
Counterfactual Optimization of Treatment Policies
Based on Temporal Point Processes

Zilin Jing 1 Chao Yang 1 Shuang Li 1

Abstract
In high-stakes areas such as healthcare, it is in-
teresting to ask counterfactual questions: what if
some executed treatments had been performed ear-
lier/later or changed to other types? Answering
such questions can help us debug the observa-
tional treatment policies and further improve the
treatment strategy. Existing methods mainly fo-
cus on generating the whole counterfactual trajec-
tory, which provides overwhelming information
and lacks specific feedback on improving certain
actions. In this paper, we propose a counterfac-
tual treatment optimization framework where we
optimize specific treatment actions by sampling
counterfactual symptom rollouts and meanwhile
satisfying medical rule constraints. Our method
can not only help people debug their specific treat-
ments but also has strong robustness when train-
ing data are limited.

1. Introduction
Although deep reinforcement learning policies have been
investigated for sepsis patients in ICU to aid the treatment
strategy design and have achieved promising results (Ko-
morowski et al., 2018), the lack of interpretability of the
learned black-box policies hinders their wide applications
in real life. Clinicians are not satisfied with knowing which
action to take but are also interested in understanding why to
take such actions and how to improve the treatment actions.
In this paper, we focus on answering the following what-if
question: given the observational treatment and outcome
trajectories, could we perturb specific treatment actions so
that the outcome is optimized in a counterfactual manner?
Meanwhile, the perturbations should at least satisfy or not
violate some medical rules. For example, to mitigate the an-

1School of Data Science, The Chinese University of Hong
Kong (Shenzhen), China . Correspondence to: Shuang Li
<lishuang@cuhk.edu.cn>.

Workshop on Interpretable ML in Healthcare at International Con-
ference on Machine Learning (ICML), Honolulu, Hawaii, USA.
2023. Copyright 2023 by the author(s).

tibiotic’s persistence, different antibiotics should be applied
subject to reasonable temporal orders. For another example,
when a person aims to develop a healthy exercise habit, it is
inappropriate to recommend him/her excessively exercising
and drastically reducing food intake. Such recommenda-
tions are unsustainable and should be avoided.
Recently, a counterfactual off-policy evaluation method has
been developed for partially observable Markov Decision
Process (POMDP) (Oberst & Sontag, 2019) and has been
extended to multivariate Hawkes processes (Noorbakhsh &
Rodriguez, 2022). This paper aims to move one step further
and propose to optimize the treatment policies by counter-
factually perturbing the observational actions. Especially
we assume that the occurrence of symptoms of an individual
is networked or intertwined and can be modeled as a multi-
variate temporal point process. The optimal perturbation of
the actions is obtained based on the counterfactual sampling
of the symptom rollouts.

Motivating Example Novice doctors may give sub-
optimal policies to their patients. Given observational treat-
ment and symptom traces, we adopt the Gumbel-max trick
to sample counterfactual symptom sequences by perturbing
the treatment actions in terms of time and types; the result-
ing outcome is evaluated retrospectively. The results will
provide quantitative insight into how to further improve the
treatment actions.

2. Related Work
Counterfactual Sampling The literature on counterfactual
sampling mainly focuses on using Structural Causal Model
(SCM) in Markov Decision Process and generating coun-
terfactual sequences (Oberst & Sontag, 2019)(Tsirtsis et al.,
2021). These models enable doctors to debug their policies
by comparing observed and counterfactual sequences. How-
ever, most of them are limited to discrete-time settings and
ignore the influence of historical trajectories. On the other
hand, (Hızlı et al., 2022) and (Schulam & Saria, 2017) use a
mixture of Gaussian processes to monitor doctors’ treatment
and patients’ outcomes in continuous time. (Seedat et al.,
2022) incorporates neural controlled differential equations
to deal with irregular samples. Two most recent papers
(Noorbakhsh & Rodriguez, 2022) and (Hızlı et al., 2022)

1

CounterfactualOptimization of Treatment Policies

integrate SCM into the temporal point process and sample
counterfactual sequences in the past. However, these papers
still focus on generating counterfactual samples given small
permutations on the past trajectory. In contrast, we explore
how to apply counterfactual rollouts to optimize treatment
policies and also incorporate some temporal logic rules to
exclude unreasonable trajectories.

