d_model)*1e-2)

# mlp decoder
self.W_out = nn.Linear((patch_num+1+self.model_token_number)*config.d_model, config.

pred_len)

# dual attention encoder related
self.Attentions_over_token = nn.ModuleList([CARD_Attention(config) for i in range(

config.e_layers)])
self.Attentions_over_channel = nn.ModuleList([CARD_Attention(config,over_channel =

True) for i in range(config.e_layers)])
self.Attentions_mlp = nn.ModuleList([nn.Linear(config.d_model,config.d_model) for i in

range(config.e_layers)])
self.Attentions_dropout = nn.ModuleList([nn.Dropout(config.dropout) for i in range(

config.e_layers)])
self.Attentions_norm = nn.ModuleList([nn.Sequential(Transpose(1,2), nn.BatchNorm1d(

config.d_model,momentum = config.momentum), Transpose(1,2)) for i in range(config.
e_layers)])

def forward(self, z, *args, **kwargs):

b,c,s = z.shape

# inputs nomralization
z_mean = torch.mean(z,dim = (-1),keepdims = True)
z_std = torch.std(z,dim = (-1),keepdims = True)
z = (z - z_mean)/(z_std + 1e-4)

# tokenization
zcube = z.unfold(dimension=-1, size=self.patch_len, step=self.stride)
z_embed = self.input_dropout(self.W_input_projection(zcube))+ self.W_pos_embed
cls_token = self.cls.repeat(z_embed.shape[0],z_embed.shape[1],1,1)
z_embed = torch.cat((cls_token,z_embed),dim = -2)

# dual attention encoder
inputs = z_embed
b,c,t,h = inputs.shape
for a_2,a_1,mlp,drop,norm in zip(self.Attentions_over_token, self.

Attentions_over_channel,self.Attentions_mlp ,self.Attentions_dropout,self.
Attentions_norm ):

output_1 = a_1(inputs.permute(0,2,1,3)).permute(0,2,1,3)
output_2 = a_2(output_1)
outputs = drop(mlp(output_1+output_2))+inputs
outputs = norm(outputs.reshape(b*c,t,-1)).reshape(b,c,t,-1)
inputs = outputs

# mlp decoder
z_out = self.W_out(outputs.reshape(b,c,-1))
# denomrlaization
z = z_out *(z_std+1e-4) + z_mean
return z
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Sample code of CARD Smooth Attention

class CARD_Attention(nn.Module):
def __init__(self,config, over_channel = False, *args, **kwargs):

super().__init__()
self.over_channel = over_channel
self.n_heads = config.n_heads
self.merge_size = config.merge_size
self.c_in = config.enc_in
# attention related
self.qkv = nn.Linear(config.d_model, config.d_model * 3, bias=True)
self.attn_dropout = nn.Dropout(config.dropout)
self.head_dim = config.d_model // config.n_heads
self.dropout_mlp = nn.Dropout(config.dropout)
self.mlp = nn.Linear( config.d_model, config.d_model)
self.norm_post1 = nn.Sequential(Transpose(1,2), nn.BatchNorm1d(config.d_model,momentum

= config.momentum), Transpose(1,2))
self.norm_post2 = nn.Sequential(Transpose(1,2), nn.BatchNorm1d(config.d_model,momentum

= config.momentum), Transpose(1,2))
self.norm_attn = nn.Sequential(Transpose(1,2), nn.BatchNorm1d(config.d_model,momentum

= config.momentum), Transpose(1,2))
self.ff_1 = nn.Sequential(nn.Linear(config.d_model, config.d_ff, bias=True),nn.GELU(),

nn.Dropout(config.dropout),
nn.Linear(config.d_ff, config.d_model, bias=True))

self.ff_2= nn.Sequential(nn.Linear(config.d_model, config.d_ff, bias=True),nn.GELU(),
nn.Dropout(config.dropout),

nn.Linear(config.d_ff, config.d_model, bias=True))
# dynamic projection related
self.dp_rank = config.dp_rank
self.dp_k = nn.Linear(self.head_dim, self.dp_rank)
self.dp_v = nn.Linear(self.head_dim, self.dp_rank)
# EMA related
ema_size = max(config.enc_in,config.total_token_number,config.dp_rank)
ema_matrix = torch.zeros((ema_size,ema_size))
alpha = config.alpha
ema_matrix[0][0] = 1
for i in range(1,config.total_token_number):

for j in range(i):
ema_matrix[i][j] = ema_matrix[i-1][j]*(1-alpha)

ema_matrix[i][i] = alpha
self.register_buffer(’ema_matrix’,ema_matrix)

def ema(self,src):
return torch.einsum(’bnhad,ga ->bnhgd’,src,self.ema_matrix[:src.shape[-2],:src.shape

[-2]])
def dynamic_projection(self,src,mlp):

src_dp = mlp(src)
src_dp = F.softmax(src_dp,dim = -1)
src_dp = torch.einsum(’bnhef,bnhec -> bnhcf’,src,src_dp)
return src_dp

def forward(self, src, *args,**kwargs):
# construct Q,K,V
B,nvars, H, C, = src.shape
qkv = self.qkv(src).reshape(B,nvars, H, 3, self.n_heads, C // self.n_heads).permute(3,

0, 1,4, 2, 5)
q, k, v = qkv[0], qkv[1], qkv[2]
if not self.over_channel:

attn_score_along_token = torch.einsum(’bnhed,bnhfd->bnhef’, self.ema(q), self.ema(k
))/ self.head_dim ** -0.5

attn_along_token = self.attn_dropout(F.softmax(attn_score_along_token, dim=-1) )
output_along_token = torch.einsum(’bnhef,bnhfd->bnhed’, attn_along_token, v)

else:
# dynamic project V and K
v_dp,k_dp = self.dynamic_projection(v,self.dp_v) , self.dynamic_projection(k,self.

dp_k)
attn_score_along_token = torch.einsum(’bnhed,bnhfd->bnhef’, self.ema(q), self.ema(

k_dp))/ self.head_dim ** -0.5
attn_along_token = self.attn_dropout(F.softmax(attn_score_along_token, dim=-1) )
output_along_token = torch.einsum(’bnhef,bnhfd->bnhed’, attn_along_token, v_dp)

# attention over hidden dimensions
attn_score_along_hidden = torch.einsum(’bnhae,bnhaf->bnhef’, q,k)/ q.shape[-2] ** -0.5
attn_along_hidden = self.attn_dropout(F.softmax(attn_score_along_hidden, dim=-1) )
output_along_hidden = torch.einsum(’bnhef,bnhaf->bnhae’, attn_along_hidden, v)
# token blend
output1 = rearrange(output_along_token.reshape(B*nvars,-1,self.head_dim),

’bn (hl1 hl2 hl3) d -> bn hl2 (hl3 hl1) d’,
hl1 = self.n_heads//self.merge_size, hl2 = output_along_token.shape[-2]

,hl3 = self.merge_size
).reshape(B*nvars,-1,self.head_dim*self.n_heads)

output2 = rearrange(output_along_hidden.reshape(B*nvars,-1,self.head_dim),
’bn (hl1 hl2 hl3) d -> bn hl2 (hl3 hl1) d’,
hl1 = self.n_heads//self.merge_size, hl2 = output_along_token.shape[-2]

,hl3 = self.merge_size
).reshape(B*nvars,-1,self.head_dim*self.n_heads)

# post_norm
output1 = self.norm_post1(output1).reshape(B,nvars, -1, self.n_heads * self.head_dim)
output2 = self.norm_post2(output2).reshape(B,nvars, -1, self.n_heads * self.head_dim)
# add & norm
src2 = self.ff_1(output1)+self.ff_2(output2)
src = src + src2
src = src.reshape(B*nvars, -1, self.n_heads * self.head_dim)
src = self.norm_attn(src)
src = src.reshape(B,nvars, -1, self.n_heads * self.head_dim)
return src 17
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C DATASETS DETAILS FOR LONG TERM FORECASTING

Datasets of Long-term Forecasting Table 5 summarizes details of statistics of long-term forecast-
ing datasETSformer

Table 5: Dataset details in long-term forecasting.

Dataset Length Dimension Frequency

ETTm1 69680 7 15 min
ETTm2 69680 7 15 min
ETTh1 17420 7 1 hour
ETTh2 17420 7 1 hour
Weather 52696 21 10 min
Electricity 26304 321 1 hour
Traffic 17544 862 1 hour

D MODEL CONFIGURATIONS FOR LONG TERM FORECASTING

For all experiments, we use reversible instance normalization (RevIN, Kim et al., 2022) to handle data
heterogeneity. As suggested in (Olivares et al., 2023) and (Salinas et al., 2020), other standardization
methods are also useful when data enjoys certain patterns. We would like to defer the detailed analysis
of them into future study. Moreover, the Adam optimizer (Kingma & Ba, 2017) with cosine learning
rate decay after linear warm-up is used as training scheme. We train the proposed models with at
most 8 NVIDIA Tesla V100 SXM2-16-GB GPUs. For all experiments, we fixed the number of
encoder blocks, head dimensions and dynamic projection dimensions being 2, 8, and 8, respectively.
The training epoch is set as 100. The default batch size is 128 and is adjusted due to GPU memory
restriction. Other details of configurations are summarized in Table 6.

Table 6: Model configurations of CARD.
Dataset patch stride model dim FFN dim dropout blend size learning rate warm-up batch size

ETTm1 16 8 16 32 0.3 2 1e-4 0 128
ETTm2 16 8 16 32 0.3 2 1e-4 0 128
ETTh1 16 8 16 32 0.3 2 1e-4 0 128
ETTh2 16 8 16 32 0.3 2 1e-4 0 128
Weather 16 8 128 256 0.2 16 1e-4 0 128
Electricity 16 8 128 256 0.2 16 1e-4 20 32
Traffic 16 8 128 256 0.2 16 1e-4 20 24

E EXTENDED NUMERICAL RESULTS OF CARD IN LONG-TERM FORECASTING
WITH 96 INPUT LENGTH

We use the following recent popular models as baselines: FEDformer (Zhou et al., 2022b), ETS-
former (Woo et al., 2022), FilM (Zhou et al., 2022a), LightTS (Zhang et al., 2022), MICN (Wang
et al., 2023b), TimesNet (Wu et al., 2023b), Dlinear (Zeng et al., 2023), Crossformer (Zhang &
Yan, 2023), and PatchTST (Nie et al., 2023). We use the experimental settings in (Wu et al., 2023b)
applying reversible instance normalization (RevIN, Kim et al., 2022) to handle data heterogeneity
and keeping the lookback length as 96 for fair comparisons. Each setting is repeated 10 times and
average MSE/MAE results are reported.

