
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ASYMMETRIC FACTORIZED BILINEAR OPERATION
FOR VISION TRANSFORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

As a core component of Transformer-like deep architectures, a feed-forward net-
work (FFN) for channel mixing is responsible for learning features of each token.
Recent works show channel mixing can be enhanced by increasing computational
burden or can be slimmed at the sacrifice of performance. Although some efforts
have been made, existing works are still struggling to solve the paradox of perfor-
mance and complexity trade-offs. In this paper, we propose an Asymmetric Fac-
torized Bilinear Operation (AFBO) to replace FFN of vision transformer (ViT),
which attempts to efficiently explore rich statistics of token features for achieving
better performance and complexity trade-off. Specifically, our AFBO computes
second-order statistics via a spatial-channel factorized bilinear operation for fea-
ture learning, which replaces a simple linear projection in FFN and enhances the
feature learning ability of ViT by modeling second-order correlation among to-
ken features. Furthermore, our AFBO presents two structured-sparsity channel
mapping strategies, namely Grouped Cross Channel Mapping (GCCM) and Over-
lapped Cycle Channel Mapping (OCCM). They decompose bilinear operation into
grouped channel features by considering information interaction between groups,
significantly reducing computational complexity while guaranteeing model per-
formance. Finally, our AFBO is built with GCCM and OCCM in an asymmetric
way, aiming to achieve a better trade-off. Note that our AFBO is model-agnostic,
which can be flexibly integrated with existing ViTs. Experiments are conducted
with twenty ViTs on various tasks, and the results show our AFBO is superior
to its counterparts while improving existing ViTs in terms of generalization and
robustness.

1 INTRODUCTION

In recent years, transformer-like architectures have attracted a mass of research interests and
achieved remarkable performance in various computer vision tasks (Dosovitskiy et al., 2020; Fang
et al., 2021; Strudel et al., 2021; Neimark et al., 2021). As one of core components, a feed-forward
network (FFN) with two fully-connected layers is generally used as channel mixer to learn token
features, which is proven to significantly influence performance of vision transformer (ViT) (Dong
et al., 2021; Yu et al., 2022). Intuitively, a two-layer FFN is a concise yet naive learning scheme
that fails to fully consider the rich information lying in token features, which generally achieves
sub-optimal solutions in terms of both efficiency and effectiveness (Fang et al., 2023; Xu et al.,
2024; Sridhar et al., 2023). However, existing works pay less attention to improving FFN module
of ViT compared to the modifications on self-attention mechanism (i.e., another core component of
ViT) (Huang et al., 2021; Liu et al., 2021; Kitaev et al., 2020; Graham et al., 2021; Srinivas et al.,
2021; Touvron et al., 2021b).

Recently, some works have made attempts to improve channel mixing module of transformer-like
architectures (Fang et al., 2023; Xu et al., 2024; Sridhar et al., 2023; Li et al., 2021). As a pio-
neer work, Shazeer (Shazeer, 2020) introduces to exploit Gated Linear Units (GLU) (Dauphin et al.,
2017) to improve FFN of transformer in natural language processing tasks. Subsequently, EVA-
02 (Fang et al., 2023) extends GLU to ViT by employing a SiLU activation (Hendrycks & Gimpel,
2016). To guarantee computational efficiency, existing GLU variants (Shazeer, 2020; Fang et al.,
2023) generally require to reduce the hidden dimension of FFN, which potentially limits perfor-
mance of ViT (Noshad et al., 2019; Sridhar et al., 2023). Besides, some researchers propose to

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Linear

Activation

Linear Linear

(b)(a)

Split

}

(d) GCCM: Grouped Cross Channel Mapping

Z

(c) OCCM: Overlapped Cycle Channel Mapping

Cycle shift

Linear

Linear

Linear

Linear

Multi-Head
Attention

Add & Norm

Input
Embedding

Feed Forward

Add & Norm

Input

GCCM

SM

GCCM

SM

X Z

X

} Linear

Linear

𝒙 ∈ 𝑹𝒅 𝒙 ∈ 𝑹𝒅

𝒁 ∈ 𝑹𝑴𝒅

𝒀 ∈ 𝑹𝒅 𝒀 ∈ 𝑹𝒅

Activation

𝒁𝟏 ∈ 𝑹
𝑴𝒅 𝒁𝟐 ∈ 𝑹

𝑴𝒅

Figure 1: Comparison of (a) original FFN with (b) our proposed Asymmetric Factorized Bilinear
Operation (AFBO) for ViT. Specifically, our AFBO computes second-order statistics via a spatial-
channel factorized bilinear operation (SCFBO) for feature abstraction instead of the first linear pro-
jection in FFN. Particularly, our SCFBO first approximates second-order statistics via a rank-1 de-
composition, and further decomposes mapping operations into Spatial Modeling (SM) and Channel
Mapping (CM). For better performance and complexity trade-off, our AFBO is constructed by two
structured-sparsity channel mapping strategies (i.e., (c) Grouped Cross Channel Mapping and (d)
Overlapped Cycle Channel Mapping) in an asymmetric manner. The details refer to Sec. 3.2.

use some extra modules inheriting from convolutional neural networks (CNNs) to enhance FFN of
ViT (Li et al., 2021; Guo et al., 2022a; Zhou et al., 2022; Cao et al., 2023), such as depth-wise (DW)
convolution, channel attention (Hu et al., 2018; Wang et al., 2020a; Zhou et al., 2022), inverted resid-
ual FFN (Sandler et al., 2018) and GRN (Liu et al., 2022; Woo et al., 2023). Although these extra
modules can improve performance of ViT, they undoubtedly increase computational cost, especially
for large models. In contrast, some recent works (Xu et al., 2024; Sridhar et al., 2023) focus on
slimming FFN to reduce computational cost of transformer-like architectures by carefully decreas-
ing hidden dimension to reduce computational cost or employing a block diagonal linear projection
regularized by a channel covariance attention. Despite the aforementioned slimming methods can
reduce computational cost of FFN, they are limited to improve performance of ViT. Therefore, exist-
ing FFN variants of ViT still struggle to solve the paradox of performance and complexity trade-off.

To address the above issue, we propose a novel Asymmetric Factorized Bilinear Operation (AFBO)
to efficiently explore and exploit rich information of token features, which replaces FFN of Trans-
former for achieving better performance and complexity trade-off. Specifically, motivated by the
success of second-order modeling in improving deep CNNs (Lin et al., 2015; Gao et al., 2016; Li
et al., 2017; Wang et al., 2017; 2020b), our AFBO presents a Spatial-Channel Factorized Bilinear
Operation (SCFBO) to efficiently compute second-order statistics of token features, which replaces
the first linear projection in the FFN for feature learning. Particularly, our SCFBO first approximates
second-order statistics via a rank-1 decomposition (Gao et al., 2016; Li et al., 2017; Mnih & Hinton,
2007), which is further decomposed into spatial modeling and channel mapping. For spatial mod-
eling, we capture spatial correlation in local neighborhoods using various methods, including local
pooling, DW convolution, and spatial attention. For channel mapping, two point-wise convolutions
followed by a dot product are used to model the channel correlation of each token feature. As such,
our AFBO enhances the feature learning ability of Transformer by modeling second-order correla-
tion among token features. Since channel mapping usually leads to high computational complexity
especially with large hidden dimension, our AFBO presents two structured-sparsity channel map-
ping strategies, namely Grouped Cross Channel Mapping (GCCM) and Overlapped Cycle Channel
Mapping (OCCM), which divide channel features into several groups and perform bilinear operation
by considering information interaction between groups. Based on the proposed structured-sparsity
channel mappings, we can construct several AFBO variants that significantly reduce parameters and
FLOPs while maintaining high performance. Particularly, OCCM and GCCM are helpful for im-
proving performance and reducing complexity, and our AFBO asymmetrically built with GCCM
and OCCM can achieve better performance and complexity trade-off. Note that our model-agnostic
AFBO can be flexibly integrated with existing Transformer-like architectures, achieving better per-
formance at low cost of complexity. The comparison of original FFN with our AFBO is illustrated in
Fig. 1. To evaluate our AFBO, experiments are conducted on various vision tasks (i.e., image clas-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

sification on ImageNet-1K (Krizhevsky et al., 2012) and its out-of-distribution variants (Hendrycks
et al., 2021b; Hendrycks & Dietterich, 2018; Hendrycks et al., 2021a; Recht et al., 2019), object
detection and instance segmentation on MS COCO (Lin et al., 2014)) with twenty ViT models (e.g.,
DeiT (Touvron et al., 2021a), Swin Transformer (Liu et al., 2021) and PoolFormer (Yu et al., 2022)).
The contributions of this work can be summarized as follows:

(1) This paper proposes a novel Asymmetric Factorized Bilinear Operation (AFBO) as an effective
alternative of FFN for ViTs. Particularly, our AFBO efficiently explores rich statistics of token
features and shows great potential to achieve better performance and complexity trade-off for ViTs.

(2) To this end, our AFBO presents a spatial-channel factorized bilinear operation to efficiently
model second-order statistics of token features and introduces two structured-sparsity channel map-
pings to reduce model complexity (i.e., parameters and FLOPs) while guaranteeing performance.

(3) Our AFBO is model-agnostic and can be flexibly integrated with existing Transformer-like archi-
tectures. Extensive experiments on various tasks by using different ViTs show our AFBO is superior
to its counterparts, while improving existing ViTs in terms of generalization and robustness.

