ShorterBetter: Guiding Reasoning Models to Find
Optimal Inference Length for Efficient Reasoning

Jingyang Yi* Jiazheng Wang* Sida Li
Data Science Institute, The University of Chicago
Chicago, IL 60637
{jingyang22, jiazhengw, listar2000}@uchicago.edu

Abstract

Recent models such as OpenAl ol and DeepSeek-R1 have demonstrated strong per-
formance on reasoning-intensive tasks by generating extended Chain-of-Thought
(CoT) traces. While longer reasoning helps with thorough exploration of solu-
tion paths for complex problems, it also often leads to inefficient and redundant
outputs—a phenomenon commonly described as overthinking. In this paper, we
propose ShorterBetter, a simple yet effective reinforcement learning method
that enables reasoning models to learn their own optimal CoT lengths without
manual supervision. We define the Sample Optimal Length (SOL) as the length
of the shortest correct response among multiple generations, which serves as a
dynamic reward signal to guide the model toward efficient reasoning. Applied
to DeepSeek-Distill-Qwen-1.5B/7B as base models, ShorterBetter achieves
50%-80% reduction in output lengths in both in-domain and out-of-domain rea-
soning tasks while maintaining accuracy. Our reasoning trace analysis shows that
ShorterBetter refines the structure of the reasoning traces by reducing unneces-
sary repetition, excessive self-verification, and over-exploration of alternatives.'

1 Introduction

Improving the reasoning capabilities of Large Language Models (LLMs) has recently led to sub-
stantial performance gains in highly structured and complex tasks, such as mathematical problem-
solving (Shao et al., 2024) and competitive programming (Jiang et al., 2025). Exemplified by OpenAl
ol (OpenAl, 2024) and DeepSeek-R1 (Guo et al., 2025), these reasoning models are incentivized
to generate extended Chain-of-Thought (CoT) steps during inference. Such extended reasoning
often includes detailed intermediate steps, reflective self-verifications, and exploration of alternative
problem-solving strategies. These advancements are widely believed to enable LLMs to exhibit
human-like System-2 slow thinking (Evans, 2003; Qu et al., 2025; Li et al., 2025), wherein significant
test-time computational resources are deliberately allocated in exchange for improved accuracy and
robustness on challenging reasoning benchmarks (Jain et al., 2025; Rein et al., 2024).

However, recent studies have shown that excessively long reasoning processes can be counter-
productive, leading not only to computational inefficiencies but also to the so-called overthinking
phenomenon (Chen et al., 2025; Luo et al., 2025a), where additional reasoning steps yield diminishing
returns or even negatively impact model performance (Su et al., 2025).> For example, we identify
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'"The source code, model weights, and analysis pipelines are available at: https://jiazheng-wang-
yes.github.io/ShorterBetter_ProjectPage/

*We provide an experiment in Appendix B.3 demonstrating that incorrect reasoning traces often have longer
output lengths.
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Figure 1: ShorterBetter exhibits strong length reduction performance (1.5B models). We report
accuracy and output length of five sets of models on various tasks. Models include DeepSeek-R1-
Distill-Qwen-1.5B, Qwen2.5-1.5B-Instruct (non-reasoning model), ShorterBetter-1.5B (a =1
and o =2) and Training Efficent-1.5B (Arora and Zanette, 2025). Our method achieves significant
length reduction compared to all baseline reasoning models while maintaining accuracy.

several common problematic patterns in lengthy reasoning traces: (1) verbose repetitions without
new insights, (2) early stopping of promising paths, (3) continued exploration of alternative solutions
despite having arrived at correct answers, and (4) collapse of reasoning coherence following very
long outputs.® These observations indicate that lengthy reasoning traces are highly compressible, mo-
tivating techniques producing more concise reasoning chains that improve computational efficiency
while preserving overall performance.

Existing approaches targeting efficient LLM reasoning primarily focus on explicitly controlling
reasoning length, for instance, by imposing a length budget based on user specifications (L1; Aggarwal
and Welleck (2025)), or by incentivizing shorter reasoning paths through comparisons with reference
models (O1-Pruner; Luo et al. (2025a)). Further discussions on related approaches are provided
in Section 2. In contrast to these explicit control strategies, our work is based on the hypothesis
that reasoning models implicitly possess an optimal reasoning length (OL), which is dependent on
model capacity and problem difficulty. OL thus represents an in-between "sweet spot": reasoning
that is shorter might contain insufficient analysis, while reasoning that is longer risks redundancy and
overthinking. This hypothesis has recently undergone theoretical formulation (Wu et al., 2025) and
empirical support (Su et al., 2025). Since OL is intrinsic and not directly observable, we approximate
it with the Sample Optimal Length (SOL): for each problem, we generate multiple outputs and define
its SOL as the length of the shortest correct response. Leveraging SOL as a practical proxy for OL,
we propose ShorterBetter, a reinforcement learning method that teaches the model to dynamically
identify and steer towards efficient reasoning lengths during inference:

In summary, our contributions are as follows.

1. We propose ShorterBetter, a novel reinforcement learning method that guides reasoning
model to autonomously learn its optimal reasoning lengths by defining and using Sample
Optimal Length as a dynamic reward signal.

2. We empirically demonstrate that ShorterBetter, when applied to 1.5B/7B base models,
achieves substantial (50%-80%) reductions in output token length on both in-domain mathe-
matical reasoning tasks and diverse out-of-domain benchmarks, while maintaining accuracy.

3. We introduce novel reasoning trace analysis frameworks to demonstrate how ShorterBetter
enhances reasoning efficiency. Specifically, the model reduces verbosity after finding the correct

3We include concrete examples for each of the aforementioned patterns in Appendix D.



answer and refactors the overall reasoning traces to adopt more confident and targeted reasoning
strategies.

2 Related Work

Reasoning in LLMs Since Wei et al. (2022) demonstrated that CoT prompting enhances LLM
reasoning, following research has explored ways to scale test-time computation—such as parallel
sampling (Wang et al., 2023) and iterative refinement (Madaan et al., 2023)—to improve performance.
This led to Large Reasoning Models (LRMs) that autonomously generate extended CoTs through
reinforcement learning-based post-training (Zhang et al., 2025). Examples include OpenAlI’s ol
(OpenAl, 2024), DeepSeek-R1 (Guo et al., 2025), and Qwen-QwQ (Yang et al., 2024). These models
internalize the ability to deliberate over multiple steps before producing final answers, achieving
significant performance gains on reasoning-intensive benchmarks (Jimenez et al., 2024; Jain et al.,
2025; Gao et al., 2024). Our work addresses a complementary challenge: how to dynamically
optimize reasoning efficiency without sacrificing accuracy?

The Overthinking Phenomenon This challenge, which was initially observed as verbosity and
increased computational costs in CoT prompting (Nayab et al., 2024; Han et al., 2024), has become
more pronounced with the advent of LRMs—following the identification and understanding of
the overthinking phenomenon (Chen et al., 2025; Su et al., 2025). This phenomenon is typically
understood through two primary lenses. Firstly, overthinking is recognized as a significant source
of computational inefficiency. In this view, LRMs expend excessive resources generating overly
lengthy and often redundant reasoning traces, especially for simple problems (Lee et al., 2025). This
inefficiency manifests as increased token usage, higher latency, and greater computational expenditure
(Aytes et al., 2025), and might be exploited adversarially to induce slowdowns (Kumar et al., 2025).