In this section, we report the full results of long-term forecasting experiments in section 5.1. The
MSE/MAE results are summarized in Table 7 and standard errors are reported in Table 8. CARD
achieves 23/28 best performance in MSE and all the best results in MAE. It implies CARD can
improve the baselines in a broad range of forecasting horizons. The standard deviation of CARD
is on the order of 1e-3, which indicates our proposed framework is very robust. More baselines
such as autoformer (Xu et al., 2021), nonstationary transformer (Liu et al., 2022b), Pyraformer (Liu
et al., 2022a), LogTrans (Li et al., 2019b) and Informer (Zhou et al., 2021) can be found in Table 2
and Table 13 of (Wu et al., 2023b). CARD consistently outperforms those models in all forecasting
horizons and we omit them for brevity.

18



Published as a conference paper at ICLR 2024

Table 7: Long-term forecasting tasks. The lookback length is set as 96. All models are evaluated on 4 different
prediction horizons {96, 192, 336, 720}. The best model is in boldface and the second best is underlined. For
MICN, we report the better result between MICN-regre and MICN-mean.

Models CARD PatchTST MICN TimesNet Crossformer Dlinear LightTS FilM ETSformer FEDformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
E

T
T

m
1

96 0.316 0.347 0.342 0.378 0.316 0.364 0.338 0.375 0.366 0.400 0.345 0.372 0.374 0.400 0.348 0.367 0.375 0.398 0.764 0.416
192 0.363 0.370 0.372 0.393 0.363 0.390 0.371 0.387 0.396 0.414 0.380 0.389 0.400 0.407 0.387 0.385 0.408 0.410 0.426 0.441
336 0.392 0.390 0.402 0.413 0.408 0.426 0.410 0.411 0.439 0.443 0.413 0.413 0.438 0.438 0.418 0.405 0.435 0.428 0.445 0.459
720 0.458 0.425 0.462 0.449 0.459 0.464 0.478 0.450 0.540 0.509 0.474 0453 0.527 0.502 0.479 0.440 0.499 0.462 0.543 0.490
avg 0.383 0.384 0.395 0.408 0.387 0.411 0.400 0.406 0.435 0.417 0.403 0.407 0.435 0.437 0.408 0.399 0.429 0.425 0.448 0.452

E
T

T
m

2

96 0.169 0.248 0.176 0.258 0.179 0.275 0.187 0.267 0.273 0.346 0.193 0.292 0.209 0.308 0.183 0.266 0.189 0.280 0.203 0.287
192 0.234 0.292 0.244 0.304 0.262 0.326 0.249 0.309 0.350 0.421 0.284 0.362 0.311 0.382 0.247 0.305 0.253 0.319 0.269 0.328
336 0.294 0.339 0.304 0.342 0.305 0.353 0.321 0.351 0.474 0.505 0.369 0.427 0.442 0.466 0.309 0.343 0.314 0.357 0.325 0.366
720 0.390 0.388 0.408 0.403 0.389 0.407 0.497 0.403 1.347 0.812 0.554 0.522 0.675 0.587 0.407 0.398 0.414 0.413 0.421 0.415
avg 0.272 0.317 0.283 0.327 0.284 0.340 0.291 0.333 0.609 0.521 0.350 0.401 0.409 0.436 0.287 0.328 0.292 0.342 0.305 0.349

E
T

T
h1

96 0.383 0.391 0.426 0.426 0.398 0.427 0.384 0.402 0.391 0.417 0.386 0.400 0.424 0.432 0.388 0.401 0.494 0.479 0.376 0.419
192 0.435 0.420 0.469 0.452 0.430 0.453 0.436 0.429 0.449 0.452 0.437 0.432 0.475 0.462 0.443 0.439 0.538 0.504 0.420 0.448
336 0.479 0.442 0.506 0.473 0.440 0.460 0.491 0.469 0.510 0.489 0.481 0.459 0.518 0.521 0.488 0.466 0.574 0.521 0.459 0.465
720 0.471 0.461 0.504 0.495 0.491 0.509 0.521 0.500 0.594 0.567 0.519 0.516 0.547 0.533 0.525 0.519 0.562 0.535 0.506 0.507
avg 0.442 0.429 0.455 0.444 0.440 0.462 0.458 0.450 0.486 0.481 0.456 0.452 0.491 0.479 0.461 0.456 0.452 0.510 0.440 0.460

E
T

T
h2

96 0.281 0.330 0.292 0.342 0.299 0.364 0.340 0.374 0.641 0.549 0.333 0.387 0.397 0.437 0.296 0.344 0.340 0.391 0.358 0.397
192 0.363 0.381 0.387 0.400 0.422 0.441 0.402 0.414 0.896 0.656 0.477 0.476 0.520 0.504 0.389 0.402 0.430 0.439 0.429 0.439
336 0.411 0.418 0.426 0.434 0.447 0.474 0.452 0.452 0.936 0.690 0.594 0.541 0.626 0.559 0.418 0.430 0.485 0.497 0.496 0.487
720 0.416 0.431 0.430 0.446 0.442 0.467 0.462 0.468 1.390 0.863 0.831 0.657 0.863 0.672 0.433 0.448 0.500 0.497 0.463 0.474
avg 0.368 0.390 0.384 0.406 0.402 0.437 0.414 0.427 0.966 0.690 0.559 0.515 0.602 0.543 0.384 0.406 0.439 0.452 0.437 0.449

W
ea

th
er

96 0.150 0.188 0.176 0.218 0.161 0.229 0.172 0.220 0.164 0.232 0.196 0.255 0.182 0.242 0.193 0.234 0.237 0.312 0.217 0.296
192 0.202 0.238 0.223 0.259 0.220 0.281 0.219 0.261 0.211 0.276 0.237 0.296 0.227 0.287 0.236 0.269 0.237 0.213 0.276 0.336
336 0.260 0.282 0.277 0.297 0.278 0.331 0.280 0.306 0.269 0.327 0.283 0.335 0.282 0.334 0.288 0.304 0.298 0.353 0.339 0.380
720 0.343 0.353 0.353 0.347 0.311 0.356 0.365 0.359 0.355 0.404 0.345 0.381 0.352 0.386 0.358 0.350 0.352 0.388 0.403 0.428
avg 0.239 0.261 0.257 0.280 0.243 0.299 0.259 0.287 0.250 0.310 0.265 0.317 0.261 0.312 0.269 0.339 0.271 0.334 0.309 0.360

E
le

ct
ri

ci
ty

96 0.141 0.233 0.190 0.296 0.164 0.269 0.168 0.272 0.254 0.347 0.197 0.282 0.207 0.307 0.198 0.276 0.187 0.304 0.193 0.308
192 0.160 0.250 0.199 0.304 0.177 0.285 0.184 0.289 0.261 0.353 0.196 0.285 0.213 0.316 0.198 0.279 0.199 0.315 0.201 0.315
336 0.173 0.263 0.217 0.319 0.193 0.304 0.198 0.300 0.273 0.364 0.209 0.301 0.230 0.333 0.217 0.301 0.212 0.329 0.214 0.329
720 0.197 0.284 0.258 0.352 0.212 0.321 0.220 0.320 0.303 0.388 0.245 0.333 0.265 0.360 0.279 0.357 0.233 0.345 0.246 0.355
avg 0.168 0.258 0.216 0.318 0.187 0.295 0.192 0.295 0.273 0.363 0.212 0.300 0.229 0.329 0.223 0.303 0.208 0.323 0.214 0.327

Tr
af

fic

96 0.419 0.269 0.462 0.315 0.519 0.309 0.593 0.321 0.558 0.320 0.650 0.396 0.615 0.391 0.649 0.391 0.607 0.392 0.587 0.366
192 0.443 0.276 0.473 0.321 0.537 0.315 0.617 0.336 0.569 0.321 0.650 0.396 0.601 0.382 0.603 0.366 0.621 0.399 0.604 0.373
336 0.460 0.283 0.494 0.331 0.534 0.313 0.629 0.336 0.591 0.328 0.605 0.373 0.613 0.386 0.613 0.371 0.622 0.396 0.621 0.383
720 0.490 0.299 0.522 0.342 0.577 0.325 0.640 0.350 0.652 0.359 0.650 0.396 0.658 0.407 0.692 0.427 0.622 0.396 0.626 0.382
avg 0.453 0.282 0.488 0.327 0.542 0.316 0.620 0.336 0.593 0.332 0.625 0.383 0.622 0.392 0.639 0.389 0.621 0.396 0.610 0.376

Table 8: Standard error results of CARD in long-term forecasting with 96 input length. Each setting is averaged
over 10 random seeds.

Tasks ETTm1 ETTm2 ETTh1 ETTh2 Weather Electricity Traffic

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 2e-3 1e-3 1e-3 1e-3 2e-3 2e-3 2e-3 2e-3
192 1e-3 1e-3 2e-3 2e-3 1e-3 1e-3 2e-3 1e-3 3e-3 3e-3 3e-3 3e-3 2e-3 2e-3
336 1e-3 1e-3 3e-3 2e-3 2e-3 1e-3 2e-3 2e-3 4e-3 3e-3 3e-3 4e-3 4e-3 3e-3
720 2e-3 1e-3 5e-3 2e-3 5e-3 3e-3 4e-3 3e-3 6e-3 5e-3 5e-3 5e-3 6e-3 4e-3

Avg 1e-3 1e-3 3e-3 2e-3 2e-3 2e-3 3e-3 2e-3 4e-3 3e-3 4e-3 4e-3 3e-3 3e-3

F COMPARISON TO EARLY BASELINES

In this section, we report the comparison of CARD with early baselines including Nlinear, Linear, and
Repret in Zeng et al. (2023). We use the experiment settings in subsection 5.1 and fix the input length
as 96. The results are summarized in Table 9. Our model consistently outperforms those baselines.

