
Published as a conference paper at ICLR 2025

ASYMMETRIC FACTORIZED BILINEAR OPERATION
FOR VISION TRANSFORMER

Junjie Wu1 Qilong Wang1,∗ Jiangtao Xie2 Pengfei Zhu1 Qinghua Hu1

1Tianjin University 2Dalian University of Technology
{wjj , qlwang, zhupengfei, huqinghua}@tju.edu.cn, jiangtaoxie@mail.dlut.edu.cn

ABSTRACT

As a core component of Transformer-like deep architectures, a feed-forward net-
work (FFN) for channel mixing is responsible for learning features of each token.
Recent works show channel mixing can be enhanced by increasing computational
burden or can be slimmed at the sacrifice of performance. Although some efforts
have been made, existing works are still struggling to solve the paradox of perfor-
mance and complexity trade-offs. In this paper, we propose an Asymmetric Fac-
torized Bilinear Operation (AFBO) to replace FFN of vision transformer (ViT),
which attempts to efficiently explore rich statistics of token features for achieving
better performance and complexity trade-off. Specifically, our AFBO computes
second-order statistics via a spatial-channel factorized bilinear operation for fea-
ture learning, which replaces a simple linear projection in FFN and enhances the
feature learning ability of ViT by modeling second-order correlation among to-
ken features. Furthermore, our AFBO presents two structured-sparsity channel
mapping strategies, namely Grouped Cross Channel Mapping (GCCM) and Over-
lapped Cycle Channel Mapping (OCCM). They decompose bilinear operation into
grouped channel features by considering information interaction between groups,
significantly reducing computational complexity while guaranteeing model per-
formance. Finally, our AFBO is built with GCCM and OCCM in an asymmetric
way, aiming to achieve a better trade-off. Note that our AFBO is model-agnostic,
which can be flexibly integrated with existing ViTs. Experiments are conducted
with twenty ViTs on various tasks, and the results show our AFBO is superior
to its counterparts while improving existing ViTs in terms of generalization and
robustness.

1 INTRODUCTION

In recent years, transformer-like architectures have attracted a mass of research interests and
achieved remarkable performance in various computer vision tasks (Dosovitskiy et al., 2021; Fang
et al., 2021; Strudel et al., 2021; Neimark et al., 2021). As one of core components, a feed-forward
network (FFN) with two fully-connected layers is generally used as channel mixer to learn token
features, which is proven to significantly influence performance of vision transformer (ViT) (Dong
et al., 2021; Yu et al., 2022). Intuitively, a two-layer FFN is a concise yet naive learning scheme
that fails to fully consider the rich information lying in token features, which generally achieves
sub-optimal solutions in terms of both efficiency and effectiveness (Fang et al., 2024; Xu et al.,
2024; Sridhar et al., 2023). However, existing works pay less attention to improving FFN module
of ViT compared to the modifications on self-attention mechanism (i.e., another core component of
ViT) (Huang et al., 2021; Liu et al., 2021; Kitaev et al., 2020; Graham et al., 2021; Srinivas et al.,
2021; Touvron et al., 2021b).

Recently, some works have made attempts to improve channel mixing module of transformer-like ar-
chitectures (Fang et al., 2024; Xu et al., 2024; Sridhar et al., 2023; Li et al., 2021). As a pioneer work,
Shazeer (Shazeer, 2020) introduces to exploit Gated Linear Units (GLU) (Dauphin et al., 2017) to
improve FFN of transformer in natural language processing tasks. Subsequently, EVA-02 (Fang
et al., 2024) extends GLU to ViT by employing a SiLU activation (Hendrycks & Gimpel, 2016).

∗Corresponding author.

1

Published as a conference paper at ICLR 2025

Linear

Activation

Linear Linear

(b)(a)

Split

}

(d) GCCM: Grouped Cross Channel Mapping

Z

(c) OCCM: Overlapped Cycle Channel Mapping

Cycle shift

Linear

Linear

Linear

Linear

Multi-Head
Attention

Add & Norm

Input
Embedding

Feed Forward

Add & Norm

Input

OCCM

SM

GCCM

SM

X Z

X

} Linear

Linear

𝒙 ∈ 𝑹𝒅 𝒙 ∈ 𝑹𝒅

𝒁 ∈ 𝑹𝑴𝒅

𝒀 ∈ 𝑹𝒅 𝒀 ∈ 𝑹𝒅

Activation

𝒁𝟏 ∈ 𝑹
𝑴𝒅 𝒁𝟐 ∈ 𝑹

𝑴𝒅

Figure 1: Comparison of (a) original FFN with (b) our proposed Asymmetric Factorized Bilinear
Operation (AFBO) for ViT. Specifically, our AFBO computes second-order statistics via a spatial-
channel factorized bilinear operation (SCFBO) for feature abstraction instead of the first linear pro-
jection in FFN. Particularly, our SCFBO first approximates second-order statistics via a rank-1 de-
composition, and further decomposes mapping operations into Spatial Modeling (SM) and Channel
Mapping (CM). For better performance and complexity trade-off, our AFBO is constructed by two
structured-sparsity channel mapping strategies (i.e., (c) Grouped Cross Channel Mapping and (d)
Overlapped Cycle Channel Mapping) in an asymmetric manner. The details refer to Sec. 3.2.

To guarantee computational efficiency, existing GLU variants (Shazeer, 2020; Fang et al., 2024)
generally require to reduce the hidden dimension of FFN, which potentially limits performance of
ViT (Noshad et al., 2019; Sridhar et al., 2023). Besides, some researchers propose to use some extra
modules inheriting from convolutional neural networks (CNNs) to enhance FFN of ViT (Li et al.,
2021; Guo et al., 2022a; Zhou et al., 2022; Cao et al., 2023), such as depth-wise (DW) convolution,
channel attention (Hu et al., 2020; Wang et al., 2020; Zhou et al., 2022), inverted residual FFN (San-
dler et al., 2018) and GRN (Liu et al., 2022; Woo et al., 2023). Although these extra modules can
improve performance of ViT, they undoubtedly increase computational cost, especially for large
models. In contrast, some recent works (Xu et al., 2024; Sridhar et al., 2023) focus on slimming
FFN to reduce computational cost of transformer-like architectures by carefully decreasing hidden
dimension to reduce computational cost or employing a block diagonal linear projection regularized
by a channel covariance attention. Despite the aforementioned slimming methods can reduce com-
putational cost of FFN, they are limited to improve performance of ViT. Therefore, existing FFN
variants of ViT still struggle to solve the paradox of performance and complexity trade-off.

To address the above issue, we propose a novel Asymmetric Factorized Bilinear Operation (AFBO)
to efficiently explore and exploit rich information of token features, which replaces FFN of Trans-
former for achieving better performance and complexity trade-off. Specifically, motivated by the
success of second-order modeling in improving deep CNNs (Lin et al., 2015; Gao et al., 2016; Li
et al., 2017; Wang et al., 2017; 2021a), our AFBO presents a Spatial-Channel Factorized Bilinear
Operation (SCFBO) to efficiently compute second-order statistics of token features, which replaces
the first linear projection in the FFN for feature learning. Particularly, our SCFBO first approximates
second-order statistics via a rank-1 decomposition (Gao et al., 2016; Li et al., 2017; Mnih & Hinton,
2007), which is further decomposed into spatial modeling and channel mapping. For spatial mod-
eling, we capture spatial correlation in local neighborhoods using various methods, including local
pooling, DW convolution, and spatial attention. For channel mapping, two point-wise convolutions
followed by a dot product are used to model the channel correlation of each token feature. As such,
our AFBO enhances the feature learning ability of Transformer by modeling second-order correla-
tion among token features. Since channel mapping usually leads to high computational complexity
especially with large hidden dimension, our AFBO presents two structured-sparsity channel map-
ping strategies, namely Grouped Cross Channel Mapping (GCCM) and Overlapped Cycle Channel
Mapping (OCCM), which divide channel features into several groups and perform bilinear operation
by considering information interaction between groups. Based on the proposed structured-sparsity
channel mappings, we can construct several AFBO variants that significantly reduce parameters and
FLOPs while maintaining high performance. Particularly, OCCM and GCCM are helpful for im-
proving performance and reducing complexity, and our AFBO asymmetrically built with GCCM
and OCCM can achieve better performance and complexity trade-off. Note that our model-agnostic

2

Published as a conference paper at ICLR 2025

AFBO can be flexibly integrated with existing Transformer-like architectures, achieving better per-
formance at low cost of complexity. The comparison of original FFN with our AFBO is illustrated in
Fig. 1. To evaluate our AFBO, experiments are conducted on various vision tasks (i.e., image clas-
sification on ImageNet-1K (Krizhevsky et al., 2017) and its out-of-distribution variants (Hendrycks
et al., 2021b; Hendrycks & Dietterich, 2019; Hendrycks et al., 2021a; Recht et al., 2019), object
detection and instance segmentation on MS COCO (Lin et al., 2014)) with twenty ViT models (e.g.,
DeiT (Touvron et al., 2021a), Swin Transformer (Liu et al., 2021) and PoolFormer (Yu et al., 2022)).
The contributions of this work can be summarized as follows:

(1) This paper proposes a novel Asymmetric Factorized Bilinear Operation (AFBO) as an effective
alternative of FFN for ViTs. Particularly, our AFBO efficiently explores rich statistics of token
features and shows great potential to achieve better performance and complexity trade-off for ViTs.

(2) To this end, our AFBO presents a spatial-channel factorized bilinear operation to efficiently
model second-order statistics of token features and introduces two structured-sparsity channel map-
pings to reduce model complexity (i.e., parameters and FLOPs) while guaranteeing performance.

(3) Our AFBO is model-agnostic and can be flexibly integrated with existing Transformer-like archi-
tectures. Extensive experiments on various tasks by using different ViTs show our AFBO is superior
to its counterparts, while improving existing ViTs in terms of generalization and robustness.

