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Abstract

While AI agents have started excelling at var-001
ious tasks, they may still struggle with com-002
plex structured generation and strategic plan-003
ning. Improvements via standard fine-tuning004
is often impractical, as solving agentic tasks005
rely on black-box API access without control006
over model parameters. Inference-time meth-007
ods offer a viable alternative, but existing ap-008
proaches require white/gray-box access, limit-009
ing their applicability to black-box settings. A010
natural black-box solution is Best-of-N (BoN)011
sampling, a simple yet effective inference-012
time technique that operates without access013
to model weights or logits. However, BoN014
is inherently static and lacks iterative feed-015
back integration, reducing its effectiveness in016
complex tasks. To address this, we propose017
IAD, an iterative decoding approach that com-018
bines iterative refinement with dynamic can-019
didate evaluation and selection guided by a020
verifier, to improve upon BoN. IAD is flexi-021
ble, model-agnostic, and seamlessly integrates022
with API-based models, making it broadly ap-023
plicable to agentic tasks. We evaluate IAD024
on Sketch2Code, Text2SQL, and Webshop,025
where it consistently outperforms baselines by026
over 15% across multiple metrics and setups.027

1 Introduction028

AI agents have demonstrated remarkable capabil-029

ities across a wide range of tasks, including natu-030

ral language understanding, code generation, and031

mathematical reasoning (Fu et al., 2024; Liu et al.,032

2024; Jiang et al., 2024; Patel et al., 2024; Huang033

et al., 2024; Liu et al., 2023). However, state-of-the-034

art AI agents still face significant challenges when035

handling tasks that require multimodal inputs and036

structured output generation (Costarelli et al., 2024;037

Kinniment et al., 2024; Liu et al., 2023; Verma038

et al., 2024; Valmeekam et al., 2024). For exam-039

ple, consider agentic tasks such as Sketch2Code040

(Li et al., 2024b), Text2SQL (Li et al., 2024a),041

and the web-navigation task Webshop (Yao et al., 042

2023). Sketch2Code requires an AI agent to gen- 043

erate structured HTML from rough sketches, often 044

resulting in incorrect generations. Text2SQL in- 045

volves translating natural language queries into 046

executable SQL statements, demanding precise 047

reasoning while avoiding semantic and logical er- 048

rors. Meanwhile, Webshop is a sequential decision- 049

making task that evaluates an agent’s ability to nav- 050

igate an e-commerce platform effectively. Across 051

these tasks, AI agents consistently underperform 052

compared to human experts, underscoring the limi- 053

tations of current agentic models in handling com- 054

plex, structured outputs and sequential reasoning 055

(Yao et al., 2023; Liu et al., 2024; Li et al., 2024b) 056

where agents achieve merely 20-30% performance 057

in task specific metrics. 058

A key challenge in improving agentic AI systems 059

is their ability to handle structured reasoning and 060

multimodal tasks effectively. One promising ap- 061

proach to addressing this challenge is fine-tuning 062

and AI alignment (Ouyang et al., 2022a). While 063

supervised fine-tuning reinforcement learning from 064

human feedback (RLHF) (Ouyang et al., 2022a,b; 065

Bai et al., 2022) has significantly enhanced the ca- 066

pabilities of generative models, it is not directly ap- 067

plicable to AI agents due to their inherently black- 068

box nature. Most agentic systems and frameworks 069

(Liu et al., 2024; Fu et al., 2024) operate in en- 070

vironments where internal model updates are in- 071

feasible, making fine-tuning-based alignment tech- 072

niques ineffective. An alternative approach is an 073

inference-time alignment, such as controlled de- 074

coding (Mudgal et al., 2024; Chakraborty et al., 075

2024; Khanov et al., 2024), which can align gener- 076

ative models without fine-tuning. However, these 077

methods still rely on access to token-level logits 078

from the reference model to steer responses, an as- 079

sumption that does not hold for black-box agentic 080

systems. These limitations highlight the need for an 081

inference-time alignment technique that is (i) com- 082
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Figure 1: Qualitative (Left) and Quantitative (Right) illustration of the performance benefit of IAD (Ours) over
Single-turn response generations using Gemini-1.5 (Base) Text2SQL task. IAD improves performance by correctly
handling query logic and joins, improving the accuracy over baseline and BoN (Best-of-N).

patible with various underlying models (without083

requiring model-specific adaptations), (ii) easy to084

implement (requires no modification of the under-085

lying models), and (iii) commercial API-friendly086

(Applicable to closed-source models that are only087

accessible via API. This leads us to an important088

question:089

How can we improve the inference alignment of090

AI Agents with Black-box access for complex and091

structured tasks?092

An immediate solution to the above question is to093

leverage Best-of-N (BoN) sampling and its variants094

(Beirami et al., 2024; Jinnai et al., 2024; Amini095

et al., 2024), as it is black-box compatible and096

logit-free, making it a natural choice for inference-097

time alignment. BoN selects the best response098

from multiple generated candidates using a veri-099

fier, improving response quality in structured tasks100

such as HTML generation and SQL query syn-101

thesis. However, despite its advantages, BoN op-102

erates in a single-shot manner, meaning it lacks103

iterative refinement or feedback integration. This104

limitation prevents it from progressively improving105

responses based on evaluation signals, reducing106

its effectiveness in complex, structured reasoning107

tasks. We summarize our contributions as follows.108

(1) We propose a critique-guided iterative decod-109

ing framework, where responses undergo iterative110

refinement through verifier-guided feedback, ensur-111

ing enhanced performance in black-box structured112

generation tasks.113

(2) Comprehensive evaluations on three agentic114

tasks. Experimental results demonstrate that our115

approach achieves improvements in complex struc-116

tured output generation tasks, over existing base- 117

lines while maintaining computational efficiency. 118

Remarks : While multi-turn iterative approaches 119

exist, most focus on train-time methods (Qu et al., 120

2024; Zhou et al., 2024; Shani et al., 2024), making 121

them unsuitable for black-box inference. Inference- 122

time methods (Madaan et al., 2023; Chao et al., 123

2024; Mehrabi et al., 2024; Muennighoff et al., 124

2025) have explored iterative refinement in spe- 125

cific contexts like jailbreak, math, and QA, but pri- 126

marily for simpler tasks rather than complex agen- 127

tic settings requiring structured generations like 128

HTML and SQL. Specifically (Chao et al., 2024; 129

Mehrabi et al., 2024) iteratively refine prompts for 130

adversarial attacks but lack direct comparisons with 131

BoN, making performance gains less interpretable. 132

Meanwhile, (Madaan et al., 2023) and its variants 133

emphasize on LLM self-evaluation rather than fo- 134

cussing on the design choices for iterative refine- 135

ment based approach for structured output genera- 136

tion. 137

2 AI Agent Alignment 138

In this section, we formalize the problem of 139

inference-time alignment for AI agents operat- 140

ing in black-box settings, particularly in complex 141

structured-generation tasks such as HTML and 142

SQL synthesis in multi-modal environments like 143

Sketch2Code, Text2SQL, and Webshop. Given a 144

task distribution T ∈ ∆, we define the optimal but 145

inaccessible agent policy π∗(·|x), which generates 146

the ideal structured response y∗ ∼ π∗(·|x) for a 147

given input prompt x. However, in the black-box 148

setting, we only have access to a reference policy 149
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Figure 2: Demonstrates the high-level schematic of our proposed approach - Iterative Decoding of AI Agents