G EXPERIMENTS ON ALL BENCHMARK DATASETS BY VARYING THE INPUT
LENGTH TO ACHIEVE THE BEST RESULTS REPORTED IN BASELINE
LITERATURE

We report the proposed model with 720 input length in Table 10. We follow the experimental settings
used in (Nie et al., 2023). For each benchmark, we report the best results in the literature or conduct
grid searches on input length to build strong baselines. In single-length experiments, CARD achieves
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Table 9: Comparision to early baselines in long-term forecasting tasks. All models are evaluated on 4 different
predication lengths {96, 192, 336, 720}. The best model is in boldface and the second best is underlined.

Models ETTm1 ETTm2 ETTh1 ETTh2 Weather Electricity Traffic

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

C
A

R
D

96 0.316 0.347 0.169 0.248 0.383 0.391 0.281 0.330 0.150 0.188 0.141 0.233 0.419 0.269
192 0.363 0.370 0.234 0.292 0.435 0.420 0.363 0.381 0.202 0.238 0.160 0.259 0.443 0.276
336 0.392 0.390 0.294 0.339 0.479 0.442 0.411 0.418 0.260 0.282 0.173 0.263 0.460 0.283
720 0.458 0.425 0.390 0.388 0.471 0.461 0.416 0.431 0.343 0.353 0.197 0.284 0.490 0.299
avg 0.383 0.384 0.272 0.317 0.442 0.429 0.368 0.390 0.239 0.353 0.168 0.258 0.453 0.282

N
lin

ea
r

96 0.368 0.385 0.187 0.271 0.556 0.494 0.326 0.373 0.203 0.242 0.216 0.300 0.663 0.404
192 0.406 0.405 0.413 0.415 0.596 0.518 0.414 0.422 0.248 0.277 0.217 0.303 0.615 0.382
336 0.439 0.426 0.312 0.348 0.621 0.531 0.453 0.453 0.300 0.314 0.231 0.318 0.623 0.384
720 0.500 0.460 0.413 0.404 0.636 0.554 0.459 0.467 0.373 0.361 0.274 0.350 0.661 0.404
avg 0.429 0.419 0.291 0.333 0.602 0.525 0.413 0.429 0.281 0.298 0.234 0.318 0.641 0.394

L
in

ea
r

96 0.381 0.398 0.218 0.317 0.592 0.516 0.433 0.462 0.203 0.262 0.210 0.300 0.658 0.406
192 0.413 0.415 0.305 0.379 0.602 0.529 0.570 0.534 0.242 0.299 0.209 0.301 0.607 0.380
336 0.439 0.433 0.404 0.442 0.633 0.550 0.670 0.585 0.287 0.336 0.221 0.315 0.614 0.383
720 0.496 0.467 0.569 0.532 0.673 0.595 0.922 0.700 0.350 0.385 0.256 0.346 0.655 0.404
avg 0.432 0.428 0.374 0.417 0.625 0.547 0.649 0.570 0.271 0.316 0.224 0.316 0.633 0.393

R
ep

ea
t

96 1.214 0.665 0.266 0.328 1.295 0.713 0.432 0.422 0.259 0.254 1.588 0.946 2.723 1.079
192 1.261 0.690 0.340 0.371 1.325 0.733 0.534 0.473 0.309 0.292 1.595 0.950 2.756 1.087
336 1.283 0.707 0.412 0.410 1.323 0.744 0.591 0.508 0.377 0.338 1.617 0.961 2.791 1.095
720 1.319 0.729 0.521 0.465 1.339 0.756 0.588 0.517 0.465 0.394 1.647 0.975 2.811 1.097
avg 1.269 0.698 0.385 0.394 1.321 0.737 0.536 0.480 0.353 0.320 1.612 0.958 2.770 1.090

the best results in 89% cases in MSE metric and 86% cases in MAE metric. In terms of average
performance, CARD reaches the best results in all seven datasets.

Table 10: Long-term forecasting tasks. All models are evaluated on 4 different predication lengths
{96, 192, 336, 720}. The best model is in boldface and the second best is underlined.

Models CARD PatchTST MICN TimesNet Crossformer Dlinear LightTS FilM ETSformer FEDformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.288 0.332 0.290 0.342 0.316 0.364 0.338 0.375 0.320 0.373 0.299 0.343 0.374 0.400 0.348 0.367 0.375 0.398 0.764 0.416
192 0.332 0.357 0.332 0.369 0.363 0.390 0.371 0.387 0.372 0.411 0.355 0.365 0.400 0.407 0.387 0.385 0.408 0.410 0.426 0.441
336 0.364 0.376 0.366 0.392 0.408 0.426 0.410 0.411 0.429 0.441 0.369 0.386 0.438 0.438 0.418 0.405 0.435 0.428 0.445 0.459
720 0.414 0.407 0.416 0.420 0.459 0.464 0.478 0.450 0.573 0.531 0.425 0.421 0.527 0.502 0.479 0.440 0.499 0.462 0.543 0.490
avg 0.350 0.368 0.351 0.381 0.387 0.411 0.400 0.406 0.424 0.439 0.362 0.379 0.435 0.437 0.408 0.399 0.429 0.425 0.448 0.452

E
T

T
m

2

96 0.159 0.246 0.165 0.255 0.179 0.275 0.187 0.267 0.254 0.348 0.167 0.260 0.209 0.308 0.165 0.256 0.189 0.280 0.203 0.287
192 0.214 0.285 0.220 0.292 0.262 0.326 0.249 0.309 0.370 0.433 0.224 0.303 0.311 0.382 0.222 0.296 0.253 0.319 0.269 0.328
336 0.266 0.319 0.274 0.329 0.305 0.353 0.321 0.351 0.511 0.527 0.281 0.342 0.442 0.466 0.277 0.333 0.314 0.357 0.325 0.366
720 0.379 0.390 0.362 0.385 0.389 0.407 0.497 0.403 0.901 0.689 0.397 0.421 0.675 0.587 0.371 0.398 0.414 0.413 0.421 0.415
avg 0.254 0.310 0.255 0.315 0.284 0.340 0.291 0.333 0.509 0.522 0.256 0.331 0.409 0.436 0.259 0.321 0.292 0.342 0.305 0.349

E
T

T
h1

96 0.368 0.396 0.370 0.399 0.398 0.427 0.384 0.402 0.377 0.419 0.375 0.399 0.424 0.432 0.388 0.401 0.494 0.479 0.376 0.419
192 0.406 0.418 0.413 0.421 0.430 0.453 0.436 0.429 0.410 0.439 0.405 0.416 0.475 0.462 0.443 0.439 0.538 0.504 0.420 0.448
336 0.415 0.424 0.422 0.436 0.440 0.460 0.491 0.469 0.440 0.461 0.439 0.443 0.518 0.521 0.488 0.466 0.574 0.521 0.459 0.465
720 0.416 0.448 0.447 0.466 0.491 0.509 0.521 0.500 0.519 0.524 0.472 0.490 0.547 0.533 0.525 0.519 0.562 0.535 0.506 0.507
avg 0.401 0.421 0.413 0.431 0.440 0.462 0.458 0.450 0.437 0.461 0.423 0.437 0.491 0.479 0.461 0.456 0.452 0.510 0.440 0.460

E
T

T
h2

96 0.262 0.327 0.274 0.336 0.299 0.364 0.340 0.374 0.770 0.589 0.289 0.353 0.397 0.437 0.296 0.344 0.340 0.391 0.358 0.397
192 0.322 0.369 0.339 0.379 0.422 0.441 0.402 0.414 0.848 0.657 0.383 0.418 0.520 0.504 0.389 0.402 0.430 0.439 0.429 0.439
336 0.326 0.378 0.329 0.380 0.447 0.474 0.452 0.452 0.859 0.674 0.448 0.465 0.626 0.559 0.418 0.430 0.485 0.497 0.496 0.487
720 0.373 0.419 0.379 0.422 0.442 0.467 0.462 0.468 1.221 0.825 0.605 0.551 0.863 0.672 0.433 0.448 0.500 0.497 0.463 0.474
avg 0.321 0.373 0.330 0.379 0.402 0.437 0.414 0.427 0.454 0.446 0.259 0.321 0.602 0.543 0.384 0.406 0.439 0.452 0.437 0.449

W
ea

th
er

96 0.145 0.186 0.149 0.198 0.161 0.229 0.172 0.220 0.145 0.211 0.152 0.237 0.182 0.242 0.193 0.234 0.237 0.312 0.217 0.296
192 0.187 0.227 0.194 0.241 0.220 0.281 0.219 0.261 0.190 0.259 0.220 0.282 0.227 0.287 0.228 0.288 0.237 0.213 0.276 0.336
336 0.238 0.258 0.245 0.282 0.278 0.331 0.280 0.306 0.259 0.326 0.265 0.319 0.282 0.334 0.267 0.323 0.298 0.353 0.339 0.380
720 0.308 0.321 0.314 0.334 0.311 0.356 0.365 0.359 0.332 0.382 0.323 0.362 0.352 0.386 0.358 0.350 0.352 0.388 0.403 0.428
avg 0.219 0.248 0.226 264 0.243 0.299 0.259 0.287 0.232 0.295 0.240 0.300 0.261 0.312 0.261 0.299 0.271 0.334 0.309 0.360

E
le

ct
ri

ci
ty

96 0.129 0.223 0.129 0.222 0.164 0.269 0.168 0.272 0.186 0.281 0.153 0.237 0.207 0.307 0.152 0.267 0.187 0.304 0.193 0.308
192 0.154 0.245 0.147 0.240 0.177 0.285 0.184 0.289 0.208 0.300 0.152 0.249 0.213 0.316 0.198 0.279 0.199 0.315 0.201 0.315
336 0.161 0.257 0.163 0.259 0.193 0.304 0.198 0.300 0.323 0.369 0.169 0.267 0.230 0.333 0.188 0.283 0.212 0.329 0.214 0.329
720 0.185 0.278 0.197 0.290 0.212 0.321 0.220 0.320 0.404 0.423 0.233 0.344 0.265 0.360 0.236 0.332 0.233 0.345 0.246 0.355
avg 0.157 0.251 0.159 0.253 0.187 0.295 0.192 0.295 0.280 0.343 0.177 0.224 0.229 0.329 0.194 0.290 0.208 0.323 0.214 0.327

