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Figure 1: Limitations of existing CL benchmarks. We compiled comparison results of various
CL methods from recent years on existing benchmarks in the literature to highlight several key
issues with current CL benchmarks. A and B present results of multiple methods reported in two
papers, (I) (Gao et al., 2023a) and (IT) (McDonnell et al., 2024), on the Split-CIFAR-100 benchmark.
We can observe limitations in terms of benchmark upper bounds and the insufficient sensitivity to
performance differences. C and D future show the inconsistencies in method evaluation across
datasets, highlighting limited reliability of evaluation results and possible data contamination in
pre-training stages. For each method, we show its average final accuracy on two datasets in the 2-D
correlation sub-graph and present Spearman’s p and Kendall’s 7 to assess the correlation between
two datasets for evaluations. ‘ns’ and ‘x’ means that the correlation coefficient is not statistically
significant (p-value > 0.05) and statistically significant (p-value < 0.05), respectively.

ABSTRACT

The emergence of the foundation model era has sparked immense research inter-
est in utilizing pre-trained representations for continual learning (CL), yielding a
series of strong CL methods with outstanding performance on standard evaluation
benchmarks. Nonetheless, there are growing concerns regarding potential data
contamination within the massive pre-training datasets. Furthermore, the static
nature of standard evaluation benchmarks tends to oversimplify the complexities
encountered in real-world CL scenarios, putting CL. methods at risk of overfitting
to these benchmarks while still lacking robustness needed for more demanding
real-world applications. To solve these problems, this paper proposes a general
framework to evaluate methods for Continual Learning on Dynamic Benchmarks
(CLDyB). CLDyB continuously identifies inherently challenging tasks for the
specified CL methods and evolving backbones, and dynamically determines the
sequential order of tasks at each time step in CL using a tree-search algorithm,
guided by an overarching goal to generate highly challenging task sequences for
evaluation. To highlight the significance of dynamic evaluation on the CLDyB, we
first simultaneously evaluate multiple state-of-the-art CL methods under CLDyB,
resulting in a set of commonly challenging task sequences where existing CL
methods tend to underperform. We intend to publicly release these task sequences
for the CL community to facilitate the training and evaluation of more robust
CL algorithms. Additionally, we perform individual evaluations of the CL meth-
ods under CLDyB, yielding informative evaluation results that reveal the specific
strengths and weaknesses of each method.



Under review as a conference paper at ICLR 2025

1 INTRODUCTION

Al is undergoing a paradigm shift with the development of foundation models such as VIT (Doso-
vitskiy, 2020), CLIP (Radford et al., 2021), BERT (Devlin, 2018), which are trained on large-scale
datasets and can be effectively adapted well to a wide range of downstream tasks. Continual learn-
ing (CL), as a crucial approach for model adaptation, faces both new opportunities and challenges
amidst this paradigm shift. Opportunities arise from the complementary nature of CL and founda-
tion models. Specifically, the foundation models will significantly benefit from continual learning to
incrementally acquire new knowledge, while continual learning approaches can use the strong capa-
bility of foundation models as an advantageous starting point. Challenges primarily arise from the
limitations of existing commonly used CL benchmarks in providing comprehensive and indicative
evaluations of CL methods that start from stronger pre-trained foundation models.

Fig. 1 illustrates two fundamental limitations associated with current CL. benchmarks, hinder their
ability to deliver informative and reliable evaluations of CL methods, especially for those employ-
ing pre-trained models. Firstly, data contamination: the exponential growth in pre-training data
volume for foundational models heightens the risk of overlap with downstream CL tasks. The high
similarity in data distribution has led to performance saturation in recent years, making it tedious
to compare CL methods based on marginal performance improvements. More critically, this raises
concerns about whether recent progress in CL is largely attributable to exploiting more robust pre-
trained models rather than genuine algorithmic innovation (Janson et al., 2022; Galashov et al.,
2023), thereby hindering substantial progress within the CL community. Second, limited reliability
of evaluation results. The static nature of conventional evaluation benchmarks often simplifies the
complexities inherent in real-world continual learning scenarios. For instance, traditional bench-
marks often assume that tasks are randomly sampled from classes within a single static dataset,
and are presented sequentially in an unstructured, random manner. This is only marginally rep-
resentative of continual learning in real-world scenarios, where task sequences can be diverse and
ever-changing. Consequently, continual learning methods may overfit these simplified benchmarks
while still lacking the robustness needed for effective performance in more demanding applications.

In light of the urgent need for a challenging and robust continual learning benchmark, we present
CLDyB, a pioneering dynamic benchmarking asset specifically crafted to advance algorithmic de-
velopment in continual learning with pre-trained models. At the core of CLDyB lies a versatile
CLDyB-pipeline, which can be applied to any selected set of CL methods to generate task sequences
dynamically during CL training for evaluation purposes. These evaluation sequences are character-
ized by tasks and their sequential order being both dynamically determined based on the current
states of the CL models, following a two-step procedure at every time step in CL: (A) Sampling for
difficult tasks. We propose a greedy task sampling algorithm which identifies continual learning
tasks from a class data pool that are intrinsically and individually challenging to all evolving CL
models at each step, including the pre-trained model. Thus, mitigating data contamination associ-
ated with using strong pre-trained backbones for CL. (B) Searching for difficult sequences. By
formulating the search for challenging task sequential order as an online sequential decision making
problem (Puterman, 1994), we employ the Monte Carlo tree search (MCTS) algorithm (Coulom,
2006) to dynamically plan and select the optimal next task for incremental learning and evaluation
that leads to overall maximally challenging task sequences for the CL methods being evaluated.
Consequently, the resultant task sequences temper the CL methods under realistic challenging sce-
narios, thereby enhancing the likelihood of algorithmic developments made with our benchmark
translating into strong real-world performance.

We instantiate the CLDyB for class-incremental continual learning for visual classification (Zhou
et al., 2024b) - one of the most popular CL problems nowadays. In our experiments, we first employ
the CLDyB-pipeline on a group of representative CL methods, creating a set of commonly challeng-
ing task sequences appropriate for assessing state-of-the-art CL methods, yielding evaluation results
that are generalizable. Additionally, we demonstrate CLDyB-pipeline as a general framework for
assessing the individual robustness of CL methods, producing indicative evaluation results revealing
the potential failure cases for the CL methods separately. Finally, we evaluate and analyse diverse
CL methods on the CLDyB across different dimensions, such as robustness, memory efficiency and
accuracy (see Fig. 4), which reveal the unique characteristics and weaknesses of different methods.

In summary, our major contributions are (1) exploring the potential of dynamic benchmarking to
provide robust, consistent, and comprehensive evaluations for continual learning by designing the
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CLDyB framework, which dynamically searches for challenging tasks, (2) providing a commonly
challenging CL benchmark (task sequences) created by the CLDyB-pipeline, (3) showing the ability
of the CLDyB-pipeline to search task sequences specifically challenging a given continual learning
method, and (4) evaluating and comparing diverse CL methods from different perspectives on the
CLDyB, which provides some insight to better understanding of current CL methods.