π0(·|x), which lacks direct optimization capabili-150

ties due to constraints on model updates.151

The core challenge is to optimize inference-time152

decisions such that the generated response from153

π0(·|x) is better aligned with the outputs of π∗(·|x).154

To formally quantify this alignment gap, we de-155

fine the inference-time misalignment as an f -156

divergence between the optimal and reference poli-157

cies as df (π∗(·|x), π0(·|x)), where df (·, ·) mea-158

sures how far the black-box agent deviates from159

the ideal structured output distribution. We explore160

methods to reduce this divergence using iterative161

inference-time strategies, which we detail in the162

following sections. We assume access to a verifier163

function R(x, y), which evaluates the quality of a164

response y given the prompt x (further details in165

Appendix).166

Task specific details: In Sketch2code, the refer-167

ence policy π0(·|x) generates structured HTML y168

given the prompt x = [s, c] with wireframe sketch169

s, noisy text prompt c. The verifier R(x, y) evalu-170

ates alignment with the target layout, textual coher-171

ence, and semantic correctness, ensuring that the172

generated HTML accurately reflects the sketch’s173

structure. In Text2SQL, π0(·|x) maps a natural lan-174

guage query c to an SQL query y conditioned on the175

database schema x. The verifier R(x, y) assesses176

syntactic validity and execution correctness, identi-177

fying errors in joins, logical consistency, and query178

structure. Finally, in WebShop, the agent’s actions179

are conditioned on the full interaction history up to180

the current time step, i.e xt = [x, y<t], where x is181

the initial user query and y<t represents all previ-182

ously generated product page interactions. Based183

on this history, the reference policy π0(·|xt) gener-184

ates the next action at which involves searching or185

clicking and the corresponding product description. 186

2.1 Limitation of Prior approaches 187

In this section, we first provide a brief description 188

of the baseline approaches and then discuss their 189

pros and cons in this context. 190

Single-turn Approaches: In single-turn ap- 191

proaches, the response y ∼ π0(·|x) is directly 192

generated from the reference agent policy. his 193

method is straightforward, fast, and does not rely 194

on a verifier, making it applicable even in verifier- 195

agnostic settings. However, as evident from Fig- 196

ure 1, direct generation—even with SoTA mod- 197

els like Gemini-1.5-Pro, Gemini-1.5-Flash, GPT- 198

4, and Claude—remains highly sub-optimal for 199

complex tasks like Sketch2Code and Text2SQL, 200

also highlighting the difficulty of these tasks. Thus 201

in single-turn generation, the performance is lim- 202

ited by the quality of the reference policy π0(·|x)) 203

where larger f-divergence indicates greater mis- 204

alignment. 205

BoN sampling: Best-of-N sampling improves 206

upon single-turn generation by drawing N i.i.d 207

samples from the reference policy π0(·|x) and se- 208

lecting the highest-reward response based on the 209

verifier R(x, y). BoN is simple, parallelizable, and 210

computationally efficient and doesn’t rely on log- 211

its/model access thus applicable to black box agen- 212

tic scenarios. It works even with scalar rewards 213

and has been shown to achieve near-optimal trade- 214

offs between win rate and KL divergence (Beirami 215

et al., 2024; Amini et al., 2024). Despite its ad- 216

vantages, BoN remains limited by the quality of 217

the reference policy lacks the ability to iteratively 218

refine responses based on verifier feedback. For 219

example: BoN cannot incorporate targeted feed- 220
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back, such as refining specific HTML structures in221

Sketch2Code or correcting systematic SQL errors222

in Text2SQL (further details in exp section)223

Controlled decoding: Majority of prior decoding-224

based methods (Mudgal et al., 2024; Chakraborty225

et al., 2024) rely on access to logits for controlled226

generation , making them inapplicable in black-227

box inference settings. While block-wise decoding228

(Mudgal et al., 2024) can be applied without logits229

as well however improper block selection disrupts230

syntax and semantics for structured generation (Ap-231

pendix).232

3 Proposed Methodology233

Model Layout. Txt IoU Img IoU
Single-Turn Approaches

InternVL2-8b∗ 4.01 4.89 1.41
Llava-1.6-8b∗ 8.01 9.26 1.95
Claude-3-Sonnet∗ 14.22 15.85 6.62
GPT-4o-Mini∗ 16.29 20.84 0.72
Claude-3-Opus∗ 17.11 18.09 8.32
Claude-3-Haiku∗ 17.52 20.60 2.72
Gemini-1.5-Flash 17.85 17.50 10.77
Gemini-1.5-Pro 18.25 18.20 12.69
GPT-4o∗ 19.20 17.12 16.19
Gemini-1.5-Flash (CoT) 19.84 19.13 10.02
Claude-3.5-Sonnet∗ 22.26 25.33 9.21

Multi-Turn Approaches (Gemini-1.5-Flash)
Sk2code (N=2)∗∗ 19.41 20.45 11.81
Self-Refine (N=2) 19.51 19.35 10.71
BoN (N=2) 21.45 20.1 13.5
IAD (N=2) 24.78 23.01 15.29
IAD-fb (N=2)∗∗ 26.67 22.6 19.93
Self-Refine (N=4) 19.97 19.11 11.74
Sk2code (N=4)∗∗ 20.41 21.46 12.67
BoN (N=4) 24.02 22.59 15.91
IAD (N=4) 25.97 24.13 16.98
IAD-fb (N=4)∗∗ 29.92 25.99 22.47
Self-Refine (N=6) 19.89 18.91 11.61
Sk2code (N=6)∗∗ 21.43 21.53 13.78
BoN (N=6) 25.75 22.91 17.67
IAD (N=6) 26.75 24.91 19.12
IAD-fb (N=6)∗∗ 31.98 28.39 23.01

Table 1: Sketch2Code: Performance comparison be-
tween single-turn and multi-response generation ap-
proaches. For each of the multi-response generation
method Layout score acts as the reference metric. Table
demonstrate that IAD (Ours) consistently outperform
SoTA baseline by >10% margin.

.