Tr
af

fic

96 0.341 0.229 0.360 0.249 0.519 0.309 0.593 0.321 0.511 0.292 0.410 0.282 0.615 0.391 0.416 0.294 0.607 0.392 0.587 0.366
192 0.367 0.243 0.379 0.256 0.537 0.315 0.617 0.336 0.523 0.311 0.423 0.287 0.601 0.382 0.408 0.288 0.621 0.399 0.604 0.373
336 0.388 0.254 0.392 0.264 0.534 0.313 0.629 0.336 0.530 0.300 0.436 0.296 0.613 0.386 0.425 0.298 0.622 0.396 0.621 0.383
720 0.427 0.276 0.432 0.286 0.577 0.325 0.640 0.350 0.573 0.313 0.466 0.315 0.658 0.407 0.520 0.353 0.622 0.396 0.626 0.382
avg 0.381 0.251 0.391 0.264 0.542 0.316 0.620 0.336 0.534 0.304 0.434 0.295 0.622 0.392 0.442 0.308 0.621 0.396 0.610 0.376
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H M4 SHORT TERM FORECASTING

We also conduct experiments on short forecasting M4 tasks. M4 dataset (Makridakis et al., 2018)
consists 100k time series. It covers time sequence data in various domains, including business,
financial, and economy, and the sampling frequencies range from hourly to yearly. We follow the test
setting suggested in (Wu et al., 2023b). Each experiment is repeated 10 times and average Symmetric
Mean Absolute Percentage Error (SMAPE), Mean Absolute Scaled Error (MASE), and Overall
Weighted Average (OWA) are reported. We benchmark our model with N-BEATS (Oreshkin et al.,
2020), N-HiTS (Challu et al., 2022), Informer (Zhou et al., 2021), Autoformer (Wu et al., 2021) and
7 baselines in long-term forecasting. Details for datasets and training configurations can be found in
Table 11 and Table 12 respectively.

The results are summarized in Table 13. Our proposed model consistently outperforms benchmarks
in all tasks. Specifically, we outperform the state-of-the-art MLP-based method N-BEATS (Oreshkin
et al., 2020) by 1.8% in SMAPE reduction. We also outperform the best Transformer-based method
PatchTST (Nie et al., 2023) and the best CNN-based method TimesNet (Wu et al., 2023b) by 1.5%
and 2.2% in SMAPE reductions respectively. Since the M4 dataset only contains univariate time
series, the attention to channels in our model plays a very limited role here. Thus good numerical
performance indicates CARD’s design with attention to hidden dimensions and token blend are also
effective in univariate time series scenarios and can significantly boost forecasting performance.

The standard errors are reported in Table 14. Since the SAMPE score is not normalized, we observe
the absolute value is on the order of 1e-2 while the MASE and OWA remain on the order of 1e-3
which is the same as in long-term forecasting experiments. After normalizing SAMPE with the
corresponding mean value, the standard error of SMAPE will also reduce to the order of 1e-3.

Table 11: Datasets and mapping details of M4 dataset.

Dataset Length Horizon

M4 Yearly 23000 6
M4 Quarterly 24000 8
M4 Monthly 48000 18
M4 Weekly 359 13
M4 Daily 4227 14
M4 Hourly 414 48

Table 12: Model configurations for M4 experiment.
Dataset patch stride model dim FFN dim dropout blend size learning rate warm-up batch size

M4 Hourly 16 1 128 512 0.1 2 5e-4 0 128
M4 Weekly 16 1 128 512 0.1 2 5e-4 0 128
M4 Daily 16 1 128 512 0.1 2 5e-4 0 128
M4 Monthly 16 1 128 512 0.1 2 5e-4 0 128
M4 Quarterly 4 1 128 512 0.1 2 5e-4 0 128
M4 Yearly 3 1 128 512 0.1 2 5e-4 0 128

Table 13: Short-term Forecasting tasks on M4 dataset. The average results of ten repeats are reported. The best
model is in boldface and the second best is underlined.

Models CARD PatchTST MICN TimesNet N-HiTS N-BEATS ETSformer LightTS Dlinear FEDformer Autoformer Informer

Yearly
SMAPE 13.215 13.258 14.935 13.387 13.418 13.436 18.009 14.247 16.965 13.728 13.974 14.727
MASE 2.972 2.985 3.523 2.996 3.045 3.043 4.487 3.109 4.283 3.048 3.134 3.418
OWA 0.778 0.781 0.900 0.786 0.793 0.794 1.115 0.827 1.058 0.803 0.822 0.881

Quarterly
SMAPE 9.958 10.179 11.452 10.100 10.202 10.124 13.376 11.364 12.145 10.792 11.338 11.360
MASE 1.163 1.212 1.389 1.182 1.194 1.169 1.906 1.328 1.520 1.283 1.365 1.401
OWA 0.876 0.904 1.026 0.890 0.899 0.886 1.302 1.000 1.106 0.958 1.012 1.027

Monthly
SMAPE 12.414 12.641 13.773 12.670 12.791 12.667 14.588 14.014 13.514 14.260 13.958 14.062
MASE 0.907 0.930 1.076 0.933 0.969 0.937 1.368 1.053 1.037 1.102 1.103 1.141
OWA 0.856 0.867 0.983 0.878 0.899 0.880 1.149 0.981 0.956 1.012 1.002 1.024

Others
SMAPE 4.522 4.851 6.716 4.891 5.061 4.925 7.267 15.880 6.709 4.954 5.458 24.460
MASE 3.021 3.238 4.717 3.302 3.216 3.391 5.240 11.434 4.953 3.264 3.865 20.960
OWA 0.962 1.021 1.451 1.035 1.040 1.053 1.591 3.474 1.487 1.036 1.187 5.879

Avg
SMAPE 11.614 11.807 13.130 11.829 11.927 11.851 14.718 13.252 13.639 12.840 12.909 14.086
MASE 1.553 1.590 1.896 1.585 1.613 1.599 2.408 2.111 2.095 1.701 1.771 2.718
OWA 0.832 0.834 0.980 0.851 0.861 0.855 1.172 1.051 1.051 0.918 0.939 1.230
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Table 14: Standard error results of CARD in M4 short-term forecasting. The results normalized with the
corresponding mean value are reported in parentheses. Each setting is averaged over 10 random seeds.

Metric Yearly Quarterly Monthly Other Average

SAMPE 0.022 (0.001) 0.008 (0.001) 0.032 (0.002) 0.024 (0.005) 0.018 (0.002)
MASE 0.007 (0.003) 0.003 (0.002) 0.003 (0.003) 0.026 (0.008) 0.003 (0.002)
OWA 0.003 (0.002) 0.001 (0.001) 0.032 (0.037) 0.004 (0.004) 0.001 (0.001)

I OTHER FORECASTING TASKS

In this section, we report the results of Illness and Exchange tasks. The Illness (CDC) and Exchange
(Lai et al., 2018) contains the weekly data on influenza-like illness from Jan-2002 to Jun-2020 and
the daily exchange rates of eight foreign countries including Australia, British, Canada, Switzerland,
China, Japan, New Zealand, and Singapore ranging from 1990 to 2016 respectively. We follow the
test setting suggested in (Wu et al., 2023b). Each experiment is repeated 10 times and MSE and
MAE are reported. We benchmark our model with the baselines in long-term forecasting. Details for
datasets and training configurations can be found in Table 15 and Table 16 respectively.

The results are summarized in Table 17. Our proposed model outperforms benchmarks in 4/8 cases
in MSE and 6/8 cases in MAE. The standard errors are reported in Table 18.

Table 15: Datasets and mapping details of Illness and Exchange datasets.

Dataset Length Horizon Frequency

Illness 966 7 Weekly
Exchange 7588 8 Daily

Table 16: Model configurations for Illness and Exchange tasks.

Dataset patch stride model dim FFN dim dropout blend size learning rate warm-up batch size epochs

Illness 36 1 16 32 0.3 2 2.5e-3 0 128 100
Exchange 16 8 16 32 0.3 2 1e-4 0 64 10

J EXTENDED RESULTS OF SIGNAL-BASED LOSS FUNCTION

The full results of experiments in section 5.3 are reported in Table 19 and Table 20. Moreover, we
also conduct an experiment on switching to the decay function other than the two forms considered
in section 4. The results are summarized in Table 21. in Table 21, we consider the following decay
function: f(t) = t−1/4, f(t) = t−1/3, f(t) = t−1, f(t) = t−2 , and f(t) = t−3. In the ETTm1
task, we find that the decay function from f(t) = t−1/4 and f(t) = t−1/3 gives a similar MSE
performance and slightly worse (by 0.001) MAE performance on average compared to the squared
root decay. In the ETTh1 task, f(t) = t−1/4, f(t) = t−1/3, and f(t) = t−1 work the same good as
squared root decay. In practice, we believe the function that is not "decaying" faster than f(t) = t−1

might be the candidate choice when no further information/assumptions on datasets could be obtained.
For the slow decaying function (e.g., f(t) = t−1/4 and f(t) = t−1/3), vert slight performance
improvement is observed in individual tasks when it is getting close to the squared root decay. It
implies that the proposed loss is robustness for slow decaying function.

We also provide an illustration example to show the rationality of the proposed signal-based loss
function. Let’s consider a 1D autoregressive model xt+1 = βtruext + ϵt with ϵt ∼ N (0, 1),
βtrue ∈ (0, 1) and |xt| ≤ 1. And we want to use xt to forecast xt+1 and xt+2. The plain loss
function would be as follows:

min
β

T∑
t=1

[∥xtβ − xt+1∥22 + ∥xtβ
2 − xt+2∥22]. (13)
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Table 17: Exchange and Illness tasks. All models are evaluated on 4 different predication lengths
{96, 192, 336, 720}. The best model is in boldface and the second best is underlined.