2 PRELIMINARY: CONTINUAL LEARNING

Class-incremental continual learning (CiCL) strives to build a universal classifier that can handle
all seen classes by incrementally incorporating new knowledge while maintaining performance
on previously learned tasks (Zhou et al., 2024b). More formally, in CiCL, a CL algorithm A
iteratively trains a parameterized model f on a sequence of N classification tasks, T<VN*+1 :=
{TY,72,..., TN}, introduced one at a time as f* = A(f*~1, T*). Bach task 7" contains n} (image,
label) pairs {:cﬁ, y;f }?’_;1, divided into training/validation/testing splits, where * denotes the corre-
sponding split. Note that all tasks have disjoint class label spaces. A key restriction in CL is that
the algorithm cannot access data from past or future tasks while learning the current task at any
time step ¢. Consequently, the central challenge in CL lies in training f to recognize new classes
incrementally without suffering from catastrophic forgetting, where the model loses knowledge of
previously learned classes as new ones are introduced. Additionally, the model must maintain high
plasticity to adapt to upcoming data and tasks efficiently. We quantify forgetting and plasticity of
a single CL model f* at any specific time step ¢ through the standard metrics Average Forgetting
Measure (Chaudhry et al., 2018) and Average Learning Accuracy (Riemer et al., 2018) defined as

t—1
AFN(T=", 1) = % > ace(T, ) = Aee(TY, 1), M
t'=1
t
ALA(T<" f') = % S aee(T, 1Y). @

t'=1

Both metrics are evaluated on all tasks appeared in the sequence T<!*!, and Acc(T,f) rep-
resents the empirical classification accuracy of f on the testing split of task 7. For notation
consistency, the superscript * denotes a particular time step and <! refers to all time steps pre-
ceding ¢t. Subscripts ; ; are used to index elements in a set. Without loss of generality, we
assume that there are M > 1 CL algorithms, each associated with its respective parameter-
ized model for evaluation, i.e., A = {A,}M_, and F* = {f!}M_,. We denote the aver-

age AFM and ALA over these M models as AFM(T<!*1 F')= L. Zﬁle AFM(T<!H1 £t and
ALA(T<t+1 Ft)= LS~ Apa(T<t+1) ), respectively.

rdm

3 DYNAMIC BENCHMARKING FOR CONTINUAL LEARNING

Our objective is primarily to facilitate rapid algorithm development within the continual learning
community while also providing a framework that enhances the likelihood of algorithmic develop-
ments made with our benchmark translating into strong real-world performance. In this section,
we describe the two stages of our benchmarking framework, referred to as the CLDyB-pipeline,
as shown in Fig. 2, i.e., sampling difficult tasks and searching for difficult task sequences, each
corresponding to the two key challenges outlined in the Introduction.

3.1 TOWARDS INTRA-TASK DIFFICULTY — SAMPLING DIFFICULT TASKS

When the tasks used for continual learning of a pre-trained model largely overlap with the pre-
training data, the resulting high performance is unsurprising and fails to fairly evaluate the effective-
ness of CL algorithms (Galashov et al., 2023), as data contamination is the dominant contributor to
high performance. To avoid such data contamination while simultaneously challenging the contin-
ually learned model, our first goal is to construct continual learning tasks that are intrinsically and
individually difficult to the evolving CL model f!, at each step t, including for the pre-trained model
12 . Provided with a pool of classes, one straightforward recipe to screening difficult classification
tasks involves: (1) randomly sampling K classes with equal probability from the pool to form a task,
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(2) repeating step (1) to enumerate as many tasks as possible, and (3) selecting tasks that exceed a
predefined difficulty threshold. Unfortunately, due to the vast size of the data pool which we will
detail in Appendix A and the frequency of task screening (performed at every step t), this approach
turns prohibitively expensive.

Greedy task sampling  To significantly reduce the complexity, we turn to directly sample |ng)|
most probably difficult tasks ’]I”(t 9)° where the sampling probability of a task p*(7T) is naturally a joint
distribution over K classes. By formulating this joint distribution with Markov Random Field (Sher-
rington & Kirkpatrick, 1975) and leveraging the observation that the difficulty of a multi-class clas-
sification task closely relates to the separability between pairs of classes (He et al., 2020), we define
the sampling probability as proportional to the product of class pairwise potential functions, i.e.,

(Mo T wEnC) W(CCo) =4 Z €08 (Hirm 1 Homg))- 3
p,qe{l,--- K}

The operator z(-) denotes the min-max normalization % — [0, 1], and cos(-, -) represents
cosine similarity. Here, uﬁmp represents the prototype for class p according to the features extracted
via fi-1. This sampling probability thus targets the identification of the most difficult tasks that
challenge the current feature space’s capacity — a task involving more challenging pairwise class
discrimination, reflected in the higher value of the pairwise potential product, is assigned greater
sampling probability for its corresponding K classes.

Inspired by pairwise random field based image segmentation (Kohli et al., 2013), we propose to
sample K classes that maximize p’(7") through a greedy algorithm, where classes from each task
are selected sequentially. Initially, the first class is uniformly sampled from the entire set of available

classes in our data pool D, ensuring that the selected tasks in ']I“E 9) exhibit sufficient diversity. Sub-
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Figure 2: An overview of the proposed two-stage CLDyB-pipeline for dynamically constructing
challenging task sequences to the M CL models F*~!, at each time step ¢. Stage A: Initially,
the CLDyB-pipeline generates |ng)| intrinsically difficult tasks (Eqn. (3)) from a potentially time-
evolving data pool. These candidates are then clustered based on the functional skills required
for accurate classification, ensuring a comprehensive range of diverse tasks in the serach space
T?. Stage B: Monte Carlo tree search is employed to estimate the values (Eqn. (6)) of the tasks
in |T*|. The task with the highest value is selected as the ¢-th task for all CL models to learn
and evaluate, resulting in the updated task sequence T<!*! = T<! U 7' and CL models F* =
{An (fE1 'Tt) _;. Pseudocodes can be found in Alg. 3.
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sequently, during each k-th iteration of the greedy process, we choose the class p that contributes
the maximum increase in the product of potentials, i.e., p = argmax, [ cqq,.. 13 ¥(Cp,Co)-
The greedy sampling continues until K distinct classes are sampled. We repeat this greedy process
|qu)| times. Detailed procedures are available in Alg. 1.

Functional task clustering The set of sampled tasks ’]l“f 9 from the previous step is likely to

exhibit (1) a biased distribution of tasks across the functional skills necessary for accurate classifica-
tion, and (2) redundancy. This occurs because the M CL models naturally fall into different clusters
based on their functional skills. Consequently, uniform task sampling tends to favor those tasks
associated with the models belonging to the dominant functional skill cluster, which contradicts our
goal of covering task candidates that challenge M CL models equally. To address this issue, we
propose further clustering tasks based on their functional skills required and adopting an ancestral
sampling approach to fill a reduced candidate set 7 with |77 < |T(g) |. We first uniformly sample

a cluster and then draw a task from the chosen cluster. To create these clusters, we construct an M -
dim functional vector for each task by evaluating the negative log-likelihood (NLL) of each sampled
task under M k-NN classifiers derived from the CL models F?, . The clusters are then formed using
a standard k-means algorithm. Pseudocodes are provided in Alg. 2.

3.2 TOWARDS INTER-TASK DIFFICULTY — SEARCHING FOR DIFFICULT TASK SEQUENCES

The primary challenge in continual learning arises from its non-stationary nature, where tasks en-
countered in the wild are non-i.i.d. and previously unseen (Verwimp et al., 2024). As a result, even
algorithms that perform quite well on current static benchmarks remain susceptible to real-world
tasks, accompanied with either severe forgetting or negative transfer. For less overfitting to static
benchmarks, our second goal is to dynamically construct continual learning task sequences that
pose significant challenges to M CL models across all time steps, i.e., by maximizing forgetting
and minimizing plasticity. Mathematically, for a sequence of N tasks, we formulate and solve the
following optimization problem to identify these challenging sequences in a model-based manner,

T<N*! = arg max AFM(T<N 1 FY) — aLA(T<N ! FY), 4)
T<N+lgq

where 7r is the set of all possible ordered task sequences. Note that our goal for task sequence
construction in Eqn. (4) opposes the general objectives of CL algorithms, which are to minimize
forgetting and maximize learning plasticity. Intuitively, the stronger the CL algorithms (and models),
the fewer weaknesses they will have, and the higher their performance will be when subjected to the
adversarial task sequence constructed from Eqn. (4). Thus, the results of our evaluation provide
insights into the robustness of CL algorithms. This helps reveal the shortcomings of state-of-the-
art CL algorithms, and yield valuable training and assessment data which the CL community can
leverage to develop even stronger algorithms.