To address the limitations of the existing ap-234

proaches, as discussed in the previous section, we235

propose an iterative procedure for inference time236

alignment of AI agents in this section. Before dis-237

cussing the strategy, we first discuss our key insight 238

which helped us to propose our approach. 239

Our key insight: Our objective is to generate a 240

high-quality response y∗ ∼ π∗(·|x) for a given 241

input x , while having only sampling access 242

to the reference policy π0(·|x) . This practi- 243

cal limitation inherently constrains us via the f - 244

divergence defined in equation. However, we ob- 245

serve that iteratively updating the input prompt; 246

we can progressively shift the conditional sam- 247

pling distribution toward the optimal response. 248

Formally, if we denote each iteration as t = 1 249

to T , we can define an iterative mapping over 250

multiple turns, f(y1, y2, . . . , yT ) , such that the 251

gap df (π∗(·|x), π0(·|x, f(y1, y2, . . . , yT ))) is min- 252

imized. This iterative refinement process effec- 253

tively guides the reference policy toward producing 254

responses that increasingly align with the optimal 255

distribution. 256

Proposed approach: We propose an iterative re- 257

finement approach for black-box AI agents, where 258

response generation is guided by a verifier to pro- 259

gressively improve outputs. 260

Step 1: At each step t, we sample a candidate 261

response with the reference policy π0(·|x) and iter- 262

atively refine its outputs. 263

yt+1 ∼ π0(·|x, ŷt, st, pt), (1) 264

where ŷt is the best response from previous itera- 265

tions, and pt encodes prompt-based guiding instruc- 266

tions for ex: Surpass the best response, avoiding 267

previous mistakes. 268

Step 2: Verifier-guided selection Among the gen- 269

erated response and the previous best response, we 270

select the one maximizing the reward function: 271

ŷt+1 = arg max
y∈(yt,ŷt)

R(x, y) (2) 272

Our method also has the flexibility to incorpo- 273

rate critique-based feedback, such as LLM-judge, 274

which identifies specific areas needing improve- 275

ment. This extends to 276

yt+1 ∼ π0(·|x, ŷt, ptfbt) (3) 277

where fbt highlights specific components (e.g., in- 278

correct tags in HTML, invalid SQL joins), guiding 279

refinement at a more granular level in an iterative 280

fashion. 281

3. Acceptance Criterion : A new response yt+1 282

is accepted if it provides an improvement over the 283
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Figure 3: Sketch2code: This figure provides a comparison of IAD (ours) against Best-of-N sampling (SoTA) and
single-turn generation with Gemini-1.5-Pro w.r.t metrics - (a) Layout Similarity (b) TextIoU (c) ImageIoU across
varying the number of generations (N). Figure demonstrates IAD outperforms BoN consistently across N, but as N
increases the gap reduces. Note that (b) and (c) are not directly optimized for this plot and test the generalization
performance. This demonstrates the consistency in performance across models and metrics

previous best, R(x, yt) − R(x, ŷt) > δ (where284

δ = 0 is the special case)285

4. Iterative Refinement: The accepted response286

ŷt updates the context for subsequent generations,287

progressively re-weighting the proposal distribu-288

tion toward higher-quality outputs. By condition-289

ing on ŷt, the sampling process is guided towards290

responses with higher rewards, reducing the gap291

between the reference distribution π0(·|x, ŷt) and292

the optimal distribution π∗(·|x), as shown in exper-293

imental results.294

Remark (Why it works?). The generation of bet-295

ter responses occurs through stochastic sampling296

in each iteration from the base model, conditioned297

on the best response so far (and the worst candi-298

date), followed by a pairwise comparison from the299

verifier. This feedback mechanism helps guide the300

generator to sample responses with higher expected301

rewards over the iterations. Practically, we achieve302

this by incorporating prompts like “Improve upon303

the best response while avoiding mistakes from the304

worst response.” Additionally, explicit feedback305

from a judge (e.g., verifier critiques or an LLM act-306

ing as a judge) accelerates the improvement process307

by providing targeted guidance. Intuitively, this ap-308

proach is analogous to zeroth-order optimization309

(Jamieson et al., 2012; Yang et al., 2024), where310

two sampled values from the objective function are311

sufficient to guide the optimization process toward312

the maximum. Similarly, feedback on the best and313

worst responses helps steer the model toward gener-314

ating responses that maximize rewards, reinforced315

through system prompts.316

For instance, in an SQL code generation task, the317

model might initially produce a non-functional or318

erroneous SQL statement. However, in the next 319

iteration, it generates a different SQL code, and 320

through verifier comparisons, we determine which 321

version is better—e.g., if the later version passes 322

more test cases, we infer that the model should 323

move in that direction. Using an LLM as a judge 324

makes this refinement process more targeted, as it 325

can provide explicit feedback on errors like "This 326

condition is incorrect", "Fix the syntax here", or 327

"This table join is unnecessary" and suggest im- 328

provements at each iteration. This iterative refine- 329

ment has been consistently observed in our experi- 330

ments, where initial syntax errors in generated code 331

progressively disappear through our approach. 332

4 Experimental Analysis 333

In this section, we provide detailed discussion on 334

the experimental analysis with respect to the agen- 335

tic tasks below. For all our experiments, we have 336

utilized NVIDIA A100-SXM4-40GB GPU with 337

40GB of VRAM, running on CUDA 12.4 and driver 338

version 550.90.07. 339

4.1 Sketch2code Results and Analysis 340

Evaluation metrics and Baselines. We evaluate 341

our approach against SoTA baselines using (i) Lay- 342

out Similarity, (ii) Visual IoU, and (iii) Text IoU 343

with reference HTML (Li et al., 2024b). These 344

metrics strongly correlate (≈ 90%) with human 345

satisfaction (Li et al., 2024b) (details in Appendix). 346

We use layout similarity as a verifier alongside 347

LLM-as-judge (Li et al., 2024b) to refine the gen- 348

erations for both BoN (Beirami et al., 2024) and 349

IAD. We compare our proposed approach IAD 350

against single-turn SoTA models (GPT-4o, Claude- 351
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Figure 4: Text2SQL Experiments: (a) Pass@K performance comparison between queries generated using our
approach and Few-shot ICL with Gemini-1.5-flash. (b) Majority@K performance comparison between queries
generated using our approach and Few-shot ICL with Gemini-1.5-flash. (c) Accuracy comparison between the
best-of-N method and our approach for Gemini-1.5-flash. (d) Pass@K performance comparison between queries
generated using our approach and Few-shot ICL with Gemini-1.5-pro. (e) Majority@K performance comparison
between queries generated using our approach and Few-shot ICL with Gemini-1.5-pro. (f) Accuracy compari-
son between the best-of-N method and our approach for Gemini-1.5-pro. IAD consistently outperforms all the
baselines across the settings.