2 RELATED WORK

Building upon the remarkable success of transformer architecture in natural language process-
ing (Vaswani et al., 2017), Vision Transformer (ViT) (Dosovitskiy et al., 2021) is initially intro-
duced to extend transformer models to vision tasks (Krizhevsky et al., 2017; Fang et al., 2021;
Strudel et al., 2021; Neimark et al., 2021). Subsequently, a lot of ViT variants (Wang et al., 2022;
Liu et al., 2021; Vaswani et al., 2021; Ding et al., 2022; Huang et al., 2023; Ho et al., 2019; Lu
et al., 2021) have been studied to improve ViT, especially for its self-attention mechanism. Most
of these methods aim to reduce computational complexity of self-attention since its complexity is
quadratic to token numbers. Among them, some works (Liu et al., 2021; Ding et al., 2022) focus
on developing a local self-attention mechanism and its shifted/haloed version to add the interaction
across different local windows. Besides, SOFT (Lu et al., 2021) replaces the dot-product similarity
by proposing a softmax-free transformer with linear space and time complexity. Additionally, in-
corporation of self-attention with convolution as a hybrid backbone has been studied for enhancing
locality of ViTs (Guo et al., 2022a; Wu et al., 2021; Dai et al., 2021; d’Ascoli et al., 2021; Li et al.,
2023). There also exist some works (Yu et al., 2022) to challenge necessity of self-attention, and
they propose some substituting operations (e.g., pooling and identity mapping) for attention while
achieving comparable performance. Distinguished from the aforementioned works, our AFBO fo-
cuses on improving FFN module of ViT for achieving better efficiency and effectiveness trade-off.

Some recent works (Fang et al., 2024; Xu et al., 2024; Sridhar et al., 2023; Li et al., 2021) have
been studied to improve channel mixing module (i.e., FFN) of ViT. For example, EVA-02 (Fang
et al., 2024) extends GLU (Shazeer, 2020) to ViT. It employs a two-branch structure to replace
FFN, which ensures computational efficiency by reducing the hidden dimension. Besides, some
works (Xu et al., 2024; Sridhar et al., 2023) focus on reducing the computational complexity of FFN
by developing some slimming schemes. Additionally, some studies (Li et al., 2021; Cao et al., 2023;
Guo et al., 2022a) enhance the performance of FFN by introducing extra modules (e.g., channel
attention (Hu et al., 2020; Wang et al., 2020) or DW convolution). TransNext (Shi, 2024) enhances
FFN by combining SwiGLU (Shazeer, 2020; Fang et al., 2024) with DW convolution. Unlike these
methods, our AFBO attempts to explore rich statistics of token features to improve FFN module of
ViT, which achieves better performance and complexity trade-off than existing counterparts (refer
to comparisons in Table 3).

3 PROPOSED METHOD

In this section, we first briefly revisit the original FFN for ViT, and describe details of our Asym-
metric Factorized Bilinear Operation (AFBO). Finally, three AFBO variants are introduced and we
compare them in terms of performance and complexity for model selection.

3

Published as a conference paper at ICLR 2025

3.1 REVISITING FFN FOR VIT

As shown in Fig. 1 (a), the original FFN involved of two fully-connected (linear) layers with an
activation function is used to perform channel mixing in transformer block. Let X ∈ Rd×N be
d-dimensional features of N tokens, the output of FFN (i.e., Y ∈ Rd×N) can be written as

Y = ⊗{W2,b2}
1×1

(
σ(Z)

)
, Z = ⊗{W1,b1}

1×1

(
X
)
, (1)

where ⊗1×1 indicates point-wise convolution with kernel size of 1×1. {W1 ∈ Rd×Md,b1 ∈ RMd}
and {W2 ∈ RMd×d,b2 ∈ Rd} respectively are weight parameters of two point-wise convolutions
(w.r.t fully-connected layers), and M is the expansion ratio of hidden dimension. Z ∈ RMd×N

means the intermediate features, and σ(·) is the activation function (e.g., GeLU (Hendrycks & Gim-
pel, 2016)). From Eq. (1), one can see that FFN performs feature learning through two linear pro-
jections, which do not fully consider the rich information lying in token features. A naive scheme
to enhance performance of ViTs is to increase the hidden dimension of FFN, but it also brings more
computational cost. By considering feature learning ability heavily influences performance, reason-
able exploration of information lying in token features is a potential solution to improve ViT.

3.2 ASYMMETRIC FACTORIZED BILINEAR OPERATION (AFBO) FOR VIT

3.2.1 SPATIAL-CHANNEL FACTORIZED BILINEAR OPERATION

Previous works (Lin et al., 2015; Wang et al., 2021a) show that the appropriate (global) modeling
of second-order statistics lying in features can effectively improve deep CNNs. Inspired by these
works, we incorporate idea of second-order modeling into FFN of ViT by modifying Eq. (1) as

Y = WT
2 σ(Z) + b2, Z = W̃T

1 (X
TX) + b1, (2)

where XTX indicates the outer product of features X, capturing second-order statistics of X. T
indicates the transposition operation. However, such strategy in Eq. (2) suffers from two issues: (1)
XTX generates a global representation, neglecting local information of each token; (2) representa-
tion size of XTX is d× d, leading to a heavy computational burden, i.e., W̃1 ∈ Rd2×Md.

To address above issues, our AFBO approximates computation of second-order statistics via a rank-
1 decomposition, as suggested in (Gao et al., 2016; Li et al., 2017; Mnih & Hinton, 2007). As such,
our AFBO replaces the first linear projection in FFN by a bilinear operation:

Y = ⊗{W3,b3}
1×1

(
σ(Ẑ)

)
, Ẑ = [⊗̂{Ŵ1,b̂1}

K×K

(
X
)
]⊙ [⊗̂{Ŵ2,b̂2}

K×K

(
X
)
], (3)

where {Ŵ1 ∈ Rd×Md×K×K , b̂1 ∈ RMd} and {Ŵ2 ∈ Rd×Md×K×K , b̂2 ∈ RMd} are weight
parameters of two convolutions, respectively. And ⊗̂K×K indicates convolution operation with
kernel size of K ×K. {W3 ∈ RMd×d,b3 ∈ Rd} are weight parameters of point-wise convolution
of ⊗1×1, and ⊙ indicates the dot product.

For computational efficiency, we further present a spatial-channel factorized bilinear operation
(SCFBO), which decomposes ⊗̂K×K into a spatial modeling operation ⊗̃K×K and a channel map-
ping (i.e., point-wise convolution ⊗1×1). According to Eq. (3), our SCFBO is formulated as

Y = ⊗{W3,b3}
1×1

(
σ(Ẑ)

)
,

Ẑ =
[
⊗̃{W̃s

1,b̃
s
1}

K×K ⊗{Wc
1,b

c
1}

1×1

(
X
)]

⊙
[
⊗̃{W̃s

2,b̃
s
2}

K×K ⊗{Wc
2,b

c
2}

1×1

(
X
)]
, (4)

where {Wc
· ∈ Rd×Md,bc

· ∈ RMd} and {W̃s
· ∈ RK×K , b̃s· ∈ R} are parameters of ⊗1×1 and

⊗̃K×K , respectively. Particularly, spatial modeling ⊗̃K×K can be achieved by a DW convolution,
local pooling or spatial attention (Woo et al., 2018) with kernel size of K ×K. As such, our AFBO
with SCFBO (4) in Fig. 1 (b) has a two-branch structure with spatial modeling and channel mapping.

As for Eq. (4), bilinear representation Ẑ is followed by an activation function σ (e.g., SiLU (Elfwing
et al., 2018) and GeLU (Hendrycks & Gimpel, 2016)). However, such bilinear operation potentially
hurts the performance of such an activation function. Specifically, for a special case of parameter-
shared branch in Eq. (4), Ẑ = f(X)2 and f indicates spatial-channel factorized mapping. Mean-
while, both outputs of SiLU and GeLU are power functions of inputs, which are more sensitive to

4

Published as a conference paper at ICLR 2025

(a) (b) (c) (d)

Figure 2: Diagram of mapping matrices for various channel mapping strategies. (a) Fully-connected
layer with dense parameters. (b) Block-wise channel mapping with block-diagonal sparsity con-
straint (G = 4). (c) Our Grouped Cross Channel Mapping (GCCM) (G = 4). (d) Our Overlapped
Cycle Channel Mapping (OCCM) (G = 4).

probable noise of f(X)2 than one of f(X), potentially decreasing the final performance. Therefore,
as shown in Fig. 1, we switch dot product with activation function for our SCFBO in practice. More
experimental comparisons can refer to Table 6.

3.2.2 STRUCTURED-SPARSITY CHANNEL MAPPING

By considering hidden dimension (Md) plays a crucial role in performance of ViT (Noshad et al.,
2019; Sridhar et al., 2023), we are likely to adopt a large expansion ratio M (e.g., M = 4) in channel
mapping (i.e., point-wise convolution ⊗1×1 with parameters of {Wc

· ∈ Rd×Md,bc
· ∈ RMd}) to

guarantee performance, which subsequently leads to high computational complexity. Therefore,
we further present two structured-sparsity channel mapping strategies to decrease computational
complexity of SCFBO while guaranteeing performance. Given xi be features of i-th token in X,
channel mapping performs a linear projection with parameters of {Wc

· ∈ Rd×Md,bc
· ∈ RMd} as

zi = Wc
· xi + bc

· . As illustrated in Fig. 2 (a), Wc
· is generally a fully-connected layer with M × d2

parameters. As a commonly used strategy, group channel mapping in Fig. 2 (b) has been studied
to reduce computational complexity of deep CNNs (Chollet, 2017; Krizhevsky et al., 2017; Sandler
et al., 2018), where Wc

· can be regarded as incorporation of a block-diagonal sparsity constraint:

Wc
·

bw
=

Wc

· (1) 0 · · · 0
0 Wc

· (2) · · · 0
...