2 RELATED WORK

Building upon the remarkable success of transformer architecture in natural language process-
ing (Vaswani et al., 2017), Vision Transformer (ViT) (Dosovitskiy et al., 2020) is initially intro-
duced to extend transformer models to vision tasks (Krizhevsky et al., 2012; Fang et al., 2021;
Strudel et al., 2021; Neimark et al., 2021). Subsequently, a lot of ViT variants (Wang et al., 2022;
Liu et al., 2021; Vaswani et al., 2021; Ding et al., 2022; Huang et al., 2019; Ho et al., 2019; Lu
et al., 2021) have been studied to improve ViT, especially for its self-attention mechanism. Most
of these methods aim to reduce computational complexity of self-attention since its complexity is
quadratic to token numbers. Among them, some works (Liu et al., 2021; Ding et al., 2022) focus
on developing a local self-attention mechanism and its shifted/haloed version to add the interaction
across different local windows. Besides, SOFT (Lu et al., 2021) replaces the dot-product similarity
by proposing a softmax-free transformer with linear space and time complexity. Additionally, in-
corporation of self-attention with convolution as a hybrid backbone has been studied for enhancing
locality of ViTs (Guo et al., 2022a; Wu et al., 2021; Dai et al., 2021; d’Ascoli et al., 2021; Li et al.,
2023). There also exist some works (Yu et al., 2022) to challenge necessity of self-attention, and
they propose some substituting operations (e.g., pooling and identity mapping) for attention while
achieving comparable performance. Distinguished from the aforementioned works, our AFBO fo-
cuses on improving FFN module of ViT for achieving better efficiency and effectiveness trade-off.

Some recent works (Fang et al., 2023; Xu et al., 2024; Sridhar et al., 2023; Li et al., 2021) have
been studied to improve channel mixing module (i.e., FFN) of ViT. For example, EVA-02 (Fang
et al., 2023) extends GLU (Shazeer, 2020) to ViT. It employs a two-branch structure to replace
FFN, which ensures computational efficiency by reducing the hidden dimension. Besides, some
works (Xu et al., 2024; Sridhar et al., 2023) focus on reducing the computational complexity of FFN
by developing some slimming schemes. Additionally, some studies (Li et al., 2021; Cao et al., 2023;
Guo et al., 2022a) enhance the performance of FFN by introducing extra modules (e.g., channel
attention (Hu et al., 2018; Wang et al., 2020a) or DW convolution). TransNext (Shi, 2024) enhances
FFN by combining SwiGLU (Shazeer, 2020; Fang et al., 2023) with DW convolution. Unlike these
methods, our AFBO attempts to explore rich statistics of token features to improve FFN module of
ViT, which achieves better performance and complexity trade-off than existing counterparts (refer
to comparisons in Table 3).

3 PROPOSED METHOD

In this section, we first briefly revisit the original FFN for ViT, and describe details of our Asym-
metric Factorized Bilinear Operation (AFBO). Finally, three AFBO variants are introduced and we
compare them in terms of performance and complexity for model selection.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 REVISITING FFN FOR VIT

As shown in Fig. 1 (a), the original FFN involved of two fully-connected (linear) layers with an
activation function is used to perform channel mixing in transformer block. Let X ∈ Rd×N be
d-dimensional features of N tokens, the output of FFN (i.e., Y ∈ Rd×N) can be written as

Y = ⊗{W2,b2}
1×1

(
σ(Z)

)
, Z = ⊗{W1,b1}

1×1

(
X
)
, (1)

where ⊗1×1 indicates point-wise convolution with kernel size of 1×1. {W1 ∈ Rd×Md,b1 ∈ RMd}
and {W2 ∈ RMd×d,b2 ∈ Rd} respectively are weight parameters of two point-wise convolutions
(w.r.t fully-connected layers), and M is the expansion ratio of hidden dimension. Z ∈ RMd×N

means the intermediate features, and σ(·) is the activation function (e.g., GeLU (Hendrycks & Gim-
pel, 2016)). From Eq. (1), one can see that FFN performs feature learning through two linear pro-
jections, which do not fully consider the rich information lying in token features. A naive scheme
to enhance performance of ViTs is to increase the hidden dimension of FFN, but it also brings more
computational cost. By considering feature learning ability heavily influences performance, reason-
able exploration of information lying in token features is a potential solution to improve ViT.

3.2 ASYMMETRIC FACTORIZED BILINEAR OPERATION (AFBO) FOR VIT

3.2.1 SPATIAL-CHANNEL FACTORIZED BILINEAR OPERATION

Previous works (Lin et al., 2015; Wang et al., 2020b) show that the appropriate (global) modeling
of second-order statistics lying in features can effectively improve deep CNNs. Inspired by these
works, we incorporate idea of second-order modeling into FFN of ViT by modifying Eq. (1) as

Y = WT
2 σ(Z) + b2, Z = W̃T

1 (X
TX) + b1, (2)

where XTX indicates the outer product of features X, capturing second-order statistics of X. T
indicates the transposition operation. However, such strategy in Eq. (2) suffers from two issues: (1)
XTX generates a global representation, neglecting local information of each token; (2) representa-
tion size of XTX is d× d, leading to a heavy computational burden, i.e., W̃1 ∈ Rd2×Md.

To address above issues, our AFBO approximates computation of second-order statistics via a rank-
1 decomposition, as suggested in (Gao et al., 2016; Li et al., 2017; Mnih & Hinton, 2007). As such,
our AFBO replaces the first linear projection in FFN by a bilinear operation:

Y = ⊗{W3,b3}
1×1

(
σ(Ẑ)

)
, Ẑ = [⊗̂{Ŵ1,b̂1}

K×K

(
X
)
]⊙ [⊗̂{Ŵ2,b̂2}

K×K

(
X
)
], (3)

where {Ŵ1 ∈ Rd×Md×K×K , b̂1 ∈ RMd} and {Ŵ2 ∈ Rd×Md×K×K , b̂2 ∈ RMd} are weight
parameters of two convolutions, respectively. And ⊗̂K×K indicates convolution operation with
kernel size of K ×K. {W3 ∈ RMd×d,b3 ∈ Rd} are weight parameters of point-wise convolution
of ⊗1×1, and ⊙ indicates the dot product.

For computational efficiency, we further present a spatial-channel factorized bilinear operation
(SCFBO), which decomposes ⊗̂K×K into a spatial modeling operation ⊗̃K×K and a channel map-
ping (i.e., point-wise convolution ⊗1×1). According to Eq. (3), our SCFBO is formulated as

Y = ⊗{W3,b3}
1×1

(
σ(Ẑ)

)
,

Ẑ =
[
⊗̃{W̃s

1,b̃
s
1}

K×K ⊗{Wc
1,b

c
1}

1×1

(
X
)]

⊙
[
⊗̃{W̃s

2,b̃
s
2}

K×K ⊗{Wc
2,b

c
2}

1×1

(
X
)]
, (4)

where {Wc
· ∈ Rd×Md,bc

· ∈ RMd} and {W̃s
· ∈ RK×K , b̃s· ∈ R} are parameters of ⊗1×1 and

⊗̃K×K , respectively. Particularly, spatial modeling ⊗̃K×K can be achieved by a DW convolution,
local pooling or spatial attention (Woo et al., 2018) with kernel size of K ×K. As such, our AFBO
with SCFBO (4) in Fig. 1 (b) has a two-branch structure with spatial modeling and channel mapping.

As for Eq. (4), bilinear representation Ẑ is followed by an activation function σ (e.g., SiLU (Elfwing
et al., 2018) and GeLU (Hendrycks & Gimpel, 2016)). However, such bilinear operation potentially
hurts the performance of such an activation function. Specifically, for a special case of parameter-
shared branch in Eq. (4), Ẑ = f(X)2 and f indicates spatial-channel factorized mapping. Mean-
while, both outputs of SiLU and GeLU are power functions of inputs, which are more sensitive to

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) (b) (c) (d)

Figure 2: Diagram of mapping matrices for various channel mapping strategies. (a) Fully-connected
layer with dense parameters. (b) Block-wise channel mapping with block-diagonal sparsity con-
straint (G = 4). (c) Our Grouped Cross Channel Mapping (GCCM) (G = 4). (d) Our Overlapped
Cycle Channel Mapping (OCCM) (G = 4).

probable noise of f(X)2 than one of f(X), potentially decreasing the final performance. Therefore,
as shown in Fig. 1, we switch dot product with activation function for our SCFBO in practice. More
experimental comparisons can refer to Table 6.

3.2.2 STRUCTURED-SPARSITY CHANNEL MAPPING

By considering hidden dimension (Md) plays a crucial role in performance of ViT (Noshad et al.,
2019; Sridhar et al., 2023), we are likely to adopt a large expansion ratio M (e.g., M = 4) in channel
mapping (i.e., point-wise convolution ⊗1×1 with parameters of {Wc

· ∈ Rd×Md,bc
· ∈ RMd}) to

guarantee performance, which subsequently leads to high computational complexity. Therefore,
we further present two structured-sparsity channel mapping strategies to decrease computational
complexity of SCFBO while guaranteeing performance. Given xi be features of i-th token in X,
channel mapping performs a linear projection with parameters of {Wc

· ∈ Rd×Md,bc
· ∈ RMd} as

zi = Wc
· xi + bc

· . As illustrated in Fig. 2 (a), Wc
· is generally a fully-connected layer with M × d2

parameters. As a commonly used strategy, group channel mapping in Fig. 2 (b) has been studied
to reduce computational complexity of deep CNNs (Chollet, 2017; Krizhevsky et al., 2012; Sandler
et al., 2018), where Wc

· can be regarded as incorporation of a block-diagonal sparsity constraint:

Wc
·

bw
=

Wc

· (1) 0 · · · 0
0 Wc

· (2) · · · 0
...