3. Preliminaries
Temporal Point Process (TPP) TPP is a stochastic pro-
cess that models a sequence of discrete events localized
in continuous time (Rasmussen, 2018). Define a count-
ing process N(t), which records how many events occur
before time t. The TPP is characterized by the happen-
ing rate of an event, i.e., intensity function denoted as
λ(t) := E[dN(t)]/dt, where E[dN(t)] denotes the num-
ber of events happening in N([t, t+ dt]).
If each event has a specific event type, we name it Marked
Temporal Point Process (MTPP), where the intensity is a
function of time and event type. The joint conditional inten-
sity function is

λ(t, k) = λ(t) ∗ f(k | t)
where k is the marker of the event and f(k | t) is the con-
ditional probability mass function (given discrete marker)
of event type k given t. Given an analytical expression
of intensity function λ(t) and under some mild conditions,
we can easily sample events from it with Ogata thinning
algorithm (see Appendix A).
Multivariate Hawkes Prcoess is a common historical depen-
dent MTPP. Suppose HtN = {(ti, ki) : ti < t, 1 ≤ ki ≤
M, 1 ≤ i ≤ N} is a multivariate Hawkes Prcoess up to time
t with M mark dimensions and N events. The conditional
intensity function of m th mark dimension is defined as

λm(t|HtN) = µm+
∑

{k:1≤k≤M}

∑
{i:ti<t,ki=k}

αmke
−βmk(t−ti)

Recently, neural temporal point process has been widely
used to predict the time and mark of next event. Compared
with MTPP, it is more flexible and efficient. For instance,
(Zuo et al., 2020) represents the conditional intensity func-
tion as

λm(t|HtN) = fm(αm
t− tN
tN

+ w⊤
mh(HtN) + bm)

where h(HtN) is the encoding of historical events.

Temporal Logic Rule can be used to define medical rules
that the counterfactual sampling should preserve. Specifi-
cally, we introduce predicate as a logic variable, which is a
Boolean function X(·) that is defined over a set of entities
C, such as

X(·) : C1 × . . . CN → {0, 1}
where X(·) can be either properties of an entity (e.g.,
Diabetes(C): whether C has diabetes) or relations of entities
(e.g., Sibling(C1, C2): whether C1 and C2 are siblings). The
medical rule can be expressed as a compact set of IF-THEN
logic rules, such as

f1 : Diabetes(X) ∧ Sibiling(X,Y) → Diabetes(Y).

Further, we introduce temporal order constraints as Boolean
predicates to the logic rules, e.g., Before(Drug1, Drug2)=
1{t2 − t1 > 0} which is true whenever drug1 is applied
earlier than drug2. The IF-THEN rules can be converted to
the conjunctive normal form (CNF), such as

f2 : ¬Diabetes(X) ∨ ¬Sibiling(X,Y) ∨Diabetes(Y).

which is a Boolean formulas expressed as conjunctions of
clauses with an AND or OR. We will use the CNF expres-
sion to construct the regularization term in the counterfac-
tual optimization objective functions. Here, we will treat
the medical rules as soft constraints. Inspired by Zhou
et al. (2021), we construct penalties from temporal logic
rules to exclude unreasonable counterfactual treatment in
our optimization process. We extend the predicate from
Boolean value 0/1 to continuous value in [0, 1] and con-
vert the logical operators to arithmetic operators, such as
x1∧x2 = max{x1+x2−1, 0}, x1∨x2 = min{x1+x2, 1},
and ¬x = 1−x. In this way, if any logic rule is not satisfied,
we can define the distance to satisfaction as

max

1−
∑
i∈I+

j

yi −
∑
i∈I−

j

(1− yj), 0

 (1)

where I+j refers to sets of predicates that should attain value
1 in the logic rule, and I−j refers to sets of predicates that
should attain value 0 in the logic rule.