...
. . .

...
0 0 · · · Wc

· (G)

 , (5)

where Wc
· (i) ∈ RMd/G×d/G and G indicates number of group. Clearly, computational complexity

of block-wise channel mapping in Eq. (5) is 1/G of the original Wc
· . Although model efficiency,

block-wise channel mapping suffers from inferior performance due to the absence of information
interaction among different groups (refer to comparison in Table 1).

To guarantee both efficiency and effectiveness, we present two structured-sparsity channel mapping
strategies, namely Grouped Cross Channel Mapping (GCCM) and Overlapped Cycle Channel Map-
ping (OCCM). As shown in Fig 2 (c), our GCCM divides the inputs and outputs into G and 2G
non-overlapped groups, respectively. Then, GCCM adopts a parameter-shared linear mapping for
i-th and i+G-th groups (i ∈ [1, G]) of outputs by using different groups of inputs. As such, differ-
ent groups of inputs are fed into a same linear mapping to realize information interaction between
groups. Particularly, mapping matrix of our GCCM can be written as

Wc
.

gc
=

Wc

. (1) 0 · · · 0 · · · 0 · · · Wc
. (G)

0 Wc
. (2) · · ·

...
...

... . .
. ...

...
...

. . .
... 0 Wc

. (2) · · ·
...

0 0 · · · Wc
. (G) Wc

. (1) 0 · · · 0

T

, (6)

5

Published as a conference paper at ICLR 2025

Table 1: Comparisons of various channel mixers in terms of complexity, performance, and inference
latency. Particularly, the parameter numbers in dashed boxes and the results of Top-1 accuracy are
reported with instantiation of DeiT-T (Touvron et al., 2021a) on ImageNet-1K.
Method Parameters (M) FLOPs (G) Top-1 (%) Latency (ms)
FFN O(2Md2) 5.7 O(4Md2) 1.3 72.2 11.4
GLU (M = 8

3) O(3Md2) 5.7 O(6Md2) 1.3 72.6 12.9
Group FFN (G = 2) O(2Md2

G + Md2) 5.7 O(4Md2

G + 2Md2) 1.3 70.8 13.1
Group FFN (G = 4) O(2Md2

G + Md2) 5.0 O(4Md2

G + 2Md2) 1.1 69.8 15.5
SCFBO-GC O(2Md2

G2 + Md2) 5.1 O(4Md2

G2 + 2Md2) 1.1 72.2 12.7

SCFBO-OC O(
2M(G−1)d2

G + Md2) 6.7 O(
4M(G−1)d2

G + 2Md2) 1.5 75.6 14.5

AFBO O(Md2

G2
1

+
M(G2−1)d2

G2
+ Md2) 6.0 O(2Md2

G1
+

2M(G2−1)d2

G2
+ 2Md2) 1.3 74.6 13.2

where Wc
· (i) ∈ RMd/2G×d/G, and our GCCM in Eq. (6) is only 1/2G of the original Wc

· in term
of computational complexity. Furthermore, as illustrated in Fig. 2 (d), our OCCM proposes to use
overlapped inputs to realize information interaction between groups in a cycle manner:

Wc
·

oc
=

[Wc

·L(1), Wc
·R(1)] 0 · · · 0

0 [Wc
·L(2), Wc

·R(2)] · · · 0
...

...
.

...
0 0 · · · [Wc

·L(G− 1), Wc
·R(G− 1)]

Wc
·R(G)] 0 · · · 0 [Wc

·L(G)

, (7)

where our OCCM sets the overlapped range by half of dimension of grouped features. [Wc
·L(g) ∈

RMd/G×d/G,Wc
·R(g) ∈ RMd/G×d/G] are parameters of g-th group for channel mapping, whose

numbers are 2/G of those in the original Wc
· . From Eq. (6) and Eq. (7) we can see that our GCCM

and OCCM can efficiently perform information interaction between groups by introducing appropri-
ate structured-sparsity constraints on channel mapping. Note that our AFBO can control the trade-off
between performance and complexity by adopting various group numbers and overlap ratios.

3.3 AFBO VARIANTS

Based on the proposed GCCM and OCCM, we can implement SCFBO in Eq. (4) in different ways,
resulting in three AFBO variants, i.e., SCFBO-GC, SCFBO-OC, and asymmetric SCFBO (AFBO).

SCFBO-GC We construct SCFBO-GC by realizing channel mappings of two branches lying in
SCFBO with GCCM (6), which has parameter number of O(2Md2

G2 +Md2) and computational cost
(FLOPs) of O(4Md2

G2 + 2Md2) with group number of G.

SCFBO-OC When channel mappings of two branches lying in SCFBO are replaced by OCCM (7),
we construct SCFBO-OC with parameter number of O(2M(G−1)d2

G +Md2) and computational cost

(FLOPs) of O(4M(G−1)d2

G + 2Md2), where G is group number of OCCM.

Asymmetric SCFBO (AFBO) As a hybrid scheme, we replace left and right branches of SCFBO
with OCCM (5) and GCCM (6), respectively. It leads to an asymmetric SCFBO, i.e., AFBO. Specif-
ically, parameter number of AFBO is O(Md2

G2
1

+ M(G2−1)d2

G2
+ Md2), while computational cost is

O(2Md2

G1
+ 2M(G2−1)d2

G2
+ 2Md2), where G1 and G2 are group number of GCCM and OCCM.

Model Selection via Complexity Analysis To further analyze performance and complexity of three
AFBO variants, we compare them with the original FFN, GLU (Shazeer, 2020), and Group FFN in
Eq. (5). As listed in Table 1, our AFBO variants have similar or lower computational complexity than
their counterparts from a theoretical perspective. By instantiating our AFBO variants with G1 = 2
and G2 = 4 with DeiT-T (Touvron et al., 2021a), our SCFBO-GC achieves similar performance with
FFN but has fewer parameters and FLOPs. SCFBO-OC improves FFN by 3.4% and brings extra
model complexity. Therefore, our AFBO combines with GCCM and OCCM to achieve performance
and complexity trade-off, which is used throughout all experiments. Finally, our AFBO respectively
brings 3.8% and 2.0% gains over Group FFN and GLU, while having comparable model complexity.

6

Published as a conference paper at ICLR 2025

4 EXPERIMENTS

In this section, we first describe implementation details of our AFBO, and make comparison on
ImageNet-1K (Krizhevsky et al., 2017) and its variants, i.e., ImageNet-C (Hendrycks & Dietterich,
2019), ImageNet-A (Hendrycks et al., 2021b), ImageNet-R (Hendrycks et al., 2021a) and ImageNet-
Sketch (Recht et al., 2019). Besides, we transfer our models to object detection and instance seg-
mentation on MS COCO (Lin et al., 2014). Finally, we conduct ablation studies on ImageNet-1K.

4.1 IMPLEMENTATION DETAILS

As a plug-in module, we apply our AFBO to various ViTs and MLP-Mixer architectures by replac-
ing the original FFN modules, including DeiT (Touvron et al., 2021a), Swin ViT (Liu et al., 2021),
PoolFormer (Yu et al., 2022), LVT (Yang et al., 2022), PVTv2 (Wang et al., 2022), CycleMLP (Chen
et al., 2023), HireMLP-Tiny (Guo et al., 2022b), GC ViT (Hatamizadeh et al., 2023) and VisionL-
LaMA (Chu et al., 2024). To match the original FFN in terms of model complexity, we set G1 and
G2 to 2 and 3 for AFBO, respectively. For spatial modeling, we use 3×3 DW convolution as a
default setting. To train models on ImageNet-1K, we adopt exactly same strategies as the original
works with 224 × 224 inputs. For evaluation on object detection and instance segmentation, we
adopt Mask R-CNN (He et al., 2017) and RetinaNet (Lin et al., 2020) as baseline detectors, where
Poolformer-S12 (Yu et al., 2022) and Swin-T (Liu et al., 2021) along with FPN (Lu et al., 2020) are
used as backbone models. All detectors are implemented using MMDetection toolkit (Chen et al.,
2019) with the default settings. Specifically, the shorter side of input images is resized to 800, and all
the models are optimized using SGD with weight decay of 1e-4, momentum of 0.9 and mini-batch
size of 16. The learning rate is initialized to 0.01 and is decreased by a factor of 10 after 8 and 11
epochs, respectively. All programs are implemented by PyTorch (Paszke et al., 2019) and run on a
server with 8 A6000 GPUs. The source code is available at https://github.com/XavierHeart/AFBO.

4.2 IMAGE CLASSIFICATION ON IMAGENET-1K

We first validate the effectiveness of our AFBO by comparing state-of-the-art (SOTA) models
and its counterparts on ImageNet-1K. Besides, we directly adopt the trained models to ImageNet-
C (Hendrycks & Dietterich, 2019), ImageNet-A (Hendrycks et al., 2021b), ImageNet-R (Hendrycks
et al., 2021a) and ImageNet-Sketch (Recht et al., 2019) to verify the robustness of our AFBO.

4.2.1 COMPARISON WITH SOTA

To verify generalization of our AFBO, we compare 20 SOTA models with and without AFBO. As
shown in Table 2, our AFBO enhances the performance of all models on both IN-1K and 4 out-
of-distribution (OOD) variants, while having less or comparable model complexity (i.e., parameters
and FLOPs). Specifically, for tiny ViT models, AFBO respectively achieves 1.3% and 2.4% gains
over LVT and DeiT-T on IN-1K, while bringing clear improvement on four OOD variants. For
small ViT models, AFBO obtains 0.5%∼1.9% and 0.6%∼5.6% gains on IN-1K and four OOD
variants, respectively. Notably, AFBO achieves 0.5% gains over the recently proposed GC ViT-
XT and Pyramid VisionLLaMA-S on IN-1K, and brings more than 1.5% gains on IN-A. Besides,
AFBO can also improve MLP-Mixer models (i.e., CycleMLP and HireMLP) with comparable model
complexity. For middle and large ViT models, AFBO respectively brings 0.7% and 0.1% gains for
DeiT-B and Swin-B on IN-1K, but has less model complexity. In particular, AFBO still brings clear
improvement (0.6%∼3.7%) for medium and large models on four OOD variants. In terms of model
latency, AFBO brings extra affordable inference time over the original models. These results above
clearly demonstrate that AFBO can help existing ViTs achieve better performance and complexity
trade-off, which provides a promising solution to improve generalization and robustness of ViTs.