...
. . .

...
0 0 · · · Wc

· (G)

 , (5)

where Wc
· (i) ∈ RMd/G×d/G and G indicates number of group. Clearly, computational complexity

of block-wise channel mapping in Eq. (5) is 1/G of the original Wc
· . Although model efficiency,

block-wise channel mapping suffers from inferior performance due to the absence of information
interaction among different groups (refer to comparison in Table 1).

To guarantee both efficiency and effectiveness, we present two structured-sparsity channel mapping
strategies, namely Grouped Cross Channel Mapping (GCCM) and Overlapped Cycle Channel Map-
ping (OCCM). As shown in Fig 2 (c), our GCCM divides the inputs and outputs into G and 2G
non-overlapped groups, respectively. Then, GCCM adopts a parameter-shared linear mapping for
i-th and i+G-th groups (i ∈ [1, G]) of outputs by using different groups of inputs. As such, differ-
ent groups of inputs are fed into a same linear mapping to realize information interaction between
groups. Particularly, mapping matrix of our GCCM can be written as

Wc
.

gc
=

Wc

. (1) 0 · · · 0 · · · 0 · · · Wc
. (G)

0 Wc
. (2) · · ·

...
...

... . .
. ...

...
...

. . .
... 0 Wc

. (2) · · ·
...

0 0 · · · Wc
. (G) Wc

. (1) 0 · · · 0

T

, (6)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Comparisons of various channel mixers in terms of complexity, performance, and inference
latency. Particularly, the parameter numbers in dashed boxes and the results of Top-1 accuracy are
reported with instantiation of DeiT-T (Touvron et al., 2021a) on ImageNet-1K.
Method Parameters (M) FLOPs (G) Top-1 (%) Latency (ms)
FFN O(2Md2) 5.7 O(4Md2) 1.3 72.2 11.4
GLU (M = 8

3) O(3Md2) 5.7 O(6Md2) 1.3 72.6 12.9
Group FFN (G = 2) O(2Md2

G + Md2) 5.7 O(4Md2

G + 2Md2) 1.3 70.8 13.1
Group FFN (G = 4) O(2Md2

G + Md2) 5.0 O(4Md2

G + 2Md2) 1.1 69.8 15.5
SCFBO-GC O(2Md2

G2 + Md2) 5.1 O(4Md2

G2 + 2Md2) 1.1 72.2 12.7

SCFBO-OC O(
2M(G−1)d2

G + Md2) 6.7 O(
4M(G−1)d2

G + 2Md2) 1.5 75.6 14.5

AFBO O(Md2

G2
1

+
M(G2−1)d2

G2
+ Md2) 6.0 O(2Md2

G1
+

2M(G2−1)d2

G2
+ 2Md2) 1.3 74.6 13.2

where Wc
· (i) ∈ RMd/2G×d/G, and our GCCM in Eq. (6) is only 1/2G of the original Wc

· in term
of computational complexity. Furthermore, as illustrated in Fig. 2 (d), our OCCM proposes to use
overlapped inputs to realize information interaction between groups in a cycle manner:

Wc
·

oc
=

[Wc

·L(1), Wc
·R(1)] 0 · · · 0

0 [Wc
·L(2), Wc

·R(2)] · · · 0
...

...
.

...
0 0 · · · [Wc

·L(G− 1), Wc
·R(G− 1)]

Wc
·R(G)] 0 · · · 0 [Wc

·L(G)

, (7)

where our OCCM sets the overlapped range by half of dimension of grouped features. [Wc
·L(g) ∈

RMd/G×d/G,Wc
·R(g) ∈ RMd/G×d/G] are parameters of g-th group for channel mapping, whose

numbers are 2/G of those in the original Wc
· . From Eq. (6) and Eq. (7) we can see that our GCCM

and OCCM can efficiently perform information interaction between groups by introducing appropri-
ate structured-sparsity constraints on channel mapping. Note that our AFBO can control the trade-off
between performance and complexity by adopting various group numbers and overlap ratios.

3.3 AFBO VARIANTS

Based on the proposed GCCM and OCCM, we can implement SCFBO in Eq. (4) in different ways,
resulting in three AFBO variants, i.e., SCFBO-GC, SCFBO-OC, and asymmetric SCFBO (AFBO).

SCFBO-GC We construct SCFBO-GC by realizing channel mappings of two branches lying in
SCFBO with GCCM (6), which has parameter number of O(2Md2

G2 +Md2) and computational cost
(FLOPs) of O(4Md2

G2 + 2Md2) with group number of G.

SCFBO-OC When channel mappings of two branches lying in SCFBO are replaced by OCCM (7),
we construct SCFBO-OC with parameter number of O(2M(G−1)d2

G +Md2) and computational cost

(FLOPs) of O(4M(G−1)d2

G + 2Md2), where G is group number of OCCM.

Asymmetric SCFBO (AFBO) As a hybrid scheme, we replace left and right branches of SCFBO
with OCCM (5) and GCCM (6), respectively. It leads to an asymmetric SCFBO, i.e., AFBO. Specif-
ically, parameter number of AFBO is O(Md2

G2
1

+ M(G2−1)d2

G2
+ Md2), while computational cost is

O(2Md2

G1
+ 2M(G2−1)d2

G2
+ 2Md2), where G1 and G2 are group number of GCCM and OCCM.

Model Selection via Complexity Analysis To further analyze performance and complexity of three
AFBO variants, we compare them with the original FFN, GLU (Shazeer, 2020), and Group FFN in
Eq. (5). As listed in Table 1, our AFBO variants have similar or lower computational complexity than
their counterparts from a theoretical perspective. By instantiating our AFBO variants with G1 = 2
and G2 = 4 with DeiT-T (Touvron et al., 2021a), our SCFBO-GC achieves similar performance with
FFN but has fewer parameters and FLOPs. SCFBO-OC improves FFN by 3.4% and brings extra
model complexity. Therefore, our AFBO combines with GCCM and OCCM to achieve performance
and complexity trade-off, which is used throughout all experiments. Finally, our AFBO respectively
brings 3.8% and 2.0% gains over Group FFN and GLU, while having comparable model complexity.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

In this section, we first describe implementation details of our AFBO, and make comparison on
ImageNet-1K (Krizhevsky et al., 2012) and its variants, i.e., ImageNet-C (Hendrycks & Dietterich,
2018), ImageNet-A (Hendrycks et al., 2021b), ImageNet-R (Hendrycks et al., 2021a) and ImageNet-
Sketch (Recht et al., 2019). Besides, we transfer our models to object detection and instance seg-
mentation on MS COCO (Lin et al., 2014). Finally, we conduct ablation studies on ImageNet-1K.

4.1 IMPLEMENTATION DETAILS

As a plug-in module, we apply our AFBO to various ViTs and MLP-Mixer architectures by replac-
ing the original FFN modules, including DeiT (Touvron et al., 2021a), Swin ViT (Liu et al., 2021),
PoolFormer (Yu et al., 2022), LVT (Yang et al., 2022), PVTv2 (Wang et al., 2022), CycleMLP (Chen
et al., 2021), HireMLP-Tiny (Guo et al., 2022b), GC ViT (Hatamizadeh et al., 2023) and VisionL-
LaMA (Chu et al., 2024). To match the original FFN in terms of model complexity, we set G1 and
G2 to 2 and 3 for AFBO, respectively. For spatial modeling, we use 3×3 DW convolution as a default
setting. To train models on ImageNet-1K, we adopt exactly same strategies as the original works
with 224×224 inputs. For evaluation on object detection and instance segmentation, we adopt Mask
R-CNN (He et al., 2017) and RetinaNet (Lin et al., 2017) as baseline detectors, where Poolformer-
S12 (Yu et al., 2022) and Swin-T (Liu et al., 2021) along with FPN (Kirillov et al., 2019) are used
as backbone models. All detectors are implemented using MMDetection toolkit (Chen et al., 2019)
with the default settings. Specifically, the shorter side of input images is resized to 800, and all the
models are optimized using SGD with weight decay of 1e-4, momentum of 0.9 and mini-batch size
of 16. The learning rate is initialized to 0.01 and is decreased by a factor of 10 after 8 and 11 epochs,
respectively. All programs are implemented by PyTorch (Paszke et al., 2019) and run on a server
with 8 A6000 GPUs. The source code will be publicly available.

4.2 IMAGE CLASSIFICATION ON IMAGENET-1K

We first validate the effectiveness of our AFBO by comparing state-of-the-art (SOTA) models
and its counterparts on ImageNet-1K. Besides, we directly adopt the trained models to ImageNet-
C (Hendrycks & Dietterich, 2019), ImageNet-A (Hendrycks et al., 2021b), ImageNet-R (Hendrycks
et al., 2021a) and ImageNet-Sketch (Recht et al., 2019) to verify the robustness of our AFBO.