Secondly, overthinking is increasingly understood as a factor that can directly impair practical
performance. Fatemi et al. (2025) find that excessive reasoning can degrade logical correctness
and introduce irrelevant information; Su et al. (2025) reveal that beyond a certain threshold, longer
reasoning does not necessarily improve and can even degrade accuracy, as models may misjudge
problem difficulty and introduce compounding errors; similarly, Wu et al. (2025) empirically and
theoretically demonstrate a U-shaped performance curve with CoT length, showing that excessively
long reasoning paths are susceptible to noise and error accumulation, ultimately reducing correctness.
This performance degradation has also been observed in agentic tasks where prolonged internal
deliberation correlates with lower task success rates (Cuadron et al., 2025).

Efficient Reasoning with RL. Many recent and contemporaneous methods have been proposed
to control the reasoning length in LRMs. Here, we specifically highlight RL-based post-training
strategies directly relevant to our method, leaving readers to the survey by Qu et al. (2025) for
an extensive overview. One category of methods uses an explicit length budget. For instance, L1
(Aggarwal and Welleck, 2025) treats the budget as a user-specified parameter, while DAST (Shen
et al., 2025) adjusts it adaptively based on problem difficulty. These methods then use RL to reward
generations that adhere closely to this budget. Other methods design length rewards differently. O1-
Pruner (Luo et al., 2025a), for example, compares generated lengths against those from a reference
model. More in line with our proposal of sampling multiple responses, Kimi 1.5 (Team, 2025) and
Training Efficient (Arora and Zanette, 2025) utilize the shortest and average lengths, respectively,
among all sampled responses as reward baselines. In contrast, ShorterBetter innovatively anchors
its reward function to the length of the shortest correct response—a design inspired by recent studies
on the existence of optimal reasoning lengths in LRMs (Wu et al., 2025; Lee et al., 2025; Su et al.,
2025). We include extended comparisons with related and contemporary works in Appendix C.

3 Method

In this work, we aim to guide the reasoning model to think for the right amount of time, which
requires knowing its optimal reasoning length (OL)—a prompt-dependent quantity we formally
define in Section 3.1. However, calculating OL in practice is challenging due to the absence of
precise measures for both problem difficulty and model capability. To address this, we propose in
Section 3.2 a sample-based approximation of OL, yielding a practical length reward. Finally, we
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Figure 2: Flowchart for the ShorterBetter pipeline. We detail the reward design in Section 3.2
and the GRPO algorithm in Section 3.3. Reward values in display are rescaled for better illustration.

integrate this reward design with Group Relative Policy Optimization (GRPO; Shao et al. (2024)) in
Section 3.3, resulting in a simple yet effective reinforcement learning method that encourages the
model to autonomously discover its optimal reasoning lengths through on-policy learning.

3.1 Optimal Reasoning Length (OL): Formal Definition

Problem Setup Let My be our policy model (i.e. a base LRM) with parameters 6, and D be the
training dataset. Each problem (x;,y;) € D consists of a prompt x; and a reference response y;".
Given z;, for each rollout the model generates a response y = (y*,...,y") autoregressively from
y ~ po(- | x;), where y* denotes its k-th token and £(y) = ¢ is its length. For reasoning tasks, y
typically includes long CoT tokens (often enclosed in </think> tags) followed by a final answer.

To evaluate response quality, we assume access to a verifier Z that assigns a normalized correctness
score sz(y,y;) € [0, 1], where higher scores indicate better alignment with y*. For fixed correctness
threshold ¢ > 0 and probability threshold € > 0, the optimal reasoning length is defined as

ﬂz,e(zi; 0) :=min{l(y) : y € V.(z;;6)}, where

Vee(zi;0) :={y:po(y | @) > € N sz(y,y;) > c}.

Thus, 6276(371'; 0) represents the minimal length at which the model reliably (probability above ¢)
produces a sufficiently correct (score above c) response. Intuitively, OL is longer for more difficult
problems, as the feasible set ). .(x;;6) shrinks due to fewer correct responses; conversely, OL
becomes shorter when the model My is capable of generating concise and correct responses more
consistently. This intuition aligns with theoretical insights presented in Wu et al. (2025), despite
differences in their specific formulation.

Remark The above formulation applies broadly to both closed-ended and open-ended reasoning
tasks. For the remainder of this paper, we narrow our focus to tasks with verifiable answers, such as
mathematical and coding problems. These tasks naturally come with a binary verifier that outputs

Iy =vy;) == sz(y,y;) € {0,1},

indicating perfect correctness (1) or incorrectness (0). Consequently, we adopt the trivial threshold
choice ¢ = 1 and use the shorthand notation I(y = ) to denote correctness.

3.2 Sample Optimal Length (SOL): A Practical Approximation

Directly computing the optimal reasoning length defined in the previous subsection is practically
infeasible, as it requires complete knowledge of the model’s output distribution. To address this, we
introduce the Sample Optimal Length (SOL)—a practical, sample-based approximation of OL. Given
a prompt x;, our method generates n rollouts of candidate responses G(z;) = {y1, y2, - - -, Yn } from



the policy pg(-|x;). We then define the SOL for the group G(z;) as:

. n%[in L(y;), if at least one response is correct,
§ Tq): §= 7* =1
ESOL(G@%)) _ y; €G(x:): I(y;=y;)
LY Uys), otherwise.
Given the SOL, we define the following reward function for each response y; € G(z;):

r(y;) = a-I(y; = ;) — B~ |[lly;) — 05O (G(x:))] . (1)

where «, 5 > 0 are hyperparameters balancing correctness reward and length penalty, respectively.

Our SOL-based reward has several attractive properties:

v" No human intervention required: Unlike explicit length-budget approaches, SOL is entirely
data-driven and does not require manual tuning of problem-specific length thresholds.

v Adaptive to difficulty and model capability: SOL naturally becomes longer for harder problems
and shorter for easier ones, as it dynamically adjusts based on the sampled responses; on the other
hand, as the model improves during training, SOL automatically updates to reflect the shortest
correct reasoning length achievable by the current policy.

v Balanced handling of failure cases: When no correct responses exist within a sampled group,
we set SOL to the average response length as a neutral baseline. Our approach avoids biasing the
model toward either overthinking or underthinking when there is no correct signal.

We defer the detailed discussion on specific hyperparameter choices («, 3, n) to Section 4, and the
ablation studies on our reward design to Section 5.3. To see the training dynamics of ShorterBetter,
please refer to Appendix B.2.

3.3 Policy Optimization via GRPO

To optimize the model under the SOL-based reward function, we adopt the Group Relative Policy
Optimization (GRPO) algorithm (Shao et al., 2024). GRPO operates on groups of sampled trajectories
(in our case, a group G(x;) has n samples) and assigns within-group advantage estimates based on
normalizing the rewards r = [r(y1),- -+ ,7(yn)] calculated in Eq. (1). Specifically, we have

A r; — mean(r)
A =2 —"T—2

3k std(r)
as the advantage for the k-th step (token) of the j-th sample, where ‘mean’ and ‘std’ calculate sample
reward average and standard deviation. Let My, be a frozen reference policy (usually a copy of
the current model before a few gradient updates), and p’g = pg(y;«C | yfk, x;) denote the conditional
probability on the first £ — 1 tokens, the GRPO loss is

I 1 . .
Loreo(8) = = > = > [W(Asu, 06, #5,,.6) = - D [ 18, 1. @

where W denotes a clipped policy improvement objective incorporating the advantage AM and
likelihood ratio between current and reference policies; Dk is a KL divergence approximator
(Schulman, 2020); € and -y are hyperparameters for the clipping threshold and KL penalty, respectively.
We provide the full expression and details in Appendix A.1.