4.2.2 COMPARISON WITH COUNTERPARTS

To further evaluate the effectiveness of our AFBO, we compare with several counterparts, includ-
ing SwiGLU (Fang et al., 2024), ConvNeXt block (Liu et al., 2022), IMLP (Xu et al., 2024),
SCHEME (Sridhar et al., 2023) and ConvGLU (Shi, 2024), where all experiments are conducted
on IN-1K and IN-R by using DeiT (Touvron et al., 2021a), Poolformer (Yu et al., 2022) and Swin-
T (Liu et al., 2021) as backbone models. Since source code is unavailable, we duplicate the results of

7

https://github.com/XavierHeart/AFBO

Published as a conference paper at ICLR 2025

Table 2: Comparisons with various widely used vision models on ImageNet-1K (IN-1K) and four
variants, including ImageNet-C (IN-C), ImageNet-A (IN-A), ImageNet-Robustness (IN-R) and
ImageNet-Sketch (IN-SK). For comparison, the original MLP modules for all baseline models are
replaced by our proposed AFBO module. Among OOD datasets, IN-C calculates the mean corrup-
tion error (mCE) as metric, where the smaller mCE means the better robustness of the models under
corruptions. All other benchmarks use Top-1 accuracy as the metric if no special illustration.

Method Params. FLOPs Latency IN-1K IN-C IN-A IN-R IN-SK
(M) (G) (ms) (↑%) (↓%) (↑%) (↑%) (↑%)

LVT (Yang et al., 2022) 5.5 0.8 7.7 74.8 75.0 7.5 34.6 23.0
+ AFBO (ours) -0.3 +0.0 9.1 76.1(1.3) 73.3(1.7) 8.5(1.0) 35.1(0.5) 23.7(0.7)

DeiT-T (Touvron et al., 2021a) 5.7 1.3 11.4 72.2 71.1 7.3 32.6 20.2
+ AFBO (ours) +0.3 +0.0 13.2 74.6(2.4) 66.2(4.9) 8.3(1.0) 38.5(5.9) 23.1(2.9)

PoolFormer-S12 (Yu et al., 2022) 11.9 1.8 9.9 77.2 69.8 7.0 37.7 25.4
+ AFBO (ours) +0.1 +0.1 11.2 79.1(1.9) 65.0(4.8) 8.9(1.9) 42.5(4.8) 27.6(2.2)

GC ViT-XXT (Hatamizadeh et al., 2023) 12.0 2.1 11.1 79.9 72.9 19.0 41.9 29.2
+ AFBO (ours) +0.3 +0.2 12.5 81.2(1.3) 72.5(0.4) 22.4(3.4) 43.5(1.6) 31.6(1.4)

PVTv2-B1 (Wang et al., 2022) 14.0 2.1 11.5 78.7 65.1 14.6 41.7 28.9
+ AFBO (ours) -0.1 +0.2 13.2 80.1(1.4) 63.6(1.5) 16.7(2.1) 44.1(2.4) 31.1(2.2)

CycleMLP-B1 (Chen et al., 2023) 15.0 2.1 12.1 78.9 64.5 11.6 41.6 29.1
+ AFBO (ours) -0.2 +0.1 13.4 80.0(1.1) 62.3(2.2) 14.2(2.6) 44.3(2.7) 30.4(1.3)

HireMLP-Tiny (Guo et al., 2022b) 17.0 2.1 12.8 78.9 65.3 12.8 41.5 29.0
+ AFBO (ours) -0.2 +0.1 15.1 80.2(1.3) 62.9(2.4) 15.6(2.8) 43.8(2.3) 30.5(1.5)

GC ViT-XT (Hatamizadeh et al., 2023) 20.0 2.6 13.2 82.0 75.3 26.7 44.3 32.0
+ AFBO (ours) +0.4 +0.2 14.9 82.5(0.5) 74.8(0.5) 29.2(2.5) 44.9(0.6) 32.6(0.6)

Pyramid-VisionLLaMA-S (Chu et al., 2024) 22.0 2.6 14.8 81.6 58.1 23.5 41.8 28.9
+ AFBO (ours) +0.1 +0.1 16.6 82.1(0.5) 56.1(2.0) 25.3(1.8) 45.3(3.5) 32.9(3.0)

Poolformer-S24 (Yu et al., 2022) 21.4 3.4 14.3 80.3 62.2 14.5 41.4 28.9
+ AFBO (ours) +0.6 +0.3 16.4 81.5(1.2) 57.8(4.4) 18.0(3.5) 44.5(3.1) 30.8(1.9)

DeiT-S (Touvron et al., 2021a) 22.0 4.6 12.9 79.8 54.6 19.8 41.9 29.4
+ AFBO (ours) -0.3 -0.1 15.2 81.1(1.3) 53.3(1.3) 20.8(1.0) 45.3(3.4) 31.9(2.5)

Swin-T (Liu et al., 2021) 28.0 4.5 12.6 81.2 62.0 21.7 41.3 29.0
+ AFBO (ours) -0.5 -0.1 15.5 82.1(0.9) 56.4(5.6) 26.0(4.3) 45.8(4.5) 31.7(2.7)

PoolFormer-S36 (Yu et al., 2022) 30.9 5.0 16.6 81.4 60.0 18.5 42.1 30.2
+ AFBO (ours) +0.8 -0.5 18.8 81.9(0.5) 57.1(2.9) 21.8(3.3) 43.8(1.7) 31.6(1.4)

Swin-S (Liu et al., 2021) 50.0 8.7 25.2 83.0 54.9 32.9 44.9 32.0
+ AFBO (ours) -1.9 -0.2 29.9 83.3(0.3) 52.1(2.8) 33.3(0.4) 47.4(2.5) 34.5(2.5)

Pyramid-VisionLLaMA-B (Chu et al., 2024) 56.0 9.0 31.3 83.2 52.1 33.5 46.0 33.5
+ AFBO (ours) +0.4 +0.2 32.9 83.5(0.2) 49.5(2.6) 35.2(1.7) 48.1(2.1) 35.8(2.3)

PoolFormer-M36 (Yu et al., 2022) 56.2 8.8 29.3 82.1 58.3 23.8 43.3 30.6
+ AFBO (ours) +1.0 +0.9 33.6 82.5(0.4) 54.6(3.7) 27.5(3.7) 45.2(1.9) 32.1(1.5)

PoolFormer-M48 (Yu et al., 2022) 73.5 11.6 31.6 82.5 54.9 25.7 43.7 30.9
+ AFBO (ours) +1.4 +1.2 35.7 83.0(0.5) 52.8(2.1) 32.0(3.7) 46.6(2.9) 32.0(1.1)

DeiT-B (Touvron et al., 2021a) 86.0 17.6 35.7 81.8 48.5 27.4 44.9 32.0
+ AFBO (ours) -2.1 -0.2 38.8 82.5(0.7) 45.3(3.2) 31.1(3.7) 47.4(2.5) 33.3(1.3)

Swin-B (Liu et al., 2021) 87.8 15.4 34.2 83.5 54.4 35.8 46.6 32.4
+ AFBO (ours) -3.1 -0.4 37.3 83.6(0.1) 51.5(2.9) 36.4(0.6) 49.0(2.4) 34.0(1.6)

Pyramid-VisionLLaMA-L (Chu et al., 2024) 99.0 18.0 40.1 83.6 54.4 38.7 47.8 34.6
+ AFBO (ours) +0.5 +0.2 42.9 83.7(0.1) 52.0(2.4) 40.2(1.5) 50.2(2.4) 36.2(1.6)

SCHEME (Sridhar et al., 2023) and IMLP (Xu et al., 2024) from the original papers for comparison.
Then, we re-implement SwiGLU, ConvNeXt block and ConvGLU for the compared backbones us-
ing available source code. As shown in Table 3, IMLP has less model complexity but inferior
performance. SCHEME is also difficult to balance performance and complexity. Particularly, our
AFBO achieves higher accuracy than SCHEME-12, while having less model complexity. Compared
to SwiGLU, ConvNeXt block and ConvGLU, AFBO has similar model complexity, while benefit-
ing better generalization and robustness. Specifically, AFBO achieves 0.3%∼2.0% and 0.4%∼5.1%
gains over SwiGLU, ConvGLU and ConvNeXt block on IN-1K and IN-R, respectively. Above
results clearly show our AFBO can achieve better performance and complexity trade-off again.

4.3 OBJECT DETECTION AND INSTANCE SEGMENTATION ON COCO

Furthermore, we evaluate generalization ability of AFBO on object detection and instance segmen-
tation tasks. As shown in Table 4, when RetinaNet is used as a detector, AFBO brings 1.7% and
0.6% gains over Poolformer-S12 and Swin-T in terms of AP, respectively. For Mask R-CNN,

8

Published as a conference paper at ICLR 2025

Table 3: Comparisons with various counterparts on ImageNet-1K (IN-1K) and ImageNet-
Robustness (IN-R), where the results of ”FFN”, ”IMLP” and ”SCHEME” are duplicated from the
original works (Xu et al., 2024; Sridhar et al., 2023). We re-implement ”ConvNext”, ”SwiGLU” and
”ConvGLU” by using publicly available source code.

