Review, Refine, Repeat: Iterative Decoding of AI Agents with
Dynamic Evaluation and Selection

Anonymous ACL submission

Abstract

While AI agents have started excelling at var-
ious tasks, they may still struggle with com-
plex structured generation and strategic plan-
ning. Improvements via standard fine-tuning
is often impractical, as solving agentic tasks
rely on black-box API access without control
over model parameters. Inference-time meth-
ods offer a viable alternative, but existing ap-
proaches require white/gray-box access, limit-
ing their applicability to black-box settings. A
natural black-box solution is Best-of-N (BoN)
sampling, a simple yet effective inference-
time technique that operates without access
to model weights or logits. However, BoN
is inherently static and lacks iterative feed-
back integration, reducing its effectiveness in
complex tasks. To address this, we propose
IAD, an iterative decoding approach that com-
bines iterative refinement with dynamic can-
didate evaluation and selection guided by a
verifier, to improve upon BoN. IAD is flexi-
ble, model-agnostic, and seamlessly integrates
with API-based models, making it broadly ap-
plicable to agentic tasks. We evaluate IAD
on Sketch2Code, Text2SQL, and Webshop,
where it consistently outperforms baselines by
over 15% across multiple metrics and setups.

1 Introduction

Al agents have demonstrated remarkable capabil-
ities across a wide range of tasks, including natu-
ral language understanding, code generation, and
mathematical reasoning (Fu et al., 2024; Liu et al.,
2024; Jiang et al., 2024; Patel et al., 2024; Huang
etal., 2024; Liu et al., 2023). However, state-of-the-
art Al agents still face significant challenges when
handling tasks that require multimodal inputs and
structured output generation (Costarelli et al., 2024;
Kinniment et al., 2024; Liu et al., 2023; Verma
et al., 2024; Valmeekam et al., 2024). For exam-
ple, consider agentic tasks such as Sketch2Code
(Li et al., 2024b), Text2SQL (Li et al., 2024a),

and the web-navigation task Webshop (Yao et al.,
2023). Sketch2Code requires an Al agent to gen-
erate structured HTML from rough sketches, often
resulting in incorrect generations. Text2SQL in-
volves translating natural language queries into
executable SQL statements, demanding precise
reasoning while avoiding semantic and logical er-
rors. Meanwhile, Webshop is a sequential decision-
making task that evaluates an agent’s ability to nav-
igate an e-commerce platform effectively. Across
these tasks, Al agents consistently underperform
compared to human experts, underscoring the limi-
tations of current agentic models in handling com-
plex, structured outputs and sequential reasoning
(Yao et al., 2023; Liu et al., 2024; Li et al., 2024b)
where agents achieve merely 20-30% performance
in task specific metrics.

A key challenge in improving agentic Al systems
is their ability to handle structured reasoning and
multimodal tasks effectively. One promising ap-
proach to addressing this challenge is fine-tuning
and Al alignment (Ouyang et al., 2022a). While
supervised fine-tuning reinforcement learning from
human feedback (RLHF) (Ouyang et al., 2022a,b;
Bai et al., 2022) has significantly enhanced the ca-
pabilities of generative models, it is not directly ap-
plicable to Al agents due to their inherently black-
box nature. Most agentic systems and frameworks
(Liu et al., 2024; Fu et al., 2024) operate in en-
vironments where internal model updates are in-
feasible, making fine-tuning-based alignment tech-
niques ineffective. An alternative approach is an
inference-time alignment, such as controlled de-
coding (Mudgal et al., 2024; Chakraborty et al.,
2024; Khanov et al., 2024), which can align gener-
ative models without fine-tuning. However, these
methods still rely on access to token-level logits
from the reference model to steer responses, an as-
sumption that does not hold for black-box agentic
systems. These limitations highlight the need for an
inference-time alignment technique that is (i) com-

Direct | SELECT
. T T, h
generation i pgou o o—eme
"""""'N superhero AS T1
i\ INNER JOIN
i publisher AS T2
'+ ON
. n \ T1.publisher_id = T2.id
- ! WHERE
Question: Rank heroes ! T2.publisher_name =
published by Marvel i ‘Marvel'
Comics by their height | ORDER BY

_in descending order.) . T1.height_cm ASC

IAD (proposed)

i SELECT

| superhero_name,

! height_cm,

' RANK() OVER (ORDER BY
1 height_cm DESC) AS

i HeightRank

i FROM

! superhero

i INNER JOIN

i publisher

! ON superhero.publisher_id
| = publisher.id

| WHERE

: publisher.publisher_name =

69%

0,
60% 63%

Pass@K

Base BoN IAD

‘Marvel Comics';

tv

RN

Figure 1: Qualitative (Left) and Quantitative (Right) illustration of the performance benefit of IAD (Ours) over
Single-turn response generations using Gemini-1.5 (Base) Text2SQL task. IAD improves performance by correctly
handling query logic and joins, improving the accuracy over baseline and BoN (Best-of-N).

patible with various underlying models (without
requiring model-specific adaptations), (ii) easy to
implement (requires no modification of the under-
lying models), and (iii) commercial API-friendly
(Applicable to closed-source models that are only
accessible via API. This leads us to an important
question:

How can we improve the inference alignment of
Al Agents with Black-box access for complex and
structured tasks?