Policy updates are then performed by minimizing Lgrpo(#) via gradient descent, encouraging the
model to increase the likelihood of high-reward samples while constraining deviation from the
reference policy. We choose GRPO for its compatibility with group-based reward designs and its
empirical success in training LRMs (Guo et al., 2025; Face, 2025). Finally, we include a flowchart
illustration of our full method in Fig. 2.



4 Experimental Setup

Datasets We fine-tune our base model on DeepScaleR-preview (Luo et al., 2025b), a dataset which
comprises 40K mathematical problems drawn from AIME, AMC, Omni-MATH (Gao et al., 2024),
and Still dataset (Min et al., 2024). This mixed dataset covers tasks from high-school math problems
to Olympiad-level challenges. For in-domain evaluation, we holdout subsets of the training math
datasets, containing 1K problems in total. Additionally, we assess the out-of-domain generalization
of our method on a set of reasoning-intensive benchmarks with a total of 6K problems, including
MathQA (Amini et al., 2019) MMLU (Hendrycks et al., 2021), Big-Bench Hard (BBH; Suzgun et al.
(2023)) and coding benchmarks including LiveCodeBench (Jain et al., 2025), MBPP (Austin et al.,
2021) and HumanEval (Chen et al., 2021).

Base Models We use DeepSeek-R1-Distill-Qwen-1.5B and 7B (Guo et al., 2025) as our base
reasoning models and train our models from them. We will refer to our trained model as
ShorterBetter-1.5B and ShorterBetter-7B in the subsequent sections.

Evaluations For evaluation, we generate one response for each problem. For each benchmark, we
consider 3 metrics: (1) Accuracy, defined as the number of correct responses divided by the total
number of responses; (2) Output Length, measured as the average number of tokens per benchmark;
and (3) Accuracy-Efficiency (AE) Score, a composite metric balancing length reduction against
accuracy preservation (introduced by Luo et al. (2025a)). AE Score rewards models that shorten
outputs without sacrificing correctness, with higher values indicating better efficiency. For the full
formulation and hyperparameter choices, see Appendix A.2.

Implementation Details We used Verl (Sheng et al., 2025), an open-source RL training library,
for post-training. We fine-tune our 1.5B base model with a batch size of N = 64 and a rollout group
size of n = 8. Training was conducted for 300 steps with a fixed learning rate of 1 x 107, Since the
7B variant converges faster due to it’s better model capacity, we trained for only 200 steps. Due to
computational constraints, we set a maximum inference length of 6K tokens for the 1.5B model and
5K tokens for the 7B model during training. (We set 16K maximum tokens budgets during evaluation)
These constraints only affect the early stages of training, as the mean inference lengths quickly drop
below the limits. To study the effect of hyperparameters, we compared two 1.5B variants with o = 1
and o = 2, while keeping 3 = 0.001 fixed. For the GRPO training configuration, we set v = 0.001
and € = 0.2 in Eq. (2).

Baselines To assess the efficiency of our method, we compare our trained models against 4
baselines:

* DeepSeek-R1-Distill-Qwen-1.5B/7B (Guo et al., 2025): Models obtained by distillation from the
Qwen series using larger DeepSeek-R1 models. We refer to these models as Distill-1.5B and
Distill-7B in the following sections.

* Qwen2.5-1.5B/7B-Instruct (Team, 2024): Instruction-tuned models from the Qwen 2.5 family of
large language models. We include these non-reasoning models as a contrast, i.e., fast thinking
without deliberate reasoning. We denote them as Instruct-1.5B and Instruct-7B hereafter.

* Training Efficient (Arora and Zanette, 2025): We evaluated the 1.5B/7B open-source models
released in this work, which have the same base models as ours.

* O1-Pruner (Luo et al., 20252a): We evaluate the 7B open-source model proposed in this work,*
which is fine-tuned from the Marco-o1 base model (Zhao et al., 2024).

5 Results and Discussion

In this section, we present and analyze the effectiveness of our proposed method. We compare the
performance of our trained models against the baselines across a range of in-domain math tasks

*Since this work does not provide a 1.5B model, we will only use 7B version as the baseline.



Distill Instruct ShorterBetter (o = 2) Training Efficient Ol-pruner
Acc. Len. |Acc. Len. ||Acc. Len. AE ScoreT|Acc. Len. AE Scoref |Acc. Len. AE Scoref

In-domain Tasks

AIME 36.7 11382]16.7 1172||53.3 5288 1.89 50.0 8821 1.31 6.7 4843 0.28
Olympiad 52.0 7762 |38.2 944 ||50.7 3410 0.44 53.9 5544 0.40 29.6 3884 0.05
AMC 66.3 7414 |51.8 1084 (| 75.9 2580 1.09 72.3 4596 0.65 30.1 4304 0.31
Minerva 40.8 5034 [38.2 1367||44.1 1341 0.98 40.4 2796 0.40 23.5 5277 0.55
Out-of-domain Tasks

MathQA 83.3 3442 | 68.9 2585(|85.4 980 0.79 78.8 1350 0.34 32.8 6321 0.14
BBH 68.3 2126 |67.3 953 [|63.1 535 0.37 62.1 798 0.17 55.4 5431 -0.35
MMLU 66.3 1528 |76.0 269 [|68.6 567 0.73 69.3 891 0.55 72.3 5979 0.31

LiveCodeBench 50.6 8683 |24.7 189 |[49.5 5228 0.29 49.7 7589 0.04 21.6 9726 0.20

Table 1: Performance comparison of 7B models across diverse tasks. For each task, we highlight

the best-performing results across all evaluated models. The AE Scores are computed using hyperpa-
rameters ¢ = 1,7 = 3, and § = 5. The proposed ShorterBetter model consistently achieves the
highest AE Scores across both in-domain and out-of-domain benchmarks. For experimental details
and additional results on coding tasks, refer to Appendix A and Appendix B.1.

as well as out-of-domain benchmarks.> We then provide an in-depth analysis of how our method
changed the structure of the reasoning traces.

5.1 Experimental Results

ShorterBetter significantly reduces inference length while maintaining performance In
Fig. 1, we compare the performance of the ShorterBetter-1.5B against Distill-1.5B,
Instruct-1.5B and Training Efficient-1.5B. We report results for two variants of
ShorterBetter-1.5B, with hyperparameters o = 1 and o = 2, respectively. In in-domain math
tasks, averaging over all benchmarks, the two models achieve inference length reductions of 77.6%
and 79.2%, with corresponding changes in accuracy of +2.5 % and +3.2 %, respectively. In out-of-
domain tasks, averaging over all benchmarks, the two variants achieve average length reductions of
77.0 % and 75.5 % , with corresponding changes in accuracy of —0.8 % and —1.6 %, respectively.®
These results also indicate that our method achieves similar performance in terms of length reduction
and accuracy preservation with different values of correctness reward hyperparameter o.

In Table 1, we provide a comprehensive comparison between ShorterBetter-7B (o = 2) and
four 7B baseline models.” Consistent with our 1.5B model evaluation, we assess all 7B models
on both in-domain and out-of-domain tasks. For Distil1-7B and Instruct-7B, we only report
accuracy and output length as primary evaluation metrics since they didn’t undergo length reduction
training. For models trained with length-reduction techniques, we additionally report the AE Score,
which quantifies performance improvements relative to their respective base models. (See a formal
definition of AE Score in Appendix A.2)

Our 7B model achieves substantial reductions in output length, up to 70%, while maintaining
competitive accuracy compared to the Distil1-7B baseline. In in-domain math tasks, averaging
over all benchmarks, ShorterBetter-7B attains a length reduction of 62.1% alongside an accuracy
improvement of +7.1%. In out-of-domain tasks, averaging over all benchmarks, the model achieves
a length reduction of 62.3% with an accuracy change of -0.48%. Moreover, ShorterBetter-7B
attains the highest AE Scores in all evaluated tasks, outperforming Training Efficient and O1-Pruner.