Backbone Method Parameter FLOPs IN-1K IN-R

DeiT-T (Touvron et al., 2021a)

FFN 5.7 M 1.3 G 72.2% 32.6%
ConvNeXt Block (Liu et al., 2022) 5.9 M 1.3 G 73.6% 34.2%
IMLP (Xu et al., 2024) 5.0 M 1.1 G 72.6% 33.5%
SwiGLU (Fang et al., 2024) 5.7 M 1.3 G 72.6% 33.4%
ConvGLU (Shi, 2024) 5.9 M 1.4 G 74.2% 37.5%
AFBO (ours) 6.0 M 1.3 G 74.6% 38.5%

DeiT-S (Touvron et al., 2021a)

FFN 22.0 M 4.6 G 79.8% 41.9%
IMLP (Xu et al., 2024) 18.8 M 3.9 G 80.0% N/A
SwiGLU (Fang et al., 2024) 22.0 M 4.6 G 80.4% 42.5%
ConvGLU (Shi, 2024) 21.6 M 4.5 G 80.6% 44.7%
AFBO (ours) 21.7 M 4.5 G 81.1% 45.3%

Pool-S12 (Yu et al., 2022)

FFN 11.9 M 1.8 G 77.2% 37.7%
IMLP (Xu et al., 2024) 9.8 M 1.5 G 77.2% N/A
SCHEME-12 (Sridhar et al., 2023) 16.7 M 2.6 G 78.5% N/A
SCHEME-44 (Sridhar et al., 2023) 7.2 M 1.0 G 73.0% N/A
ConvGLU (Shi, 2024) 12.0 M 1.9 G 78.1% 41.7%
AFBO (ours) 12.0 M 1.9 G 79.1% 42.5%

Pool-S24 (Yu et al., 2022)

FFN 21.4 M 3.4 G 80.3% 41.4%
IMLP (Xu et al., 2024) 17.2 M 2.7 G 80.7% N/A
SCHEME-12 (Sridhar et al., 2023) 30.8 M 4.9 G 80.5% N/A
ConvGLU (Shi, 2024) 22.0 M 3.5 G 81.1% 43.8%
AFBO (ours) 22.0 M 3.7 G 81.5% 44.5%

Swin-T (Liu et al., 2021)

FFN 28.0 M 4.5 G 81.2% 41.3%
IMLP (Xu et al., 2024) 24.3 M 3.9 G 81.5% N/A
SCHEME-44 (Sridhar et al., 2023) 19.7 M 3.1 G 79.6% N/A
SCHEME-12 (Sridhar et al., 2023) 36.9 M 5.9 G 81.7% N/A
ConvGLU (Shi, 2024) 28.5 M 4.7 G 81.8% 44.8%
AFBO (ours) 27.5 M 4.4 G 82.1% 45.8%

AFBO respectively brings 1.2% and 0.8% gains over Poolformer-S12 and Swin-T on object de-
tection tasks, while achieving 1.2% and 1.3% improvement on instance segmentation, respectively.
Besides, Poolformer-S12 and Swin-T with our AFBO are superior to other compared backbone mod-
els that share similar parameters. These results demonstrate that our AFBO can be well generalized
to various tasks, e.g., object detection and instance segmentation.

4.4 ABLATION STUDIES ON IMAGENET-1K

In this subsection, we conduct ablation studies to assess the effects of core components and various
configurations of our AFBO. All experiments are performed on IN-1K with the backbone of DeiT-T.

Effect of Different Core Components. Our AFBO involves two core components, i.e., spatial
modeling (SM) and channel mapping (CM). To assess their effect, we construct various variants, in-
cluding AFBO with only CM (AFBO-C), AFBO with only SM (AFBO-S), AFBO with CM followed
by SM (AFBO-CS), and AFBO with SM followed by CM (AFBO-SC). The results are presented in
Table 5, where we can see that both SM and CM modules improve DeiT-T. Besides, AFBO-C is su-
perior to AFBO-S with fewer parameters, indicating that CM is more important than SM. AFBO-CS
achieves further gains (0.9%∼1.3%) by combining CM with the subsequent SM, meaning that SM
and CM are complementary. Compared with AFBO-CS, AFBO-SC decreases model complexity,
but achieves inferior accuracy. More analysis on SM and CM can refer to the appendix.

Effect of Various Configurations. Furthermore, we evaluate the effect of microcosmic configura-
tions on our AFBO. Specifically, we analyze how position and type of activation function (σ) impact
final performance. In our AFBO, σ can be placed before or after the dot product operation, indicated
by pre-act and post-act, respectively. For the type of activation function, we compare ReLU (Nair
& Hinton, 2010), GELU and SiLU (Hendrycks & Gimpel, 2016). As listed in Table 6, post-act

9

Published as a conference paper at ICLR 2025

Table 4: Results of object detection and instance segmentation on MS COCO, where all backbones
are pretrained on ImageNet-1K and 1× learning schedule is used. AP b and APm denote bounding
box AP and mask AP , respectively. TP denotes Throughput, i.e., images per second.

Params. Flops TP AP AP50 AP75 APS APM APL
(M) (G) (HZ) (%) (%) (%) (%) (%) (%)

RetinaNet 1×
ResNet-18 (He et al., 2016) 21.3 173 29.4 31.8 49.6 33.6 16.3 34.3 43.2
PoolFormer-S12 (Yu et al., 2022) 21.7 189 18.5 36.2 56.2 38.2 20.8 39.1 48.0
PoolFormer-S12+AFBO 22.0 189 17.9 37.91.7 57.21.0 40.11.9 21.30.5 41.00.9 50.22.2
PVT-Tiny (Wang et al., 2021b) 23.0 201 23.5 36.7 56.9 38.9 22.6 38.8 50.0
PVT-Small (Wang et al., 2021b) 34.2 258 16.4 40.4 61.3 43.0 25.0 42.9 55.7
ResNet-50 (He et al., 2016) 37.7 220 26.3 36.3 55.3 38.6 19.3 40.0 48.8
Swin-T (Liu et al., 2021) 38.5 245 20.4 41.5 62.1 44.2 25.1 44.9 55.5
Swin-T+AFBO 38.0 245 19.6 42.10.6 62.60.5 44.90.7 25.40.3 45.50.6 56.40.9

Params. Flops TP AP b AP b
50 AP b

75 APm APm
50 APm

75
(M) (G) (HZ) (%) (%) (%) (%) (%) (%)

Mask R-CNN 1×
ResNet-18 (He et al., 2016) 31.2 198 19.6 34.0 54.0 36.7 31.2 51.0 32.7
PoolFormer-S12 (Yu et al., 2022) 31.6 207 13.0 37.3 59.0 40.1 34.6 55.8 36.9
PoolFormer-S12+AFBO 32.0 207 12.4 38.61.2 60.21.2 42.42.3 35.81.2 56.30.5 38.21.3
PVT-Tiny (Wang et al., 2021b) 32.9 225 14.9 36.7 59.2 39.3 35.1 56.7 37.3
Twins-SVT-S 44.0 228 14.4 42.7 65.6 46.7 39.6 62.5 42.6
CMT-S (Guo et al., 2022a) 44.5 249 N/A 44.6 66.8 48.9 40.7 63.9 43.4
PVT-Small (Wang et al., 2021b) 44.1 282 12.4 40.4 62.9 43.8 37.8 60.1 40.3
ResNet50 (He et al., 2016) 44.2 246 17.0 38.0 58.6 41.4 34.4 55.1 36.7
Swin-T (Liu et al., 2021) 48.0 267 14.3 43.7 66.6 47.7 39.8 63.3 42.7
Swin-T+AFBO 47.5 267 13.6 44.50.8 67.20.6 48.20.5 41.11.3 63.70.4 42.90.3

Table 5: Effect of core components on AFBO.
Method Description Params. Top-1

Baseline – 5.7 M 72.2%
AFBO-C Only Channel Mapping 5.7 M 73.7%

AFBO-S Only Spatial Modeling 6.0 M 73.3%
Channel Mapping followedAFBO-CS by Spatial Modeling 6.0 M 74.6%

AFBO-SC Spatial Modeling followed 5.8 M 73.4%by Channel Mapping

Table 6: Effect of different configurations.
OCCM GCCM σ Top-1 Latency

Pre-act – SiLU 73.5% 13.2 ms
– ReLU 73.7% 12.6 ms

Pre-act

✓ SiLU 74.2% 13.2 ms
✓ SiLU 74.6% 13.2 ms
✓ GeLU 74.6% 13.1 ms

✓ ReLU 73.7% 12.6 ms
✓ ReLU 74.2% 12.7 ms
✓ ✓ SiLU 74.3% 13.1 ms

strategy is clearly inferior to pre-act, whose reason is analyzed in Sec. 3.2.1. The similar philosophy
is also observed in GLU (Shazeer, 2020). Besides, ReLU is inferior to SiLU and GELU in terms
of accuracy while having slightly less model latency. Additionally, the combination of activation
function with OCCM branch outperforms one of GCCM and both of them. It may be caused by the
fact that OCCM has better feature learning ability than GCCM (i.e., SCFBO-OC performs better
than SCFBO-GC in Table 1), and the dot product of two activation functions may hurt feature learn-
ing ability, leading an inferior performance. As a contrast, ReLU is more tolerated for dot product
operation. In this work, SiLU activation with OCCM is used as the default setting.

5 CONCLUSION

This paper made an attempt to solve the paradox of performance and complexity trade-off in improv-
ing FFN of ViTs. To this end, we proposed an Asymmetric Factorized Bilinear Operation (AFBO),
whose core idea is to explore rich statistics of token features to improve feature learning ability of
Transformer in an efficient way. Specifically, our AFBO presents a spatial-channel factorized bi-
linear operation to model second-order statistics for feature learning, while two structured-sparsity
channel mappings are developed to reduce computational complexity while guaranteeing perfor-
mance. Extensive experiments on various tasks by using several ViT models clearly demonstrate our
AFBO has a good ability to achieve performance and complexity trade-offs. In the future, we will
adopt our AFBO to foundation models and other applications (e.g., semantic segmentation (Zhou
et al., 2017) and visual question answering (Antol et al., 2015)).