An immediate solution to the above question is to
leverage Best-of-N (BoN) sampling and its variants
(Beirami et al., 2024; Jinnai et al., 2024; Amini
et al., 2024), as it is black-box compatible and
logit-free, making it a natural choice for inference-
time alignment. BoN selects the best response
from multiple generated candidates using a veri-
fier, improving response quality in structured tasks
such as HTML generation and SQL query syn-
thesis. However, despite its advantages, BoN op-
erates in a single-shot manner, meaning it lacks
iterative refinement or feedback integration. This
limitation prevents it from progressively improving
responses based on evaluation signals, reducing
its effectiveness in complex, structured reasoning
tasks. We summarize our contributions as follows.
(1) We propose a critique-guided iterative decod-
ing framework, where responses undergo iterative
refinement through verifier-guided feedback, ensur-
ing enhanced performance in black-box structured
generation tasks.

(2) Comprehensive evaluations on three agentic
tasks. Experimental results demonstrate that our
approach achieves improvements in complex struc-

tured output generation tasks, over existing base-
lines while maintaining computational efficiency.
Remarks : While multi-turn iterative approaches
exist, most focus on train-time methods (Qu et al.,
2024; Zhou et al., 2024; Shani et al., 2024), making
them unsuitable for black-box inference. Inference-
time methods (Madaan et al., 2023; Chao et al.,
2024; Mehrabi et al., 2024; Muennighoff et al.,
2025) have explored iterative refinement in spe-
cific contexts like jailbreak, math, and QA, but pri-
marily for simpler tasks rather than complex agen-
tic settings requiring structured generations like
HTML and SQL. Specifically (Chao et al., 2024;
Mehrabi et al., 2024) iteratively refine prompts for
adversarial attacks but lack direct comparisons with
BoN, making performance gains less interpretable.
Meanwhile, (Madaan et al., 2023) and its variants
emphasize on LLM self-evaluation rather than fo-
cussing on the design choices for iterative refine-
ment based approach for structured output genera-
tion.

2 Al Agent Alignment

In this section, we formalize the problem of
inference-time alignment for Al agents operat-
ing in black-box settings, particularly in complex
structured-generation tasks such as HTML and
SQL synthesis in multi-modal environments like
Sketch2Code, Text2SQL, and Webshop. Given a
task distribution 7 € A, we define the optimal but
inaccessible agent policy 7*(-|x), which generates
the ideal structured response y* ~ 7*(-|z) for a
given input prompt . However, in the black-box
setting, we only have access to a reference policy

ITERATION: O

SKETCH

b}
1
1
]
1
1
]
1
1
1
1
1
)
1
1
1
1
1
/

— 3

" —

VERIFIER/REWARD

'i SELECTED HIML \|
] & v h
i i
ol [ATHL_] [
g -
—D: Fe'edbackto :
] improve i
] [—] 1
e e e e e e e o e e o o o e e e o o -
ST ~
E :
1
@ [HTHL_] 1 Y I
— 1 e
!) |
1 1
1 NEW HTML LLM 1
\ L
N e e o o ’
ITERATION: 1:T

Figure 2: Demonstrates the high-level schematic of our proposed approach - Iterative Decoding of Al Agents

7o(+|z), which lacks direct optimization capabili-
ties due to constraints on model updates.

The core challenge is to optimize inference-time
decisions such that the generated response from
mo(-|x) is better aligned with the outputs of 77*(-|z).
To formally quantify this alignment gap, we de-
fine the inference-time misalignment as an f-
divergence between the optimal and reference poli-
cies as d(7*(-|x), mo(-|)), where d¢(-,-) mea-
sures how far the black-box agent deviates from
the ideal structured output distribution. We explore
methods to reduce this divergence using iterative
inference-time strategies, which we detail in the
following sections. We assume access to a verifier
function R(z,y), which evaluates the quality of a
response y given the prompt x (further details in
Appendix).