Compared to prior length-reduction methods, ShorterBetter achieves stronger length-reduction
capability. We attribute this performance to the design of SOL, which gives clear signals to guide
the model to learn concise and robust reasoning traces during reinforcement learning. For more

In-domain and out-of-domain tasks are defined relative to ShorterBetter’s training dataset. See more
discussions in Appendix A.3

Due to space constraint, we only present LiveCodeBench here and place other coding benchmarks in Fig. 6
and Table 4 in the appendix

"For a fair comparison, we compute the AE Scores of O1-Pruner using its corresponding base model,
Marco-01-7B, whereas the base models for ShorterBetter and Training Efficient are both Distill-7B. Due to
space limitations, the performance of Marco-o1-7B is placed in Appendix B.4
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Figure 3: Reasoning trace structure analysis. Left: Percentage of remaining output after first
appearance of the correct answer; Right: Token-level distribution of reasoning categories on the
MATH benchmark.

discussions on the effectiveness of SOL, please refer to Appendix B.2. In the next section, we show
that our method refines the structure of the reasoning traces relative to the base model.

5.2 Reasoning Structure Analysis

In this section, we present two novel frameworks for analyzing reasoning structure, which illus-
trate how ShorterBetter compresses its reasoning traces and complement the accuracy and
token-length metrics introduced earlier. We employ Gemini 2.5 Flash Preview (Google, 2025)
as an automated judge (details in Appendix E.1) to breakdown and compare the reasoning traces
of ShorterBetter-7B and Distill-7B, shedding lights on how ShorterBetter optimizes for
reasoning efficiency.

Output Length after First Appearance of Correct Answer We use LL.M-as-a-judge to iden-
tify the first occurrence of the correct answer in the reasoning trace for questions where both
ShorterBetter-7B and Distill-7B provide correct answers. We conduct this analysis across
four benchmarks: AMC, MATH, Olympiad, and Minerva. For each model, we calculate what
percentage of its total output (in tokens) appears after the first time that the correct answer is stated.
The results are shown in Fig. 3 (Left), where higher percentage represents more reasoning outputs
after the model finds the correct answer. We observe that the percentages of tokens appearing after
the first correct answer decreases by 15%, 20%, 17%, and 19% for AMC, MATH, Olympiad, and
Minerva benchmarks, respectively. This suggests that ShorterBetter-7B reaches conclusions more
efficiently, using fewer tokens on extra reasoning once it reaches the correct answer, and we will
explore more detailed reasoning structure refinement in the next section.

Breakdown of Reasoning Traces To better understand how ShorterBetter improves reasoning
efficiency, we conduct a fine-grained analysis of the reasoning trace structure. Specifically, we develop
an LLM-as-a-judge framework to assign functional categories to each sentence in the generated
traces from ShorterBetter-7B and Distill-7B, and compute the token-level proportion of each
reasoning category. We begin by carefully inspecting common patterns in Chain-of-Thought reasoning
and curating a set of mutually exclusive categories, each assigned at the sentence level:

> Pivotal Reasoning: Steps that directly correspond to a specific part of the final solution.

> Productive Elaboration & Calculation: Necessary calculations, deductions, or planning that
support a pivotal step but aren’t restated in the final summary.

> Exploring Alternatives: Attempts to try different approaches or check other methods, even if
they aren’t used in the final solution.

> Verification & Self-Correction: Checks and corrections of earlier results to catch errors.

> Non-Substantive Statement: Redundant comments, filler, or trivial rephrasing that doesn’t
advance the solution.



We then use LLM-as-a-judge to label each sentence with the most appropriate category.® Finally,
we compute the proportion of each category by counting tokens using the tested model’s native
tokenizer, enabling a consistent token-level comparison across models. In Fig. 3 (Right), we show
the distribution of reasoning categories for both models on the MATH benchmark. Compared to
Distill-7B, ShorterBetter-7B exhibits notable structural shifts. Specifically, the proportions of
Pivotal Reasoning and Productive Elaboration & Calculation increase by 15.6% and 6.8%, respec-
tively—indicating a denser concentration of meaningful, solution-oriented reasoning. Simultaneously,
the share of Non-Substantive Statements decreases by 4.8%, suggesting that ShorterBetter-7B pro-
duces fewer filler or redundant tokens. We also observe reductions in Verification & Self-Correction
(-14.1%) and Exploring Alternatives (-3.9%), implying that the model is more decisive and less
prone to unnecessary detours. Altogether, these shifts support the conclusion that ShorterBetter
promotes more confident and streamlined reasoning trajectories. This finding aligns with our analysis
in the previous section and may help address the early stopping of promising paths issue mentioned
in Section 1.

Human Verification of LLM-as-a-judge In the reasoning-trace analysis above, we employed
Gemini 2.5 Flash (Google, 2025) as a highly capable LLM judge, guided by a carefully designed,
unambiguous evaluation prompt (see the prompts in Appendix E). To assess the reliability of its
judgments, we conducted a comprehensive human verification study on the reasoning traces generated
by ShorterBetter-7B for the AMC dataset. Specifically, we manually annotated 2,064 sentences
across 49 problems (65,329 tokens in total), achieving 94.23% (1,945/2,064) agreement at the
sentence level and 93.01% (60,765/65,329) at the token level with the LLM judge.

Functional Category LLM Judge Human Judge
Pivotal Reasoning 22.37% 23.42%
Productive Elaboration & Calculation 53.32% 50.79%
Exploring Alternatives 10.50% 10.79%
Verification & Self-Correction 8.69% 10.16%
Non-Substantive Statement 5.13% 4.84%

Table 2: Token-level distribution of reasoning categories judged by LLM versus human. The
result is aggregated on the reasoning traces generated by Shorterbetter-7B on the AMC dataset.

As shown in Table 2, inter-annotator agreement remains consistently high across all five categories,
reinforcing the reliability of our LLM judge’s categorizations. Thus, the reliability of our LLM
judge’s categorizations is strongly supported. Most disagreements occur between the categories
“Productive Elaboration & Calculation” and “Pivotal Reasoning” — both regarded positively in our
analysis. Consequently, our main conclusion — that ShorterBetter jointly increases the proportion
of these meaningful reasoning categories — remains robust despite minor distributional discrepancies.
We selected the AMC dataset for this validation study because it offers a balanced testbed: the
problems require nontrivial mathematical reasoning while remaining tractable for exhaustive manual
annotation. For transparency and to encourage reproducibility in LLM reasoning research, we have
also released our annotation tool and human-labeled data in our open-source repository.

Overall, while our reasoning structure analysis in Section 5.2 provides valuable insights, we encourage
future works to develop more rigorous quantitative metrics for evaluating reasoning structure, which
could further validate and extend our findings.

5.3 Ablation Studies

Naively adopting the shortest response as target length leads to training collapses We con-
ducted three ablation experiments: (1) No Correctness Reward, Shortest Length Target: remove the
correctness term in the reward function and always choose the length of the shortest response as the
reward signal. (2) Correctness Reward + Always Shortest Length Target: we keep the correctness
reward but always set the length target to the shortest response in a group. (3) Correctness Reward +
"Partial" Shortest Length Target: when there is no correct response, select the length of the shortest

8For transparency and reproducibility, our prompt and examples of each category are provided in Ap-
pendix E.2
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Figure 5: Naively adopting the shortest response as target length leads to training collapses.
Ablation results show that replacing or partially replacing SOL with the shortest response length,
with or without correctness reward, leads to training collapse within 100 steps.

response as the SOL, instead of using the average length as in Eq. (1).° In Fig. 5, model trainings
under the three ablation experiment settings quickly collapse within 100 steps, suggesting that naively
choosing the shortest response length as a reward can easily destabilize the training.