Models CARD PatchTST MICN TimesNet Crossformer Dlinear LightTS FilM ETSformer FEDformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
E

xc
ha

ng
e 96 0.084 0.202 0.088 0.205 0.102 0.235 0.107 0.234 0.256 0.367 0.086 0.218 0.116 0.262 0.141 0.282 0.085 0.204 0.148 0.278

192 0.179 0.298 0.176 0.299 0.172 0.316 0.226 0.344 0.469 0.509 0.176 0.315 0.215 0.359 0.241 0.364 0.348 0.428 0.271 0.380
336 0.333 0.418 0.300 0.397 0.272 0.407 0.367 0.448 1.267 0.883 0.313 0.427 0.377 0.466 0.425 0.488 0.348 0.428 0.460 0.500
720 0.851 0.691 0.901 0.713 0.714 0.658 0.964 0.746 1.767 1.068 0.839 0.695 0.831 0.699 0.993 0.747 1.025 0.774 1.195 0.841
avg 0.362 0.402 0.366 0.404 0.315 0.404 0.416 0.443 0.940 0.707 0.354 0.414 0.385 0.447 0.450 0.473 0.410 0.427 0.519 0.500

Il
ln

es
s

96 2.043 0.863 2.234 0.891 3.457 1.288 2.317 0.934 3.461 1.237 2.398 1.040 8.313 2.144 3.589 1.420 2.527 1.020 3.228 1.260
192 2.300 0.917 2.316 0.932 2.711 1.123 1.972 0.920 3.762 2.175 2.646 1.088 6.631 1.902 4.009 1.330 2.615 1.007 2.679 1.080
336 1.899 0.846 2.153 0.900 2.775 1.145 2.359 0.972 3.853 1.307 2.614 1.086 7.299 1.982 3.785 1.492 2.359 0.972 2.622 1.078
720 1.993 0.876 2.029 0.910 3.024 1.197 2.487 1.016 4.035 1.344 2.804 1.146 7.283 1.985 3.722 1.373 2.487 1.016 2.857 1.157
avg 2.058 0.876 2.183 0.908 2.992 1.173 2.139 0.931 3.778 1.516 2.616 1.090 7.382 2.003 3.776 1.404 2.497 1.004 2.847 1.144

Table 18: Standard error results of CARD in Illness and Exchange tasks. Each setting is averaged over 10
random seeds.

Tasks Illness Exchange

Metric MSE MAE MSE MAE

96 0.172 0.029 4e-4 1e-3
192 0.173 0.026 7e-3 7e-3
336 0.059 0.019 1e-2 7e-3
720 0.072 0.018 1e-2 5e-3

Avg 0.119 0.023 7e-3 5e-3

Table 19: Influence for signal decay-based loss function. The lookback length is set as 96. All models are
evaluated on 4 different predication lengths {96, 192, 336, 720}. The model name with * uses the robust loss
proposed in this work. The better results are in boldface.

Models CARD CARD* MICN-regre MICN-regre* TimesNet TimesNet* FEDformer FEDformer* Autoformer Autoformer*

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.329 0.364 0.316 0.347 0.316 0.362 0.313 0.350 0.338 0.375 0.321 0.356 0.379 0.419 0.344 0.380 0.505 0.475 0.450 0.442
192 0.368 0.385 0.363 0.370 0.363 0.390 0.359 0.372 0.374 0.387 0.377 0.385 0.426 0.441 0.390 0.404 0.553 0.537 0.540 0.477
336 0.400 0.405 0.393 0.390 0.408 0.426 0.392 0.399 0.410 0.411 0.401 0.400 0.445 0.459 0.436 0..433 0.621 0.537 0.594 0.505
720 0.468 0.444 0.458 0.426 0.481 0.476 0.466 0.451 0.478 0.450 0.470 0.437 0.543 0.490 0.480 0.461 0.671 0.561 0.507 0.476
avg 0.391 0.400 0.383 0.384 0.392 0.414 0.383 0.393 0.400 0.406 0.392 0.395 0.448 0.452 0.413 0.415 0.588 0.528 0.523 0.475

E
T

T
h1

96 0.387 0.399 0.383 0.391 0.421 0.431 0.403 0.412 0.384 0.402 0.389 0.400 0.376 0.419 0.371 0.400 0.449 0.459 0.453 0.445
192 0.438 0.431 0.435 0.420 0.474 0.487 0.471 0.451 0.436 0.429 0.436 0.425 0.420 0.448 0.419 0.432 0.500 0.482 0.544 0.493
336 0.486 0.454 0.479 0.461 0.569 0.551 0.513 0.496 0.491 0.469 0.475 0.450 0.459 0.465 0.461 0.455 0.521 0.496 0.535 0.491
720 0.480 0.472 0.471 0.429 0.770 0.672 0.720 0.636 0.521 0.500 0.494 0.477 0.506 0.507 0.491 0.482 0.514 0.512 0.524 0.495
avg 0.448 0.439 0.442 0.425 0.559 0.535 0.527 0.499 0.458 0.450 0.449 0.438 0.440 0.460 0.436 0.442 0.496 0.487 0.514 0.481

Table 20: Extended results on the signal decay-based loss function. The model name with * uses the robust loss
proposed in this work. The better results are in boldface.

Models Crossformer Crossformer* LightTS LightTS* FilM FilM* ETSformer ETSformer* Stationary Stationary*

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.366 0.400 0.353 0.364 0.374 0.400 0.332 0.360 0.348 0.367 0.335 0.359 0.375 0.398 0.382 0.391 0.386 0.398 0.345 0.364
192 0.396 0.414 0.381 0.372 0.400 0.407 0.365 0.385 0.387 0.385 0.371 0.372 0.408 0.410 0.388 0.404 0.459 0.444 0.423 0.409
336 0.439 0.443 0.431 0.415 0.438 0.438 0.414 0.408 0.418 0.405 0.399 0.413 0.435 0.428 0.442 0.431 0.495 0.464 0.430 0.415
720 0.540 0.509 0.512 0.472 0.527 0.502 0.497 0.463 0.479 0.440 0.485 0.432 0.499 0.462 0.472 0.439 0.585 0.516 0.561 0.500
avg 0.435 0.417 0.419 0.406 0.435 0.437 0.402 0.404 0.408 0.399 0.398 0.394 0.429 0.425 0.421 0.416 0.481 0.456 0.440 0.422

E
T

T
h1

96 0.391 0.417 0.388 0.397 0.424 0.432 0.412 0.418 0.388 0.401 0.387 0.389 0.494 0.479 0.499 0.457 0.513 0.419 0.509 0.394
192 0.499 0.452 0.489 0.430 0.475 0.462 0.459 0.445 0.443 0.439 0.448 0.430 0.538 0.504 0.453 0.491 0.534 0.504 0.449 0.429
336 0.510 0.489 0.493 0.472 0.518 0.521 0.499 0.502 0.488 0.466 0.490 0.458 0.574 0.521 0.589 0.527 0.588 0.535 0.560 0.501
720 0.594 0.567 0.578 0.533 0.547 0.533 0.505 0.504 0.525 0.519 0.527 0.516 0.562 0.535 0.497 0.504 0.643 0.616 0.682 0.643
avg 0.499 0.481 0.487 0.458 0.491 0.479 0.469 0.467 0.461 0.456 0.463 0.448 0.542 0.510 0.510 0.495 0.570 0.537 0.550 0.492

Via standard generalization analysis procedures and Hoeffiding’s Inequality, we have with probability
1− δ,

|β − βtrue| ≤

√
5
2T log(1/δ)∑T

t=1 x
2
t

. (14)
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Table 21: Influences on the delay function to the loss function. The best results are in boldface and the second
best is underlined.

Function f(t) = 1 f(t) = t−0.25 f(t) = t−0.33 f(t) = t−0.5 f(t) = t−1 f(t) = t−2 f(t) = t−3

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.329 0.364 0.319 0.349 0.318 0.349 0.316 0.347 0.317 0.347 0.334 0.356 0.345 0.363
192 0.368 0.385 0.362 0.370 0.361 0.370 0.363 0.370 0.363 0.369 0.379 0.377 0.430 0.416
336 0.400 0.405 0.393 0.391 0.393 0.390 0.393 0.390 0.396 0.391 0.414 0.402 0.605 0.505
720 0.468 0.444 0.459 0.427 0.459 0.427 0.458 0.426 0.466 0.429 0.491 0.449 0.760 0.578
avg 0.391 0.400 0.383 0.384 0.383 0.384 0.383 0.383 0.386 0.384 0.405 0.396 0.535 0.491

E
T

T
h1

96 0.387 0.399 0.382 0.391 0.382 0.390 0.382 0.390 0.383 0.391 0.387 0.396 0.410 0.413
192 0.438 0.431 0.437 0.421 0.436 0.420 0.435 0.420 0.436 0.421 0.439 0.426 0.559 0.494
336 0.486 0.454 0.478 0.443 0.478 0.442 0.478 0.442 0.479 0.443 0.485 0.453 0.712 0.566
720 0.480 0.472 0.472 0.462 0.472 0.462 0.471 0.462 0.470 0.460 0.551 0.508 0.786 0.613
avg 0.448 0.439 0.442 0.429 0.442 0.429 0.442 0.429 0.442 0.429 0.466 0.396 0.617 0.522

In this case, our proposed loss becomes:

min
β

T∑
t=1

[∥xtβ − xt+1∥22 +
1

2
∥xtβ

2 − xt+2∥22]. (15)

Follows the same analysis procedures, we have with probability 1− δ

|β − βtrue| ≤

√
3
2T log(1/δ)∑T

t=1 x
2
t

. (16)

Here the constant is improved from 5
2 to 3

2 , which implies the new loss may yield better convergence
upper bound.

K EXTENDED RESULTS OF ANOMALY DETECTION

The full results of the anomaly detection experiment in the section 5.2 are reported in Table 22. For
each setting, we repeat 5 replicates.

Table 22: Full results for the anomaly detection task. The P, R and F1 represent the precision, recall
and F1-score respectively.