Structural Causal Model (SCM) The counterfactual
analysis requires the knowledge of structural casual model
(SCM) (Pearl, 2009), denoted as M. An SCM is a triple
M = (U,X, F), which consists of a set of unexplained ex-
ogenous “noise” variables U , a set of endogeneous variables
X , and a set of deterministic functions F = {f1, f2, ..., fn}
of the form Xi = fi(PAi, Ui), where PAi ⊆ X \ Xi.
We assume that no unmeasured confounders and U are
jointly independent. SCM can be used to present how the
outcome Y is caused by the treatment T given the con-
founding variables. Given the known SCM model M,
we can compute the conditional average treatment effect
(CATE) using the do-operator, i.e., τx = E[Y |X, do(T =
1)]−E[Y |X, do(T = 0)] where X is the confounding vari-
ables. To further estimate the counterfactual effect τ ′, we

2

CounterfactualOptimization of Treatment Policies

need first infer the posterior latent variables U under present
treatment and outcomes, e.g.,

P (U = u|X = x, Y = y, T = i)

Then we execute do(T = j) and pass the posterior distribu-
tions through the modified SCM to infer the counterfactual
outcome.

Counterfactual Temporal Point Process Specific to
TPPs, Noorbakhsh & Rodriguez (2022) proposes a coun-
terfactual sampling framework, which integrates the coun-
terfactual off-policy evaluation methods for SCM with the
Lewis thinning algorithm. Suppose a TPP has intensity
λ(t) ≤ λmax, one can first sample a sequence of po-
tential events by sampling intervals ∆t = − lnu

λmax
, where

u ∼ U(0, 1). Then for each point, we construct a SCM with
a binary final outcome Y , indicating the acceptance (Y = 1)
or rejection (Y = 0) of the point. The outcome Y has the
following structural equation:

Yi = argmax
y∈{0,1}

log p(Yi = y|λ(ti)) + Ui (2)

with p(Yi = y|λ(ti)) = y ·p(λ(ti))+(1−y)·(1−p(λ(ti))),
p(λ(ti)) = λ(ti)/λmax, Ui ∼ Gumbel(0, 1), and ti ∼
λmax. Given a sequence of observed accepted events Hm
and rejected events Hmax \ Hm given intensity λm(t) de-
termined by the observed events. One can first estimate
the posterior noise distributions and then get a Monte-Carlo
estimate of the counterfactual thinning probability, denoted
as pdo(Ti=λm′ (ti))(Yi = y) as

EUi|Yi=yi,λm(ti)

[
I[y = argmax

y′∈{0,1}
log p(Yi = y′ | λm′(ti)) + Ui]

]
Here do(Ti = λm′(ti))) equals to assigning the conditional
intensity function λm′(t) at time ti.

4. Model
Let’s consider a setting similar to the dynamic treatment
regime (DTR), where the total number of treatments is
fixed (See Fig.1). Define Treatment event as A1:n =
{(ti, si)}i=1,...n, with treatment types {si}i=1,...,n are ob-
served at time {ti}i=1,...n. Similarly, Symptom events are
X1:m = {(tj , sj)}j=1,...m, with symptom types sj . Both
events are modeled as multivariate TPPs and each intensity
function depends on historical events. We will introduce
flexible TPP models (Du et al., 2016; Zuo et al., 2020) to
estimate the intensity functions from batch data. The final
outcome Y refers to the survival time.
We aim to answer what-if questions: Given the observed
treatment and symptom traces, how could we perturb the
treatment actions do(A1:n = a′1:n) so that the survival time
is optimized in a counterfactual manner? Suppose original
action is ai = (ti, si), we could perturb it in three ways:

1) Fix action type and only change its action time:
do(Ai = (si, ti +∆t)).

Figure 1. Observed causal diagram (left) and counterfactual dia-
gram (right) of DTR with two actions

2) Fix action time and only change its action type:
do(Ai = (s′i, ti)).

3) Jointly change action time and action type: do(Ai =
(s′i, ti +∆t)).

In addition, to make the counterfactual changes as close as
real-life setting, we add some temporal logic rules as con-
straints to penalize any unreasonable counterfactual treat-
ments. For instance, we cannot give too aggressive treatment
consecutively to older people, which may cause great dam-
age to their bodies. Suppose there are K logic rules, our
goal is to maximize the logic-regularized reward function:

R(a′
1:n) := E[Y |do(A1:n = a′

1:n)]−
K∑

k=1

wkϕk(a
′
1:n) (3)

where ϕk(a
′
1:n) can be computed as in Eq. (1).