Eqn. (4), however, is an offline optimization problem, and the global maximal depends on the se-
quence length NV - which is an unknown variable or potentially infinite in real-world CL appli-
cations. To this end, we reformulate Eqn. (4) into an online sequential decision-making problem
as shown in Eqn. (5). Concretely, we consider the CL algorithms as a deterministic stationary
discrete-time system of the form F* = {A,,,(fi~%, 7*)}*_,, which defines a state transition func-
tion from observable state F*~! to IF* under action T* returned by our task selection policy A%<t |
ie, Tt = AYL(F!=1), at time t. Defining the immediate reward function after transition from
F*=! to F* with action 7% as R(F*~1, 7*%) = AFM(T<'*+! F*) — ALA(T<**!,F*), and the value
function of A%°! at the initial state as Q a2 (F0), we aim to find an optimal policy A%<, hence
sequences of optimal actions under .4%°!, that maximizes this value function, that is

N
vHv<N+l _ {Tt _ Adycl(]thl)}i\]:ﬁ St Adycl = arg max NIE:ﬂ ZOétilR(]Ftil,fidyCI(]Ftil)), (5)
t=1

Adyel

Q jayer (F0)

where « € (0, 1] is a discount factor. Solving the above optimization problem presents two key
challenges, including (1) accurately estimating the value function, which can vary significantly by
CL algorithms and task properties (e.g., the number of classes in a task) and (2) efficiently navigating
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the vast and discrete search space, which is compounded by the large number of tasks |T?| at each
time step and the considerable length of the task sequence.

Tree search with approximation in value Monte Carlo tree search (MCTS) (Coulom, 2006)
is one of the widely-adopted solutions for online sequential decision-making problems (Puterman,
1994), particularly well-suited to our CL setup due to its desirable ability in calculating value func-
tions focused on a particular initial state on the flyy MCTS utilizes Monte Carlo simulations to
approximate the value Q yayer (IFt) of each state F* in a search tree. In each action round, MCTS
alternates between four steps: (1) rollout simulation, where it performs simulations that expand the
tree recursively to estimate the current state value until a predefined simulation budget is exhausted;
(2) update, where the action values and visit counts of all preceding states associated with the current
state are updated; (3) selection, where the action (i.e., task 7*) leading to the state with the highest
immediate value is chosen; and (4) expansion, where all CL algorithms learn on the selected task
(the chosen action) and transit from the current state F*~! to the next state F*.

Unfortunately, in a CL setup, MCTS simulations are resource-intensive due to (a) the necessity for
performing an (N —t)-step rollout to evaluate the value function Q g2 (F*), which involves training
models on tasks at all (N — t) steps, and (b) the indeterminate and potentially infinite termination
length N in an open-ended CL experiment. To mitigate these issues, we substitute the exact value
function with the sum of the immediate reward and an [-step look-ahead reward. The hyperparameter
 mediates the trade-off between approximation bias and computational cost, allowing us to solve

for a suboptimal action at each ¢ as -

Tt = arg max Q'f't (Ft—l) ~ arg maX'R(Ft_l,'i‘t) + Z R(A(Ft_lﬂ/’ 7—t+l/)7 7‘-t+l’+1). (©6)
TteTt TteT? =0
For simplicity, We set [ = 1 and defer the use of more advanced techniques for value function
approximation, such as learning a value network (Silver et al., 2016), for future work.

4 RELATED WORK

Class-incremental CL methods Recently studies show that pre-trained models (PTMs) inher-
ently resist robustness against forgetting and exhibit strong generalizability to a variety of down-
stream tasks, making PTM-based CL an increasingly popular topic (Ostapenko et al., 2022; Zhang
et al., 2023). Driven by the recent successes in parameter-efficient fine-tuning (PEFT), researchers
have combined previous CL methods with PEFT approaches, culminating in numerous compute-
efficient CL approaches tailored for PTMs, including orthogonal projection (Liang & Li, 2024;
Qiao et al., 2024), model expansion (Zhou et al., 2021; Wang et al., 2022; Smith et al., 2022;
Wang et al., 2023a) and ensemble methods (Gao et al., 2023b; Zhou et al., 2024a). On the other
hand, representation-based strategies aim to preserve stable PTMs feature representation, typically
by freezing the backbone after learning of the first task (Zhou et al., 2023a) or using low learning
rates (Zhang et al., 2023). A non-parametric classifier for CL is then progressively constructed using
second-order class feature statistics (Zhou et al., 2023a), enhanced with random projections (Mc-
Donnell et al., 2024) or intermediate representations (Ahrens et al., 2023). A more detailed discus-
sion of conventional CL methods is deferred to Appendix B.1.

Dynamic benchmarking Evaluation of rapidly advancing PTMs using standard static bench-
marks is becoming inadequate for a thorough assessment due to potential data contamination (Shi
et al., 2023; Zhou et al., 2023b), bias and low robustness in evaluation results (Mclntosh et al.,
2024; Kiela et al., 2021). Dynabench (Kiela et al., 2021) and DynaBoard (Ma et al., 2021) address
these challenges by using crowd-sourced data collection and creating dynamic benchmarks for LLM
evaluation, with evolving test sets. To mitigate the substantial cost linked to manual data collection,
recent work proposes to dynamically generate the test set utilizing directed acyclic graphs (Zhu et al.,
2023) and a multi-agent framework (Wang et al., 2024). Orthogonal to dynamic benchmarking for
reliable evaluation, dynamic programming has been used for test set selection to develop scalable
and cost-effective evaluation methods for large-scale, ever-growing datasets (Prabhu et al., 2024).

5 EXPERIMENTS

CLDyB-pool As we have discussed in Introduction, Fig. 1 and Appendix A.3, image classi-
fication datasets, such as CIFAR-100 (Krizhevsky et al., 2009), CUB-200 (Wah et al., 2011) and
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Stanford Cars (Krause et al., 2013) have been commonly used for the evaluation of CL strategies,
but they have their respective limitations. To solve these limitations, we propose an initial strat-
egy that dynamically assesses CL models by searching a series of tasks from a large data pool. It
includes a diverse collection of real-world datasets for the primary experiments, as well as several
generated datasets for additional explorations. There are a total of 26 datasets, including 2,505,185
images across 2,403 categories. These classes vary in granularity, ranging from coarse-grained to
fine-grained, encompassing multi-national and multicultural diversity, and spanning across different
time periods. The details are provided in Appendix A.

Two use-cases of the CLDyB-pipeline In alignment with our objectives in Section 1, we conduct
our primary experiments in two distinct scenarios: (1) Commonly Challenging (CC) CLDyB-seq:
the CLDyB-pipeline is applied to a group of representative CL methods simultaneously to identify
common task sequences that are challenging for existing CL methods and pre-trained backbones;
(2) Individually Challenging (IC) CLDyB-seq: we apply the CLDyB-pipeline to each CL method
independently, uncovering task sequences that pose challenges for the specific CL. method.