Sample optimal length inherently combines correctness and conciseness We conducted another
experiment that keeps the entire design of SOL while discarding the correctness reward term in the
reward function, i.e., set & = 0. As shown in Fig. 4, although there are drastic fluctuations in accuracy
due to the absence of explicit correct rewards, the training still runs effectively. This result suggests
that the design of SOL inherently combines correctness and conciseness. Nonetheless, incorporating
a correctness reward term remains essential to prevent degradation in model accuracy.

6 Conclusion and Future Directions

This paper presents ShorterBetter, a reinforcement learning method that enables reasoning models
to dynamically optimize their CoT lengths without manual supervision. By introducing Sample
Optimal Length as a self-supervised reward signal, our method achieves significant reductions in
output length while maintaining accuracy across in-domain and out-of-domain benchmarks. We also
present innovative analytical framework to show ShorterBetter’s reasoning structure improvement.

While ShorterBetter is currently showing strong empirical results on tasks with verifiable answers,
we note that our general formulation in Section 3.1 naturally extends to open-ended settings with
non-binary correctness scores. Another future direction is to apply and evaluate our methods on
larger-scale reasoning models (Team, 2024). Finally, our reasoning trace analysis shows that different
categories of reasoning behavior are compressed to different extents, which may inform the design of
more fine-grained and behavior-aware reasoning optimization strategies.

“Note that in experiment (1), we replace SOL with sample minimal length and discard the correctness term
in the reward function. The reward function is rewritten as r(y;) = —f Lminyieg(mi) (y:) — £(y5) | While in
experiment (2) and (3), we still keep the correctness term in the reward function and set o = 2.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: the claims made in abstract/introduction have been elaborated in the rest of the
paper (esp. Sections 3 and 5) and in the appendix.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: we have detailed the limitations and future directions in Section 6.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: this paper does not involve formal theorems with assumptions and proof.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: we have provided the method pipeline in Section 3 and flowchart in Fig. 2.
Experiment details are specified in Section 4.

Guidelines:
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided the link to our data and code in the first page.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: we have provided sufficient experimental details in Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: due to the computational cost associated with reasoning models RL training,
we could not get enough replicates to report error bars (similar to other works).

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: we have explicitly documented our computational resources in Appendix A.5.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: this paper closely follows the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: we have discussed the broader impact of our paper in the Appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: we finetune our models based on the base LLMs described in Section 4, which
already have safeguards during pretraining. We manually inspect that our datasets (mainly
math and coding benchmarks) do not pose such risks.
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Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: we have properly credited the base models and benchmarks used in Section 4.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: we open-sourced the trained models and made it public via the link we provided
in the first page.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: this paper does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: this paper do not involve study participants.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: in Section 5.2, we have explicitly declared that we have used LLM-as-a-judge
as part of our analysis pipeline. We provide further details on the judge LLM, including
complete prompts and example outputs, in Appendix E.1.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Broader Impact

This work contributes to the growing body of research on efficient reasoning in LLMs. By reducing
redundant reasoning steps while maintaining accuracy, our method could help lower computational
costs and improve the practicality of deploying LLMs in resource-constrained settings. Like many
advancements in ML, this research may have indirect societal implications—for instance, more
efficient models could reduce energy consumption or enable faster inference in applications such as
education or automated decision-making. However, our focus is narrowly technical, and we do not
make strong claims about specific real-world benefits or risks. As with any optimization technique,
the broader impact will depend on how it is integrated into larger systems and deployed in practice.

A Technical and Experimental Details

A.1 Detailed Specification of GRPO Algorithm

Here we provide the complete expressions and details of the GRPO (Guo et al., 2025) objective (loss
function) mentioned in Section 3.3:

n t;

S W Asw v 85, 0) = - D b Inh,., .

j=1 7 k=1

Lerro(9) = —

In particular, W is a clipped policy improvement objective with full expression

k k
W(Aj,k, p’;, plgref,e) = min (f(’ Aj, clip ( i’a 1l—e, 1+ e) ANC) ,
Orey Orey

where the clipping function clip(z; a, b) := min(b, max(a, x)) prevents the updated parameters from
deviating too much from the reference policy. For KL divergence, Schulman (2020) proposes the
following approximator

R P b
Dk [p’gllp’é,,ef] = pr;;f — log ﬁ -1
0 9

Finally, while the above formulation considers multiple rollouts for a single prompt z;, in practice we
compute the GRPO loss and update the policy parameters over a batch of N prompts at each step.

A.2 Detailed Formulation for Accuracy-Efficiency (AE) Score

The Accuracy-Efficiency (AE) Score, introduced by Luo et al. (2025a), provides a composite metric
to evaluate whether a model improves inference efficiency—i.e., reduces output length—without
sacrificing accuracy. It is defined as follows:

¢ - ALength +n - |[AAcc|, if AAcc >0

AL Score = {gp - ALength — 0 - [AAcc|, if AAcc <0

Here, ALength and AAcc denote the percentage changes in output length and accuracy, respectively,
of the evaluated model relative to its base model. Positive AE Scores indicate that the model generates
shorter outputs while maintaining or improving accuracy, while negative scores penalize accuracy
degradation. In our experiments, we use the same hyperparameters as in Luo et al. (2025a):

21



* ¢ = 1 (weight on length reduction)
* 11 = 3 (bonus for accuracy gains)

* 0 = 5 (penalty for accuracy drops)

The asymmetric design (with § > 7)) penalizes accuracy drops more heavily than gains, reflecting the
practical preference for avoiding performance degradation.

A.3 Experimental Details

For evaluation, we categorize tasks as either in-domain or out-of-domain, based on the training data
used for ShorterBetter. Our method is trained on the DeepScaleR-Preview dataset (Luo et al.,
2025b), a composite benchmark that includes AIME, AMC, Olympiad-Bench, MATH, Minerva, etc.
Accordingly, held-out subsets from these datasets are considered in-domain. In contrast, tasks such
as MathQA, BBH, MMLU, LiveCodeBench, MBPP, and HumanEval—which are not included in the
training corpus—are treated as out-of-domain.

Other length-reduction baselines are trained on different datasets. Specifically, Training Effi-
cient (Arora and Zanette, 2025) is trained on MATH, CN-K12, AIME, AoPS, and Olympiad-Bench,
while O1-Pruner (Luo et al., 2025a) is trained solely on MATH. There exists partial overlap in training
data between these baselines and ShorterBetter. Nevertheless, the out-of-domain benchmarks
defined in this work are held out from all models’ training data and thus serve as a fair test of
generalization.

For model comparisons in Fig. 1 and Table 1, we directly downloaded the open-source models of
Training Efficient 1.5B/7B and O1-Pruner 7B from HuggingFace for evaluation. For O1-Pruner,
since the paper does not provide a 1.5B version, we didn’t include it in Fig. 1. For Training Efficient,
we used the 1.5B and 7B versions both with hyperparameters o« = 0.4 (following the original paper).
During all evaluations, the temperature was set to 0.9. All problems are answered once, and the
accuracy is calculated as the fraction of correct answers among all answers.