3, InternVL2, Gemini-1.5-Flash, CoT) and multi-352

response approaches (BoN, Sk2code). We compare353

the performance on the same evaluation setup and354

dataset as used in (Li et al., 2024b).355

Initial results. Figure 9 and Table 1 qualitatively356

and quantitatively show that single-turn approaches,357

including SoTA models, fail to maintain the layout358

structure, block positions, text placement, and siz-359

ing, leading to poor alignment with the reference360

layout. These models score low across all three361

metrics. Multi-response methods significantly im-362

prove performance, even with N=2 samples. BoN,363

using the weaker Gemini-1.5-Flash, outperforms364

single-turn models. With N=4, BoN surpasses365

SoTA single-turn models by 15%, accurately cap-366

turing block positioning, title blocks, and overall367

layout. Performance monotonically improves with368

more responses, with layout scores rising from369

20.41 to 25.7 as N increases to six.370

Benefits of IAD (ours). BoN struggles with fine-371

grained layout details and often repeats positional372

errors across all N generations (Figure 1). In con-373

trast, IAD iteratively refines responses, leading to374

a ≈ 15% improvement over BoN and single-turn 375

SoTA (Claude) in just two iterations (N=2), even 376

with the simpler Gemini-1.5-Flash model (Table 377

1). At each iteration, IAD incorporates the best and 378

worst HTML outputs as context, along with refine- 379

ment instructions. This enables progressive learn- 380

ing of layout components and image semantics, sig- 381

nificantly enhancing output quality. As iterations 382

increase, IAD achieves a high layout score of 26.75, 383

outperforming all baselines with the same number 384

of generations. We also evaluate Image and Text 385

IoU scores to check for reward over-optimization. 386

However, as shown in Table 1 and Figure 3, text 387

and image similarities also improve, confirming 388

consistency in IAD’s performance gains over BoN. 389

Notably, with more generations, the performance 390

gap between IAD and BoN narrows. 391

Ablation. We also consider the sensitivity of the 392

token length of the context plays a critical role in 393

this case, where providing the entire HTML can 394

affect the entropy of the distribution, and thus, over- 395

conditioning can hinder structured generation by 396

reducing diversity and exploration. Thus, we pro- 397
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vide only the top 300-400 tokens of the best (and398

worst) HTMLs. However, we remark that if there399

were a judge to highlight which portion of the code400

needs to be updated, that would be more targeted.401

Hence, we incorporate LLM-judge (Gemini-1.5-402

Pro), which has the reference policy, and it checks403

with the current response and provides feedback on404

improvement and sometimes snippets of HTML as405

well (however, we restrict that to 200 tokens 5-6%406

of the original HTML). This leads to a significant407

improvement of 36% for the layout score with408

just two iterations and a final score of 31.98 with409

6 iterations, demonstrating the importance of itera-410

tive approaches for agent performance. However,411

Sk2code (Li et al., 2024b) also performs feedback412

based design with LLM as a judge, however their413

approach doesn’t yield major improvements for sev-414

eral models like Gemini-1.5, which we hypothesize415

can be due to the incorrect design of the method416

and also issues in the GPT-4 judge. Overall, in all417

our analyses, our findings remain consistent, where418

IAD outperforms baselines.419
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Figure 5: Sketch2code : Illustrates the improvement of
our proposed approach over 4-turns w.r.t Layout simi-
larity score for 4 examples. It shows that for most of
the examples, there is a clear improvement in the scores
over the iterations

4.1.1 Text-to-SQL Results and Analysis420

In this section, we detail the experiments con-421

ducted on the BIRD text-to-SQL benchmark (Li422

et al., 2024a). Our evaluation involved two models,423

Gemini-1.5-pro and Gemini-1.5-flash, to test our424

proposed approach and compare it against baseline425

methods.426

IAD vs test-time-compute methods: We com-427

pared our method to two baselines: few-shot chain-428

of-thought prompting and the best-of-N approach,429

both implemented using the same models. These 430

comparisons highlight the effectiveness of our 431

multi-turn strategy in narrowing the gap between 432

the reference distribution and the optimal distri- 433

bution. Our multi-turn approach addresses com- 434

mon issues in single-turn generation, which can 435

produce SQL queries with syntax and semantic er- 436

rors. By incorporating multiple rounds of response 437

selection and feedback, our method effectively cor- 438

rects these errors. Moreover in the multi-turn set- 439

ting, the reward model benefits from observing 440

query execution results, allowing it to more read- 441

ily identify syntax and semantic issues. For the 442

few-shot prompting baseline, we employed two 443

metrics—Pass@K and Majority@K—to evaluate 444

the quality of the generated candidate queries. As 445

shown in Figure 4, our approach consistently pro- 446

duces candidate sets with higher correctness. In 447

contrast, the best-of-N method aggregates results; 448

therefore, we used the original execution accuracy 449

for its evaluation. To compare the two, we com- 450

puted accuracy across different values of N. For 451

our method, we selected the best query among the 452

N candidates using self-consistency (Wang et al., 453

2022)—executing the queries, grouping them by 454

their execution results into buckets, and then choos- 455

ing the query from the largest bucket as the most 456

consistent answer, as illustrated in Figure 4. 457

Method Exe Acc
DIN-SQL + GPT-4 50.72
DAIL-SQL + GPT-4 54.76
MAC-SQL + GPT-4 57.56
MCS-SQL + GPT-4 63.36
E-SQL + GPT-4o 65.58
IAD (Ours) + GPT-4o 65.97
IAD (Ours) + Gemini-1.5-pro 68.05

Table 2: Text2SQL - Execution accuracy comparison
of previous works with our proposed approach

IAD vs Text-to-SQL baselines We also com- 458

pare our approach with several baseline methods 459

in the text-to-SQL domain that do not rely on fine- 460

tuning on the BIRD train set, ensuring a fair com- 461

parison. These baselines originate from different 462

families of methods, for example, MCS-SQL (Lee 463

et al., 2024) is a variant of the best-of-N method, 464

DIN-SQL (Pourreza and Rafiei, 2024) and DAIL- 465

SQL (Gao et al., 2023) employ human-engineered 466

few-shot prompts to achieve higher performance, 467

and MAC-SQL (Wang et al., 2023) is a multi- 468

agent approach designed specifically for text-to- 469
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SQL tasks. The results of these comparisons are470

provided in Table 2, where we achieved the highest471

execution accuracy by 3% margin compared to the472

second best method.473

4.2 Webshop Results and Analysis474

Models (PR) (SR)
Lemur-70b 71 11
Mistral-7b 68.2 13.9
Vicuna-13b-16k 73 21
Gemini-1.5-Flash 71.3 26.5
GPT-3.5-Turbo-16k 73 27
Text-Davinci-003 72 29
Gemini-1.5-Pro 73.5 29.3
BoN-SC + Gemini-1.5-Pro 74.12 30.31
DeepSeek-67b 72 31
GPT-3.5-Turbo 76 35
IAD + Gemini-1.5-Pro 71 38.3
GPT-4 75.8 38.5
GPT-4o 73.1 40.3
BoN-SC + GPT-4o 74.21 41.09
IAD + GPT-4o 74.6 44.68

Table 3: Webshop- Progress Rate (PR) and Suc-
cess Rate (SR) for Models in the Webshop Environ-
ment(Yao et al., 2023). Perform a comparison of IAD
(with two models GPT-4o and Gemini-1.5-Pro) against
SoTA baselines for the Webshop Leaderboard with the
evaluation similar to followed in Agentboard (Ma et al.,
2024)