CL algorithms We select a total of nine CL methods for evaluation based on two criteria: (1)
competitive performance: prioritizing the latest published methods with top performance on stan-
dard CL benchmarks, and (2) high representativeness: ensuring the selected algorithms collectively
encompass a wide variety of techniques. Implementation details: All experiments adhere strin-
gently to the standard CiCL protocols. For CL evaluation, we resort to three standard metrics, in-
cluding Average Accuracy (AA1), Average Retention! (AR?) (Chaudhry et al., 2018), and Average
Learning Accuracy (ALA7T) (Riemer et al., 2018). Higher values indicate better performance of the
CL methods, yet it also implies that the benchmark poses less of a challenge for CL. More details
on the selected CL methods and the experiment setups can be found in Appendix B.2 and B.3.

5.1 KEY RESULTS

CLDyB-pipeline finds commonly challenging task sequences In Fig. 3 and Fig. 9, it is evident
that the discovered CC CLDyB-seq are consistently challenging for the state-of-the-art CL meth-
ods, as all evaluated CL methods struggle more with the CC CLDyB-seq than on the standard CL
sequences, which consist of randomly ordered tasks with disjoint class labels. Overall, CL on the
CC CLDyB-seq results in an average decrease of 26% in Final AA and 9% in Final AR across the
CL methods, as illustrated in Fig 7. Moreover, in Fig. 3, when two separate groups of CL methods
are used for searching and evaluating the CLDyB-seq, the CL methods reserved solely for evalu-
ation still perform much worse on the CLDyB-seq compared to on the standard sequences. This
cross-validation result underscores that the challenges posed by the CC CLDyB-seq are generaliz-
able across different CL methods, making them a valid benchmark for assessing the performance of
a wide range of CL methods.
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Figure 3: Performance of CL methods evaluated on the CC CLDyB-seq obtained from applying the
CLDyB-pipeline to a subset of CL methods (solid). The remaining CL methods (dashed) are unseen
during searching for the CLDyB-seq and are reserved for evaluation only.

We present some qualitative visualizations of the identified CC CLDyB-seq in Fig. 15 and Fig. 21,
illustrating that the chosen tasks originate from various datasets, forming a sequence where similar
tasks are interspersed with dissimilar ones. We believe this scenario is reflective of real-world CL
situations, and the diversity observed here might be a reason why CLDyB-seq poses significant
challenges for CL methods.

"Equivalent to negative Average Forgetting Measure; The negation is applied to ensure that a higher value
indicates better performance of the CL method, aligning with the other two evaluation metrics.
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Table 1: Final average accuracy (%) of CL methods on various benchmarks. ¥ indicate published
results. ‘ns’ and ‘x’ respectively indicate statistical non-significance and statistical significance.

Final Average Accuracy

Method
CIFAR-100' ImageNet-R! CLDyB-seq (Ours) Heldout

RanPAC (McDonnell et al., 2024) 922 78.1 56.9 81.0
HidePrompt (Wang et al., 2023a) 92.6 75.1 62.5 84.9
DualPrompt (Wang et al., 2022) 86.5 68.1 41.9 70.8
PGP (Qiao et al., 2024) 86.9 69.3 44.0 68.7
LAE (Gao et al., 2023b) 85.6 72.7 48.1 71.1
SLCA (Zhang et al., 2023) 91.5 71.0 56.2 80.3
ER (Rolnick et al., 2018) 67.9 55.1 54.8 79.9
Spearman’s p (per column & Heldout) 0.643 (ns) 0.643 (ns) 0.964 « N/A
Kendall’s T (per column & Heldout) 0.429 (ns) 0.429 (ns) 0.905 N/A

Commonly challenging CLDyB-seq produce reliable evaluation results We show that evalua-
tion results on the CC CLDyB-seq are a better indication of the relative performance of CL methods
in an unseen CL scenario compared to those of the standard static benchmarks. In Tab. 1, we list the
performance of CL methods on the CLDyB-seq, two standard CL benchmarks, and a Heldout bench-
mark consists of randomly ordered tasks constructed from multiple datasets that are absent in any
of the prior benchmarks. The ranking correlations between these benchmarks and the Heldout are
assessed using Spearman’s and Kendall’s correlation coefficients. CLDyB-seq achieves the high-
est correlation with the Heldout, demonstrating excellent generalization in evaluation results and
significant potential for translating algorithmic development into reliable real-world performance.

Comparing CL methods on the CLDyB Applying the

CLDyB-pipeline independently to each CL method re- Final Final

sults in evaluation outcomes on the IC CLDyB-seq, tes- Ave. Retention Ave. Accuracy
tifying the worst-case performance of the method, as il- . ;&7 (5T =

lustrated in Eqn. (5). We thus define Robustness (1) of DuslProyfx \

a method as the average Final AA obtained on multiple \
independent IC CLDyB-seq discovered by the CLDyB- Memogre iy -
pipeline for that method, and include it as an evaluation .

criterion along with Memory Efficiency? in MB (1) and ER

6 46
the three standard metrics obtained on the CC CLDYB- o Jy/*
seq for comparing the CL methods in Fig. 4. AR N

Learning Accuracy Robustness

We note the following key observations: (a) Methods
adopting variants of replay, e.g., HidePrompt, RanPAC,
CLSER and SLCA, generally demonstrate greater resis- Figure 4: A comparison of CL methods
tance to forgetting, resulting in higher final AA. However, evaluated on the CLDyB across mul-
these methods are markedly less memory efficient. (b) tiple dimensions. Higher metric val-
Exemplar-replay methods, specifically ER and CLSER,  yes indicate better performance. The
display significantly higher model plasticity compared to  comparison highlights the strengths and
others, whereas PEFT methods like HidePrompt and LAE  eaknesses of each method.

exhibit limited average learning accuracy (ALA), indicat-

ing poorer forward transfer ability - a criterion often over-

looked in current continual earning literature. (¢) More sophisticated methods tend to improve per-
formance over their predecessors but are not necessarily more robust, e.g., PGP vs DualPrompt,
CLSER vs ER. And finally (d), we highlight that simple ER - despite not achieving the top per-
formances in final AA and AR, still remains competitive in memory efficiency, final ALA, and
robustness, thus ranking as the overall top CL method.

5.2 ADDITIONAL ANALYSIS

CLDyB-pipeline finds informative and individually challenging task sequences In
Fig. 5 Right, we visualize the IC CLDyB-seq discovered for each CL method in terms of feature
similarity between selected tasks. We notice that the IC CLDyB-seq exhibit meaningful clustering

?Equivalent to negative memory storage requirement. Detailed calculation can be found in Appendix B.4
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in the dendrogram, reflecting commonality in the CL methods. For example, CLSER and ER both
adopt exemplar replay, SLCA and HidePrompt both utilize classifier calibration.

A detailed examination of Fig. 5 Right reveals that the IC CLDyB-seq offer crucial insights into the
limitations of individual CL method evaluated. Specifically, LAE and AFEC both exhibit increased
vulnerability to sequences of tasks that present a large distribution shift in the feature space - as
the CLDyB-pipeline tends to select dissimilar tasks for both methods in their IC CLDyB-seq. We
hypothesize that this vulnerability arises because LAE and AFEC utilize moving average weight
ensemble and parameter-wise regularization, respectively, which are both less effective when sig-
nificant model updates are required for CL. Conversely, CLSER and ER are more susceptible to a
sequence of closely similar tasks, which aligns with prior theoretical findings that demonstrate a
correlation between task similarity and forgetting (Lee et al., 2021).