Datasets SMD MSL SMAP SWaT PSM Avg F1

Metrics P R F1 P R F1 P R F1 P R F1 P R F1

CARD 0.883 0.861 0.872 0.896 0.750 0.817 92.93 0.794 0.857 0.928 0.962 0.945 0.982 0.933 0.957 0.890
PatchTST 0.802 0.942 0.866 0.898 0.760 0.823 89.97 0.566 0.695 0.919 0.899 0.909 0.992 0.913 0.951 0.849

MICN 0.765 0.838 0.780 0.892 0.752 0.816 0.895 0.518 0.656 0.913 0.841 0.875 0.987 0.885 0.933 0.816
TimesNet 0.887 0.831 0.858 0.839 0.864 0.852 0.925 0.583 0.715 0.883 0.962 0.921 0.982 0.968 0.975 0.864

Crossformer 0.722 0.844 0.778 0.907 0.749 0.820 0.895 0.541 0.674 0.919 0.856 0.886 0.971 0.876 0.921 0.816
ETSformer 0.874 0.792 0.831 0.851 0.849 0.850 0.923 0.558 0.695 0.900 0.804 0.849 0.99.3 0.853 0.918 0.829

LightTS 0.871 0.784 0.825 0.824 0.758 0.790 0.926 0.553 0.692 0.920 0.947 0.933 0.984 0.960 0.972 0.842
DLinear 0.836 0.715 0.771 0.843 0.854 0.849 0.923 0.554 0.693 0.809 0.953 0.875 0.983 0.893 0.936 0.825

FEDformer 0.880 0.824 0.851 0.771 0.801 0.786 0.905 0.581 0.708 0.902 0.964 0.932 0.973 0.972 0.972 0.850
Stationary 0.883 0.812 0.846 0.686 0.891 0.775 0.894 0.590 0.711 0.680 0.968 0.799 0.978 0.968 0.973 0.821

Autoformer 0.881 0.824 0.851 0.773 0.809 0.791 0.904 0.586 0.711 0.899 0.958 0.927 0.991 0.882 0.933 0.843
Informer 0.866 0.773 0.817 0.818 0.865 0.841 0.901 0.571 0.699 0.703 0.968 0.814 0.643 0.963 0.771 0.788

L ROBUSTNESS EXPERIMENTS

L.1 INFLUENCE OF DIFFERENT INPUT LENGTHS

In this section, we report the robustness test when varying input length. We conduct experiments on
ETTh1, ETTm1, Weather, and M4 datasets and repeat each setting with 10 random seeds. The robust
experiment results are summarized in Figure 9-Figure 17. In general, we observe the longer input
length may yield better performance, and the variance is also enlarged slightly.
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Figure 9: ETTm1 experiments with different input lengths.

Figure 10: ETTm1 experiments with different input lengths.

Figure 11: Weather experiments with different input lengths.
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Figure 12: The average results of ETTm1, ETTh1 and Weather experiments with different input
lengths.

Figure 13: M4 Yearly experiments with different input lengths. The x axis “input length ratio"
represents the ratio between input length and forecasting length.

Figure 14: M4 Quarterly experiments with different input lengths. The x axis “input length ratio"
represents the ratio between input length and forecasting length.

Figure 15: M4 Monthly experiments with different input lengths. The x axis “input length ratio"
represents the ratio between input length and forecasting length.
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Figure 16: M4 average results of Daily, Weekly and Hourly experiments with different input lengths.
The x axis “input length ratio" represents the ratio between input length and forecasting length.

Figure 17: Average results of all M4 experiments with different input lengths. The x axis “input
length ratio" represents the ratio between input length and forecasting length.

L.1.1 INFLUENCE OF DIFFERENT MODEL SIZES.

In this section, we report the robustness test when varying model size. We conduct experiments on
ETTh1, ETTm1, Weather, and M4 datasETSformer The model size (hidden dimension in attention)
changes from 16 to 128 and the MLP layer dimension is set to be 2 times the model size. We repeat
each setting with 10 random seeds. The robust experiment results are summarized in Figure 18-
Figure 26. In terms of average performance (e.g., Figure 21 and Figure 26), the larger model size
gives better results. For each individual task, we observe that the model with a large hidden dimension
(e.g., 128) tends to overfit in low complexity tasks like ETTh1. For the high complexity task, the
larger model size enables bigger learning capacity and gives better performance.

Figure 18: ETTm1 experiments with different model sizes.
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Figure 19: ETTh1 experiments with different model sizes.

Figure 20: Weather experiments with different model sizes.

Figure 21: The average results of ETTm1, ETTh1 and Weather experiments with different model
sizes.
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Figure 22: M4 Yearly experiments with different model sizes.

Figure 23: M4 Quarterly experiments with different model sizes.

Figure 24: M4 Monthly experiments with different model size.

Figure 25: M4 average results of Daily, Weekly and Hourly experiments with different model sizes.

Figure 26: Average results of all M4 experiments with different model sizes.

L.2 INFLUENCE OF DIFFERENT LEARNING RATES AND SCHEDULERS

In this section, we report the robustness test when varying learning rates and schedulers. We conduct
experiments on ETTh1, ETTm1, Weather, and M4 datasets and repeat each setting with 10 random
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seeds. We consider the fixed learning rate and cosine learning rate scheduler with the initial learning
rate from 1e-3 to 1e-5. The results are summarized in Figure 27-Figure 35. We observe slight
improvements when changing the fixed learning rate to the cosine learning rate decaying. For the
relatively large learning rate, the variance of testing MSE/MAE increases and for the small enough
learning rate, the model tends to underfit for the given training epochs. In practice, results suggest the
learning should be set on the order of 1e-4.

Figure 27: ETTh1 experiments with different learning rates and schedulers.

Figure 28: ETTm1 experiments with different learning rates and schedulers.
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Figure 29: Weather experiments with different learning rates and schedulers.

Figure 30: The average results of ETTm1, ETTh1 and Weather experiments with different learning
rates and schedulers.

Figure 31: M4 Yearly experiments with different learning schemes.
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Figure 32: M4 Quarterly experiments with different learning schemes.

Figure 33: M4 Monthly experiments with different learning schemes.

Figure 34: M4 average results of Daily, Weekly and Hourly experiments with different learning
schemes.

Figure 35: Average results of all M4 experiments with different learning schemes.

M TRAINING SPEED FOR DIFFERENT INPUT SEQUENCE LENGTH AND MODEL
SIZE

In this section, we report the training speed differences when varying input sequence lengths and
model sizes. For all experiments, we fix the batch size being 2 and use the average step time cost of
50 training epochs as the speed measure. We use the time cost of the experimental setting with 96
input length and 16 model dimensions as the base and report the ratio of the time increasing when
using the longer input sequence and/or model size. The results are summarized in Table 23. Due
to the patchified tokenization, when changing the input sequence length from 96 to 720 (7.5 times
longer), the time increases less than 600% and thus we don’t observe the quadratic time differences.
It implies our model can efficiently handle long input sequences.
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Table 23: Model variants. All models are evaluated on 4 different predication lengths {96, 192, 336, 720}. The
best results are in boldface.

model 16 32 64 128dimension

E
T

T
h1

96 100.00% 101.66% 109.63% 113.28%
192 108.28% 104.49% 1012.58% 168.11%
336 113.39% 109.12% 159.18% 275.57%
720 125.71% 182.27% 299.45% 580.04%

W
ea

th
er 96 100.00% 102.85% 111.58% 200.53%

192 104.90% 113.98% 169.15% 312.11%
336 119.56% 158.80% 274.05% 537.06%
720 115.42% 167.38% 298.41% 604.03%

E
le

ct
ri

ci
ty 96 100.00% 105.67% 118.21% 125.63%

192 102.13% 108.96% 128.34% 140.41%
336 104.05% 110.66% 133.88% 291.26%
720 111.04% 112.03% 193.18% 481.24%

Tr
af

fic

96 100.00% 101.61% 105.43% 386.92%
192 103.02% 113.02% 117.51% 454.12%
336 112.68% 134.68% 168.98% 485.92%
720 128.17% 183.90% 307.04% 561.57%

N MODEL COMPLEXITIES AND RUNNING TIME

As we use the patching trick, the order of the total complexity would be the same as PatchTST and
Crossformer, which is O(L2/S2). Some Transformer type models (e.g., FEDformer and Autoformer)
may even break the quadratic dependent in L and reach linear or nearly linear complexity in L. Other
CNN and RNN type models (e.g., TimesNet and FilM) by nature maintain the O(L) complexity.
When S is set as a not-very-small number (e.g. S ≈ O(

√
L)), our model’s complexity can also be

nearly linear. The condition S ≈ O(
√
L) is not very restrictive. Take L = 900 as an example, the

length of S = 30 would be enough. For the case L = 96, the corresponding S would be around 10.

The results of the experiments on running time are reported in Table 24. The input/forecasting lengths
are set as 96/96 and we keep the batch size the same for all benchmarks and run the experiments on a
single A100/80G GPU. Our proposed model yields comparable running time to transformer baselines
as well as linear complexity baselines except Dlinear, which implies in practice model could also
behave like a linear time model and won’t introduce overhead computational cost.
Table 24: The average per step running time in seconds. The input/forecasting lengths are set as 96/96 and we
keep the batch size the same for all benchmarks and run the experiments on a single A100/80G GPU. oom is
short for out of memory.

CARD Autoformer PatchTST Crossformer FEDformer TimesNet MICN Dlinear FilM ETSFormer

ETTh1 Train 0.0197 0.1091 0.0164 0.2512 0.2107 0.0672 0.0423 0.0074 0.0747 0.0714
Hidden=16, Batch=128 Inference 0.0046 0.0102 0.0021 0.0127 0.0178 0.0132 0.0030 0.0009 0.0123 0.0061

Weather Train 0.0779 0.1525 0.0785 0.1186 0.2189 0.2457 0.0613 0.0330 oom 0.1354
Hidden=128, Batch=128 Inference 0.0048 0.0139 0.0036 0.0123 0.0378 0.0224 0.0038 0.0014 oom 0.0092

Electricity Train 0.2156 0.0835 0.3280 oom 0.1903 oom 0.0405 0.0163 oom 0.1174
Hidden=128, Batch=32 Inference 0.0064 0.0160 0.0052 oom 0.0349 oom 0.0045 0.0021 oom 0.0103

Traffic Train 0.2271 0.0960 0.1329 oom 0.1649 0.6048 0.0322 0.0139 oom 0.0607
Hidden=128, Batch=12 Inference 0.0101 0.0153 0.0052 oom 0.0369 0.0418 0.0074 0.0058 oom 0.0223

O ATTENTION PATTERN MAPS

In this section, we report the attention maps of each head in the last attention layers. We use ETTh1
and ETTh2 tasks with forecasting length 96. The input length is set as 96 and we use patch length 8
with stride 8 to convert 96 time steps into 12 tokens, and we use the model with 2 attention heads. In
order to highlight the correlation between the attention maps w.r.t. the forecasting sequences. We
also report the dynamic time warping (DTW) scores between patches and the forecasting sequences,
and the sum of attention scores for each patch. The DTW score can be treated as a rough ground
truth to evaluate which input patches are most useful for forecasting. The results are summarized
in Figure 36-Figure 37. We observe that attention maps have smooth landscapes and we believe
it is due to the usage of EMA module to query and keyword tensors. Moreover, we find that the
sum of attention scores for each patch is positively correlated with the post-hoc computed DTW
scores between the patch and the forecasting sequence. It implies the proposed model can effectively
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capture the relationship between the input sequences and forecasting sequences and lead to good final
performance.