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This work was supported in part by the National Natural Science Foundation of China under Grant
62276186, Grant 61925602, Grant 62222608, and Grant 62436002; in part by the National Science
and Technology Major Project under Grant 2022ZD0116500; and in part by the CAAI-Huawei
MindSpore Open Fund under Grant CAAIXSJLJJ-2022-010C; and in part by the Haihe Lab of ITAI
under Grant 22HHXCJC00002.

REFERENCES

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence
Zitnick, and Devi Parikh. VQA: visual question answering. In ICCV, pp. 2425–2433, 2015.

Guiping Cao, Shengda Luo, Wenjian Huang, Xiangyuan Lan, Dongmei Jiang, Yaowei Wang, and
Jianguo Zhang. Strip-MLP: Efficient token interaction for vision MLP. In ICCV, pp. 1494–1504,
2023.

Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen
Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tianheng Cheng, Qijie
Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli
Ouyang, Chen Change Loy, and Dahua Lin. MMDetection: Open MMLab detection toolbox and
benchmark. CoRR, abs/1906.07155, 2019.

Shoufa Chen, Enze Xie, Chongjian Ge, Runjian Chen, Ding Liang, and Ping Luo. CycleMLP: A
MLP-Like architecture for dense visual predictions. IEEE Trans. Pattern Anal. Mach. Intell., 45
(12):14284–14300, 2023.

Zekai Chen, Fangtian Zhong, Qi Luo, Xiao Zhang, and Yanwei Zheng. EdgeViT: Efficient visual
modeling for edge computing. In WASA, pp. 393–405, 2022.

François Chollet. Xception: Deep learning with depthwise separable convolutions. In CVPR, pp.
1800–1807, 2017.

Xiangxiang Chu, Jianlin Su, Bo Zhang, and Chunhua Shen. VisionLLaMA: A unified LLaMA
interface for vision tasks. CoRR, abs/2403.00522, 2024.

Zihang Dai, Hanxiao Liu, Quoc V. Le, and Mingxing Tan. CoAtNet: Marrying convolution and
attention for all data sizes. In NeurIPS, pp. 3965–3977, 2021.

Stéphane d’Ascoli, Hugo Touvron, Matthew L. Leavitt, Ari S. Morcos, Giulio Biroli, and Levent
Sagun. ConViT: Improving vision transformers with soft convolutional inductive biases. In
ICML, pp. 2286–2296, 2021.

Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. In ICML, pp. 933–941, 2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT, pp. 4171–4186, 2019.

Xiaohan Ding, Xiangyu Zhang, Jungong Han, and Guiguang Ding. Scaling up your kernels to
31×31: Revisiting large kernel design in CNNs. In CVPR, pp. 11953–11965, 2022.

Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need: pure
attention loses rank doubly exponentially with depth. In ICML, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural Networks, 107:3–11, 2018.

11

Published as a conference paper at ICLR 2025

Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, and
Wenyu Liu. You only look at one sequence: Rethinking transformer in vision through object
detection. In NeurIPS, pp. 26183–26197, 2021.

Yuxin Fang, Quan Sun, Xinggang Wang, Tiejun Huang, Xinlong Wang, and Yue Cao. EVA-02: A
visual representation for neon genesis. Image Vis. Comput., 149:105171, 2024.

Yang Gao, Oscar Beijbom, Ning Zhang, and Trevor Darrell. Compact bilinear pooling. In CVPR,
pp. 317–326, 2016.

Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou,
and Matthijs Douze. LeViT: a vision transformer in convnet’s clothing for faster inference. In
ICCV, pp. 12239–12249, 2021.

Jianyuan Guo, Kai Han, Han Wu, Yehui Tang, Xinghao Chen, Yunhe Wang, and Chang Xu. CMT:
convolutional neural networks meet vision transformers. In CVPR, pp. 12165–12175, 2022a.

Jianyuan Guo, Yehui Tang, Kai Han, Xinghao Chen, Han Wu, Chao Xu, Chang Xu, and Yunhe
Wang. Hire-mlp: Vision MLP via hierarchical rearrangement. In CVPR, pp. 816–826, 2022b.

Ali Hatamizadeh, Hongxu Yin, Greg Heinrich, Jan Kautz, and Pavlo Molchanov. Global context
vision transformers. In ICML, pp. 12633–12646, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, pp. 770–778, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask R-CNN. In ICCV, pp.
2980–2988, 2017.

Dan Hendrycks and Thomas G. Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In ICLR, 2019.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (GELUs). arXiv preprint
arXiv:1606.08415, 2016.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer.
The many faces of robustness: A critical analysis of out-of-distribution generalization. In ICCV,
pp. 8320–8329, 2021a.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
examples. In CVPR, pp. 15262–15271, 2021b.

Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim Salimans. Axial attention in multidi-
mensional transformers. CoRR, abs/1912.12180, 2019.

Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alexander Shepard, Hartwig
Adam, Pietro Perona, and Serge J. Belongie. The INaturalist species classification and detection
dataset. In CVPR, pp. 8769–8778, 2018.

Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Enhua Wu. Squeeze-and-excitation networks.
IEEE Trans. Pattern Anal. Mach. Intell., 42(8):2011–2023, 2020.

Zilong Huang, Youcheng Ben, Guozhong Luo, Pei Cheng, Gang Yu, and Bin Fu. Shuffle trans-
former: Rethinking spatial shuffle for vision transformer. CoRR, abs/2106.03650, 2021.

Zilong Huang, Xinggang Wang, Yunchao Wei, Lichao Huang, Humphrey Shi, Wenyu Liu, and
Thomas S. Huang. CCNet: Criss-cross attention for semantic segmentation. IEEE Trans. Pattern
Anal. Mach. Intell., 45(6):6896–6908, 2023.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In ICLR,
2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convo-
lutional neural networks. Commun. ACM, 60(6):84–90, 2017.

12

Published as a conference paper at ICLR 2025

Kunchang Li, Yali Wang, Junhao Zhang, Peng Gao, Guanglu Song, Yu Liu, Hongsheng Li, and
Yu Qiao. Uniformer: Unifying convolution and self-attention for visual recognition. IEEE Trans.
Pattern Anal. Mach. Intell., 45(10):12581–12600, 2023.

Yanghao Li, Naiyan Wang, Jiaying Liu, and Xiaodi Hou. Factorized bilinear models for image
recognition. In ICCV, pp. 2098–2106, 2017.

Yawei Li, Kai Zhang, Jiezhang Cao, Radu Timofte, and Luc Van Gool. LocalViT: Bringing locality
to vision transformers. CoRR, abs/2104.05707, 2021.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C. Lawrence Zitnick. Microsoft COCO: common objects in context. In ECCV, pp.
740–755, 2014.

Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. IEEE Trans. Pattern Anal. Mach. Intell., 42(2):318–327, 2020.

Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji. Bilinear CNN models for fine-grained
visual recognition. In ICCV, pp. 1449–1457, 2015.

Yong Lin, Lu Tan, Yifan Hao, Honam Wong, Hanze Dong, Weizhong Zhang, Yujiu Yang, and Tong
Zhang. Spurious feature diversification improves out-of-distribution generalization. In ICLR,
2024.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In ICCV, pp. 9992–
10002, 2021.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In CVPR, pp. 11966–11976, 2022.

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljacic,
Thomas Y. Hou, and Max Tegmark. KAN: Kolmogorov-Arnold Networks. In ICLR, 2025.

Chang Lu, Xiaochun Lei, Junlin Xie, Xiaolong Wang, and XiangBoge Mu. Panoptic feature pyramid
network applications in intelligent traffic. In CIS, pp. 40–43, 2020.

Jiachen Lu, Jinghan Yao, Junge Zhang, Xiatian Zhu, Hang Xu, Weiguo Gao, Chunjing Xu, Tao
Xiang, and Li Zhang. SOFT: softmax-free transformer with linear complexity. In NeurIPS, pp.
21297–21309, 2021.

Andriy Mnih and Geoffrey E. Hinton. Three new graphical models for statistical language mod-
elling. In ICML, pp. 641–648, 2007.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines.
In ICML, pp. 807–814, 2010.

Daniel Neimark, Omri Bar, Maya Zohar, and Dotan Asselmann. Video transformer network. In
ICCVW, pp. 3156–3165, 2021.

Morteza Noshad, Yu Zeng, and Alfred O. Hero III. Scalable mutual information estimation using
dependence graphs. In ICASSP, pp. 2962–2966, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In NeurIPS, pp. 8024–8035, 2019.

Alec Radford. Improving language understanding by generative pre-training. 2018.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In ICML, pp. 5389–5400, 2019.

13

Published as a conference paper at ICLR 2025

Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
MobileNetV2: Inverted residuals and linear bottlenecks. In CVPR, pp. 4510–4520, 2018.

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based
localization. In ICCV, pp. 618–626, 2017.

Noam Shazeer. GLU variants improve transformer. CoRR, abs/2002.05202, 2020.

Dai Shi. Transnext: Robust foveal visual perception for vision transformers. In CVPR, pp. 17773–
17783, 2024.

Deepak Sridhar, Yunsheng Li, and Nuno Vasconcelos. SCHEME: scalable channer mixer for vision
transformers. CoRR, abs/2312.00412, 2023.

Aravind Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon Shlens, Pieter Abbeel, and Ashish Vaswani.
Bottleneck transformers for visual recognition. In CVPR, pp. 16519–16529, 2021.

Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia Schmid. Segmenter: Transformer for
semantic segmentation. In ICCV, pp. 7242–7252, 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
ICML, pp. 10347–10357, 2021a.

Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Going
deeper with image transformers. In ICCV, pp. 32–42, 2021b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, pp. 5998–6008,
2017.