5. Counterfactual Optimization
In this section, we propose a counterfactual optimization
algorithm to optimize target function R(a′1:n). Suppose
counterfactual action is parameterized by policy πθ We first
propose a counterfactual sampling algorithm to calculate
survival time Y under the counterfactual policy. Then we
calculate the reward of counterfactual rollouts to optimize
treatment policies.

5.1. Counterfactual Sampling
In Alg.1, we input an observed sequence H , a user-defined
model Z, the time limit T and an initialized policy πθ.
Model Z takes an observed point process H as input and
outputs future conditional intensity function λ(t, s). For
each event (ti, si) in the observed sequence H , if si is an
action event, we sample a counterfactual action from πθ. If
si is an outcome event, we resample its acceptance decision
using Gumbel-max sampling algorithm.
In our paper, we use transformer hawkes process (Zuo et al.,
2020) and define decaying kernel for output condition inten-
sity function, so both λobs(t, s) and λcf (t, s) are bounded
at each starting point. For sequence HtN = {(tj , sj)}Nj=1,
we separately encode its temporal information tj and event
mark sj . Then we concatenate them together and pass them
through multiple encoder layers to get embeddings h(Htj)
at time tj , j = 1, 2...N .
Suppose the present time is t and last event happens at tj ,the
conditional intensity function for type k is

3

CounterfactualOptimization of Treatment Policies

λk(t|Ht) = fk(α
t− tj
tj

+ w⊤
k h(Htj) + bk)

where fk(x) = β · log(1 + exp(xβ)) is a smooth function.
We can use intensity function to predict next event time:

p(t|Ht) = λ(t|Ht)exp(−
∫ t

tj

λ(τ |Hτ)dτ)

t̂j+1 =

∫ ∞

tj

t · p(t|Ht)dt

Suppose the mark only depends on historical events. If it is
discrete, we can monitor it with a multinomial distribution

p(skj+1|Ht) =
exp(V k

j+1h(Htj) + bkj+1)∑M
k=1 exp(V

k
j+1h(Htj) + bkj+1)

ŝj+1 = argmax
k

p(skj+1|Htj)∑M
k=1 p(s

k
j+1|Htj)

The likelihood of the sequence HtN is

l(HtN) =

N∑
j=1

logλ(tj , sj |Htj)−
∫ tN

t1

λ(t|Ht)dt

Then at each event of sequence, we could predict the time
and mark of next event and compute the BCE loss of mark
Lsj and Root Mean Square Error (RMSE) of time Ltj

The total loss function to minize consists of negative log
likelihood and sum of time prediction loss and mark predic-
tion loss:

−l(HtN) +

N∑
j=2

(Lsj + Ltj) (4)

Note that the prediction loss starting from the second event.

5.2. Optimization with Counterfactual Sequences
Define πθt and πθa as counterfactual policies of changing
action time and action type. To optimize the two policies,
we use REINFORCE algorithm and continuously sample
rollouts (see Appendix C). For each iteration, we sample n
counterfactual trajectories to estimate the empirical value of
gradient θ. Each trajectory can be sampled by Alg.1. We
then calculate survival time and generate rewards to update
our policy. The action type is discrete and we parameterize
with softmax function

π(ai = u) =
exp(θu)∑U

u′=1 exp(θu′)
(5)

where u is the potential treatment index. The action time is
continuous and we parameterize with Gaussian kernel with
learnable parameters (µi, σi).