AFEC I I I 09 LAE

LAE I 0.8 AFEC

PGP I I I I 07 PGP

SLCA I

DualPrompt 06 8 HidePrompt

CLSER o5& CLSER

ER I I I o4 ER
HidePrompt I I I | RanPAC
RanPAC 03 DualPrompt

Figure 5: Dendrograms of CL methods based on Left: average accuracy trajectories obtained from

continual learning on the CC CLDyB-seq, and Right: the flattened version of the 2D task-to-task

similarity matrix obtained on the IC CLDyB-seq. The dengrograms exhibit noticeable consistency
in their hierarchical structures, reflecting commonality in the CL methods.

0.7

Task accuracy
Task similarity

CLDyB-pool is expandable over time with Al-generated data The CLDyB-pool need not to
be static - we demonstrate a simple example of how our CLDyB-pipeline can offer valuable feed-
back for selecting new datasets to integrate into the CLDyB-pool, thus making the CLDyB-pool
dynamically evolving over time and mitigating the issue of saturation in static benchmarks.

We initially employ the CLDyB-pipeline to dynamically evaluate selected CL methods for three
tasks. Based on the tree-search history of the CLDyB-pipeline for this sequence, we observe tasks
related to animals consistently yield higher rewards compared to other explored task candidates,
indicating potential challenges for CL methods with these task categories. Given that, we employ
diffusion models as a tool for rapid data expansion and add the generated images of novel animal
categories to the CLDyB-pool at this point, simulating a dynamic, expansive CLDyB-pool. In Fig. 6,
we compare the performance of the CL methods on upcoming tasks selected by the CLDyB-pipeline
from the original and the augmented CLDyB-pools.

As observed in Fig. 19, the Al-generated classes are indeed frequently chosen, while the drop in
final AA and AR in Fig. 6 demonstrates that the new sequence from the augmented CLDyB-pool
generally presents greater challenges to the CL methods evaluated. Both findings confirm that our
CLDyB-pool is highly expandable, thus avoiding saturation. Additionally, the tasks depicted in
Fig. 19 transition in image style, such as evolving from real to sketch and painting, indicating that
current CL methods may struggle with stylistic changes over time. In particular, in Fig. 6, we notice
that rehearsal-free methods like AFEC (Wang et al., 2021) and PGP (Qiao et al., 2024) appear
to be more susceptible to task sequences experiencing style shifts, showing a greater decline in
performance compared to the others.

Ablation study We first remove each proposed component of the CLDyB-pipeline, generating
four distinct ablated variants: (a) random task sequence, (b) the greedy task sampling is replaced
by uniform sampling from the classes within each dataset in the CLDyB-pool to create the task
candidates, (c) the functional task clustering is omitted, leading to each candidate for tree search
being randomly selected from the task candidates produced by greedy task sampling, and (d) the
tree search for selecting the next task is substituted with consistently choosing the task most similar
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Figure 6: Performance on CC CLDyB-seq discovered from CLDyB-pool with (w AI) and without
(w/o Al) additional diffusion-generated class images introduced after the third task.
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Figure 7: Ablation study comparing the average performance of CL methods on task sequences
obtained by the CLDyB-pipeline and ablated variants. Arrows show performance gap between
ablated variant (a) standard random sequences, and the CC CLDyB-seq of the full CLDyB-pipeline.

in representation to previously encountered tasks, as investigated in Bell & Lawrence (2022). These
variants are compared to the full CLDyB-pipeline to evaluate the effectiveness of each component.

In Fig. 7, it is evident that the full version of the CLDyB-pipeline outperforms all ablated variants
in identifying more challenging CLDyB-seq, which leads to lower accuracy and retention, thus val-
idating the efficacy of each proposed component. Furthermore, to validate the effectiveness of the
CLDyB-pipeline for long CL task sequences, we present the evaluation results for an extended se-
quence consisting of 40 tasks in Fig. 10. It is observed that the CL methods, on average, consistently
under-perform on the CLDyB-seq compared to standard randomly ordered task sequences. Finally,
in Fig. 11, we demonstrate that the CLDyB-pipeline remains effective in dynamically identifying
CC CLDyB-seq to combat data contamination and performance saturation for CL methods using
alternative pre-trained backbones.

6 CONCLUSION

The use of pre-trained models trained on large-scale data, combined with the lack of timely updates
to existing benchmarks, has led to significant issues, such as insufficient and inconsistent evalua-
tion, in evaluating continue learning (CL) method. To address these challenges, this paper proposes
areform of CL evaluation protocols to assess CL methods in a dynamic and realistic manner. Specif-
ically, we introduce CLDyB, a framework that dynamically constructs and selects tasks over time
using a tree-search algorithm to conduct more rigorous evaluation and effectively challenging CL
methods. To validate the effectiveness of CLDyB, we use it to search for a common task sequence for
evaluating various CL methods, as well as the specialized sequence tailored to a given CL method.
Experimental results show that the common task sequence search by CLDyB-pipeline presents con-
sistent challenges across different CL. methods, while the specialized sequences effectively target
and stress individual methods. Meanwhile, we design some interesting experiences, such as adding
Al generated into CLDyB-pool , to show the generalization ability of CLDyB facing different data
distributions. In addition, we provide extensive analysis and discussion of various CL methods on
CLDyB-seq, which can potentially enhance the understanding of CL techniques and provide insights
into optimizing CL strategies. We will release the CLDyB-pipeline and the common CLDyB-seq to
the community, believing that CLDyB will promote the development of continue learning.
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APPENDIX

A CLDYB DATA PoOL

A.1 CONSTRUCTING THE CLDYB-POOL

In this section, we will introduce the building of the data pool, CLDyB-pool. The details are as
follows.

Real-world data. The CLDyB-pool real-world data inludes 2,043 classes from 22 publicly available
image classification datasets. Subjects of these datasets have a broad distribution, including animals,
plants, scenes, food, etc. The subjects across two major aspects within the CLDyB-pool: 1) Natural
and Biological Sciences include classes of fauna, flora and other natural elements and ecosystems.
These subjects cover various levels of granularity, from coarse-grained, such as different categories
of animals from Animal-90 (Banerjee, 2024), to fine-grained categories, such as various classes
of butterflies from Butterfly-70 (Thai, 2024), 2) Human-Made Objects/Scenes contain images of
clothing, food, buildings, and entertainment scenes. This group also captures multi-national and
multicultural diversity, highlighting historical diversity across different regions and eras. For ex-
ample, we have food classes from Food-101 (Bossard et al., 2014), CNFOOD-241(Aluza, 2024)
(Chinese cuisine), Indian Food Images (Banerjee, 2023) etc., datasets. which includes cuisines of
a variety of regions and cultures. By involving data from the two aspects, CLDyB-pool includes a
wider range of domains and diverse classes, offering broader distribution coverage, thus offering an
ideal test platform for CL methods.

Diffusion mode generated data. The CLDyB-pool will also include the 4 Al-generated datasets
used in our experiments in Section 5.2. These datasets are generated by SDXL (Podell et al.).
Specifically, 360 classes of three animal and one product datasets are generated by using prompts ‘A
high-quality image of a kind of animal: {animal name}’, ‘A high-quality sketch image of a kind of
animal: {animal name}’, ‘A high-quality {image style} image of a kind of animal: {animal name}’
and ‘A high-quality image of a kind of product: {product name}’. Incorporating the generated data
will expand the CLDyB pool to include additional distributions, leading to more challenging task
series (we have discussed in Section 5.2).

We use the CLDyB-pool as a dynamic source to dynamically search for task series. We expect that
CLDyB-pool will be valuable for ongoing research in continual learning and beyond. In the future,
our goal is to develop CLDyB-pool into a dynamic online project through open-source collaboration
with the community.

A.2 STATISTICS AND DISCUSSIONS OF CLDYB-POOL

Statistics. The details of the datasets in the data pool are shown in Table 2. There are two types of
datasets: real-world data and Al-generated data created with SDXL.