Ashish Vaswani, Prajit Ramachandran, Aravind Srinivas, Niki Parmar, Blake A. Hechtman, and
Jonathon Shlens. Scaling local self-attention for parameter efficient visual backbones. In CVPR,
pp. 12894–12904, 2021.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
ICLR, 2019.

Qilong Wang, Banggu Wu, Pengfei Zhu, Peihua Li, Wangmeng Zuo, and Qinghua Hu. ECA-Net:
Efficient channel attention for deep convolutional neural networks. In CVPR, pp. 11531–11539,
2020.

Qilong Wang, Jiangtao Xie, Wangmeng Zuo, Lei Zhang, and Peihua Li. Deep CNNs meet global
covariance pooling: Better representation and generalization. IEEE Trans. Pattern Anal. Mach.
Intell., 43(8):2582–2597, 2021a.

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without
convolutions. In ICCV, pp. 548–558, 2021b.

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
and Ling Shao. PVT v2: Improved baselines with pyramid vision transformer. Comput. Vis.
Media, 8(3):415–424, 2022.

Yan Wang, Lingxi Xie, Chenxi Liu, Siyuan Qiao, Ya Zhang, Wenjun Zhang, Qi Tian, and Alan L.
Yuille. SORT: Second-Order response transform for visual recognition. In ICCV, pp. 1368–1377,
2017.

Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. CBAM: convolutional block
attention module. In ECCV, pp. 3–19, 2018.

14

Published as a conference paper at ICLR 2025

Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, and
Saining Xie. ConvNeXt V2: co-designing and scaling convnets with masked autoencoders. In
CVPR, pp. 16133–16142, 2023.

Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang. CvT:
Introducing convolutions to vision transformers. In ICCV, pp. 22–31, 2021.

Yixing Xu, Chao Li, Dong Li, Xiao Sheng, Fan Jiang, Lu Tian, and Ashish Sirasao. Improving MLP
module in vision transformer. In Submitted to The Twelfth International Conference on Learning
Representations, 2024.

Chenglin Yang, Yilin Wang, Jianming Zhang, He Zhang, Zijun Wei, Zhe Lin, and Alan L. Yuille.
Lite vision transformer with enhanced self-attention. In CVPR, pp. 11988–11998, 2022.

Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi Feng, and
Shuicheng Yan. Metaformer is actually what you need for vision. In CVPR, pp. 10809–10819,
2022.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene
parsing through ADE20K dataset. In CVPR, pp. 5122–5130, 2017.

Daquan Zhou, Zhiding Yu, Enze Xie, Chaowei Xiao, Animashree Anandkumar, Jiashi Feng, and
José M. Álvarez. Understanding the robustness in vision transformers. In ICML, pp. 27378–
27394, 2022.

A APPENDIX

Table 7: Results of AFBO with different groups numbers G1 and G2. ↑ indicates higher is better,
and ↓ indicates lower is better.

G1 G2 Param Flops Latency IN-1K IN-A IN-R IN-SK IN-C
(M) (G) (ms) (%) (↑%) (↑%) (↑%) (↓%)

2 6 6.2 1.4 13.7 74.8 8.3 38.8 23.6 66.0
2 4 6.0 1.3 13.2 74.6 8.3 38.5 23.1 66.2
2 3 5.8 1.3 13.1 74.2 8.1 36.7 22.7 67.1
2 2 5.6 1.3 12.9 73.0 7.6 34.6 21.0 70.4
4 4 5.7 1.3 12.8 73.5 8.1 36.9 21.4 68.9

A.1 EFFECT OF GROUP NUMBERS OF GCCM AND OCCM

In this subsection, we assess the effect of group numbers G1 and G2 by conducting experiments
with a backbone of DeiT-T (Touvron et al., 2021a) on five datasets, including IN-1K, IN-A, IN-R,
IN-SK, and IN-C. The results are given in Table 7, where we can see that larger numbers of G2 bring
higher accuracies and more computational costs. In contrast, larger numbers of G1 decrease both
accuracies and computational cost. Particularly, performances of varying group numbers G1 and G2
are consistent across four benchmarks. To balance efficiency and effectiveness, we respectively set
G1 = 2 and G2 = 3 of GCCM and OCCM for LVT (Yang et al., 2022), Swin (Liu et al., 2021) and
MLP-Mixers (Chen et al., 2023; Guo et al., 2022b) as the default settings. For the other remaining
models, we set G1 = 2 and G2 = 4 for GCCM and OCCM, respectively.

A.2 EFFECT OF DIFFERENT SPATIAL MODELING STRATEGIES

The spatial modeling (SM) of our AFBO can be achieved by various strategies, including parameter-
free operations (i.e., spatial max-pooling and avg-pooling), spatial attention and DW convolution.
To investigate the effect of different spatial modeling strategies on our AFBO, we compare them
on ImageNet-1K using the DeiT-T backbone. As shown in Table 8, parameter-free operations,
despite their computational efficiency, result in poor performance. We implement spatial attention as
suggested in (Woo et al., 2018), which has fewer parameters than DW convolution but also achieves

15

Published as a conference paper at ICLR 2025

Table 8: Comparison of different SM.
Backbone Method Params. Top-1

DeiT-T

Max-pooling 5.7 M 66.4%
Avg-pooling 5.7 M 50.0%

Spatial Attention 5.8 M 71.0%
DW Conv. 6.0 M 74.6%

Table 9: Effect of kernel size on SM.
Kernel Size Params. Top-1

– 5.7 M 73.7%
3 6.0 M 74.6%
5 6.2 M 74.7%
7 6.5 M 74.9%

Table 10: Comparison of DW convolution (Conv) with original convolution as spatial modeling of
AFBO in terms of model complexity, where DeiT-T and Swin-T are used as backbones.

Backbone Method Params. (M) Flops (G) Latency (ms)

DeiT-T DW Conv (3×3) 6.0 1.3 13.2
DeiT-T Conv (3×3) 13.3 1.7 18.6
Swin-T DW Conv (3×3) 27.5 4.4 15.5
Swin-T Conv (3×3) 64.8 4.6 28.3

inferior performance. Therefore, we use DW convolution as the default spatial modeling strategy of
our AFBO.

Furthermore, we explore the effect of different convolution kernel sizes on DW convolution. In
Table 9, we compare results of DW convolution with different kernel sizes. We observe that larger
kernel sizes lead to greater performance gains, but also increase the computational cost. Besides,
a better balance between performance and efficiency is achieved when the kernel size is set to 3.
Therefore, we set the kernel size of 3 as default setting of DW convolution in our AFBO.

Additionally, we compare DW convolution with original convolution for spatial modeling. As shown
in Table 10, when DW convolution is replaced by the original convolution with a kernel size of 3x3,
parameters increase more than 1x times for DeiT-T (Touvron et al., 2021a) and Swin-T (Liu et al.,
2021) models. Meanwhile, model latency (inference time per image) increases by about 50%∼85%.
Therefore, DW convolution can significantly reduce the computational cost and guarantee the effi-
ciency of the whole model, compared with the original convolution.

A.3 COMPARISON OF GLU WITH LARGE EXPANSION RATIO OF HIDDEN DIMENSION

Since hidden dimension of FFN heavily affects performance of ViTs, we compare it with GLU
by using an expansion ratio of M = 4 to further evaluate the effectiveness of our AFBO. Specif-
ically, experiments are conducted on ImageNet-1K (IN-1K) with backbones of Poolformer-S12,
Poolformer-S24, and Swin-T. As shown in Table 11, for an expansion ratio of M = 4, GLU suffers
from much higher computational cost, while performance still lags behind our AFBO in terms of
both generalization and robustness on IN-1K and IN-R. These results clearly show that our AFBO
can achieve better performance and complexity trade-off for ViTs.

A.4 COMPARISON WITH BLOCK-WISE CHANNEL MAPPING

In this subsection, we provide more comparisons of our proposed channel mapping strategies with
block-wise channel mapping (i.e., Group Convolution) by varying group number G and expansion
ratio of hidden dimension M . For comparison, we use our AFBO with only CM by excluding the
SM modules, and conduct experiments on ImageNet-1K dataset by employing DeiT-T and DeiT-
S (Touvron et al., 2021a) as the basic backbones. As shown in Table 13, block-wise channel map-
ping is clearly inferior to our AFBO with only CM for similar model sizes. While increasing the
hidden dimension can result in further performance improvements (along with an increase in pa-
rameters), block-wise channel mapping (Group Convolution) still lags behind our AFBO with only
CM by about 1%∼2%. These results clearly demonstrate that interaction between channel groups is
crucial for effective channel mapping, and our AFBO module can efficiently facilitate information
interaction among different groups.

16

Published as a conference paper at ICLR 2025

Table 11: Comparison of AFBO with GLU by using expansion ratio of hidden dimension M = 4
on IN-1K and IN-R.

Backbone Method Parameter FLOPs IN-1K Acc. IN-R Acc. Inference

Pool-S12 (Yu et al., 2022) GLU (M = 4) 16.6 M 2.1 G 78.5 % 37.9% 13.3 ms
AFBO (ours) 12.0 M 1.9 G 79.1 % 42.5% 11.2 ms

Pool-S24 (Yu et al., 2022) GLU (M = 4) 30.9 M 4.0 G 80.5 % 41.5 % 19.7ms
AFBO (ours) 22.0 M 3.7 G 81.5 % 44.5% 16.4 ms

Swin-T (Liu et al., 2021) GLU (M = 4) 36.9 M 4.6 G 81.3 % 44.0 % 19.8 ms
AFBO (ours) 27.5 M 4.4 G 82.1 % 45.8 % 15.5 ms

Table 12: Comparison of different backbones on
GLUE benchmarks.
Backbone CoLA RTE MNLI QNLI

GPT 54.3 63.2 82.1 86.4
GPT+AFBO 56.8 65.3 82.7 86.9
BERT-base 54.8 67.2 83.5 90.1
BERT+AFBO 57.0 68.3 84.8 90.5
BERT-large 60.6 73.7 85.9 91.8
BERT-large+AFBO 61.2 74.8 86.5 92.2

Table 13: Comparisons of AFBO with block-
wise channel mapping using DeiT-T and DeiT-S
on IN-1K.
Backbone Method G M Params. Acc.