4.2.1 COMPARISON WITH SOTA

To verify generalization of our AFBO, we compare 20 SOTA models with and without AFBO. As
shown in Table 2, our AFBO enhances the performance of all models on both IN-1K and 4 out-
of-distribution (OOD) variants, while having less or comparable model complexity (i.e., parameters
and FLOPs). Specifically, for tiny ViT models, AFBO respectively achieves 1.3% and 2.4% gains
over LVT and DeiT-T on IN-1K, while bringing clear improvement on four OOD variants. For
small ViT models, AFBO obtains 0.5%∼1.9% and 0.6%∼5.6% gains on IN-1K and four OOD
variants, respectively. Notably, AFBO achieves 0.5% gains over the recently proposed GC ViT-
XT and Pyramid VisionLLaMA-S on IN-1K, and brings more than 1.5% gains on IN-A. Besides,
AFBO can also improve MLP-Mixer models (i.e., CycleMLP and HireMLP) with comparable model
complexity. For middle and large ViT models, AFBO respectively brings 0.7% and 0.1% gains for
DeiT-B and Swin-B on IN-1K, but has less model complexity. In particular, AFBO still brings clear
improvement (0.6%∼3.7%) for medium and large models on four OOD variants. In terms of model
latency, AFBO brings extra affordable inference time over the original models. These results above
clearly demonstrate that AFBO can help existing ViTs achieve better performance and complexity
trade-off, which provides a promising solution to improve generalization and robustness of ViTs.

4.2.2 COMPARISON WITH COUNTERPARTS

To further evaluate the effectiveness of our AFBO, we compare with several counterparts, includ-
ing SwiGLU (Fang et al., 2023), ConvNeXt block (Liu et al., 2022), IMLP (Xu et al., 2024),
SCHEME (Sridhar et al., 2023) and ConvGLU (Shi, 2024), where all experiments are conducted
on IN-1K and IN-R by using DeiT (Touvron et al., 2021a), Poolformer (Yu et al., 2022) and Swin-
T (Liu et al., 2021) as backbone models. Since source code is unavailable, we duplicate the results of

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Comparisons with various widely used vision models on ImageNet-1K (IN-1K) and four
variants, including ImageNet-C (IN-C), ImageNet-A (IN-A), ImageNet-Robustness (IN-R) and
ImageNet-Sketch (IN-SK). For comparison, the original MLP modules for all baseline models are
replaced by our proposed AFBO module. Among OOD datasets, IN-C calculates the mean corrup-
tion error (mCE) as metric, where the smaller mCE means the better robustness of the models under
corruptions. All other benchmarks use Top-1 accuracy as the metric if no special illustration.

Method Params. FLOPs Latency IN-1K IN-C IN-A IN-R IN-SK
(M) (G) (ms) (↑%) (↓%) (↑%) (↑%) (↑%)

LVT (Yang et al., 2022) 5.5 0.8 7.7 74.8 75.0 7.5 34.6 23.0
+ AFBO (ours) -0.3 +0.0 9.1 76.1(1.3) 73.3(1.7) 8.5(1.0) 35.1(0.5) 23.7(0.7)

DeiT-T (Touvron et al., 2021a) 5.7 1.3 11.4 72.2 71.1 7.3 32.6 20.2
+ AFBO (ours) +0.3 +0.0 13.2 74.6(2.4) 66.2(4.9) 8.3(1.0) 38.5(5.9) 23.1(2.9)

PoolFormer-S12 (Yu et al., 2022) 11.9 1.8 9.9 77.2 69.8 7.0 37.7 25.4
+ AFBO (ours) +0.1 +0.1 11.2 79.1(1.9) 65.0(4.8) 8.9(1.9) 42.5(4.8) 27.6(2.2)

GC ViT-XXT (Hatamizadeh et al., 2023) 12.0 2.1 11.1 79.9 72.9 19.0 41.9 29.2
+ AFBO (ours) +0.3 +0.2 12.5 81.2(1.3) 72.5(0.4) 22.4(3.4) 43.5(1.6) 31.6(1.4)

PVTv2-B1 (Wang et al., 2022) 14.0 2.1 11.5 78.7 65.1 14.6 41.7 28.9
+ AFBO (ours) -0.1 +0.2 13.2 80.1(1.4) 63.6(1.5) 16.7(2.1) 44.1(2.4) 31.1(2.2)

CycleMLP-B1 (Chen et al., 2021) 15.0 2.1 12.1 78.9 64.5 11.6 41.6 29.1
+ AFBO (ours) -0.2 +0.1 13.4 80.0(1.1) 62.3(2.2) 14.2(2.6) 44.3(2.7) 30.4(1.3)

HireMLP-Tiny (Guo et al., 2022b) 17.0 2.1 12.8 78.9 65.3 12.8 41.5 29.0
+ AFBO (ours) -0.2 +0.1 15.1 80.2(1.3) 62.9(2.4) 15.6(2.8) 43.8(2.3) 30.5(1.5)

GC ViT-XT (Hatamizadeh et al., 2023) 20.0 2.6 13.2 82.0 75.3 26.7 44.3 32.0
+ AFBO (ours) +0.4 +0.2 14.9 82.5(0.5) 74.8(0.5) 29.2(2.5) 44.9(0.6) 32.6(0.6)

Pyramid-VisionLLaMA-S (Chu et al., 2024) 22.0 2.6 14.8 81.6 58.1 23.5 41.8 28.9
+ AFBO (ours) +0.1 +0.1 16.6 82.1(0.5) 56.1(2.0) 25.3(1.8) 45.3(3.5) 32.9(3.0)

Poolformer-S24 (Yu et al., 2022) 21.4 3.4 14.3 80.3 62.2 14.5 41.4 28.9
+ AFBO (ours) +0.6 +0.3 16.4 81.5(1.2) 57.8(4.4) 18.0(3.5) 44.5(3.1) 30.8(1.9)

DeiT-S (Touvron et al., 2021a) 22.0 4.6 12.9 79.8 54.6 19.8 41.9 29.4
+ AFBO (ours) -0.3 -0.1 15.2 81.1(1.3) 53.3(1.3) 20.8(1.0) 45.3(3.4) 31.9(2.5)

Swin-T (Liu et al., 2021) 28.0 4.5 12.6 81.2 62.0 21.7 41.3 29.0
+ AFBO (ours) -0.5 -0.1 15.5 82.1(0.9) 56.4(5.6) 26.0(4.3) 45.8(4.5) 31.7(2.7)

PoolFormer-S36 (Yu et al., 2022) 30.9 5.0 16.6 81.4 60.0 18.5 42.1 30.2
+ AFBO (ours) +0.8 -0.5 18.8 81.9(0.5) 57.1(2.9) 21.8(3.3) 43.8(1.7) 31.6(1.4)

Swin-S (Liu et al., 2021) 50.0 8.7 25.2 83.0 54.9 32.9 44.9 32.0
+ AFBO (ours) -1.9 -0.2 29.9 83.3(0.3) 52.1(2.8) 33.3(0.4) 47.4(2.5) 34.5(2.5)

Pyramid-VisionLLaMA-B (Chu et al., 2024) 56.0 9.0 31.3 83.2 52.1 33.5 46.0 33.5
+ AFBO (ours) +0.4 +0.2 32.9 83.5(0.2) 49.5(2.6) 35.2(1.7) 48.1(2.1) 35.8(2.3)

PoolFormer-M36 (Yu et al., 2022) 56.2 8.8 29.3 82.1 58.3 23.8 43.3 30.6
+ AFBO (ours) +1.0 +0.9 33.6 82.5(0.4) 54.6(3.7) 27.5(3.7) 45.2(1.9) 32.1(1.5)

PoolFormer-M48 (Yu et al., 2022) 73.5 11.6 31.6 82.5 54.9 25.7 43.7 30.9
+ AFBO (ours) +1.4 +1.2 35.7 83.0(0.5) 52.8(2.1) 32.0(3.7) 46.6(2.9) 32.0(1.1)

DeiT-B (Touvron et al., 2021a) 86.0 17.6 35.7 81.8 48.5 27.4 44.9 32.0
+ AFBO (ours) -2.1 -0.2 38.8 82.5(0.7) 45.3(3.2) 31.1(3.7) 47.4(2.5) 33.3(1.3)

Swin-B (Liu et al., 2021) 87.8 15.4 34.2 83.5 54.4 35.8 46.6 32.4
+ AFBO (ours) -3.1 -0.4 37.3 83.6(0.1) 51.5(2.9) 36.4(0.6) 49.0(2.4) 34.0(1.6)

Pyramid-VisionLLaMA-L (Chu et al., 2024) 99.0 18.0 40.1 83.6 54.4 38.7 47.8 34.6
+ AFBO (ours) +0.5 +0.2 42.9 83.7(0.1) 52.0(2.4) 40.2(1.5) 50.2(2.4) 36.2(1.6)

SCHEME (Sridhar et al., 2023) and IMLP (Xu et al., 2024) from the original papers for comparison.
Then, we re-implement SwiGLU, ConvNeXt block and ConvGLU for the compared backbones us-
ing available source code. As shown in Table 3, IMLP has less model complexity but inferior
performance. SCHEME is also difficult to balance performance and complexity. Particularly, our
AFBO achieves higher accuracy than SCHEME-12, while having less model complexity. Compared
to SwiGLU, ConvNeXt block and ConvGLU, AFBO has similar model complexity, while benefit-
ing better generalization and robustness. Specifically, AFBO achieves 0.3%∼2.0% and 0.4%∼5.1%
gains over SwiGLU, ConvGLU and ConvNeXt block on IN-1K and IN-R, respectively. Above
results clearly show our AFBO can achieve better performance and complexity trade-off again.

4.3 OBJECT DETECTION AND INSTANCE SEGMENTATION ON COCO

Furthermore, we evaluate generalization ability of AFBO on object detection and instance segmen-
tation tasks. As shown in Table 4, when RetinaNet is used as a detector, AFBO brings 1.7% and
0.8% gains over Poolformer-S12 and Swin-T in terms of AP, respectively. For Mask R-CNN,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Comparisons with various counterparts on ImageNet-1K (IN-1K) and ImageNet-
Robustness (IN-R), where the results of ”FFN”, ”IMLP” and ”SCHEME” are duplicated from the
original works (Xu et al., 2024; Sridhar et al., 2023). We re-implement ”ConvNext”, ”SwiGLU” and
”ConvGLU” by using publicly available source code.