License. The CLDyB-pool dataset inherits licenses from its respective sources, as long as those
licenses are explicitly stated. If a license is not explicitly stated, the dataset in CLDyB-pool is
distributed under the CC BY-NC 4.0 license.1 3, which restricts its use for non-commercial purposes.

A.3 CLASS-INCREMENTAL CONTINUAL LEARNING BENCHMARKS

The common practice for evaluating CiCL methods, as first established in Rebuffi et al. (2016),
involves partitioning the classes of a labeled dataset into sequentially ordered tasks with non-
overlapping class labels for CiCL training and evaluation. Typical datasets used include
MNIST (Deng, 2012), CIFAR-100 (Krizhevsky et al., 2009), CUB-200 (Wah et al., 2011) and Im-
ageNet variants (Hendrycks et al., 2020; Le & Yang, 2015). Other benchmarks, e.g., OmniBench-
mark and VTAB proposed in (Zhou et al., 2023a), consist of a series of standard classification
datasets, each regarded as an individual task for incremental learning. Beyond remixing readily
available datasets, several new datasets have been specifically curated for CiCL benchmarking, in-
cluding Core50 (Lomonaco & Maltoni, 2017) which includes various objects in diverse settings ,

Shttps://creativecommons.org/licenses/by-nc-sa/4.0/
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Table 2: Statistics of datasets in current version CLDyB-pool. ‘# class’ and ‘# image’ mean the
class and image numbers, respectively. For some datasets. their # classes are different from their
official version because we selected the classes with a limited number of images(< 45).

Type | Dataset | # class | # image
Fruits-Vegetable (Seth, 2024) 35 3,047
Jute-Pest (Islam, 2024) 17 7,151
Animal-90 (Banerjee, 2024) 90 5,400
Sea-animal (Lanz, 2024) 23 13,711
Rock (Technologies, 2024) 9 3,687
Butterfly-75 (Thai, 2024) 75 6,499
Clothing-20 (Kaiska, 2024) 17 5,325
Apparel (Grigorev, 2024) 37 16,170
Food101 (Bossard et al., 2014) 101 101,000
Real-world data CNFOOD241 (Aluza, 2024) 240 170,835
Indian-Food (Banerjee, 2023) 80 4,000
FoodX251 (Kaur et al., 2019) 250 118,441
Oxford5Sk (Philbin et al., 2007) 17 5,063
Places365 (Zhou et al., 2017) 365 1,803,460
SUN397 (Xiao et al., 2010) 339 17,355
EuroSAT-RGB (Helber et al., 2018) | 10 27,000
MLRSNet (Qi et al., 2020) 46 109,161
RESISC45 (Cheng et al., 2017) 45 5,100
\ FGVC-Aircraft (Maji et al., 2013) \ 100 \ 10,000
Sports100 (Piosenka, 2024b) 100 13,492
One-piece-Anime (Aditya, 2024) 18 11,737
Balls30 (Piosenka, 2024a) 29 3,708
Product-71 71 7,095
Animal-multi-styles 133 19,962
SDXL-generated data | a1 cketch 77 8,494
Animal 79 8,292
CLDyB-pool \ - \ 2,403 \ 2,505,185

and CLEAR (Lin et al., 2021) which features a natural temporal progression of visual concepts.
Furthermore, Liao et al. (2023) have introduced CGQA and COBJ benchmarks for evaluating the
compositional generalization abilities of CL methods. Nevertheless, all current CiCL benchmarks
remain static, and none are explicitly tailored to accommodate evaluation of CL methods with strong
pre-trained models.
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B CONTINUAL LEARNING ALGORITHMS

B.1 A BRIEF INTRODUCTION OF TRADITIONAL CL METHODS

Traditional class-incremental continual learning algorithms can be broadly divided into (i) rehearsal-
based, (ii) regularization-based, (iii) model-based, (iv) optimization-based and (v) representation-
based, see Wang et al. (2023b) for a comprehensive survey.

Rehearsal-based approaches (Rolnick et al., 2018) utilize a memory buffer to store and replay old
training samples or task-specific data when learning new tasks. Recent work emphasizes exemplar
selection (Aljundi et al., 2019; Yoon et al., 2021), constraint optimization (Chaudhry et al., 2018;
Lopez-Paz & Ranzato, 2017) and generative replay (Shin et al., 2017). Regularization-based (Kirk-
patrick et al., 2017) methods restrict significant changes in the CL model and thus preserve old
knowledge. These include regularization of important parameters, with importance measured by
various approximations like the Fisher information matrix (Kirkpatrick et al., 2017), weight uncer-
tainty (Ahn et al., 2019) and variational posterior (Nguyen et al., 2018); as well as functional reg-
ularization utilizing Gaussian processes (Titsias et al., 2020), knowledge distillation (Li & Hoiem,
2016; Buzzega et al., 2020), and contrastive learning (Cha et al., 2021). Model-based methods often
involve model expansion (Schwarz et al., 2018; Wang et al., 2023a) and parameter isolation (Wang
et al., 2022) to handle and safeguard task-specific knowledge. Lastly, optimization-based methods
use techniques such as orthogonal gradient projections (Farajtabar et al., 2019; Saha et al., 2021) and
meta-learning (Riemer et al., 2018; Joseph & Gu, 2021) to mitigate negative interference between
tasks.

B.2 SELECTED CL METHODS FOR EVALUATION

We provide a brief description of the representative CL methods used for evaluation in this work
below. The CL techniques used by different CL methods are shown in Tab. 3 for a better comparison
between the methods. All CL methods are capable of using a pre-trained vision backbone as a
starting point for CL.

SLCA (Zhang et al., 2023) tunes the backbone (feature encoder) with a small learning rate while
tuning the classifier with a large learning rate. Although naive, such strategy ensures that the model
can extract stable feature, which is important to mitigate catastrophic forgetting. Besides that, to
resist the forgetting of the classifier, it also models and replays the class-wise feature distribution to
calibrate the classifier.

RanPAC (McDonnell et al., 2024) combines Random Projection (RP) and Class-Prototype (CP)
strategies for continual learning. After training on the first task, RanPAC freezes the backbone
network and applies a Random Projection layer to the features. It then decorrelates class prototypes
using the inverse of the Gram matrix of the projected features. This approach avoids catastrophic
forgetting and achieves strong performance without using rehearsal memory.

LAE (Gao et al., 2023b) maintains a Online PET module (regular training) and uses exponential
moving average to update an Offline PET module. In inference, LAE uses a simple model ensemble
strategy, i.e., choosing the “most confident” of the two models.

PGP (Qiao et al., 2024) find that reaching the orthogonal condition for the gradient of prompts can
effectively prevent forgetting. They achieved this goal by conducting Singular Value Decomposition
(SVD) on an element-wise sum space between input space and prompt space.

HidePrompt (Wang et al., 2023a) adds several optimizations to the previous Prompt-based method,
like prompt-ensemble strategy, constrastive feature constraint, and a joint optimization for three
tasks (Within-Task Prediction, Task-Identity Prediction and Task Adaptive Prediction).

DualPrompt (Wang et al., 2022) is a typical prompt based continual learning method. Based on
L2P, it further explores the importance of prompt depth by attaching prompts to different layers. It
also separate general and task-specific prompts, so that model could better learn both global and
local knowledge.

CLSER (Arani et al., 2022) maintains a stable model and a plastic model, standing for long-term
and short-term semantic memory, by different EMA strategies. During training, a mse distillation
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loss would be added between the working model and the most confident EMA model. Therefore,
this method provides an adaptive trade-off between stability and malleability.