Figure 36: Attention Map Samples of ETTh1 task.

P RELATED WORKS

Patched Transformers in other Domains Transformer (Vaswani et al., 2017) has demonstrated
significant potential in different data modalities. Among all applications, patching is an essential part
when local semantic information is important. In NLP, BERT (Devlin et al., 2018), GPT (Radford
et al., 2019) and their follow-up models consider subword-based tokenization and outperform
character-based tokenization. In CV, Vision Transformers (e.g., Dosovitskiy et al. 2020; Liu et al.
2021; Bao et al. 2022; Ding et al. 2022; He et al. 2022) split an image into patches and then feed
into the Transformer models. Similarly, in speech fields, researchers use convolutions to extract
information in sub-sequence levels from a raw audio input (e.g., Hsu et al. 2021; Radford et al. 2022;
Chen et al. 2022; Wang et al. 2023a).
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Figure 37: Attention Map Samples of ETTh2 task.

Q OTHERS

Q.1 ARCHITECTURE VARIANTS

The present study encompasses the design of five distinct sequential and parallel feature flow archi-
tectures, with the aim of integrating both temporal signal and channel-aligned information. Here
we consider 5 different settings as shown in Figure 38 and the results are summarized in Table 25.
Following an exhaustive analysis, it is concluded that the architecture featuring the channel branch,
complemented by channel/time blend, is the most resilient variant. Consequently, this specific
architecture is adopted as the default approach in this work.

Q.2 COMPONENT ABLATION EXPERIMENTS

Ablation on attention over hidden dimensions and over channels. We conducted a series of
ablation experiments by removing the attention over hidden dimensions and channels sequentially.
Consistent with our design, as shown in table 26, the channel branch contributes to the reduction of
mean squared error (MSE); its removal resulted in a 2%, 7% and 6%increase in MSE for ETTm1,
Weather and Electricity respectively. The attention over hidden dimensions branch contributes
approximately 1% to the reduction of MSE in ETTm1 and Weather tasks and in Electricity tasks
dropping the over hidden dimensions attention branch results in 11% more MSE score on average.
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Figure 38: Architecture Variants

Table 25: Model variants. All models are evaluated on 4 different predication lengths {96, 192, 336, 720}. The
best results are in boldface.

Models c->t+c (CARD) t->c+t t+c t->c c->t

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.316 0.347 0.318 0.346 0.318 0.346 0.326 0.363 0.334 0.368
192 0.363 0.370 0.367 0.370 0.366 0.369 0.366 0.385 0.372 0.387
336 0.393 0.390 0.399 0.391 0.396 0.391 0.400 0.404 0.401 0.407
720 0.458 0.426 0.466 0.429 0.463 0.428 0.459 0.440 0.458 0.438
avg 0.383 0.384 0.388 0.384 0.386 0.384 0.388 0.398 0.391 0.400

W
ea

th
er

96 0.150 0.188 0.153 0.193 0.152 0.189 0.152 0.191 0.152 0.192
192 0.202 0.238 0.203 0.239 0.201 0.236 0.201 0.239 0.203 0.240
336 0.260 0.282 0.269 0.288 0.261 0.281 0.263 0.284 0.262 0.284
720 0.343 0.335 0.345 0.339 0.344 0.337 0.347 0.339 0.344 0.337
avg 0.239 0.261 0.243 0.265 0.240 0.261 0.241 0.263 0.240 0.263

Table 26: Component Ablation Experiments by removing the attention over hidden dimensions (wo. hidden
column) and removing the attention over channels (w.o channel) sequentially. All models are evaluated on 4
different predication lengths {96, 192, 336, 720}. The differences in thousandths w.r.t. predecessor models are
reported in parentheses.

Models CARD wo. hidden wo. channel

Metric MSE MAE MSE diff MAE diff MSE diff MAE diff

E
T

T
m

1

96 0.316 0.347 0.322 (-6) 0.345 (2) 0.326 (-4) 0.348 (-3)
192 0.363 0.370 0.364 (-1) 0.370 (0) 0.372 (-8) 0.371 (-1)
336 0.393 0.390 0.395 (-2) 0.391 (-1) 0.404 (-9) 0.393 (-2)
720 0.458 0.426 0.462 (-4) 0.427 (-1) 0.470 (-8) 0.429 (-2)
avg 0.383 0.384 0.386 (-3.3) 0.383 (0) 0.393 (-7.3) 0.408 (-2)

W
ea

th
er

96 0.150 0.188 0.151 (-1) 0.191 (-3) 0.173 (-22) 0.205 (-14)
192 0.202 0.238 0.201 (1) 0.236 (2) 0.220 (-19) 0.247 (-11)
336 0.260 0.282 0.263 (-3) 0.282 (0) 0.275 (-12) 0.287 (-5)
720 0.343 0.335 0.341 (-8) 0.336 (-1) 0.354 (-14) 0.339 (-3)
avg 0.239 0.261 0.239 (-2.5) 0.261 (-0.5) 0.256 (-16.8) 0.270 (-8.3)

E
le

ct
ri

ci
ty

96 0.141 0.233 0.154 (-14) 0.242 (-9) 0.175 (-21) 0.250 (-8)
192 0.160 0.250 0.172 (-12) 0.257 (-7) 0.182 (-10) 0.259 (-2)
336 0.173 0.263 0.190 (-17) 0.274 (-11) 0.197 (-7) 0.275 (-1)
720 0.197 0.284 0.229 (-32) 0.312 (-24) 0.237 (-8) 0.318 (-6)
avg 0.168 0.258 0.186 (-18.8) 0.271 (-12.8) 0.198 (-11.5) 0.276 (-4.2)

Ablation on projected dimension in dynamic projection. We conduct experiments varying pro-
jected dimensions in 1,8,16. The results are summarized in Figure 39. We observe the performance
of dynamic projection is not very sensitive to the projected dimensions, and only slight performance
improvement is achieved when increasing the projected dimensions. As the goal of dynamic projec-
tion is to control the computation cost, the robustness in performance implies it doesn’t harm the
forecasting accuracy by a large margin. In practice, we may start with a relatively small projected
dimension and adaptively tune the hyperparameter if necessary.

Ablation on EMA The goal of EMA is to improve the CARD’s robustness. We conduct an
experiment with different EMA parameters and the results are summarized in Figure 40. In this
experiment, we consider three cases, heavy smoothing (e.g., 0.1), medium smoothing (e.g., 0.5),
and light smoothing (e.g., 0.9). We observe that, in the majority of cases, the standard deviations of
MAE and MSE decrease when the strength of smoothing is increased. It confirms our hypothesis that
the EMA can improve model robustness. Moreover, in our experiment, we also find that changing
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Figure 39: Experiments on dynamic projection dimensions. The projection dimension is varying in 1, 8, and 16.

the parameter of EMA from being fixed to learnable makes very few performance differences but
significantly increases the training time. In practice, we would suggest using a fixed EMA parameter.

Figure 40: Experiments on stability of EMA module. Each setting is averaged over 10 random seeds.

R MORE ANALYSIS ON TRANSFORMERS FOR TIME SERIES FORECASTING

R.1 EXTENDED RESULTS ON INFLUENCE OF INPUT SEQUENCE LENGTH

The extended results on varying input sequence lengths are shown in Table 27.

Table 27: Influence of prolonging input sequence. The lookback length is set as 96,192,336,720: CARD(96)
means using lookback length 96.

Models CARD(96) CARD(192) CARD(336) CARD(720)

Metric MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.383 0.391 0.378 0.390 0.372 0.390 0.368 0.392
192 0.435 0.420 0.427 0.418 0.413 0.416 0.407 0.416
336 0.479 0.442 0.458 0.434 0.437 0.431 0.428 0.430
720 0.471 0.461 0.452 0.456 0.436 0.453 0.418 0.449
avg 0.442 0.429 0.429 0.425 0.415 0.422 0.405 0.421

E
T

T
m

1

96 0.316 0.347 0.296 0.333 0.284 0.328 0.288 0.332
192 0.363 0.370 0.342 0.359 0.326 0.354 0.332 0.357
336 0.393 0.390 0.375 0.379 0.368 0.377 0.364 0.376
720 0.458 0.426 0.439 0.418 0.428 0.410 0.414 0.407
avg 0.383 0.384 0.363 0.372 0.352 0.367 0.349 0.368

R.2 IS TRAINING DATA SIZE A LIMITING FACTOR FOR EXISTING LONG-TERM FORECASTING
TRANSFORMERS?

We have observed a distribution shift phenomenon in fifty percent of the benchmark datasets: Traffic,
ETTh2, and ETTm2. The model’s performance demonstrates a significant enhancement with the use
of only 70% training data samples compared to the standard training setting for long-term forecasting,
as illustrated in table 28. While it has been argued that the transformer model exhibits a weakness
where more training data fails to improve performance (Zeng et al., 2023), we contend that this issue
is an inherent feature of each time series benchmark dataset, wherein changes in data distribution
between historical and current data are not related to the transformer model. Nevertheless, further
exploration of this phenomenon may lead to improved performance, and we thus leave it as a topic
for future study.
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Table 28: Less training data experiment.