For all the experiments, we use greedy decoding475

with temperature=0.1, top p = 1.0 for our results.476

For BoN-SC, we try to vary the temperature to gen-477

erate more diverse responses. We compare IAD*478

against SoTA baselines, including Lemur, Mistral,479

Vicuna, Gemini, and GPT models, in the Webshop480

environment, where agents interact with webpages481

through search and click actions. Performance is482

measured via progress rate (PR) and success rate483

(SR), with SR being the key metric for exact at-484

tribute satisfaction. We follow the same evalua-485

tion methodology as AgentBoard (Ma et al., 2024).486

IAD* consistently outperforms baselines, achiev-487

ing over 25% improvement in SR across most mod-488

els, with Gemini and GPT-4 variants performing489

best. To further enhance performance, we introduce490

feedback-based iterative refinement, where agents491

receive prompts like "Reflect on your previous ac-492

tion and improve upon it", "Improve the previous493

actions focusing on key-attributes", "Follow the for-494

mat to be action.name-’search’ and action.params495

-’red tshirt....’" for allowing LLMs to iteratively re-496

fine their decisions. A verifier-based LLM judge497

1 2 4
No of responses (N)

30

35

40

45

50

55

60

P
ro

gr
es

s 
R

at
e

IAD
BON-SC
Baseline

Figure 6: Webshop : Progress-rate comparison of IAD
over Best of N with Self-consistency (BON-SC) and
baseline on random selected 20% of the total evaluation
set using weaker Gemini-1.5-Flash-01 (weaker model).
Figure highlights the importance of iterative feedback
while generation. Evaluation was done with a weaker
model and on a subset of eval examples.

determines when to iterate or finalize actions. We 498

also compare IAD* with BoN-SC (Best-of-N with 499

Self-Consistency, N=4) but find that BoN provides 500

limited improvement due to low diversity in gener- 501

ations, even with temperature = 0.6. Beyond this, 502

higher temperatures introduce irrelevant attributes, 503

reducing effectiveness. In contrast, IAD* improves 504

search queries by refining unwanted attributes, en- 505

hancing focus on key parameters. Additionally, to 506

show the effectiveness, we perform with a weaker 507

version of Gemini-1.5-Flash-01 and perform the ex- 508

periment, where we observe that it needs more iter- 509

ations to actually follow the action format, without 510

this iteration it fails to provide response in a mean- 511

ingful format. On the other-hand, we approach the 512

same with BoN-SC which couldn’t improve much 513

due to the issue in diverse response generation as 514

highlighted before. 515

5 Conclusion 516

In this work, we proposed IAD : an iterative decod- 517

ing approach for AI agent alignment with black- 518

box access which highlights the effectiveness of 519

iterative decoding (guided by a verifier) for these 520

complex agentic tasks. IAD enhances prior base- 521

lines by dynamically integrating verification and 522

critique mechanisms to iteratively refine and im- 523

prove response quality. Experimental results across 524

diverse domains show that our approach consis- 525

tently outperforms several existing baselines in- 526

cluding highly competitive BoN highlighting its 527

ability to bridge the gap between reference and 528

optimal policies at inference time. 529
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6 Limitations530

While IAD- our iterative decoding approach im-531

proves upon prior baselines by leveraging verifier532

feedback, it is inherently sequential, leading to in-533

creased computational overhead compared to eas-534

ily parallizable BoN approaches. Addressing this535

trade-off between quality improvement and com-536

putational efficiency remains an important area for537

future research. Efficient optimization approaches,538

such as adaptive stopping, speculative decoding,539

and more efficient verifier-guided selection, could540

improve the efficiency in iterative decoding for541

agentic tasks. Additionally, verifier and judge plays542

a crucial role in our approach. Thus a more con-543

crete investigation and selection of a judge for these544

challenging tasks is a valid and crucial next step545

of our work. We highlight that this work is of546

academic nature and has no direct or immediate547

harmful impacts to society. However, since this548

work deals with improving AI agents, it should be549

done under safety protocols and guidelines. We550

want to highlight that this study is limited to En-551

glish language text primarily due to the nature of552

open-source datasets used.553
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A Appendix769

A.1 Detailed Environment Description770

1. Text-to-SQL Text-to-SQL serves as a critical interface between natural language and structured query771

languages by enabling users to translate natural language queries into executable SQL commands. This772

functionality empowers individuals without SQL expertise to interact with complex databases, thereby773

facilitating data exploration, informed decision-making, automated analytics, and advanced feature774

extraction for machine learning. Generally, a Text-to-SQL system receives a natural language question and775

any pertinent metadata about the tables and columns, which serves as external knowledge to aid in database776

comprehension. Consequently, such systems are responsible not only for interpreting user intent and777

identifying relevant information from a potentially vast set of tables and columns but also for generating778

SQL queries that may include multiple conditions—a process that is inherently reasoning intensive. To779

evaluate our proposed framework, we employ the BIRD benchmark (Li et al., 2024a), a challenging and780

widely used dataset in the Text-to-SQL domain. BIRD comprises an extensive collection of 12,751 unique781

question-SQL pairs drawn from 95 large databases with a total size of 33.4 GB. The benchmark spans782

more than 37 professional domains, including blockchain, hockey, healthcare, and education, making it a783

comprehensive resource for assessing the robustness and generalizability of Text-to-SQL systems. The784

primary metric for model comparison in this domain is execution accuracy (EX), where the ground truth785

SQL query and the predicted SQL query are both executed over the target database, if they both generate786

same sets of results the accuracy for the predicted SQL query is considered as accurate.787

(a) Sketch2Code Environment (b) Text-to-SQL Environment

(c) Webshop Environment

Figure 7: These three figures given an overview of three diverse and challenging agentic tasks that we consider
to evaluate the performance of agents with our proposed approach vs baselines -(a) Sketch2code(Li et al., 2024b)
(b)Text2SQL (Li et al., 2024a) and (c) Webshop (Yao et al., 2023)

2. Sketch2code: Sketch2code (Li et al., 2024b) challenges and evaluates the multi-modal capabilities788

of agent where the objective is transform wireframe-style rough userk sketches into functional HTML789

prototypes with embedded CSS. Sketch2Code uniquely tests multi-modality, requiring structured code790

generation from imprecise visual input, often leading to misaligned text, incorrect spacing, and structural791
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Figure 8: Sketch2code: This figure provides a comparison of IAD (ours) with Best-of-N sampling (SoTA) and
single-turn generation with Gemini-1.5-Flash for the metrics - (a, d) Layout Similarity (b, e) TextIoU (c, f) Im-
ageIoU across varying the number of generations (N). Top 3 rows, the optimization is done taking Text IOU as the
verifier and the bottom 3 rows with Image IOU as the verifier. So, this also shows both the generalisability and
performance improvement of IAD over baselines.