Task specific details: In Sketch2code, the refer-
ence policy 7o (-|x) generates structured HTML y
given the prompt = = [s, c| with wireframe sketch
s, noisy text prompt c. The verifier R(x,y) evalu-
ates alignment with the target layout, textual coher-
ence, and semantic correctness, ensuring that the
generated HTML accurately reflects the sketch’s
structure. In Text2SQL, 7o (-|x) maps a natural lan-
guage query c to an SQL query y conditioned on the
database schema x. The verifier R(x,y) assesses
syntactic validity and execution correctness, identi-
fying errors in joins, logical consistency, and query
structure. Finally, in WebShop, the agent’s actions
are conditioned on the full interaction history up to
the current time step, i.e z; = [x, y<¢], where x is
the initial user query and y.,; represents all previ-
ously generated product page interactions. Based
on this history, the reference policy mo(-|x¢) gener-
ates the next action a; which involves searching or

clicking and the corresponding product description.

2.1 Limitation of Prior approaches

In this section, we first provide a brief description
of the baseline approaches and then discuss their
pros and cons in this context.

Single-turn Approaches: In single-turn ap-
proaches, the response y ~ m(-|x) is directly
generated from the reference agent policy. his
method is straightforward, fast, and does not rely
on a verifier, making it applicable even in verifier-
agnostic settings. However, as evident from Fig-
ure 1, direct generation—even with SoTA mod-
els like Gemini-1.5-Pro, Gemini-1.5-Flash, GPT-
4, and Claude—remains highly sub-optimal for
complex tasks like Sketch2Code and Text2SQL,
also highlighting the difficulty of these tasks. Thus
in single-turn generation, the performance is lim-
ited by the quality of the reference policy mo(-|x))
where larger f-divergence indicates greater mis-
alignment.

BoN sampling: Best-of-N sampling improves
upon single-turn generation by drawing N i.i.d
samples from the reference policy 7y (-|x) and se-
lecting the highest-reward response based on the
verifier R(z,y). BoN is simple, parallelizable, and
computationally efficient and doesn’t rely on log-
its/model access thus applicable to black box agen-
tic scenarios. It works even with scalar rewards
and has been shown to achieve near-optimal trade-
offs between win rate and KL divergence (Beirami
et al., 2024; Amini et al., 2024). Despite its ad-
vantages, BoN remains limited by the quality of
the reference policy lacks the ability to iteratively
refine responses based on verifier feedback. For
example: BoN cannot incorporate targeted feed-

back, such as refining specific HTML structures in
Sketch2Code or correcting systematic SQL errors
in Text2SQL (further details in exp section)

Controlled decoding: Majority of prior decoding-
based methods (Mudgal et al., 2024; Chakraborty
et al., 2024) rely on access to logits for controlled
generation , making them inapplicable in black-
box inference settings. While block-wise decoding
(Mudgal et al., 2024) can be applied without logits
as well however improper block selection disrupts
syntax and semantics for structured generation (Ap-
pendix).

3 Proposed Methodology

Model Layout. TxtIoU ImgIloU
Single-Turn Approaches

InternVL2-8b* 4.01 4.89 1.41
Llava-1.6-8b* 8.01 9.26 1.95
Claude-3-Sonnet* 14.22 15.85 6.62
GPT-40-Mini* 16.29 20.84 0.72
Claude-3-Opus* 17.11 18.09 8.32
Claude-3-Haiku* 17.52 20.60 2.72
Gemini-1.5-Flash 17.85 17.50 10.77
Gemini-1.5-Pro 18.25 18.20 12.69
GPT-40* 19.20 17.12 16.19
Gemini-1.5-Flash (CoT) 19.84 19.13 10.02
Claude-3.5-Sonnet* 22.26 25.33 9.21

Multi-Turn Approaches (Gemini-1.5-Flash)

Sk2code (N=2)** 19.41 2045 11.81
Self-Refine (N=2) 1951 1935 10.71
BoN (N=2) 21.45 20.1 13.5
IAD (N=2) 2478 23.01 15.29
IAD-fb (N=2)** 26.67 22.6 19.93
Self-Refine (N=4) 1997 19.11 11.74
Sk2code (N=4)** 2041 2146 12.67
BoN (N=4) 2402 22.59 15.91
IAD (N=4) 2597 24.13 16.98
IAD-fb (N=4)** 2992 2599 2247
Self-Refine (N=6) 1989 1891 11.61
Sk2code (N=6)** 2143 2153 13.78
BoN (N=6) 2575 2291 17.67
IAD (N=6) 2675 2491 19.12
IAD-fb (N=6)*x 3198 2839 23.01

Table 1: Sketch2Code: Performance comparison be-
tween single-turn and multi-response generation ap-
proaches. For each of the multi-response generation
method Layout score acts as the reference metric. Table
demonstrate that IAD (Ours) consistently outperform
SoTA baseline by >10% margin.

To address the limitations of the existing ap-
proaches, as discussed in the previous section, we
propose an iterative procedure for inference time
alignment of Al agents in this section. Before dis-

cussing the strategy, we first discuss our key insight
which helped us to propose our approach.