Backbone Method Parameter FLOPs IN-1K IN-R

DeiT-T (Touvron et al., 2021a)

FFN 5.7 M 1.3 G 72.2% 32.6%
ConvNeXt Block (Liu et al., 2022) 5.9 M 1.3 G 73.6% 34.2%
IMLP (Xu et al., 2024) 5.0 M 1.1 G 72.6% 33.5%
SwiGLU (Fang et al., 2023) 5.7 M 1.3 G 72.6% 33.4%
ConvGLU (Shi, 2024) 5.9 M 1.4 G 74.2% 37.5%
AFBO (ours) 6.0 M 1.3 G 74.6% 38.5%

DeiT-S (Touvron et al., 2021a)

FFN 22.0 M 4.6 G 79.8% 41.9%
IMLP (Xu et al., 2024) 18.8 M 3.9 G 80.0% N/A
SwiGLU (Fang et al., 2023) 22.0 M 4.6 G 80.4% 42.5%
ConvGLU (Shi, 2024) 21.6 M 4.5 G 80.6% 44.7%
AFBO (ours) 21.7 M 4.5 G 81.1% 45.3%

Pool-S12 (Yu et al., 2022)

FFN 11.9 M 1.8 G 77.2% 37.7%
IMLP (Xu et al., 2024) 9.8 M 1.5 G 77.2% N/A
SCHEME-12 (Sridhar et al., 2023) 16.7 M 2.6 G 78.5% N/A
SCHEME-44 (Sridhar et al., 2023) 7.2 M 1.0 G 73.0% N/A
ConvGLU (Shi, 2024) 12.0 M 1.9 G 78.1% 41.7%
AFBO (ours) 12.0 M 1.9 G 79.1% 42.5%

Pool-S24 (Yu et al., 2022)

FFN 21.4 M 3.4 G 80.3% 41.4%
IMLP (Xu et al., 2024) 17.2 M 2.7 G 80.7% N/A
SCHEME-12 (Sridhar et al., 2023) 30.8 M 4.9 G 80.5% N/A
ConvGLU (Shi, 2024) 22.0 M 3.5 G 81.1% 43.8%
AFBO (ours) 22.0 M 3.7 G 81.5% 44.5%

Swin-T (Liu et al., 2021)

FFN 28.0 M 4.5 G 81.2% 41.3%
IMLP (Xu et al., 2024) 24.3 M 3.9 G 81.5% N/A
SCHEME-44 (Sridhar et al., 2023) 19.7 M 3.1 G 79.6% N/A
SCHEME-12 (Sridhar et al., 2023) 36.9 M 5.9 G 81.7% N/A
ConvGLU (Shi, 2024) 28.5 M 4.7 G 81.8% 44.8%
AFBO (ours) 27.5 M 4.4 G 82.1% 45.8%

AFBO respectively brings 1.2% and 0.9% gains over Poolformer-S12 and Swin-T on object de-
tection tasks, while achieving 1.2% and 1.4% improvement on instance segmentation, respectively.
Besides, Poolformer-S12 and Swin-T with our AFBO are superior to other compared backbone mod-
els that share similar parameters. These results demonstrate that our AFBO can be well generalized
to various tasks, e.g., object detection and instance segmentation.

4.4 ABLATION STUDIES ON IMAGENET-1K

In this subsection, we conduct ablation studies to assess the effects of core components and various
configurations of our AFBO. All experiments are performed on IN-1K with the backbone of DeiT-T.

Effect of Different Core Components. Our AFBO involves two core components, i.e., spatial
modeling (SM) and channel mapping (CM). To assess their effect, we construct various variants, in-
cluding AFBO with only CM (AFBO-C), AFBO with only SM (AFBO-S), AFBO with CM followed
by SM (AFBO-CS), and AFBO with SM followed by CM (AFBO-SC). The results are presented in
Table 5, where we can see that both SM and CM modules improve DeiT-T. Besides, AFBO-C is su-
perior to AFBO-S with fewer parameters, indicating that CM is more important than SM. AFBO-CS
achieves further gains (0.9%∼1.3%) by combining CM with the subsequent SM, meaning that SM
and CM are complementary. Compared with AFBO-CS, AFBO-SC decreases model complexity,
but achieves inferior accuracy. More analysis on SM and CM can refer to the appendix.

Effect of Various Configurations. Furthermore, we evaluate the effect of microcosmic configura-
tions on our AFBO. Specifically, we analyze how position and type of activation function (σ) impact
final performance. In our AFBO, σ can be placed before or after the dot product operation, indicated
by pre-act and post-act, respectively. For the type of activation function, we compare ReLU (Nair
& Hinton, 2010), GELU and SiLU (Hendrycks & Gimpel, 2016). As listed in Table 6, post-act

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Results of object detection and instance segmentation on MS COCO, where all backbones
are pretrained on ImageNet-1K and 1× learning schedule is used. AP b and APm denote bounding
box AP and mask AP , respectively. TP denotes Throughput, i.e., images per second.

Params. Flops TP AP AP50 AP75 APS APM APL
(M) (G) (HZ) (%) (%) (%) (%) (%) (%)

RetinaNet 1×
ResNet-18 (He et al., 2016) 21.3 173 29.4 31.8 49.6 33.6 16.3 34.3 43.2
PoolFormer-S12 (Yu et al., 2022) 21.7 189 18.5 36.2 56.2 38.2 20.8 39.1 48.0
PoolFormer-S12+AFBO 22.0 189 17.9 37.91.7 57.21.0 40.11.9 21.30.5 41.00.9 50.22.2
PVT-Tiny (Wang et al., 2021) 23.0 201 23.5 36.7 56.9 38.9 22.6 38.8 50.0
PVT-Small (Wang et al., 2021) 34.2 258 16.4 40.4 61.3 43.0 25.0 42.9 55.7
ResNet-50 (He et al., 2016) 37.7 220 26.3 36.3 55.3 38.6 19.3 40.0 48.8
Swin-T (Liu et al., 2021) 38.5 245 20.4 41.5 62.1 44.2 25.1 44.9 55.5
Swin-T+AFBO 38.0 245 19.6 42.10.6 62.60.5 44.90.7 25.40.3 45.50.6 56.40.9

Params. Flops TP AP b AP b
50 AP b

75 APm APm
50 APm

75
(M) (G) (HZ) (%) (%) (%) (%) (%) (%)

Mask R-CNN 1×
ResNet-18 (He et al., 2016) 31.2 198 19.6 34.0 54.0 36.7 31.2 51.0 32.7
PoolFormer-S12 (Yu et al., 2022) 31.6 207 13.0 37.3 59.0 40.1 34.6 55.8 36.9
PoolFormer-S12+AFBO 32.0 207 12.4 38.61.2 60.21.2 42.42.3 35.81.2 56.30.5 38.21.3
PVT-Tiny (Wang et al., 2021) 32.9 225 14.9 36.7 59.2 39.3 35.1 56.7 37.3
Twins-SVT-S 44.0 228 14.4 42.7 65.6 46.7 39.6 62.5 42.6
CMT-S (Guo et al., 2022a) 44.5 249 N/A 44.6 66.8 48.9 40.7 63.9 43.4
PVT-Small (Wang et al., 2021) 44.1 282 12.4 40.4 62.9 43.8 37.8 60.1 40.3
ResNet50 (He et al., 2016) 44.2 246 17.0 38.0 58.6 41.4 34.4 55.1 36.7
Swin-T (Liu et al., 2021) 48.0 267 14.3 43.7 66.6 47.7 39.8 63.3 42.7
Swin-T+AFBO 47.5 267 13.6 44.50.8 67.20.6 48.20.5 41.11.3 63.70.4 42.90.3

Table 5: Effect of core components on AFBO.
Method Description Params. Top-1

Baseline – 5.7 M 72.2%
AFBO-C AFBO with Only 5.7 M 73.7%Channel Mapping
AFBO-S AFBO with Only 6.0 M 73.3%Spatial Modeling
AFBO-CS AFBO with Channel Mapping 6.0 M 74.6%followed by Spatial Modeling
AFBO-SC AFBO with Spatial Modeling 5.8 M 73.4%followed by Channel Mapping

Table 6: Effect of different configurations.
OCCM GCCM σ Top-1 Latency

Pre-act – SiLU 73.5% 13.2 ms
– ReLU 73.7% 12.6 ms

Pre-act

✓ SiLU 74.2% 13.2 ms
✓ SiLU 74.6% 13.2 ms
✓ GeLU 74.6% 13.1 ms

✓ ReLU 73.7% 12.6 ms
✓ ReLU 74.2% 12.7 ms
✓ ✓ SiLU 74.3% 13.1 ms

strategy is clearly inferior to pre-act, whose reason is analyzed in Sec. 3.2.1. The similar philosophy
is also observed in GLU (Shazeer, 2020). Besides, ReLU is inferior to SiLU and GELU in terms
of accuracy while having slightly less model latency. Additionally, the combination of activation
function with OCCM branch outperforms one of GCCM and both of them. It may be caused by the
fact that OCCM has better feature learning ability than GCCM (i.e., SCFBO-OC performs better
than SCFBO-GC in Table 1), and the dot product of two activation functions may hurt feature learn-
ing ability, leading an inferior performance. As a contrast, ReLU is more tolerated for dot product
operation. In this work, SiLU activation with OCCM is used as the default setting.