inconsistencies. This leads to challenges such as misaligned text, incorrect spacing, missing components, 792

structural inconsistencies, making it an extremely challenging benchmark for multimodal LLMs. The 793

complexity of this task arises from: ambiguity in hand-drawn sketches, where component boundaries, 794

spacing, and positioning are not precisely defined. The evaluation of the generation is done primarily 795

with three key metrics : Layout Similarity, Text IOU, Image IOU. Layout Similarity (IoU-based metrics): 796

Intersection-over-Union (IoU) is computed for different UI components (e.g., buttons, images, text blocks) 797

to measure how well their positions match the reference. Intersection-over-Union (IoU) is computed for 798

different UI components (e.g., buttons, images, text blocks) to measure how well their positions match the 799

reference implementation. Text-IOU similarly measures how accurately the generated text aligns with the 800

reference design. Image IOU uses CLIP embeddings to compare the visual appearance of the generated 801

webpage with the reference design and evaluates color similarity, element positioning, and component 802

rendering. These metrics provide a reliable way to measure the quality of the generated response and 803

strongly correlates with human judgement. Evaluations are done also with LLM as judge to compare the 804

performance. 805

3. Webshop is a large-scale, web-based interactive environment designed to test an AI agent’s capability 806

to perform sequential decision-making in an online shopping scenario under sparse feedback (Yao et al., 807

2023). The environment is modeled as a partially observable Markov decision process, where the agent 808

navigates a simulated e-commerce platform to fulfill a user’s product request based on natural language 809

instructions. At each step, the agent receives an observation in the form of a webpage—such as search 810

results, product details, or checkout options—and must decide on an action, including searching for a 811

product, clicking on an item, or selecting options. The evaluation is based on success rate (SR), which 812

measures whether the agent successfully selects a product that matches all specified criteria (attributes, 813

price, and options), and task score, which represents the overall alignment of the final selection with the 814

given instruction. The WebShop environment presents significant challenges, including sparse rewards 815

(since feedback is only provided at the end of an episode), the need for strategic backtracking and 816

exploration, and handling noisy or ambiguous natural language instructions. This setup makes WebShop a 817
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Algorithm 1 Proposed Approach: Iterative Decoding Black-Box Inference with AI Agents

Require: Proposal distribution π0(·|x, ŷt), input prompt x, reward function R(x, y), threshold δ > 0,
number of iterations T

Ensure: Final accepted response ŷT
1: Initialize: Sample an initial response y0 ∼ π0(·|x)
2: Compute its reward r0 = R(x, y0)
3: Accept the initial response: ŷ0 ← y0 and r∗ ← r0
4: for t = 1, 2, . . . , T do
5: Sample a new candidate response yt ∼ π0(·|x, ŷt−1)
6: Compute its reward rt = R(x, yt)
7: if rt − r∗ > δ then
8: Accept the candidate: ŷt ← yt and r∗ ← rt
9: else

10: Reject the candidate: ŷt ← ŷt−1
11: end if
12: end for
13: return ŷT

rigorous benchmark for evaluating long-horizon reasoning, language understanding, and decision-making818

in real-world-like online navigation scenarios.819

A.2 Limitation of Single-turn Approach820

In this section we characterize the performance gap ∆ as the difference between the reward the optimal or821

ground-truth agent is achieving vs the reward achieved by the reference achieved by the reference agent822

policy.823

∆ = Ey∼π∗(·|x)[R(x, y)]− Ey∼π0(·|x)[R(x, y)]824

≤ sup
R∈R

Ey∼π∗(·|x)[R(x, y)]− Ey∼π0(·|x)[R(x, y)]825

≤ ‖R‖maxdTV(π∗(·|x), π0(·|x)),826

where R(x, y) represents the reward function measuring the quality of the generated response, and827

dTV(π∗(·|x), π0(·|x)) is the total variation (TV) distance between the optimal policy π∗(·|x) and the828

reference policy π0(·|x) (Mroueh, 2024). This result demonstrates that the performance gap ∆ is829

inherently limited by the quality of the reference agent policy π0(·|x), as measured by its divergence from830

the optimal policy. Thus, if π0(·|x) is close to π∗(·|x) (in terms of TV distance), the performance gap will831

be small, resulting in near-optimal responses and viceversa.832

A.3 Motivation of our Proposed approach833

In this section, we provide an intuitive explanation of why our proposed approach works via connecting834

to the equivalence of the reward function and the log-probability of the optimal policy. In our proposed835

approach, at each turn t, the response yt is sampled from the proposal distribution π0(·|x, ŷt−1) which836

refines the sampling process by updating the "context" of the generation based on the previously accepted837

response. Next, we estimate the mean of this updated distribution which can be given as :838

µt = Eyt∼π0π0(yt|x, ŷt−1) = g(x, ŷt−1)839

which shows that the updated policy mean is a function g(x, ŷt−1) of the best response till the current step.840

It is important to note that at any point, we are selecting the response yt which has the reward R(x, y). A841

keey insight from the alignment literature (Rafailov et al., 2023) lies in the fact , that there exists a direct842

equivalence between the reward function and the corresponding optimal policy under the reward as:843

log π∗(y|x) = − logZ(x) +
1

β
R(x, y) (4)844
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Thus the above equation highlights that maximizing the reward is equivalent to maximizing the log- 845

probability of the optimal policy. Our acceptance criterion ensures a response yt is retained only if 846

it improves upon the previous best ŷt−1, thus enacts a step-wise refinement of the policy toward an 847

optimal target policy π∗(·|x), where the verifier R(x, y) plays the role of the unnormalized log probability 848

of the optimal policy. Specifically, while comparing the responses y1, y2 using the reward function 849

R(x, y), we estimate R(x, y2) − R(x, y1) which is equivalent to evaluating log π∗(y2|x)
π∗(y1|x) . Thus, the 850

acceptance/rejection mechanism ensures that the refinement process is guided toward responses with 851

higher rewards, progressively reducing the gap between the proposal distribution and the target distribution. 852

This is an intuitive explanation of our proposed approach and providing a rigorous connection and 853

convergence analysis of our algorithm remains a valid scope of future research. Also this highlights the 854

importance of an accurate verifier, since an erroneous verifier might bias the proposed approach and a 855

detailed investigation of the same is a valid direction of future research. 856

(a)

Figure 9: Sketch2code: Qualitative evaluation of the generated HTMLs with BoN sampling (N=4) corresponding
to the user-sketch (left-bottom) and reference html (left-top). The figures show that BoN performs much better in
matching the reference HTML but still misses specific properties like rectangular structue, position of text, relative
positioning of smaller blocks etc.