A.4 On the Practical Choice of Hyperparameters

Choiceof « and 5 The hyperparameters « and 3 are selected as a pair. Since reinforcement learning
frameworks such as GRPO use relative rewards rather than absolute rewards, we fix 5 = 0.001 and
focus on analyzing the choice of .

The hyperparameter « controls the trade-off between accuracy and efficiency. Its value relative to the
length penalty (5 (kept at 0.001) is the key factor. We tested new « values to illustrate its impact.

Table 3: Performance of ShorterBetter-1.5B with varying « values.

Dataset a = 0.1 Acc a = 0.1Len a = 2.0 Acc a = 2.0 Len a = 5.0 Acc a = 5.0 Len
AMC 0.43 2503 0.57 1946 0.58 3077
Minerva 0.20 1785 0.28 1147 0.24 2249
Olympiad 0.30 2903 0.38 1814 0.35 3919
AIME 0.13 5395 0.20 2703 0.23 5274

Our results (shown in Table 3) provide an intuition for selecting «:

* Ahigh a (e.g., 5.0) places a strong emphasis on correctness. As seen in the training dynamics
and the table above, this leads to stable accuracy gains but weaker length reduction, resulting
in longer outputs compared to the more balanced setting.

* Alow « (e.g., 0.1) makes the length penalty term negatively influential. This can degrade the
model’s reasoning capability, as the reward for correctness may not be sufficient to maintain
performance. This instability can lead to worse length reduction because the model fails to
learn effective, concise reasoning paths.

* A balanced « (e.g., 1.0 or 2.0) provides a strong enough correctness signal to preserve or
improve accuracy while still exerting significant pressure to reduce output length. This
achieves the best overall trade-off demonstrated in our paper.
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In practice, the optimal choice depends on the specific goal (e.g., prioritizing efficiency vs. accuracy)
and the specific model family. Based on our results, we recommend practitioners start with « in the
range of [2, 5] and tune as needed.

A.5 Computational Resources

We trained our ShorterBetter-1.5B with 4 A100 GPUs, using approximately 16 hours. We trained
ShorterBetter-7B with 8 A100 GPUs, using less than 12 hours.

B Additional Experiment Results

B.1 Coding Benchmarks
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Figure 6: Model performance on coding benchmarks.

We report the result of the coding experiment in Table 4 and Fig. 6.

1.5B Models 7B Models
Task R1-Distill Instruct  ShorterBetter Training Efficient R1-Distill Instruct  ShorterBetter Training Efficient Ol-pruner
MBPP 0.544 (4151) 0.409 (124) 0.476 (1146)  0.506 (2402)  0.659 (2928) 0.609 (150) 0.632 (1055)  0.607 (2113)  0.494 (495)

HumanEval 0.720 (5123) 0.463 (263) 0.628 (1551)  0.665 (3280)  0.854 (3841) 0.811(398) 0.799 (1318)  0.866 (2601)  0.829 (254)
LiveCodeBench 0.260 (10204) 0.089 (262) 0.260 (4861)  0.244 (7792)  0.506 (8683) 0.247 (189) 0.495(5228)  0.216 (9726)  0.483 (1847)

Table 4: Coding performance across model sizes and training methods. Each entry reports the
accuracy rate and the average inference length in tokens (shown in parentheses). Both ShorterBetter
models were fine-tuned with @ = 2. Baseline models are from Arora and Zanette (2025). Bold
numbers indicate best accuracy for each model size category.

B.2 Training dynamics of ShorterBetter

In Fig. 7 we show the output length (in tokens) trends and accuracy trends of ShorterBetter-1.5B
and ShorterBetter-7B during GRPO training. For clearer illustration, we present the first 200
steps of the two models.
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Figure 7: Training dynamics of ShorterBetter-1.5B and ShorterBetter-1.5B models.

In Fig. 8, we illustrate how the model learns to identify optimal inference lengths throughout the
training. For each sample generation (n = 8) of a given problem, we compute the SOL and take the
batch-wise average. We also track the mean deviation of individual output from their respective SOL,
defined as d; = %)% For instance, a deviation of 0.2 at a given training step indicates
that the generated outputs deviate from the optimal length by 20% on average. The plots show that
both the SOL and the mean deviation steadily decrease over training, particularly within the first 100

steps. This trend suggests that reinforcement learning is successfully guiding the model to produce
outputs that cluster towards the optimal length.
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Figure 8: SOL trends and mean deviations during training

B.3 Incorrect reasoning traces are significantly longer

In Fig. 9, we conducted an experiment using 150 problems (30 each from AIME, AMC, MATH,
Olympiad-bench, and Minerva). For each problem, we generated 10 responses with the Distill-
1.5B/7B models, then filtered out problems where all responses were correct or all responses were
wrong. We then computed the difference between the average lengths of correct and incorrect
responses to form a length gap distribution. The results show that, on average, for the same problem,
incorrect responses are significantly longer than correct ones, by 5,541 tokens on DeepSeek-R1-Distill-
Qwen-1.5B and 5,910 tokens on DeepSeek-R1-Distill-Qwen-7B. This suggests a clear correlation
between reasoning errors and unnecessarily long CoT traces in Large Reasoning Models.

B.4 Performance of Marco-ol

Here we report the performance of Marco-ol on various benchmarks, which is used to calculate the
AE Scores of O1-Pruner in Table 1.

B.5 DeepSeek-R1-Distill-Llama-8B Results

To address model architecture bias, we evaluated ShorterBetter on a model with a different archi-
tectural backbone: DeepSeek-R1-Distill-Llama-8B. This allows us to test our method’s generalization
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Length Differences Between Correct and Wrong Outputs
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Figure 9: Length gap distributions for the Distill-1.5B and 7B models.

Dataset Accuracy Length
AIME 0.067 6711
Olympiad 0.317 6325
AMC 0.301 6210
Minerva 0.217 7583
MathQA 0.331 7730
BBH 0.623 6829
MMLU 0.701 7650
LiveCodeBench 0.225 12856
HumanEval 0.841 317
MBPP 0.454 877

Table 5: Marco-ol performance across datasets

beyond the Qwen series. We trained this 8B Llama-based model for 100 steps using our framework.
The results are shown in Table 6.

The results show that ShorterBetter successfully generalizes to a different model architecture.
Here we choose hyperparameter @ = 5 since it achieves a better balance between accuracy and length
reduction. However, the out-of-distribution performance has more deduction compared to Qwen
series model, which suggests that fewer training steps or larger o might be needed.

C Extended Discussion on Related Work

Recent works such as L1 (Aggarwal and Welleck, 2025) and ConciseR (Song and Zheng, 2025) share
the goal of improving efficiency in reinforcement learning for reasoning, yet differ fundamentally
from ShorterBetter in their problem formulations and design principles.

L1 focuses on external controllability: a user provides an explicit reasoning-length budget, and the
model is trained to adhere to this target. Consequently, the optimization objective and prompt structure
are explicitly guided by human-specified constraints. In contrast, ShorterBetter introduces an
autonomous mechanism that allows the model to discover its own optimal reasoning length based
on the interplay between task difficulty and model capacity. This self-supervised setting removes
the need for user-defined budgets, which may be unrealistic in scenarios where the efficient solution
length is unknown a priori. Furthermore, while L1 relies on prompt-level cues (e.g., “think for
n tokens”), ShorterBetter remains completely prompt-agnostic, enabling seamless application
across diverse reasoning contexts.
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8B-Distill ShorterBetter (o = 5)
Acc. Len. | Acc. Len.
In-domain Tasks
AIME 0.33 9949 | 0.37 5634
Olympiad 045 7234 | 041 3944
AMC 0.67 6995 | 0.62 3384
Minerva 0.33 5555 | 0.33 2669
Out-of-domain Tasks
MathQA 0.77 3002 | 0.71 899
BBH 0.71 1860 | 0.60 699
LiveCodeBench 0.54 8101 | 0.37 1665

Table 6: Performance comparison of 8B Llama-based models across diverse tasks.