5 CONCLUSION

This paper made an attempt to solve the paradox of performance and complexity trade-off in improv-
ing FFN of ViTs. To this end, we proposed an Asymmetric Factorized Bilinear Operation (AFBO),
whose core idea is to explore rich statistics of token features to improve feature learning ability of
Transformer in an efficient way. Specifically, our AFBO presents a spatial-channel factorized bi-
linear operation to model second-order statistics for feature learning, while two structured-sparsity
channel mappings are developed to reduce computational complexity while guaranteeing perfor-
mance. Extensive experiments on various tasks by using several ViT models clearly demonstrate our
AFBO has a good ability to achieve performance and complexity trade-offs. In the future, we will
adopt our AFBO to foundation models and other applications (e.g., semantic segmentation (Zhou
et al., 2017) and visual question answering (Antol et al., 2015)).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zit-
nick, and Devi Parikh. Vqa: Visual question answering. In Proceedings of the IEEE international
conference on computer vision, pp. 2425–2433, 2015.

Guiping Cao, Shengda Luo, Wenjian Huang, Xiangyuan Lan, Dongmei Jiang, Yaowei Wang, and
Jianguo Zhang. Strip-mlp: Efficient token interaction for vision mlp. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 1494–1504, 2023.

Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen
Feng, Ziwei Liu, Jiarui Xu, et al. Mmdetection: Open mmlab detection toolbox and benchmark.
arXiv preprint arXiv:1906.07155, 2019.

Shoufa Chen, Enze Xie, Chongjian Ge, Runjian Chen, Ding Liang, and Ping Luo. Cyclemlp: A
mlp-like architecture for dense prediction. arXiv preprint arXiv:2107.10224, 2021.

Zekai Chen, Fangtian Zhong, Qi Luo, Xiao Zhang, and Yanwei Zheng. Edgevit: Efficient visual
modeling for edge computing. In International Conference on Wireless Algorithms, Systems, and
Applications, pp. 393–405. Springer, 2022.

François Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 1251–1258, 2017.

Xiangxiang Chu, Jianlin Su, Bo Zhang, and Chunhua Shen. Visionllama: A unified llama interface
for vision tasks. arXiv preprint arXiv:2403.00522, 2024.

Zihang Dai, Hanxiao Liu, Quoc V Le, and Mingxing Tan. Coatnet: Marrying convolution and
attention for all data sizes. Advances in neural information processing systems, 34:3965–3977,
2021.

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. In International conference on machine learning, pp. 933–941. PMLR,
2017.

Xiaohan Ding, Xiangyu Zhang, Jungong Han, and Guiguang Ding. Scaling up your kernels to
31x31: Revisiting large kernel design in cnns. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 11963–11975, 2022.

Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need: Pure
attention loses rank doubly exponentially with depth. In International Conference on Machine
Learning, pp. 2793–2803. PMLR, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Stéphane d’Ascoli, Hugo Touvron, Matthew L Leavitt, Ari S Morcos, Giulio Biroli, and Levent
Sagun. Convit: Improving vision transformers with soft convolutional inductive biases. In Inter-
national Conference on Machine Learning, pp. 2286–2296. PMLR, 2021.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural networks, 107:3–11, 2018.

Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, and
Wenyu Liu. You only look at one sequence: Rethinking transformer in vision through object
detection. Advances in Neural Information Processing Systems, 34:26183–26197, 2021.

Yuxin Fang, Quan Sun, Xinggang Wang, Tiejun Huang, Xinlong Wang, and Yue Cao. Eva-02: A
visual representation for neon genesis. arXiv preprint arXiv:2303.11331, 2023.

Yang Gao, Oscar Beijbom, Ning Zhang, and Trevor Darrell. Compact bilinear pooling. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pp. 317–326, 2016.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou,
and Matthijs Douze. Levit: a vision transformer in convnet’s clothing for faster inference. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 12259–12269,
2021.

Jianyuan Guo, Kai Han, Han Wu, Yehui Tang, Xinghao Chen, Yunhe Wang, and Chang Xu. Cmt:
Convolutional neural networks meet vision transformers. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 12175–12185, 2022a.

Jianyuan Guo, Yehui Tang, Kai Han, Xinghao Chen, Han Wu, Chao Xu, Chang Xu, and Yunhe
Wang. Hire-mlp: Vision mlp via hierarchical rearrangement. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 826–836, 2022b.

Ali Hatamizadeh, Hongxu Yin, Greg Heinrich, Jan Kautz, and Pavlo Molchanov. Global context vi-
sion transformers. In International Conference on Machine Learning, pp. 12633–12646. PMLR,
2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision, pp. 2961–2969, 2017.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
ruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

Dan Hendrycks and Thomas G Dietterich. Benchmarking neural network robustness to common
corruptions and surface variations. arXiv preprint arXiv:1807.01697, 2018.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer.
The many faces of robustness: A critical analysis of out-of-distribution generalization. ICCV,
2021a.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
examples. CVPR, 2021b.

Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim Salimans. Axial attention in multidi-
mensional transformers. arXiv preprint arXiv:1912.12180, 2019.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7132–7141, 2018.

Zilong Huang, Xinggang Wang, Lichao Huang, Chang Huang, Yunchao Wei, and Wenyu Liu. Ccnet:
Criss-cross attention for semantic segmentation. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 603–612, 2019.

Zilong Huang, Youcheng Ben, Guozhong Luo, Pei Cheng, Gang Yu, and Bin Fu. Shuffle trans-
former: Rethinking spatial shuffle for vision transformer. arXiv preprint arXiv:2106.03650, 2021.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of naacL-HLT, volume 1,
pp. 2. Minneapolis, Minnesota, 2019.

Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr Dollár. Panoptic feature pyramid net-
works. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 6399–6408, 2019.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012.

Kunchang Li, Yali Wang, Junhao Zhang, Peng Gao, Guanglu Song, Yu Liu, Hongsheng Li, and
Yu Qiao. Uniformer: Unifying convolution and self-attention for visual recognition. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2023.

Yanghao Li, Naiyan Wang, Jiaying Liu, and Xiaodi Hou. Factorized bilinear models for image
recognition. In Proceedings of the IEEE International Conference on Computer Vision, pp. 2079–
2087, 2017.

Yawei Li, Kai Zhang, Jiezhang Cao, Radu Timofte, and Luc Van Gool. Localvit: Bringing locality
to vision transformers. arXiv preprint arXiv:2104.05707, 2021.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pp. 740–755. Springer, 2014.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision, pp.
2980–2988, 2017.

Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji. Bilinear cnn models for fine-grained
visual recognition. In Proceedings of the IEEE international conference on computer vision, pp.
1449–1457, 2015.

Yong Lin, Lu Tan, Yifan Hao, Honam Wong, Hanze Dong, Weizhong Zhang, Yujiu Yang, and
Tong Zhang. Spurious feature diversification improves out-of-distribution generalization. arXiv
preprint arXiv:2309.17230, 2023.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11976–11986, 2022.

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić,
Thomas Y Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks. arXiv preprint
arXiv:2404.19756, 2024.

Jiachen Lu, Jinghan Yao, Junge Zhang, Xiatian Zhu, Hang Xu, Weiguo Gao, Chunjing Xu, Tao
Xiang, and Li Zhang. Soft: Softmax-free transformer with linear complexity. Advances in Neural
Information Processing Systems, 34:21297–21309, 2021.

Andriy Mnih and Geoffrey Hinton. Three new graphical models for statistical language modelling.
In Proceedings of the 24th international conference on Machine learning, pp. 641–648, 2007.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

Daniel Neimark, Omri Bar, Maya Zohar, and Dotan Asselmann. Video transformer network. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 3163–3172, 2021.

Morteza Noshad, Yu Zeng, and Alfred O Hero. Scalable mutual information estimation using de-
pendence graphs. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 2962–2966. IEEE, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Alec Radford. Improving language understanding by generative pre-training. 2018.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In International conference on machine learning, pp. 5389–5400. PMLR,
2019.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 618–626,
2017.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Dai Shi. Transnext: Robust foveal visual perception for vision transformers. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17773–17783, 2024.

Deepak Sridhar, Yunsheng Li, and Nuno Vasconcelos. Scheme: Scalable channer mixer for vision
transformers. arXiv preprint arXiv:2312.00412, 2023.

Aravind Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon Shlens, Pieter Abbeel, and Ashish Vaswani.
Bottleneck transformers for visual recognition. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 16519–16529, 2021.

Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia Schmid. Segmenter: Transformer for
semantic segmentation. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 7262–7272, 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning, pp. 10347–10357. PMLR, 2021a.

Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Going
deeper with image transformers. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 32–42, 2021b.

Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam,
Pietro Perona, and Serge Belongie. The inaturalist species classification and detection dataset. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8769–8778,
2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Ashish Vaswani, Prajit Ramachandran, Aravind Srinivas, Niki Parmar, Blake Hechtman, and
Jonathon Shlens. Scaling local self-attention for parameter efficient visual backbones. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12894–
12904, 2021.

Alex Wang. Glue: A multi-task benchmark and analysis platform for natural language understand-
ing. arXiv preprint arXiv:1804.07461, 2018.

Qilong Wang, Banggu Wu, Pengfei Zhu, Peihua Li, Wangmeng Zuo, and Qinghua Hu. Eca-net: Ef-
ficient channel attention for deep convolutional neural networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 11534–11542, 2020a.