A.4 Detailed Experimental Analysis 857

A.5 Text-to-SQL Detailed Results and Analysis 858

In this section, we detail the experiments conducted on the BIRD text-to-SQL benchmark (Li et al., 859

2024a). For these experiments, we employed the Gemini-1.5-pro and Gemini-1.5-flash models both 860

to generate actions at each state and as judge models to predict the reward. At each state, the LLM is 861

provided with the database schema and the user’s query, based on which it generates a draft SQL query. 862

This draft query is then evaluated by the judge model, which also produces feedback on how to improve 863

the draft. The LLM uses this feedback to generate a revised query, establishing a self-correction loop. 864

Finally, the answer with the highest reward value is selected as the candidate output. This process can be 865

repeated to generate multiple candidate SQL queries. We then apply self-consistency (Wang et al., 2022) 866

by executing all candidate queries over the database, grouping them based on their execution results, and 867

selecting a query from the largest result cluster as the final answer. In the following sections, we first 868

compare our proposed method with the widely used few-shot prompting approach in terms of Pass@k 869

performance and final accuracy after self-consistency (Majority@K) using execution accuracy as the 870

metric in order to demonstrate that using our method we can generate a pool of candidates with a higher 871
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Figure 10: Sketch2code: Provides a qualitative verification of layout score as a metric and corresponding corre-
lation to human judgement. It is evident that HTMLs with higher match with the reference layout (right-top) and
user sketch(right-bottom) has higher layout score and vice-versa showing that its a valid metric.

quality. Subsequently, we compare our approach with the best-of-N approach which is one of the strong872

baselines as a test-time compute approaches to demonstrate the effectiveness of the proposed framework.873

Finally, we compare our method with all previously proposed test-time methods on the BIRD development874

set benchmark, excluding works that rely heavily on fine-tuning LLMs (Pourreza et al., 2024; Talaei et al.,875

2024; Maamari et al., 2024; Gao et al., 2024) for a fair comparison.876

Comparing with Few-shot prompting We compared our method with the widely used few-shot877

in-context learning approach for text-to-SQL tasks. We evaluated and reported the Pass@K and self-878

consistency performance for up to 10 candidates using both the Gemini-1.5-flash-002 and Gemini-1.5-pro-879

002 models, as illustrated in the Figure 4. As demonstrated by these figures, our approach consistently880

outperforms the few-shot in-context learning method by a significant margin on both pass@K and881

self-consistency scores.882

Comparing with Best-of-N In this section, we compare our proposed framework with the well-883

established best-of-N method to highlight the importance of searching through possible answers based on884

their rewards. For this comparison, we generated up to 20 candidate queries for each sample in the BIRD885

development set and utilized the model itself to select the best answer from the candidates. As shown in886

the Figure 4, our proposed method outperformed the best-of-N approach for both the Gemini-1.5-pro and887

Gemini-1.5-flash models, demonstrating the significance of incorporating a feedback loop to enhance the888

quality of candidate responses.889

Comparison with Previous works In this section, we compare our approach with Gemini-1.5-Pro890

and other previous methods that rely on test-time computation. As shown in the Table 2, our method891

outperforms all previous approaches, demonstrating the effectiveness of the proposed framework in892

leveraging test-time computations to enhance model performance on the BIRD benchmark development893

set.894
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Sketch2code : Oracle Judge Prompt for providing Feedback

Input: Act as you are a front-end designer working with a code agent to implement an
HTML webpage . You are provided with two images : the first image is the reference
webpage, and the second one is the current implementation from the code agent . Note that
images have already been replaced with blue rectangles as the placeholder. The task is to
carefully compare the agent ’s implementation against the reference webpage , and provide
feedback to help the agent make its implementation closer to the reference webpage . Your
feedback should be specific to the differences in layouts and visual components on the two
webpages. If required provide small code snippets to help the user-agent but provide very
few lines. Don’t focus on the style components too much and focus on layout similarity and
visual match with the reference webpage.

Sketch2code : Feedback from LLM as a Judge (Self Verification)

Feedback provided : Iter1 : The HTML structure and CSS styling do not reflect the pro-
vided wireframe. Iter2 :The layout needs to be revised to accurately represent the sketch’s
two-column image section and the distribution of text blocks. Iter 3: The layout of the
text blocks and image containers does not accurately reflect the provided wireframe. The
layout uses flexbox but doesn’t accurately reflect the sketch’s proportions and image place-
ment. The large image should be centered and the smaller images should be positioned to
the left of their respective text blocks. Iter4 : Implement a more precise grid-based lay-
out using CSS grid or flexbox to achieve the correct positioning and sizing of all elements.
Iter 5: The provided HTML closely resembles the wireframe but still needs significant lay-
out adjustments. Use CSS Grid to precisely position and size all elements according to the
wireframe’s proportions.

A.6 Sketch2code 895

For Sketch2code (Li et al., 2024b), we provide a detailed comparison of our approach against SoTA 896

baselines on several evaluation criterion and metrics. We used the hyperparameter setting of temperature 897

= 0.5, max tokens = 4096, top p = 1.0, frequency/repetition penalty = 0.0, and presence penalty = 0.0 898

for all our results. For the metrics, we consider metrics centring 1.Layout Similarity, 2. Visual IoU, 3. 899

Text IoU with reference HTML following (Li et al., 2024b). These metrics offer a comprehensive and 900

reliable assessment of HTML generation quality, demonstrating a strong correlation (9̃0%) with human 901

satisfaction, as shown in (Li et al., 2024b) (further details in Appendix). Hence, we use Layout similarity 902

as a verifier along with LLM-as-judge (Li et al., 2024b) to guide the generations for both BoN (Beirami 903

et al., 2024) and IAD. We report comparison with baseline single-turn approaches including SotA models 904

GPT-4o, Claude-3, InternVL2, Gemini-1.5-Flash, CoT and variants along with multi-response generation 905

approaches including BoN, Sk2code and IAD (Ours). Single turn approaches even from SoTA models 906

fail to match the layout structure, position of blocks, textual content, size of the blocks etc in the given 907

user-sketch, causing a mismatch w.r.t to the reference layout as can be clearly seen in Figure and achieves a 908

low score in-terms of all the three metrics in-comparison with multi-response generation approaches even 909

with N=2. Best-of-N sampling (BoN) with a weaker model Gemini-1.5-Flash improves over single-turn 910

approaches and , with N = 4 generations, it outperforms SoTA models with single-turn responses by 911

a margin of 15-18%, by correctly identifying the block position, title block, overall layout structures 912

etc. We see monotonic improvement in performance over the number of responses as the layout score 913

improves from 20.41 to 25.7 with 6 responses. However, BoN struggles in incorporating fine-grained 914

details about layout structure and makes some-times makes repetitive mistakes in the position of block in 915

all the N generation for the prompts (as shown in Fig). Our proposed approach IAD, mitigates this gap by 916

iteratively improving the responses and as shown in Table 1, it achieves a major improvement of 15% 917
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Figure 11: Sketch2code : Top row shows the user sketch, reference image and the performance of IAD over
iterations. The figure highlights improvement of IAD over 4-turns w.r.t Layout similarity score (1/100) for 3
examples. It shows clear improvement over iterations. We also qualitatively analyse the snapshots of the HTMLs
generated by the agent, which demonstrates that over iteration the qualitative performance improves and matches
the input sketch/reference HTML.