ConciseR, developed concurrently, employs a two-stage gated optimization framework: the first
stage strengthens reasoning ability, and the second stage compresses reasoning length, with the
conciseness reward activated only when all sampled responses are correct. This gating mechanism
ensures correctness but limits sample efficiency, as full-batch correctness is rare in complex domains.
By contrast, ShorterBetter adopts a single unified learning process that leverages the Sample
Optimal Length (SOL)—the shortest correct reasoning trajectory among multiple generations—as a
continuous, self-supervised reward signal. This design allows effective gradient propagation even
when correctness is partial, substantially improving training efficiency and stability.

In summary, while all three methods operate within the emerging paradigm of reinforcement learning
for efficient reasoning, ShorterBetter is distinguished by its integrated, self-supervised formula-
tion and its introduction of SOL as a dynamic intrinsic reward. This contribution moves beyond
explicit control (L1) and staged compression (ConciseR) toward an autonomous discovery of effi-
ciency—capturing an intrinsic property of reasoning models rather than imposing it externally.
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D Examples of Unwanted Reasoning Behaviors

D.1 Verbose Repetition and Self-Verification in Intermediate Steps

Denali and Nate work for a dog walking business and are paid for
each dog they walk. Denali is responsible for 16 dogs and Nate is
responsible for 12 dogs. Under the company’s new policy, they will
be assigned or unassigned new dogs in groups of x dogs. The ratio
of Denali’s pay to Nate’s pay would be the same if Denali started
walking 4x more dogs and Nate stayed at 12 dogs or if z of Nate’s
dogs were reassigned to Denali. Find z if x # 0.

Response (DeepSeek-R1-Distill-Qwen-1.5B)

Wait, perhaps the problem is not about the same pay ratio, but the
same total number of dogs? But the problem says '"the ratio of
Denali’s pay to Nate’s pay would be the same." So it’s about the pay
ratio, not the number of dogs.

Wait, another thought: Maybe the ratio is in terms of the number of
dogs walked, so if the ratio of their pay is same, and pay is per dog,
then perhaps the number of dogs walked should be proportional.

Wait, that is, if Denali walks 16 dogs and Nate walks 12, the ratio
of their pay is (16)/(12) if they are paid per dog.

Wait, so regardless of how I set up the ratio, I end up with x=0.
But since the problem states x#0, perhaps my entire approach is
wrong.

Wait, let me think differently.

Perhaps the ratio of their pay is the same when they are assigned x
dogs, regardless of direction.

Wait, when they are assigned x dogs in groups of x, meaning x dogs
are reassigned. So the ratio is same.

Perhaps it’s the pay per dog ratio that’s the same.

Wait, maybe Denali’s pay per dog is same as Nate’s.

But that would be same as each getting paid per dog.

Wait, but if they are reassigned, their pay per dog would be same.
Wait, perhaps we can think in terms of average.

Wait, I’m getting confused. Maybe I should go back to the original
problem.

**Problem Statement:*x*

But we saw that this leads to x=0.

Alternatively, maybe the ratio is the other way around.

Wait, perhaps the ratio is the pay per dog ratio. So if the pay per
dog is same, then the ratio is 1:1.

But in that case, both would have to walk same number of dogs. But
the problem says that if x dogs are reassigned, it results in same
ratio.

But in that case, if the pay per dog is same, then it’s just the same
number of dogs walked, which would imply that 16 —x = 16 4+ 42 = —5z =
0=z =0, which is again invalid.

Wait, perhaps I need to approach this problem by assuming that the
pay ratio remains the same.




D.2 Early Stopping of Promising Reasoning Paths

Prompt

The function f satisfies the functional equation

fl@)+fly)=flz+y) —zy—1

for all real numbers x and y. If f(1) = 1, then find all integers n
such that f(n) =n. Enter all such integers, separated by commas.

Response (DeepSeek-R1-Distill-Qwen-1.5B)

Now, let’s find f(2):

Using the recursive formula, set x = 1:

f(2) =f(1) +1+2=1+1+2=24

Wait, is that right? Let me check.

Wait, actually, according to the recursive formula f(x + 1) = f(x) +
X + 2, so for x = 1:

We observe that the model starts to check for x = 1 immediately after it decides to check f(2),
interrupting its own verification step.

D.3 Continued Exploration of Alternative Solutions After Reaching Correct Answer

Prompt

Find all values of z that satisfy the equation x =+/11 —2z 4 4.

Response (DeepSeek-R1-Distill-Qwen-1.5B)

So, the solutions are x = 1 and x = 5. But wait, I need to check

if these solutions actually satisfy the original equation because
sometimes squaring both sides can introduce extraneous solutions.
First, let me check x = 1:

Left side: 1 = 4/11—2(1) + 4 Calculate inside the square root: 11 -
2 = 9 So, square root of 9 is 3. Then 3 + 4 = 7 But left side is 1,
so 1 # 7. That means x = 1 is not a valid solution.

Now, check x = b5:

Left side: 5 = /11 —2(5) + 4 Calculate inside the square root: 11
- 10 = 1 Square root of 1 is 1. Then 1 + 4 = 5 So, 5 = 5, which is
true. Therefore, x = 5 is a valid solution.

But wait, earlier I thought that x must be greater than or equal to 4.
Since x = 5 is greater than 4, that’s fine. But x = 1 is less than 4,

Wait, hold on. Let me double-check my earlier factorization and

solutions.
I had 22 — 62 + 5 = 0, which factored into (x - 1)(x - 5) = 0, giving x
=1 and x = 5.

Plugging x = 5 into the original equation worked, but plugging x =1
didn’t. So, x = 1 is extraneous.

But is there any other step I should verify? Sometimes, especially
with square roots, squaring both sides can sometimes lead to other
issues, but in this case, since we didn’t square the square root term
on both sides but isolated it once, it seems fine.

Let me consider another method to solve the equation,
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Same quadratic as before, so same solutions. So, same process, same
result. So, x =1 and x = 5, but only x = 5 is valid.

But just to make sure, let me consider if squaring the equation
introduced any extraneous solutions. Sometimes when we square both
sides, it’s easy to have extra roots.

D.4 Collapse of Reasoning Coherence Following Very Long Outputs

Response (DeepSeek-R1-Distill-Qwen-1.5B; budget = 16000 tokens)

WaitWait endpoints.
about Wait.
, say needWait.
Maybe Wait Wait set’s.
me Wait, mark,:,’s No.
the, me’s number minimumButButWait.’s the,.
WaitWaitWait.
ao over be alone to..
, Wait.
the the the Wait Wait,.’s the me’s Wait Wait the.’s.
me. with of., range’s., to (WaitWait k me nonWaitWait me’s total
number integer’s theBut a asagrams, No me her.
Well Wait Wait a.
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E Analyzing Reasoning Traces with LLLM-as-a-judge

E.1 LLMe-as-a-judge Setup

In order to illustrate the reasoning structure improvement of SB, we used LLM-as-a-judge to help us
analyze the reasoning trace because the lengthy reasoning trace is hard for human to read. We use
Gemini 2.5 Flash Preview (Google, 2025) with top_p=0.95 and temperature=0.7. The prompt
for reasoning trace categorization and identifying the first appearance of correct answer as follows:

Prompt (Reasoning Categorization)

You are a reasoning trace analyst. Your role is to categorize each
line (separated by a newline, but do not treat equations as an
individual line) in a given reasoning trace according to the function
it serves within the reasoning process. The goal is to understand
how different parts of the model’s reasoning contribute (or not) to
the final answer.