AFEC (Wang et al., 2021), inspired by biological neural networks, proposed a method to actively
forget old knowledge conflicting with new experience. Based on Elastic Weight Consolidation
(EWC), another fisher information matrix of the current training model and task-specific fine-tuned
model is introduced as regularization term in the loss function. This allows the model to actively
forget some of the old knowledge, rather than preferring to retain it all.

ER (Rolnick et al., 2018) is the most simple and fundamental rehearsal based method. It simply
stores previously seen data in a fixed memory buffer, and replays them during training to mitigate
catastrophic forgetting of previous tasks.

Table 3: Summary of techniques employed by the selected continual learning methods.

SLCA
(Zhang et al., 2023)

RanPAC
(McDonnell et al., 2024)

HidePrompt DualPrompt CLSER
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B.3 EXPERIMENT DETAILS

All experiments adhere stringently to the standard CiCL protocols. For CL evaluation, we resort to
three standard metrics, including Average Accuracy (AA1), Average Retention* (AR?) (Chaudhry
et al., 2018), and Average Learning Accuracy (ALAT) (Riemer et al., 2018). Higher values indi-
cate better performance of the CL methods, yet it also implies that the benchmark poses less of a
challenge for CL. More details on the selected CL methods and the experiment setups can be found
in Appendix B.2 and B.3. For CL training, the hyper-parameters of each CL method are selected
on the validation sets of the first three tasks following Chaudhry et al. (2018). Every task in the
CLDyB-seq is a 20-category classification problem, and the sequence length NV is set to 10. All
CL models are initialized with the ViT-Base-Sup21K (Dosovitskiy et al., 2021) pre-trained back-
bone. We conduct our experiments with multiple different random seeds and present the averaged
outcomes. The first task is randomly chosen and consistently fixed for the same seed to ensure a fair
starting point for comparison of different task selection strategies.

B.4 MEMORY FOOTPRINT CALCULATION

In the calculation of Memory Footprint, we account for the storage space used by each Learner in
addition to the ViT Encoder. This includes model replicas (such as old models and models updated
using EMA), PET modules, dataset statistics, and samples from previous tasks. All parameters are
calculated as 32-bit floating point values, while stored images are treated as uncompressed 8-bit
RGB images with a resolution of 224x224.

*Equivalent to negative Average Forgetting Measure
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C

PSEUDOCODE FOR CLDYB-PIPELINE

We will publicly release our curated datasets, dynamic evaluation benchmark, and baseline imple-
mentations at https://PLACEHOLDER/FOR/GITHUB/URL/ upon acceptance of the paper.

Algorithm 1 GreedyTaskSampling(D, C<t, Fi=1 K .J)

13:
14:
15:
16:
17:
18:

Require: Data pool ID; Classes in previous CL tasks C<! Continual learning models F!~! :=
{fimt f= L f M?l}; Num. task candidates to sample J; Num. classes in each task K

C+D\C< > Filter out previously sampled classes in D
U(Cy,Cq) = 2 Zi\n/{zl z(cos(ply b 1)), ¥p,q € C > Initialize class pair-wise potentials
']I‘f 9= 0 > Initialize the candidate set by an empty set
forj=1,...,Jdo
fork=1,..., K do
if £ == 1 then > Randomly sample the first task to ensure diversity
Tt ={Ci}; i ~[IC]]
else > Greedily add class ¢ in 7 that maximizes the class-clique potential, Eqn. (3)
Tt TtUC;; s.b.i = argmax; [oeqi k13 (Ci,Co)
end if
end for
T, « Ty VT > Add sampled task to the candidate set
end for
Return: T’Eg)

Algorithm 2 FunctionalTaskClustering(T{ ) . F*~', J)

Require: A sample task set ng); Continual learning models Fi—1 =
{71 A7 i) Num. of desired task candidates J, J < T(,)l:
G« 0/Ti XM > Initialize task feature matrix
for i € [|T(,[] do
for m € [M] do > Evaluate the average NLL of samples in 7 under a KNN classifier
build from the m-th CL model
Gli,m) = = 4 yere log Pl (yle)
end for
end for
{T%, T, ..., Tt} < KMeans(G) > split ng) into K clusters
T TE=0
cforj=1,2,..Jdo > ancestral sampling without replacement from ’]I‘fg)
T ~ {T%,T%,..., T4} > uniformly sample one cluster
T~T > uniformly sample one task from the cluster
T+ \T, Tt TtUT > remove the sampled task from the cluster to the candidate set
: end for
: Return: T?
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Algorithm 3 CLDyB: Train and evaluate M continual learning algorithms on a sequence of N tasks
selected dynamically by the proposed CLDyB-pipeline in Section 3 and Fig. 2
1: Require: Data pool D; Pretrained Models F := {fi, fo...fsr}; CL Algorithms A :=
{A1, Aa...Apr}; Num. tasks for greedy task sampling J(g); Num. task candidates for
MCTS J; Desired sequence length N

2:

3: Initialize f°, = f., Ym € [M]

4: Initialize T<! = () > the sampled CLDyB-seq

5:

6: fort=1,2,.... N do

7: T{,) = GreedyTaskSampling(DD, C<HLF1 K, Jiy)) > Sample .J(4) difficult tasks,
Alg. (1)

8:

9:  T'« FunctionalTaskClustering(T{, F'~!,J) > Prepare the search space for
MCTS, Alg. (2)

10:

11: 7' <+ MCTS(currstate = F!~! actionspace = T?, simulationbudget =

B, value function = Q7+ (F!~1)) > Search for the optimal action on curr state that leads to the
maximal value estimation i.e., 7' = arg maxsp. Q7(F'~!)) Eqn. (6)

12:

13: F={A,(fi L, THIM_, > Train all M CL models on the selected task i.e., standard
continual learning

14 T<Hl=T<tyuTt > Add task to the sampled sequence
15: end for
16: Return: T<V+! > the discovered CLDyB-seq for CL evaluation

D ADDITIONAL RESULTS

D.1 CLDYB-SEQ WITH VARIOUS DIFFICULTY LEVELS

In the main text, while we have primarily focused on generating the most challenging CLDyB-seq by
greedily selecting the most difficult task from the candidate pool that maximizes the search reward
defined in Eqn. (6), it is possible to consider incorporating task sequences of various difficulty levels
into the CLDyB-seq.

We propose a possible implementation to incorporate this feature into the CLDyB-pipeline. Instead
of greedy selection, at each time step, we adopt a probabilistic sampling-based approach. The sam-
pling probability of choosing a particular task is made proportional to the task’s reward, Q-+ (F*~1),
that is

— _ L (Ft—1
TPTET 0 where p(T = T) 1= — RO (7 )/7) @

© Ygrer exp(Qye (B 1) /7)

To introduce varying difficulty levels, we employ an additional temperature scaling factor, 7 in the
sampling distribution, as a hyperparameter, to control the bias towards selecting the most challeng-
ing task. A temperature of 7 = 0 corresponds to the original greedy selection, while a higher
temperature makes all candidate tasks more equally likely to be selected. All other components of
the CLDyB-pipeline remain unchanged.