DeiT-T

Baseline – 4 5.7 M 72.2%
Group Convolution-A 2 4 5.7 M 70.8%
Group Convolution-B 4 4 5.0 M 69.8%
Group Convolution-C 4 6 6.1 M 71.7%
AFBO with only CM – 4 5.7 M 73.7%

DeiT-S

Baseline – 4 22.0 M 79.8%
Group Convolution-A 2 4 22.0 M 79.7%
Group Convolution-C 4 6 23.7 M 80.0%
AFBO with only CM – 4 21.7 M 80.8%

Table 14: Comparison of our AFBO and FULL channel mapping on IN-1K.
Backbone Method Params (M) Flops (G) Latency (ms) Accuracy (%)

DeiT-T FULL 7.7 1.6 13.8 74.7
DeiT-T AFBO 6.0 1.3 13.2 74.6
Swin-T FULL 36.9 4.6 19.8 81.3
Swin-T AFBO 27.5 4.4 15.5 82.1

A.5 COMPARISON WITH FULL CHANNEL MAPPING

We implement Eq. 4 as the FULL channel mapping method, and conduct additional experiments
with the backbones of DeiT-T (Touvron et al., 2021a) and Swin-T (Liu et al., 2021) on IN-1K dataset.
The results are listed in Table 14. For DeiT-T, the FULL implementation achieves slightly higher
accuracy (74.7 % vs. 74.6 %) over our AFBO method at much higher cost of parameters (7.7 M vs.
6.0 M) and FLOPs (1.6 G vs. 1.3 G), and model latency (13.8 ms vs. 13.2 ms). In the case of Swin-
T, our AFBO outperforms the FULL implementation by 0.8% in terms of accuracy while having
much fewer parameters (27.5 M vs. 36.9 M) and model latency. Therefore, FULL implementation
is limited to bring further accuracy improvement, but introduces much more computational cost.

A.6 COMPARISON OF VIT WITH CHEBYSHEV KOLMOGOROV–ARNOLD NETWORKS (KAN)

In this subsection, we compare with ViT modified by KAN (Liu et al., 2025), whose implementation
and results are publicly available at the website1. As shown in Table 15, our AFBO demonstrates
superior performance across different DeiT (Touvron et al., 2021a) variants. Particularly, our AFBO
is superior to KAN by 1.5%, 1.4%, and 1.0% on IN-1K with backbones of DeiT-T, DeiT-S, and
DeiT-B, respectively. In terms of model robustness on OOD, AFBO also demonstrates superior
performance on IN-R across different DeiT variants. Specifically, AFBO outperforms KAN by
4.8%, 3.6%, and 2.8% on IN-R with the backbones of DeiT-T, DeiT-S, and DeiT-B, respectively.
These results verify the effectiveness of AFBO.

1https://github.com/snoop2head/KAN-ViT/blob/main/README.md

17

https://github.com/snoop2head/KAN-ViT/blob/main/README.md

Published as a conference paper at ICLR 2025

Table 15: Comparison of KAN and AFBO with DeiT backbones on IN-1K and IN-R.
Backbone Method Accuracy on IN-1K Accuracy on IN-R

DeiT-T KAN 73.1% 33.7%
DeiT-T AFBO 74.6% (1.5 %) 38.5% (4.8 %)
DeiT-S KAN 79.7% 41.7%
DeiT-S AFBO 81.1% (1.4 %) 45.3% (3.6 %)
DeiT-B KAN 81.5% 44.6%
DeiT-B AFBO 82.5% (1.0 %) 47.4% (2.8 %)

Table 16: Comparison of AFBO and the original FFN in terms of performance and CPU inference
speed, where EdgeViT-xxs is used as backbone.

Method Params (M) FLOPs (G) CPU (ms) IN-1K Acc. (%)

EdgeViT-xxs 4.1 1.3 42.2 74.4
EdgeViT-xxs + AFBO 4.2 1.3 47.1 76.5

A.7 COMPARISON OF FOR MOBILE MODEL

In this subsection, we conduct experiments by using EdgeViT (Chen et al., 2022) (i.e., a well-known
lightweight model designed for mobile devices) and comparing it on an Intel(R) Xeon(R) Gold 5218
CPU @ 2.30GHz. As shown in Table 16, AFBO has comparable parameters and FLOPs while
bringing 4.9 ms (about 10%) extra model latency. Particularly, our AFBO achieves a substantial
accuracy improvement of 2.1%.

A.8 GENERALIZATION ON NLP TASKS

We conduct experiments by applying AFBO to NLP tasks, where our AFBO is adopted to three
widely used NLP models, including GPT (Radford, 2018), BERT-base (Devlin et al., 2019), and
BERT-large (Devlin et al., 2019). All models are evaluated on four GLUE (Wang et al., 2019)
benchmark tasks, i.e., CoLA, RTE, MNLI, and QNLI. As shown in Table 12, our AFBO brings
consistent improvement over three original models across all tasks. Particularly, AFBO enhances
the performance of GPT, BERT-base, and BERT-large with notable gains in CoLA and MNLI tasks.
The results above clearly suggest that AFBO can be generalized well to the NLP domain.

Table 17: Comparisons with different models on INAT2019.
Method Parameter Top-1 Acc.

Swin-T (Liu et al., 2021) 28.0 M 71.0%
+AFBO 27.5 M 72.7%
Pyramid-VisionLLaMA-S (Chu et al., 2024) 22.0 M 68.4%
+AFBO 22.1 M 69.2%
Pyramid-VisionLLaMA-L (Chu et al., 2024) 99.0 M 74.5%
+AFBO 99.5 M 75.1%

A.9 CLASSIFICATION ON INATURALIST 2019

To further demonstrate the generalization ability of our AFBO, we transfer the pre-trained models to
a long-tailed large-species classification task by using iNat2019 (Horn et al., 2018). Specifically, we
fine-tune the pre-trained backbones of Swin Transformer (Liu et al., 2021) and VisionLLaMA (Chu
et al., 2024) with our AFBO on iNat2019. As listed in Table 17, our AFBO consistently enhances
the performance of these models. Specifically, AFBO improves the performance of Swin-T by 1.7%
while reducing model size. Besides, AFBO achieves performance gains of 0.8% and 0.6% over the
recently proposed Pyramid-VisionLLaMA-S and Pyramid-VisionLLaMA-L, respectively. These
results clearly demonstrate the generalization ability of our AFBO on the challenging long-tailed
large-species classification task.

18

Published as a conference paper at ICLR 2025

A.10 QUALITATIVE ANALYSIS OF AFBO

For qualitative analysis of our AFBO, we visualize the attention maps in the 12th block generated by
the original Swin-T model and Swin-T with AFBO by using Grad-CAM (Selvaraju et al., 2017). The
visualization results are shown in Fig 3 and Fig 4. From them we can see that our AFBO focuses
on more discriminative and informative regions, and thus realizes high-accuracy classification on
IN-1K. Furthermore, we compute the entropy for the features in the 12th block generated by the
original Swin-T model and Swin-T+AFBO. As shown in Table 18, the feature entropy of Swin-T
with AFBO is larger than the original Swin-T, which indicates that the features of Swin-T+AFBO
are denser than ones of Swin-T, which is consistent with the visualization results. Therefore, features
of Swin-T with AFBO involve more redundant information, which has proven very important for
model robustness (Lin et al., 2024). It accounts for the clear improvement brought by our AFBO on
OOD benchmarks.

Table 18: Comparison of AFBO and the original FFN in terms of performance and feature entropy,
where Swin-T is used as backbone.

Model Params. Flops IN-1K Feature Entropy IN-A IN-R IN-SK IN-C
(M) (G) (%) (↑%) (↑%) (↑%) (↓%)

Swin-T 28.0 4.6 81.2 2.7 21.7 41.3 29.0 62.0
Swin-T+AFBO 27.5 4.4 82.1 4.7 26.0 45.8 31.7 56.4

19

Published as a conference paper at ICLR 2025

GroundTruth Swin Swin+AFBO

goblet

beer glass

oil filter

titi monkey

steam locomotive

cocktail shaker

Figure 3: Visualization of attention maps in the 12th block generated by the original Swin-T model
and Swin-T with AFBO by using Grad-CAM (Selvaraju et al., 2017).

20

Published as a conference paper at ICLR 2025

GroundTruth Swin Swin+AFBO

Mountain lion

padlock

harvester

Japanese spaniel

Pencil box

printer

Figure 4: Visualization of attention maps in the 12th block generated by the original Swin-T model
and Swin-T with AFBO by using Grad-CAM (Selvaraju et al., 2017).

21

	Introduction
	Related Work
	Proposed Method
	Revisiting FFN for ViT
	Asymmetric Factorized Bilinear Operation (AFBO) for ViT
	Spatial-Channel Factorized Bilinear Operation
	Structured-sparsity Channel Mapping

	AFBO Variants

	Experiments
	Implementation Details
	Image Classification on ImageNet-1K
	Comparison with SOTA
	Comparison with Counterparts

	Object Detection and Instance Segmentation on COCO
	Ablation Studies on ImageNet-1K

	Conclusion
	Appendix
	Effect of group numbers of GCCM and OCCM
	Effect of Different Spatial Modeling Strategies
	Comparison of GLU with large expansion ratio of hidden dimension
	Comparison with Block-wise Channel Mapping
	Comparison with FULL channel mapping
	Comparison of ViT with Chebyshev Kolmogorov–Arnold Networks (KAN)
	Comparison of for Mobile Model
	Generalization on NLP tasks
	Classification on iNaturalist 2019
	Qualitative Analysis of AFBO