π(∆ti) =
1

σi

√
2π

exp

(
− (µi −∆ti)

2

2σ2
i

)
(6)

Algorithm 1 Counterfactual Sampling Algorithm
Input :T, λobs(t, s), λcf (t, s),H = {(t1, s1), ...,

(tn, sn)}, Dynamic model Z, Policy π(θ)
Initialize :t = 0, H ′ = ∅

1 while t < T do
2 λmax = max

s∈(t,t+l(t))
(λobs(t, s), λcf (t, s))

3 ∆t = − log u
λmax

4 r0 := (t0, s0) = H[0]
5 if s0 is action type then
6 Take action do(at′,s′) ∈ π(θ)

H ′ = H ′ ∪ (t′, s′)
t = t′

H.pop(0)
7 end
8 else
9 if t0 ∈ (t, t+∆t) then

10 u = Gumbelmax sampling(λobs(t0, s),
λcf (t0, s), λmax, t0, H)
t = t0
(t0, s0) = H.pop(0)
if u == 1 then

11 Draw event type si == Counterfactual
Mark (λobs(t0,si), λcf (t0, si), s0
H ′ = H ′ ∪ (t0, si)

12 end
13 end
14 else
15 u = Gumbelmax sampling(λobs(t, s),

λcf (t, s), λmax, t+∆t,H)
t = t+∆t
if u == 1 then

16 Draw event type si ∼ λcf (t0,si)∑
i λcf (t0,si)

H ′ = H ′ ∪ (t0, si)
17 end
18 end
19 end
20 Update λcf (t, s) = Dynamic model (H ′)

21 end
22 return H ′

6. Experiment on MIMIC Data
Experiment setup MIMIC-IV is an electronic health
record dataset, including patients in ICU systems. We val-
idate our counterfactual optimization algorithm on sepsis
patients from MIMIC IV. We extracte four lab measure-
ments, including Blood pressure (BP), Arterial Base Excess
(ArterialBE), Creatinine, and Urine. Each lab measurements
we consider three types of markers (low, normal, high).

4

CounterfactualOptimization of Treatment Policies

Observed
Cf Time

Cf Type

Cf Time+Type
Cf Rule

−4

−3

−2

−1

0

1

2

3

4

R
ew

ar
d

Figure 2. Comparison of Reward between Observed and Counter-
factual Sequences
We considered seven treatment options, in-
cluding Epinephrine (E), Norepinephrine (NE),
Phenylephrine (PE), Epinephrine+Norepinephrine
(E+NE), Epinephrine+Phenylephrine (E+PE),
Phenylephrine+Phenylephrine (NE+PE), and
Epinephrine+Norepinephrine+Phenylephrine (E+NE+PE).
We record the last state of four lab measurements to
calculate patients’ survival time. Suppose each “normal”
measurement contributes +1 to the survival time while “low”
and “high” both contribute −1. If any lab measurement
is unobserved, the contribution is set to 0. The range
of contribution of four measurements to survival time is
[−4, 4].
We estimated conditional intensity function λ(s, t|H) using
the observed patients data in MIMIC-IV, which models
how the lab measurements are influenced by historical data
and treatments. Then we counterfactual and optimize the
treatment policies in both the timing and types.

Results Fig.2 summarizes the observed sequence and
counterfactual sequences for a patient whose initial reward
is -2. In total, We finish four experiments: change the action
time, change the action type, jointly change the time and
type, and jointly change the time and type while considering
the temporal logic rule constraint. For each experiment, we
sample 25 counterfactual realizations to estimate the final
reward. The mean reward value of four experiments are
-0.87,-0.68,-0.24 and -0.44. This result shows that all coun-
terfactual optimization sequences perform better than the
observed sequence and jointly changing the action time and
type performs best.
For the final experiment with temporal logic rule constraint,
we adopt the rule to be “Epinephrine, Norepinephrine and
Phenylephrine can’t be used simultaneously”.

To compare observed and counterfactual trajectories, we
pick up a counterfactual sequence with reward 2 from the
experiment of jointly changing action time and action type.
Then we compare it with the observed trajectory in both
action and progression of four states during the process. The
result in Fig.3 shows that counterfactual trajectory has more
normal states after treatment and thus has a higher survival
time.

Figure 3. Comparison of States and Action between Observed and
Counterfactual Sequences

7. Conclusion
In this paper, we propose a counterfactual optimization al-
gorithm to answer what-if question: given the observational
treatment and outcome trajectories, how could we perturb
specific treatment actions to maximize the counterfactual
outcome. We also apply temporal logic constraints to rule
out rule out unreasonable counterfactual sequences. We
evaluated our method on real MIMIC dataset and achieve
promising results.