from BoN as well as single-turn SoTA Claude with just 2 iterations (eq : N=2) even with simpler model918

Gemini-1.5-Flash. At each iteration, we pass the best and worst HTML as a context along with instruction,919

for generating the next iteration. We observe IAD is able to learn fine-grained layout components, image920

semantics over iterations with the context of the Best and Worst HTML. We see that with increased921

iterations, performance of IAD improves reaching to a very high layout score of 26.75, outperforming all922

baselines with same generations. We also report the Image and Text IoU scores while optimizing with the923

layout-score, to check for reward-overoptimization of the metric.924

However, as can be observed in Table 1 and Figure-3, that text and image similarities are also improving925

over the iterations and our findings regarding comparison with baseline BoN are consistent with the926

same. However, we observe that with increase number of generations the performance gets closer to927

BoN. We also consider sensitivity of the token-length of the context plays a critical role in this case,928

where providing the entire HTMLs can affect the entropy of the distribution, and thus over-conditioning929

can hinder structured generation by reducing diversity and exploration (as shown in Figure ). Thus,930

we provide only the top 100-200 tokens of the best (and worst) HTMLs. However, it is clear that if931

there would be a judge to highlight which portion of the code needs to be updated that will be more932

targeted. Hence, we incorporate LLM-judge (Gemini-1.5-Pro) which has the reference policy and it933

checks with the current response and provide feedback on improvement and sometimes snippets of HTML934

as well (however, we restrict that to 100 tokens 5-8% of the original HTML). This leads to a significant935

improvement of 36% for the layout score with just two iteration and final score of 31.98 with 6 iterations,936

demonstration the important of iterative approaches for agent performance. However, Sk2code (Li et al.,937

2024b) also performs feedback based design with LLM as a judge, however their approach doesn’t yield938

major improvements for several models like Gemini-1.5, which we hypothesize can be due to the incorrect939

design of the method and also issues in the GPT-4 judge. Overall, in all our ablation our findings remain940

consistent where IAD outperforms baseline by a major margin.941

Verifier and Reward function: We provide qualitative evaluation of considering layout similarity as a942

verifier due to its Interpretability and also correlation with human judgements also shown in (Li et al.,943

2024b). Additionally, we want to highlight that Sketch2code represents an extremely complex and944
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challenging task for using self-LLM as a judge (Madaan et al., 2023) (without significant prompting) 945

to compare between two generated HTMLs (by the agent) with its similarity to the input sketch and 946

prompt. The input sketch has entirely different distribution than the image snapshot of the generated 947

HTML which makes it harder for LLM as a judge to perform which is one of the reason we hypothesize 948

that Self-refine (Madaan et al., 2023) type approaches doesn’t provide improvements as shown in Table 1. 949

On the other-hand, although LLM judge (oracle) provides more meaningful feedback when it has access 950

to the reference HTML, however needs to be prompted efficiently to generate meaningful responses. We 951

accept the fact that our judge (oracle) for the feedback was allowed to provide more context than the one 952

used in (Li et al., 2024b). However, the performance improvement in (Li et al., 2024b) feedback approch 953

is very less and we hypothesize major reasons can be not performing IAD type approach, where we take 954

previous best response (HTML) in the context along with specific instructions. Even for LLM-judge 955

(oracle), we leverage feedback along with the previous best and worst HTMLs, which helps in providing 956

more meaningful context to the agent in generating the correct HTML. 957

Figure 12: Text2SQL: An example of two responses is presented: the first response, generated using our proposed
approach, is correct, while the second response, produced using the best-of-N method, is incorrect.

Webshop - Task Execution Flow - IAD (Success)

Search: "blue color toothbrushes" −→ Product List Found −→ Selected: Hoomall
Kids U-Shaped Toothbrush (Blue, $10.95) −→ Clicked on Product −→ Purchased
−→ Task Completed (Reward: 1.0)

958
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Query Search Attempts Results Found Final Outcome

Men’s Black Loafers (Size
10.5, Rubber Soles, <60)

Multiple searches, clicked
"Next" repeatedly, found
unrelated shoes (sneakers,
sandals, pumps)

None matched the require-
ment

Task Failed - No
suitable options
found (Reward:
0.0)

Blue Diamond Almonds
(Gluten-Free, Pecan, 12
Pack)

Repeated searches, en-
countered "No Search but-
ton" error multiple times,
retrieved irrelevant snack
items

Nut Thins Crackers, Keto
Bars, M&M’s Chocolate

Task Failed - No rel-
evant product found
(Reward: 0.0)

Folding Storage Box
Ottoman (Faux Leather,
60x40x40cm, <170)

Initial product matched
but had incorrect size, next
searches returned irrele-
vant furniture items

Found an ottoman, but
wrong size & overpriced

Task Failed - No
exact match found
(Reward: 0.0)

Official Cleveland Uni-
versity Drawstring Shorts
(Small, Charcoal, Ma-
chine Washable, <60)

Search led to incorrect
results (Marvel T-Shirts,
Women’s Yoga Shorts),
agent attempted refine-
ment but couldn’t find ex-
act product

No official Cleveland Uni-
versity shorts found

Task Failed - No
suitable options
found (Reward:
0.0)

Organic Hair Growth
Serum Roller Set (For All
Hair Types, <60)

Search retrieved some
serums but none matched
exact request (wrong
quantity or expensive)

Found a set, but incorrect
product version

Task Failed - No
exact match found
(Reward: 0.0)

Table 4: Webshop : Highlights several Failure Cases of the Baseline Agent (Gemini-1.5-Pro) in Retrieving Rele-
vant products given the task. This represents the challenge of current model in performing strategic exploration in
Webshop.

Webshop - Task: Buy a Folding Storage Box Ottoman- IAD (Success)

Size: 60x40x40cm Material: Faux Leather Price: Under $170

• Search→ "folding storage box ottoman faux leather 60x40x40cm"

• Product List→ Found 50 results

– Ottoman Footstool (40x40x40cm) - $149.97
– Other options did not match size or price

• Click→ Select "Ottoman Footstool"

• Size Selection→ Click "60x40x40cm"

• Buy Now→ Proceed to checkout

• Task Completed
959
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Webshop - Task: Buy a Vegan, Gluten-Free Protein Shake - IAD (Success)

Requirements: 100% Vegan, Gluten-Free, Soy-Free Price: Under $40

• Search→ "gluten free vegan plant based protein shake"

• Product List→ Found 50 results

– OWYN Protein Shake (Cold Brew Coffee, 12oz) - $11.07
– Other products exceeded price or dietary restrictions

• Click→ Select "OWYN Protein Shake"

• Buy Now→ Proceed to checkout

• Task Completed
960
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