Qilong Wang, Jiangtao Xie, Wangmeng Zuo, Lei Zhang, and Peihua Li. Deep cnns meet global co-
variance pooling: Better representation and generalization. IEEE transactions on pattern analysis
and machine intelligence, 43(8):2582–2597, 2020b.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without
convolutions. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
568–578, 2021.

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
and Ling Shao. Pvt v2: Improved baselines with pyramid vision transformer. Computational
Visual Media, 8(3):415–424, 2022.

Yan Wang, Lingxi Xie, Chenxi Liu, Siyuan Qiao, Ya Zhang, Wenjun Zhang, Qi Tian, and Alan
Yuille. Sort: Second-order response transform for visual recognition. In Proceedings of the IEEE
International Conference on Computer Vision, pp. 1359–1368, 2017.

Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Convolutional block
attention module. In Proceedings of the European conference on computer vision (ECCV), pp.
3–19, 2018.

Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, and
Saining Xie. Convnext v2: Co-designing and scaling convnets with masked autoencoders. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16133–
16142, 2023.

Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt:
Introducing convolutions to vision transformers. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 22–31, 2021.

Yixing Xu, Chao Li, Dong Li, Xiao Sheng, Fan Jiang, Lu Tian, and Ashish Sirasao. Improving MLP
module in vision transformer. In Submitted to The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=I8pdQLfR77.

Chenglin Yang, Yilin Wang, Jianming Zhang, He Zhang, Zijun Wei, Zhe Lin, and Alan Yuille. Lite
vision transformer with enhanced self-attention. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 11998–12008, 2022.

Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi Feng, and
Shuicheng Yan. Metaformer is actually what you need for vision. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 10819–10829, 2022.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene
parsing through ade20k dataset. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 633–641, 2017.

Daquan Zhou, Zhiding Yu, Enze Xie, Chaowei Xiao, Animashree Anandkumar, Jiashi Feng, and
Jose M Alvarez. Understanding the robustness in vision transformers. In International Conference
on Machine Learning, pp. 27378–27394. PMLR, 2022.

A APPENDIX

Table 7: Results of AFBO with different groups numbers G1 and G2. ↑ indicates higher is better,
and ↓ indicates lower is better.

G1 G2 Param Flops Latency IN-1K IN-A IN-R IN-SK IN-C
(M) (G) (ms) (%) (↑%) (↑%) (↑%) (↓%)

2 6 6.2 1.4 13.7 74.8 8.3 38.8 23.6 66.0
2 4 6.0 1.3 13.2 74.6 8.3 38.5 23.1 66.2
2 3 5.8 1.3 13.1 74.2 8.1 36.7 22.7 67.1
2 2 5.6 1.3 12.9 73.0 7.6 34.6 21.0 70.4
4 4 5.7 1.3 12.8 73.5 8.1 36.9 21.4 68.9

15

https://openreview.net/forum?id=I8pdQLfR77

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 8: Comparison of different SM.
Backbone Method Params. Top-1

DeiT-T

Max-pooling 5.7 M 66.4%
Avg-pooling 5.7 M 50.0%

Spatial Attention 5.8 M 71.0%
DW Conv. 6.0 M 74.6%

Table 9: Effect of kernel size on SM.
Kernel Size Params. Top-1

– 5.7 M 73.7%
3 6.0 M 74.6%
5 6.2 M 74.7%
7 6.5 M 74.9%

A.1 EFFECT OF GROUP NUMBERS OF GCCM AND OCCM

In this subsection, we assess the effect of group numbers G1 and G2 by conducting experiments
with a backbone of DeiT-T (Touvron et al., 2021a) on five datasets, including IN-1K, IN-A, IN-R,
IN-SK, and IN-C. The results are given in Table 7, where we can see that larger numbers of G2 bring
higher accuracies and more computational costs. In contrast, larger numbers of G1 decrease both
accuracies and computational cost. Particularly, performances of varying group numbers G1 and G2
are consistent across four benchmarks. To balance efficiency and effectiveness, we respectively set
G1 = 2 and G2 = 3 of GCCM and OCCM for LVT (Yang et al., 2022), Swin (Liu et al., 2021) and
MLP-Mixers (Chen et al., 2021; Guo et al., 2022b) as the default settings. For the other remaining
models, we set G1 = 2 and G2 = 4 for GCCM and OCCM, respectively.

Table 10: Comparison of DW convolution (Conv) with original convolution as spatial modeling of
AFBO in terms of model complexity, where DeiT-T and Swin-T are used as backbones.

Backbone Method Params. (M) Flops (G) Latency (ms)

DeiT-T DW Conv (3×3) 6.0 1.3 13.2
DeiT-T Conv (3×3) 13.3 1.7 18.6
Swin-T DW Conv (3×3) 27.5 4.4 15.5
Swin-T Conv (3×3) 64.8 4.6 28.3

A.2 EFFECT OF DIFFERENT SPATIAL MODELING STRATEGIES

The spatial modeling (SM) of our AFBO can be achieved by various strategies, including parameter-
free operations (i.e., spatial max-pooling and avg-pooling), spatial attention and DW convolution.
To investigate the effect of different spatial modeling strategies on our AFBO, we compare them
on ImageNet-1K using the DeiT-T backbone. As shown in Table 8, parameter-free operations,
despite their computational efficiency, result in poor performance. We implement spatial attention as
suggested in (Woo et al., 2018), which has fewer parameters than DW convolution but also achieves
inferior performance. Therefore, we use DW convolution as the default spatial modeling strategy of
our AFBO.

Furthermore, we explore the effect of different convolution kernel sizes on DW convolution. In
Table 9, we compare results of DW convolution with different kernel sizes. We observe that larger
kernel sizes lead to greater performance gains, but also increase the computational cost. Besides,
a better balance between performance and efficiency is achieved when the kernel size is set to 3.
Therefore, we set the kernel size of 3 as default setting of DW convolution in our AFBO.

Additionally, we compare DW convolution with original convolution for spatial modeling. As shown
in Table 10, when DW convolution is replaced by the original convolution with a kernel size of 3x3,
parameters increase more than 1x times for DeiT-T (Touvron et al., 2021a) and Swin-T (Liu et al.,
2021) models. Meanwhile, model latency (inference time per image) increases by about 50%∼85%.
Therefore, DW convolution can significantly reduce the computational cost and guarantee the effi-
ciency of the whole model, compared with the original convolution.

A.3 COMPARISON WITH BLOCK-WISE CHANNEL MAPPING

In this subsection, we provide more comparisons of our proposed channel mapping strategies with
block-wise channel mapping (i.e., Group Convolution) by varying group number G and expansion

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 11: Comparison of AFBO with GLU by using expansion ratio of hidden dimension M = 4
on IN-1K and IN-R.

Backbone Method Parameter FLOPs IN-1K Acc. IN-R Acc. Inference

Pool-S12 (Yu et al., 2022) GLU (M = 4) 16.6 M 2.1 G 78.5 % 37.9% 13.3 ms
AFBO (ours) 12.0 M 1.9 G 79.1 % 42.5% 11.2 ms

Pool-S24 (Yu et al., 2022) GLU (M = 4) 30.9 M 4.0 G 80.5 % 41.5 % 19.7ms
AFBO (ours) 22.0 M 3.7 G 81.5 % 44.5% 16.4 ms

Swin-T (Liu et al., 2021) GLU (M = 4) 36.9 M 4.6 G 81.3 % 44.0 % 19.8 ms
AFBO (ours) 27.5 M 4.4 G 82.1 % 45.8 % 15.5 ms

Table 12: Comparison of different backbones on
GLUE benchmarks.
Backbone CoLA RTE MNLI QNLI

GPT 54.3 63.2 82.1 86.4
GPT+AFBO 56.8 65.3 82.7 86.9
BERT-base 54.8 67.2 83.5 90.1
BERT+AFBO 57.0 68.3 84.8 90.5
BERT-large 60.6 73.7 85.9 91.8
BERT-large+AFBO 61.2 74.8 86.5 92.2

Table 13: Comparisons of AFBO with block-
wise channel mapping using DeiT-T and DeiT-S
on IN-1K.
Backbone Method G M Params. Acc.

DeiT-T

Baseline – 4 5.7 M 72.2%
Group Convolution-A 2 4 5.7 M 70.8%
Group Convolution-B 4 4 5.0 M 69.8%
Group Convolution-C 4 6 6.1 M 71.7%
AFBO with only CM – 4 5.7 M 73.7%

DeiT-S

Baseline – 4 22.0 M 79.8%
Group Convolution-A 2 4 22.0 M 79.7%
Group Convolution-C 4 6 23.7 M 80.0%
AFBO with only CM – 4 21.7 M 80.8%

ratio of hidden dimension M . For comparison, we use our AFBO with only CM by excluding the
SM modules, and conduct experiments on ImageNet-1K dataset by employing DeiT-T and DeiT-
S (Touvron et al., 2021a) as the basic backbones. As shown in Table 13, block-wise channel map-
ping is clearly inferior to our AFBO with only CM for similar model sizes. While increasing the
hidden dimension can result in further performance improvements (along with an increase in pa-
rameters), block-wise channel mapping (Group Convolution) still lags behind our AFBO with only
CM by about 1%∼2%. These results clearly demonstrate that interaction between channel groups is
crucial for effective channel mapping, and our AFBO module can efficiently facilitate information
interaction among different groups.