5

CounterfactualOptimization of Treatment Policies

References
Du, N., Dai, H., Trivedi, R., Upadhyay, U., Gomez-

Rodriguez, M., and Song, L. Recurrent marked temporal
point processes: Embedding event history to vector. In
Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, pp.
1555–1564, 2016.

Hızlı, Ç., John, S., Juuti, A., Saarinen, T., Pietiläinen,
K., and Marttinen, P. Joint non-parametric point pro-
cess model for treatments and outcomes: Counterfactual
time-series prediction under policy interventions. arXiv
preprint arXiv:2209.04142, 2022.

Komorowski, M., Celi, L. A., Badawi, O., Gordon, A. C.,
and Faisal, A. A. The artificial intelligence clinician
learns optimal treatment strategies for sepsis in intensive
care. Nature medicine, 24(11):1716–1720, 2018.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Noorbakhsh, K. and Rodriguez, M. Counterfactual tem-
poral point processes. Advances in Neural Information
Processing Systems, 35:24810–24823, 2022.

Oberst, M. and Sontag, D. Counterfactual off-policy eval-
uation with gumbel-max structural causal models. In
International Conference on Machine Learning, pp. 4881–
4890. PMLR, 2019.

Pearl, J. Causality. Cambridge university press, 2009.

Rasmussen, J. G. Lecture notes: Temporal point processes
and the conditional intensity function. arXiv preprint
arXiv:1806.00221, 2018.

Schulam, P. and Saria, S. Reliable decision support using
counterfactual models. Advances in neural information
processing systems, 30, 2017.

Seedat, N., Imrie, F., Bellot, A., Qian, Z., and van der
Schaar, M. Continuous-time modeling of counterfactual
outcomes using neural controlled differential equations.
arXiv preprint arXiv:2206.08311, 2022.

Tsirtsis, S., De, A., and Rodriguez, M. Counterfactual expla-
nations in sequential decision making under uncertainty.
Advances in Neural Information Processing Systems, 34:
30127–30139, 2021.

Zhou, Y., Yan, Y., Han, R., Caufield, J. H., Chang, K.-W.,
Sun, Y., Ping, P., and Wang, W. Clinical temporal relation
extraction with probabilistic soft logic regularization and
global inference. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pp. 14647–14655,
2021.

Zuo, S., Jiang, H., Li, Z., Zhao, T., and Zha, H. Transformer
hawkes process. In International conference on machine
learning, pp. 11692–11702. PMLR, 2020.

6

CounterfactualOptimization of Treatment Policies

A. Ogata Thinning algorithm
Algorithm 2 Modified Ogata’s Thinning Algorithm of MTPP
Input :T, λ(t, sk)(k = 1, 2...M), l(t)
Initialize :t = 0, H = ∅

23 while t < T do
24 λmax(t) = max

t′∈(t,t+l(t))
(
∑M

k=1 λ(t
′, sk))

25 ∆t = −lnu0

λmax
, u0 ∼ U(0, 1)

26 if ∆t < l(t) then
27 if ua <

∑M
k=1 λ(t+∆t,sk)

λmax
, ua ∼ U(0, 1) then

28 Draw event type sk ∼ λ(t+∆t,sk)∑M
k=1 λ(t+∆t,sk)

29 H = H ∪ (t+∆t, sk)

30 end
31 t = t+∆t

32 end
33 else
34 t = t+ l(t)
35 end
36 end
37 return H

B. Gumbel max Trick
B.1. Draw samples from given category distribution
If the probability for discrete random variables X1, X2...XN are α1, α2...αN , we can use the softmax function to define the
sampling probability πi of Xi:

πi =
exp{αk}∑K
k=1 exp{αk}

(7)

Meanwhile, we can also use Gumbel trick to achieve the same result, which is equivalent to adding the standard gumbel
noise gk to the log-likelihood and take argmax of it. The distribution is the same as using softmax function

argmax
k∈1,...,N

(αk + gk) ∼
exp{αk}∑K
k=1 exp{αk}

(8)

gk ∼ Gumbel(0, 1) (9)

B.2. Get Gumbel distribution from given samples
Suppose a variable X has a categorical distribution and we already observe the outcome Xk, we can also recover the
posterior Gumbels noise that produces the result.
The maximum value is distributed as a standard Gumbel

max
k∈1,...,N

(αk + gk) ∼ Gumbel(logΣ
i
exp{αk}) (10)