Based on this approach, we created two additional CLDyB-seqs at the "'medium’ and "easy’ difficult
levels, with the original CLDyB-seq serving as the *hard’ version for evaluation. We evaluate all CL
methods on these three variations of the CLDyB-seq, the results are presented in Tab. 4. We observe
that: (a) As expected, the performance of all CL methods improved as the difficulty decreased;
(b) Performance on the hardest CLDyB-seq serve as a lower bound for each CL method; and (c)
although there is some minor local shuffling in the relative rankings, the evaluation results for all
three versions of CLDyB-seq still exhibit much higher correlation with the Holdout data compared
to the standard benchmarks shown in Tab. 1. These results confirm that evaluation results and
algorithmic developments made on our challenging CLDyB-seq are more likely to translate into
strong real-world performance.
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Table 4: Final average accuracy (%) of CL methods on our CLDyB-seq with difficulty levels at
Hard, Medium and Easy. ‘ns’ and ‘x’ respectively indicate statistical non-significance and statistical

significance.
Method Final Average Accuracy
Hard Medium Easy Heldout

RanPAC (McDonnell et al., 2024) 56.9 62.2 77.0 81.0
HidePrompt (Wang et al., 2023a) 62.5 67.6 80.1 84.9
DualPrompt (Wang et al., 2022) 41.9 53.7 69.0 70.8
PGP (Qiao et al., 2024) 44.0 52.0 69.2 68.7
LAE (Gao et al., 2023b) 48.1 50.9 70.1 71.1
SLCA (Zhang et al., 2023) 56.2 59.7 77.2 80.3
ER (Rolnick et al., 2018) 54.8 60.5 76.3 79.9
CLSER Arani et al. (2022) 57.0 60.7 75.4 81.1
AFEC Wang et al. (2021) 49.5 51.9 72.5 76.3

Spearman’s p (per column & Heldout) 0.983 %  0.833 %« 0.867 x N/A
Kendall’s 7 (per column & Heldout) 0.944 x  0.667 «  0.722 % N/A

D.2 ADDITIONAL FIGURES OF CL EVALUATION RESULTS

Figures 8 to 13 provide additional results of CLDyB evaluations under varying conditions. Specifi-

cally:

D.3

* Fig. 8 provides evaluation results of CL methods on the standard, randomly ordered CL
task sequences.

* Fig. 9 provides a performance comparison of the individual CL learner in Fig. 3 (CLDyB-
seq) and Fig. 8 (random).

* Fig. 10 validates the effectiveness of the proposed CLDyB-pipeline in a long sequence CL.
setup.

e Fig. 11 validates the effectiveness of the proposed CLDyB-pipeline in challenging CL
methods augmented with the CLIP-ViT-Base (Radford et al., 2021) which is a more power-
ful foundation model pre-trained on a much larger web-based dataset, FYCC-100M, com-
pared to the ViT-Base-Sup21K (Dosovitskiy et al., 2021).

* Fig. 12 validates the effectiveness of the proposed CLDyB-pipeline in searching for com-
monly challenging CLDyB-seq for a subset of CL methods using a mixture of the ViT-
Base-Sup21K (Dosovitskiy et al., 2021) and the CLIP-ViT-Base (Radford et al., 2021)
pre-trained backbones.

* Fig. 13 provides a performance comparison of the individual CL learner in Fig. 12.

» Fig. 14 provides a comparison between the evaluation results of CL methods, using the
CLIP-ViT-Base pre-trained backbone, on the CLDyB-seq discovered from the original and
augmented CLDyB-pool with Al-generated data.

VISUALIZATION OF TASK SEQUENCES

Figures 15, 16, 17 and 18 show the t-SNE of tasks in CC and IC CLDyB, respectively. Meanwhile,
Figures 19 and 20 are image examples of the searched task sequences for the experiment: CLDyB-
pool is expandable over time with Al-generated data . We also provide some visualizations of the
commonly challenging sequences discovered in Fig. 21, Fig. 22 and Fig. 23.
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Figure 8: Performance of CL methods on the standard CL sequences constructed from randomly
ordered tasks sampled unifromly from the CLDyB-pool.

E DISCUSSION OF LIMITATIONS

As the concept of dynamic benchmark is relatively new in the CL community and has not been
widely explored, this paper focuses on class incremental CL for vision recognition, without extend-
ing to other machine learning tasks such as domain-incremental CL, natural language processing,
and multimodal CL. However, we believe that the idea behind CLDyB can inspire the development
of dynamic benchmarks for other machine learning tasks, and we plan to explore these directions in
future work. On the other hand, the current CLDyB-pool we used requires manual updates for data
pool expansion. We will develop it into an online project for the community, aiming to incorporate
new data in a fully automatic fashion, as the community evolves, and hope that the CLDyB pool will
also facilitate research on other computer vision tasks.
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Figure 9: Performance comparison of individual CL methods on the commonly challenging CLDyB-
seq obtained by the CLDyB-pipeline and standard sequences constructed from randomly ordered
tasks. CLSER, HidePrompt, RanPAC, PGP and AFEC are used during searching while ER, SLCA,
LAE and DualPrompt are reserved for evaluation only. All CL methods use the ViT-Base back-
bone (Dosovitskiy, 2020) supervised pre-trained on the ImageNet-21K.
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Figure 10: Average performance of CL methods on long task sequences constructed from the
CLDyB-pipeline and randomly ordered tasks. Arrows indicate performance gap.
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Figure 11: Average performance of the evaluated CL methods on commonly challening CLDyB-
seq obtained by running the CLDyB-pipeline on a subset of CL methods all using the CLIP-ViT-
Base (Radford et al., 2021) pre-trained backbone. Arrows indicate CL performance gap to that on
the standard sequences constructed from randomly ordered tasks.
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Figure 12: Average performance of the evaluated CL methods on commonly challenging CLDyB-
seq discovered by running the CLDyB-pipeline on a subset of CL methods augmented with a mixture
of the ViT-Base-Suo21K (Dosovitskiy et al., 2021) and the CLIP-ViT-Base (Radford et al., 2021)
pre-trained backbones. Arrows indicate CL performance gap to that on the standard sequences
constructed from randomly ordered tasks.
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Figure 13: Performance comparison of individual CL methods on the commonly challenging
CLDyB-seq obtained by the CLDyB-pipeline and standard sequences constructed from randomly
ordered tasks. CLSER, HidePrompt, RanPAC, PGP and AFEC are used during searching while
ER, SLCA, LAE and DualPrompt are reserved for evaluation only. Individual CL methods are aug-
mented with either the ViT-Base-Suo21K (Dosovitskiy et al., 2021) or the CLIP-ViT-Base (Radford
et al., 2021) pre-trained vision backbones as indicated by plot labels.
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Figure 14: Performance of CL methods, using the CLIP-ViT-Base pre-trained backbone, on CC
CLDyB-seq discovered from CLDyB-pool with (w Al) and without (w/o Al) additional diffusion-

generated class images introduced after the third task.
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Figure 15: t-SNE of tasks in CC CLDyB-seq (seed 0).
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Figure 16: t-SNE of tasks in IC CLDyB-seq for LAE.
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Figure 17: t-SNE of tasks in IC CLDyB-seq for ER.
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Figure 18: t-SNE of tasks in IC CLDyB-seq for RanPAC.
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Figure 19: Visualization of task sequence discovered by the CLDyB-pipeline from augmented data
pool with ai-generated data after time step ¢ = 2. CL method used for task sequence searching:
RanPAC, PGP, AFEC, CLSER, HidePrompt. Tasks consisting of Al-generated images are selected
at steps {3,4,5,6,7,9}
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Figure 20: Visualization of task sequence using data pool without ai-generated data. CL method
used for task sequence searching: RanPAC, PGP, AFEC, CLSER, HidePrompt.
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Figure 21: Visualization of a commonly challenging task sequence discovered by the proposed
CLDyB-pipeline (seed-0).
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Figure 22: Visualization of a commonly challenging task sequence discovered by the proposed
CLDyB-pipeline (seed-1)
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Figure 23: Visualization of a commonly challenging task sequence discovered by the proposed
CLDyB-pipeline (seed-2)
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