A.4 COMPARISON OF GLU WITH LARGE EXPANSION RATIO OF HIDDEN DIMENSION

Since hidden dimension of FFN heavily affects performance of ViTs, we compare it with GLU
by using an expansion ratio of M = 4 to further evaluate the effectiveness of our AFBO. Specif-
ically, experiments are conducted on ImageNet-1K (IN-1K) with backbones of Poolformer-S12,
Poolformer-S24, and Swin-T. As shown in Table 11, for an expansion ratio of M = 4, GLU suffers
from much higher computational cost, while performance still lags behind our AFBO in terms of
both generalization and robustness on IN-1K and IN-R. These results clearly show that our AFBO
can achieve better performance and complexity trade-off for ViTs.

Table 14: Comparison of our AFBO and FULL channel mapping on IN-1K.
Backbone Method Params (M) Flops (G) Latency (ms) Accuracy (%)

DeiT-T FULL 7.7 1.6 13.8 74.7
DeiT-T AFBO 6.0 1.3 13.2 74.6
Swin-T FULL 36.9 4.6 19.8 81.3
Swin-T AFBO 27.5 4.4 15.5 82.1

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.5 COMPARISON WITH FULL CHANNEL MAPPING

We implement Eq. 4 as the FULL channel mapping method, and conduct additional experiments
with the backbones of DeiT-T (Touvron et al., 2021a) and Swin-T (Liu et al., 2021) on IN-1K dataset.
The results are listed in Table 14. For DeiT-T, the FULL implementation achieves slightly higher
accuracy (74.7 % vs. 74.6 %) over our AFBO method at much higher cost of parameters (7.7 M vs.
6.0 M) and FLOPs (1.6 G vs. 1.3 G), and model latency (13.8 ms vs. 13.2 ms). In the case of Swin-
T, our AFBO outperforms the FULL implementation by 0.8% in terms of accuracy while having
much fewer parameters (27.5 M vs. 36.9 M) and model latency. Therefore, FULL implementation
is limited to bring further accuracy improvement, but introduces much more computational cost.

Table 15: Comparison of KAN and AFBO with DeiT backbones on IN-1K and IN-R.
Backbone Method Accuracy on IN-1K Accuracy on IN-R

DeiT-T KAN 73.1% 33.7%
DeiT-T AFBO 74.6% (1.5 %) 38.5% (4.8 %)
DeiT-S KAN 79.7% 41.7%
DeiT-S AFBO 81.1% (1.4 %) 45.3% (3.6 %)
DeiT-B KAN 81.5% 44.6%
DeiT-B AFBO 82.5% (1.0 %) 47.4% (2.8 %)

Table 16: Comparison of AFBO and the original FFN in terms of performance and CPU inference
speed, where EdgeViT-xxs is used as backbone.

Method Params (M) FLOPs (G) CPU (ms) IN-1K Acc. (%)

EdgeViT-xxs 4.1 1.3 42.2 74.4
EdgeViT-xxs + AFBO 4.2 1.3 47.1 76.5

A.6 COMPARISON OF VIT WITH CHEBYSHEV KOLMOGOROV–ARNOLD NETWORKS (KAN)

In this section, we compare with ViT modified by KAN (Liu et al., 2024), whose implementation
and results are publicly available at the website1. As shown in Table 15, our AFBO demonstrates
superior performance across different DeiT (Touvron et al., 2021a) variants. Particularly, our AFBO
is superior to KAN by 1.5%, 1.4%, and 1.0% on IN-1K with backbones of DeiT-T, DeiT-S, and
DeiT-B, respectively. In terms of model robustness on OOD, AFBO also demonstrates superior
performance on IN-R across different DeiT variants. Specifically, AFBO outperforms KAN by
4.8%, 3.6%, and 2.8% on IN-R with the backbones of DeiT-T, DeiT-S, and DeiT-B, respectively.
These results verify the effectiveness of AFBO.

A.7 COMPARISON OF FOR MOBILE MODEL

In this section, we conduct experiments by using EdgeViT (Chen et al., 2022) (i.e., a well-known
lightweight model designed for mobile devices) and comparing it on an Intel(R) Xeon(R) Gold
5218 CPU @ 2.30GHz. As shown in Table 16, AFBO has comparable parameters and FLOPs while
bringing 4.9 ms (about 10%) extra model latency. Particularly, our AFBO achieves a substantial
accuracy improvement of 2.1%. Therefore, we believe that our AFBO has the potential to improve
mobile models.

A.8 GENERALIZATION ON NLP TASKS

We conduct experiments by applying AFBO to NLP tasks, where our AFBO is adopted to three
widely used NLP models, including GPT (Radford, 2018), BERT-base (Kenton & Toutanova, 2019),
and BERT-large (Kenton & Toutanova, 2019). All models are evaluated on four GLUE (Wang, 2018)
benchmark tasks, i.e., CoLA, RTE, MNLI, and QNLI. As shown in Table 12, our AFBO brings

1https://github.com/snoop2head/KAN-ViT/blob/main/README.md

18

https://github.com/snoop2head/KAN-ViT/blob/main/README.md

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

consistent improvement over three original models across all tasks. Particularly, AFBO enhances
the performance of GPT, BERT-base, and BERT-large with notable gains in CoLA and MNLI tasks.
The results above clearly suggest that AFBO can be generalized well to the NLP domain.

Table 17: Comparisons with different models on INAT2019.
Method Parameter Top-1 Acc.

Swin-T (Liu et al., 2021) 28.0 M 71.0%
+AFBO 27.5 M 72.7%
Pyramid-VisionLLaMA-S (Chu et al., 2024) 22.0 M 68.4%
+AFBO 22.1 M 69.2%
Pyramid-VisionLLaMA-L (Chu et al., 2024) 99.0 M 74.5%
+AFBO 99.5 M 75.1%

A.9 CLASSIFICATION ON INATURALIST 2019

To further demonstrate the generalization ability of our AFBO, we transfer the pre-trained models
to a long-tailed large-species classification task by using iNat2019 (Van Horn et al., 2018). Specif-
ically, we fine-tune the pre-trained backbones of Swin Transformer (Liu et al., 2021) and VisionL-
LaMA (Chu et al., 2024) with our AFBO on iNat2019. As listed in Table 17, our AFBO consistently
enhances the performance of these models. Specifically, AFBO improves the performance of Swin-
T by 1.7% while reducing model size. Besides, AFBO achieves performance gains of 0.8% and
0.6% over the recently proposed Pyramid-VisionLLaMA-S and Pyramid-VisionLLaMA-L, respec-
tively. These results clearly demonstrate the generalization ability of our AFBO on the challenging
long-tailed large-species classification task.

A.10 QUALITATIVE ANALYSIS OF AFBO

For qualitative analysis of our AFBO, we visualize the attention maps in the 12th block generated by
the original Swin-T model and Swin-T with AFBO by using Grad-CAM (Selvaraju et al., 2017). The
visualization results are shown in Fig 3 and Fig 4. From them we can see that our AFBO focuses
on more discriminative and informative regions, and thus realizes high-accuracy classification on
IN-1K. Furthermore, we compute the entropy for the features in the 12th block generated by the
original Swin-T model and Swin-T+AFBO. As shown in Table 18, the feature entropy of Swin-T
with AFBO is larger than the original Swin-T, which indicates that the features of Swin-T+AFBO
are denser than ones of Swin-T, which is consistent with the visualization results. Therefore, features
of Swin-T with AFBO involve more redundant information, which has proven very important for
model robustness (Lin et al., 2023). It accounts for the clear improvement brought by our AFBO on
OOD benchmarks.

Table 18: Comparison of AFBO and the original FFN in terms of performance and feature entropy,
where Swin-T is used as backbone.

Model Params. Flops IN-1K Feature Entropy IN-A IN-R IN-SK IN-C
(M) (G) (%) (↑%) (↑%) (↑%) (↓%)

Swin-T 28.0 4.6 81.2 2.7 21.7 41.3 29.0 62.0
Swin-T+AFBO 27.5 4.4 82.1 4.7 26.0 45.8 31.7 56.4

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

GroundTruth Swin Swin+AFBO

goblet

beer glass

oil filter

titi monkey

steam locomotive

cocktail shaker

Figure 3: Visualization of attention maps in the 12th block generated by the original Swin-T model
and Swin-T with AFBO by using Grad-CAM (Selvaraju et al., 2017).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

GroundTruth Swin Swin+AFBO

Mountain lion

padlock

harvester

Japanese spaniel

Pencil box

printer

Figure 4: Visualization of attention maps in the 12th block generated by the original Swin-T model
and Swin-T with AFBO by using Grad-CAM (Selvaraju et al., 2017).

21

	Introduction
	Related Work
	Proposed Method
	Revisiting FFN for ViT
	Asymmetric Factorized Bilinear Operation (AFBO) for ViT
	Spatial-Channel Factorized Bilinear Operation
	Structured-sparsity Channel Mapping

	AFBO Variants

	Experiments
	Implementation Details
	Image Classification on ImageNet-1K
	Comparison with SOTA
	Comparison with Counterparts

	Object Detection and Instance Segmentation on COCO
	Ablation Studies on ImageNet-1K

	Conclusion
	Appendix
	Effect of group numbers of GCCM and OCCM
	Effect of Different Spatial Modeling Strategies
	Comparison with Block-wise Channel Mapping
	Comparison of GLU with large expansion ratio of hidden dimension
	Comparison with FULL channel mapping
	Comparison of ViT with Chebyshev Kolmogorov–Arnold Networks (KAN)
	Comparison of for Mobile Model
	Generalization on NLP tasks
	Classification on iNaturalist 2019
	Qualitative Analysis of AFBO