Tasks ETTm1 ETTm2 ETTh1 ETTh2 Weather Electricity Traffic

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

A
ll

sa
m

pl
es 96 0.316 0.347 0.169 0.248 0.383 0.391 0.281 0.330 0.150 0.188 0.141 0.233 0.419 0.269

192 0.363 0.370 0.234 0.292 0.435 0.420 0.363 0.381 0.202 0.238 0.160 0.250 0.443 0.276
336 0.393 0.390 0.294 0.339 0.479 0.442 0.411 0.418 0.260 0.282 0.173 0.263 0.460 0.283
720 0.458 0.426 0.390 0.388 0.471 0.461 0.416 0.431 0.343 0.335 0.197 0.284 0.453 0.282
avg 0.383 0.384 0.272 0.317 0.442 0.429 0.368 0.390 0.329 0.261 0.168 0.258 0.453 0.282

70
%

Sa
m

pl
es 96 0.350 0.431 0.163 0.242 0.425 0.431 0.272 0.325 0.245 0.263 0.157 0.239 0.404 0.263

192 0.401 0.403 0.225 0.285 0.482 0.462 0.350 0.374 0.312 0.310 0.180 0.257 0.428 0.273
336 0.440 0.428 0.284 0.324 0.528 0.485 0.394 0.411 0.382 0.352 0.197 0.270 0.444 0.471
720 0.514 0.471 0.371 0.378 0.529 0.506 0.403 0.427 0.473 0.405 0.229 0.296 0.471 0.296
avg 0.426 0.419 0.261 0.307 0.491 0.471 0.355 0.384 0.353 0.333 0.191 0.266 0.437 0.278

R.3 EXPERIMENT ON REPLACING SELF-ATTENTION WITH LINEAR LAYER

(Zeng et al., 2023) suggests that a linear layer can be used as a substitute for the self-attention layer to
achieve higher accuracy in transformer-based models. To highlight the effectiveness of self-attention
in our model, we conduct experiments of replacing self-attention modules (e.g., attention over tokens
and channels) with linear layer. The results are summarized in Table 29. Upon replacing channel-
branch attention and token attention with a linear layer in CARD, we observe a consistent decline
in accuracy across all datasets. The deterioration effect is particularly pronounced in the weather
dataset, which contains more informative covariates, with a significant drop of over 13%. These
findings suggest that the self-attention scheme may be more effective in feature extraction than a
simple linear layer for time series forecasting.
Table 29: The effectiveness of the self-attention scheme. The lookback length is set as 96. CARD(tMLP) uses
an MLP layer to substitute the token attention layer in CARD, CARD(cMLP) uses an MLP layer to substitute
the channel attention layer in CARD, CARD(dMLP) uses two MLP layers to substitute both token and channel
attention, and CARD(oMLP) contains only the embedding layer and an MLP layer.

Models CARD CARD(tMLP) CARD(cMLP) CARD(dMLP) CARD(oMLP)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.316 0.347 0.333 0.369 0.324 0.357 0.355 0.376 0.356 0.376
192 0.363 0.370 0.375 0.390 0.371 0.381 0.393 0.394 0.393 0.394
336 0.393 0.390 0.405 0.409 0.403 0.402 0.425 0.415 0.424 0.414
720 0.458 0.426 0.467 0.444 0.463 0.436 0.489 0.451 0.467 0.444
avg 0.383 0.384 0.395 0.403 0.390 0.394 0.415 0.409 0.415 0.408

W
ea

th
er

96 0.150 0.188 0.160 0.207 0.172 0.213 0.195 0.234 0.195 0.234
192 0.202 0.238 0.211 0.254 0.220 0.255 0.240 0.270 0.240 0.270
336 0.260 0.282 0.270 0.296 0.276 0.296 0.292 0.306 0.292 0.306
720 0.343 0.335 0.358 0.351 0.353 0.346 0.364 0.353 0.364 0.353
avg 0.239 0.261 0.250 0.277 0.255 0.277 0.272 0.291 0.273 0.291

S EVALUATION ON IMPUTATION

We test the proposed model’s imputation ability. We adopt the experimental settings in (Wu et al.,
2023b) and results are reported in Table 30. CARD obtains top 2 ranks in 22/24 MSE scores and all
MAE scores. In particular, in the Electricity dataset, CARD significantly reduces the MSE and MAE
by 40% and 28% over the previous best results respectively. Those results suggest CARD may also
generate good representations and thus can also work in the problem beyond forecasting.
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Table 30: Imputation task. The time sequence is randomly masked 12.5%, 25%, 37.5%, and 50% points. MAE
and MAE are reported. he best model is in boldface and the second best is underlined.

Models CARD TimesNet Dlinear LightTS ETSformer Stationary FEDformer Autoformer Informer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

12.5% 0.020 0.091 0.019 0.092 0.058 0.162 0.075 0.180 0.375 0.398 0.026 0.107 0.764 0.416 .034 0.124 0.047 0.155
25% 0.028 0.106 0.023 0.101 0.058 0.162 0.093 0.206 0.096 0.229 0.032 0.131 0.426 0.441 0.046 0.144 0.063 0.180

37.5% 0.032 0.115 0.029 0.111 0.103 0.219 0.113 0.231 0.133 0.271 0.039 0.131 0.445 0.459 0.057 0.161 0.079 0.200
50% 0.033 0.114 0.036 0.124 0.132 0.248 0.134 0.255 0.186 0.323 0.047 0.145 0.089 0.218 0.067 0.174 0.093 0.218
avg 0.028 0.107 0.027 0.107 0.093 0.206 0.104 0.218 0.120 0.253 0.036 0.126 0.062 0.177 0.051 0.150 0.071 0.188

E
T

T
m

2

12.5% 0.019 0.076 0.018 0.080 0.062 0.166 0.034 0.127 0.108 0.239 0.021 0.088 0.056 0.159 0.023 0.092 0.133 0.270
25% 0.021 0.081 0.020 0.085 0.085 0.196 0.042 0.143 0.164 0.294 0.024 0.096 0.080 0.195 0.026 0.101 0.135 0.272

37.5% 0.022 0.086 0.023 0.091 0.106 0.222 0.051 0.159 0.237 0.356 0.027 0.103 0.110 0.231 0.030 0.108 0.155 0.293
50% 0.024 0.090 0.026 0.098 0.131 0.247 0.059 0.174 0.323 0.421 0.030 0.108 0.156 0.276 0.035 0.119 0.200 0.333
avg 0.022 0.083 0.027 0.088 0.096 0.208 0.046 0.151 0.208 0.327 0.026 0.099 0.101 0.215 0.029 0.105 0.156 0.292

E
T

T
h1

12.5% 0.044 0.138 0.057 0.159 0.151 0.267 0.240 0.345 0.126 0.263 0.060 0.165 0.070 0.190 0.074 0.182 0.114 0.234
25% 0.054 0.154 0.069 0.178 0.180 0.292 0.265 0.364 0.169 0.304 0.080 0.189 0.106 0.236 0.090 0.203 0.140 0.262

37.5% 0.069 0.174 0.084 0.196 0.215 0.318 0.296 0.382 0.220 0.347 0.102 0.212 0.124 0.258 0.109 0.222 0.174 0.293
50% 0.085 0.194 0.102 0.215 0.257 0.347 0.334 0.404 0.293 0.402 0.133 0.240 0.165 0.299 0.137 0.248 0.215 0.325
avg 0.063 0.165 0.078 0.187 0.201 0.306 0.284 0.373 0.202 0.239 0.094 0.201 0.117 0.246 0.103 0.214 0.161 0.279

E
T

T
h2

12.5% 0.040 0.122 0.040 0.130 0.100 0.216 0.101 0.231 0.187 0.319 0.042 0.133 0.096 0.212 0.044 0.138 0.976 0.754
25% 0.041 0.128 0.046 0.141 0.127 0.247 0.115 0.246 0.279 0.390 0.049 0.147 0.137 0.258 0.050 0.149 0.322 0.444

37.5% 0.045 0.135 0.052 0.151 0.158 0.276 0.125 0.257 0.400 0.465 0.056 0.158 0.187 0.304 0.060 0.163 0.353 0.462
50% 0.051 0.146 0.060 0.162 0.183 0.299 0.136 0.268 0.602 0.572 0.065 0.170 0.232 0.341 0.068 0.173 0.369 0.472
avg 0.044 0.133 0.049 0.146 0.142 0.259 0.119 0.250 0.367 0.436 0.053 0.152 0.163 0.279 0.055 0.156 0.337 0.452

W
ea

th
er

12.5% 0.027 0.040 0.025 0.045 0.039 0.084 0.047 0.101 0.057 0.141 0.027 0.051 0.041 0.107 0.026 0.047 0.037 0.093
25% 0.029 0.042 0.029 0.052 0.048 0.103 0.052 0.111 0.065 0.155 0.029 0.056 0.064 0.163 0.030 0.054 0.042 0.100

37.5% 0.033 0.045 0.031 0.057 0.057 0.117 0.058 0.121 0.081 0.180 0.033 0.062 0.107 0.229 0.032 0.060 0.049 0.111
50% 0.036 0.048 0.034 0.062 0.066 0.134 0.065 0.133 0.102 0.207 0.037 0.068 0.138 0.312 0.037 0.067 0.053 0.114
avg 0.031 0.044 0.030 0.054 0.052 0.110 0.065 0.133 0.102 0.207 0.037 0.068 0.183 0.312 0.031 0.057 0.045 0.104

E
le

ct
ri

ci
ty

12.5% 0.043 0.131 0.085 0.202 0.092 0.214 0.102 0.229 0.196 0.321 0.093 0.210 0.107 0.237 0.089 0.210 0.218 0.326
25% 0.049 0.142 0.089 0.206 0.118 0.247 0.121 0.252 0.207 0.332 0.097 0.214 0.120 0.251 0.096 0.220 0.219 0.326

37.5% 0.059 0.159 0.094 0.213 0.144 0.276 0.141 0.273 0.219 0.344 0.102 0.220 0.136 0.266 0.104 0.229 0.222 0.328
50% 0.069 0.172 0.100 0.221 0.175 0.305 0.160 0.293 0.235 0.357 0.108 0.228 0.158 0.284 0.113 0.239 0.228 0.331
avg 0.055 0.151 0.092 0.210 0.132 0.260 0.131 0.262 0.214 0.339 0.100 0.218 0.130 0.259 0.101 0.225 0.222 0.328
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