You will be given a **full reasoning trace**, which ends with a final
answer after the ~</think>tag. You must:

1. **0Only analyze the content before the ~</think>tag**.

2. *xSplit the reasoning trace into individual lines**, multiple
sentences might be in a single line, a line should be ended by a
newline.

3. x*xAssign exactly one label to each linex* from the following
**mutually exclusive categories**. Choose the **most fitting** label
based on the line’s function in context.

### Categories:

1. *xAdopted Reasoning*x*

* *#xDefinition**: A reasoning step (e.g., setting up a key equation
that’s shown in the summary, stating a critical definition that’s
part of the summary, deriving a final value for a variable that’s
highlighted in the summary, or an intermediate result explicitly
carried forward into the summary) whose content or conclusion is
**explicitly stated or directly corresponds to a distinct step,
equation, or piece of information in the summarized solution
presented after the ~</think> tag.** These are the landmark
achievements or key building blocks in the reasoning trace that are
showcased in the final, condensed explanation.

* *Examplex: If the final summary after ~</think> includes the
equation ~s>+2s—11.25=0", then the line in the reasoning trace where
this equation is first derived or stated in this form is "Pivotal
Reasoning". Similarly, the line stating "s = 2.5 km/h" is "Pivotal
Reasoning" if s =2.5 is a key reported value in the final summary.

2. x*Exploring Alternatives*x

* *kDefinition**: Lines that perform necessary calculations, logical
deductions, initial problem interpretation (e.g., "The problem asks
for...", "We are given..."), variable definitions (if not themselves
pivotal as per the above definition), strategic planning (e.g.,
"First, I will find s, then t."), or explanations of methodology that
*xdirectly contribute to reaching a "Pivotal Reasoning" step or the
overall solution, but are not themselves explicitly restated as a
distinct element in the final summarized solution.*x*

* *xExample*: "Hmm, I need to convert t into hours because her
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walking speed is in km/h." (Problem understanding leading to a
pivotal setup). "Multiply both sides by s(s+2): 18=16-s(s+2)." (A

calculation step leading to a pivotal equation). "Let me compute
that left side: ... = 18/(s(s + 2))" (The process of algebraic
simplification).

3. x*xRepetition & Rephrasing*x*

* *xDefinition**: Reasoning segments that explore solution paths,
hypotheses, methods, or calculations that are **ultimately abandoned,
identified by the LLM as incorrect or less viable, or otherwise

do not form part of the sequence leading to the adopted final
solution.** This includes trying a different formula that is then
discarded, or starting a calculation that is then reversed due to a
change in approach.

* *Example*: "Perhaps I can solve for ¢t first by isolating it from
equation 1... no, subtracting the equations seems more direct to
eliminate ¢." (The statement about solving for ¢ first by isolation
would be "Alternative Path or Exploration" if that path is not
taken) .

4. xxVerification & Explanation** * **Definition**: Lines that

are redundant (e.g., repeating information or conclusions verbatim

or near-verbatim shortly after they’ve been stated, without adding
new purpose like emphasis for a next step), purely filler or
conversational remarks (e.g., "Okay, so...", "Good.", "Let me
think..."), or provide overly trivial explanations/rephrasing that

do not advance the solution or significantly aid in understanding the
problem-solving process (e.g., "This is a quadratic equation in s,"
immediately after writing s? + 2s — 11.25 = 0). This also includes
restating parts of the problem verbatim without adding interpretation
or planning elements, once the initial understanding is established.

* *Example*: "So, s is 2.5 km/h." (if stated immediately after "Thus,

s = ... = 2.5 kmn/h" and not serving as a premise for an immediate
subsequent calculation). "Let me write them down again:" (if the
equations were just presented). "Yes, that seems correct," if it’s a

low-effort affirmation rather than the concluding part of a rigorous
"Verification" step.

### Additional Instructions:

* **%Stop processing as soon as you encounter the ‘</think>‘ tag*x.

Do not categorize anything beyond it. The content after ~</think> is
used as the reference for "Pivotal Reasoning". * If a line **repeats
or paraphrases** an earlier line without adding new value or

serving a clear structural purpose (like summarizing inputs before

a new phase of calculation), categorize the repeated instance as
*x"Non-Substantive Statement"**, even if the original served a
different, valid purpose. * If a line could arguably fit into

more than one category, choose the category that best describes

its **primary function or most specific contribution** in that
context. For instance, a calculation that corrects a previous error
is "Verification & Self-Correction" rather than just "Productive
Elaboration & Calculation." A statement of a key equation from the
final summary is "Pivotal Reasoning" even if it also elaborates. *
Do **not infer the logical correctness** of the reasoning or the
final answer. The categorization is about the *structure and an
LLM’s perceived purpose* of each statement within its own reasoning
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process. * Treat each line **independently for categorizationxx*,
but use the **surrounding context** (preceding and succeeding lines)
to understand its function, especially for identifying repetitioms,
planning statements, or the flow of logic. * If the reasoning trace
starts with the ~</think> tag, i.e.,

### Output Format:

Return your output as a **JSON array** of objects. Each object
should have:

* "text": The full original line (string).

* "label": One of the five category names above (string).
““json [ "text": "Alternatively, we can try to factor the
quadratic equation, but the roots might not be integers.",
"label": "Exploring Alternatives" , "text": "Therefore,
<span class="math-inline">x 3</span> is the value we will
use.", "label": "Pivotal Reasoning" , "text": "So, <span
class="math-inline">x</span> is 3.", "label": "Non-Substantive

Statement" Jasciigrave™

Return **only** the structured JSON list, no extra commentary or
explanation.

Prompt (Identify First Appearance of Correct Answer)

You are a reasoning trace analyst. Your role is to identify the
first sentence where the model gets the correct answer of the problem.
The goal is to identify the redundant overthinking process after the
model has actually solved the problem.

You will be given a full reasoning trace, which ends with a final
answer after the ~</think> tag; you will also be given the problem
and the correct answer. You must:

1. Only identify the sentence before the ~</think> tag.

2. Identify only the **first** sentence where the model gets the
correct answer.

3. The sentence you return should be **exactly the same** as the one
in the original reasoning trace.

Return only the sentence you identify, no extra commentary or
explanation.
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E.2 Reasoning Category Examples

Pivotal Reasoning Example

First, I need to figure out the ratio of the enrollments between
the two grades. The 7th grade has 520 students, and the 8th grade
has 650. So, the total number of students is 520 + 650. Let me
calculate that: 520 plus 650 is 1170. So, there are 1170 students
in total between the two grades.

Productive Elaboration & Calculation Example

Therefore, the number of representatives for each grade should be
proportional to their enrollment fractions. So, the 7th grade should
have (4/9) of 18 representatives, and the 8th grade should have (5/9)
of 18.

Exploring Alternatives Example

Hold on, maybe I need to think about the transversal lines and
corresponding angles. Since ST is parallel to QR, and PR is a
transversal, the angle at T, which is angle STR, should correspond
to angle QRP, which is angle R, 105 degrees.

Verification & Self-Correction Example

Wait, if ST is parallel to QR, then the corresponding angles when PR
is the transversal would be equal. So, angle S TR (which is angle
STR) should be equal to angle QRP, which is 105 degrees.

Non-Substantive Statement Example

Wait, maybe I’m confusing the angles. Let me try to think of it
differently.
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