And the conditional probability of p(gi|K, gk) is:

p(gi|K, gk) =
flogαi(gi)[gK ≥ gi]

Flogαi(gK)
(11)

Note: [A] is the Iverson bracket notation: [A] = 1 if A is True, otherwise [A]=0
So for the Gumbel variable gk (where Xk is the chosen variable) is

7

CounterfactualOptimization of Treatment Policies

gk = log(Σ
i
αi)− log(αk) (12)

And the gumbel variable gi (where Xi is not chosen) is

gi = −log(exp(−gumbel(0, 1)− log(αi)) + exp(−gumbel(0, 1)− log(Σ
i
αi)) (13)

B.3. Gumber-max Sampling Algorithm
Based on B.1 and B.2, we can sample posterior gumbel noise with following algorithm:
Algorithm 3 Gumbelmax sampling
Input :λobs(t), λcf (t), λmax, t,H

Initialize :G ∼ Gumbel(0, 1), α1 = λobs(t)
λmax

,

α0 = 1− α1, α
′
1 =

λcf (t)
λmax

, α′
0 = 1− α0

38 if t ∈ H then
39 U0 = TruncatedGumbel(log(α0),G)− log(α0)
40 U1 = G− log(α1)

41 end
42 else
43 U0 = G− log(α0)
44 U1 = TruncatedGumbel(log(α1),G)− log(α1)

45 end
46 X = argmax

i=0,1
(α′

i +Ui)

47 return X

In the above algorithm, the truncated Gumbel is defined as
TruncatedGumbel(log(αi), G) = −log(exp(−G− log(αi)) + exp(−G− log(

∑
i

αi)) (14)

Here we only has two types: accept or reject and their sum
∑

i αi is equal to one.
Belows is the counterfactual sample for marks (categorical distribution)
Algorithm 4 Counterfactualmark sampling
Input :λobs(t0,si), λcf (t0, si), s0

Initialize :G ∼ Gumbel(0, 1), α1 = λobs(t)
λmax

,

α0 = 1− α1, α
′
1 =

λcf (t)
λmax

, α′
0 = 1− α0

48 if t ∈ H then
49 U0 = TruncatedGumbel(log(α0),G)− log(α0)
50 U1 = G− log(α1)

51 end
52 else
53 U0 = G− log(α0)
54 U1 = TruncatedGumbel(log(α1),G)− log(α1)

55 end
56 X = argmax

i=0,1
(α′

i +Ui)

57 return X

C. Counterfactual Optimization
Belows is the reinforce algorithm that calculate reward of counterfactual sequence H ′ and optimize the policy πθ. Here we
jointly change action time and type with policy πθt and πθa . For each iteration, we sample n counterfactual trajectories to
estimate the empirical value of gradient θ. Each trajectory can be sampled by algorithm 1. We then calculate survival time
and generate rewards to update our policy.

8

CounterfactualOptimization of Treatment Policies

Algorithm 5 Counterfactual Optimization
Input :T,Observed Sequence H = {(t1, s1), ..., (tn, sn)},Dynamic model Z, Survival Function J(t), Temporal logic

constraints L(a′1:n) =
∑K

k=1 ωkϕk(a
′
1:n),Observed survival time Y0

Initialize :Counterfactual Policy πθ = {πθt , πθa}, λobs(t, s) = λcf (t, s) = Dynamic model(H)
58 for iteration i=1,2...T do
59 for counterfactual sequence τ = 1, 2, ..., n do
60 Counterfactual Sequence H ′

τ = counterfacutal sampling (T, λobs(t, s), λcf (t, s), H, Z, π(θ))
Survival time Yτ = J(H ′

τ)
Filter all counterfactual action a′1:n from H ′

τ

Reward Gτ = (Yτ − Y0) + L(a′1:n)
∇θτ,s = αγtGτ∇θlogπθs

61 end
62 θt = θt + ϵ 1

n

∑n
τ=1 ∇θτ,t

63 θa = θs + ϵ 1
n

∑n
τ=1 ∇θτ,a

64 end
65 return θt, θa

9