Our key insight: Our objective is to generate a
high-quality response y* ~ 7*(-|z) for a given
input x , while having only sampling access
to the reference policy mo(-|x) . This practi-
cal limitation inherently constrains us via the f -
divergence defined in equation. However, we ob-
serve that iteratively updating the input prompt;
we can progressively shift the conditional sam-
pling distribution toward the optimal response.
Formally, if we denote each iteration as ¢ = 1
to T', we can define an iterative mapping over
multiple turns, f(y1,%2,...,yr) , such that the
gap dg(m*(-|z), mo (|2, f(y1, 2, .-, yr))) is min-
imized. This iterative refinement process effec-
tively guides the reference policy toward producing
responses that increasingly align with the optimal
distribution.

Proposed approach: We propose an iterative re-
finement approach for black-box Al agents, where
response generation is guided by a verifier to pro-
gressively improve outputs.

Step 1: At each step ¢, we sample a candidate
response with the reference policy mo(+|z) and iter-
atively refine its outputs.

Yt+1 ™~ WO("xaghstapt)? (1)

where ¢, is the best response from previous itera-
tions, and p; encodes prompt-based guiding instruc-
tions for ex: Surpass the best response, avoiding
previous mistakes.

Step 2: Verifier-guided selection Among the gen-
erated response and the previous best response, we
select the one maximizing the reward function:

Ji+1 = arg max R(z,y) 2
YE(ye,9t)
Our method also has the flexibility to incorpo-
rate critique-based feedback, such as LLM-judge,
which identifies specific areas needing improve-
ment. This extends to

Y1 ~ mo(|w, i, e fbr) 3)

where fb; highlights specific components (e.g., in-
correct tags in HTML, invalid SQL joins), guiding
refinement at a more granular level in an iterative
fashion.

3. Acceptance Criterion : A new response Y1
is accepted if it provides an improvement over the

30

IAD 24 D
28 oY I I BON
26 - Baseline I 22555500 Baseline

Layout Similarity
N N
NS

Text IOU

N
o

22 IAD

BON
20

N
©

Image 10U

_‘
o
:
|
.
;

—_

N
[}
N

2 3 4
No of responses (N)

(@)

2

No of responses (N)

(b)

12

10

3 4 2 3

No of responses (N)

©

Figure 3: Sketch2code: This figure provides a comparison of IAD (ours) against Best-of-N sampling (SoTA) and
single-turn generation with Gemini-1.5-Pro w.r.t metrics - (a) Layout Similarity (b) TextIoU (c) ImageloU across
varying the number of generations (N). Figure demonstrates IAD outperforms BoN consistently across N, but as N
increases the gap reduces. Note that (b) and (c) are not directly optimized for this plot and test the generalization
performance. This demonstrates the consistency in performance across models and metrics

previous best, R(z,y:) — R(x,y:) > (where
0 = 0 is the special case)

4. Iterative Refinement: The accepted response
9 updates the context for subsequent generations,
progressively re-weighting the proposal distribu-
tion toward higher-quality outputs. By condition-
ing on ¥, the sampling process is guided towards
responses with higher rewards, reducing the gap
between the reference distribution 7o (+|z, g¢) and
the optimal distribution 7*(+|z), as shown in exper-
imental results.

Remark (Why it works?). The generation of bet-
ter responses occurs through stochastic sampling
in each iteration from the base model, conditioned
on the best response so far (and the worst candi-
date), followed by a pairwise comparison from the
verifier. This feedback mechanism helps guide the
generator to sample responses with higher expected
rewards over the iterations. Practically, we achieve
this by incorporating prompts like “Improve upon
the best response while avoiding mistakes from the
worst response.” Additionally, explicit feedback
from a judge (e.g., verifier critiques or an LLM act-
ing as a judge) accelerates the improvement process
by providing targeted guidance. Intuitively, this ap-
proach is analogous to zeroth-order optimization
(Jamieson et al., 2012; Yang et al., 2024), where
two sampled values from the objective function are
sufficient to guide the optimization process toward
the maximum. Similarly, feedback on the best and
worst responses helps steer the model toward gener-
ating responses that maximize rewards, reinforced
through system prompts.

For instance, in an SQL code generation task, the
model might initially produce a non-functional or

erroneous SQL statement. However, in the next
iteration, it generates a different SQL code, and
through verifier comparisons, we determine which
version is better—e.g., if the later version passes
more test cases, we infer that the model should
move in that direction. Using an LLM as a judge
makes this refinement process more targeted, as it
can provide explicit feedback on errors like "This
condition is incorrect”, "Fix the syntax here", or
"This table join is unnecessary” and suggest im-
provements at each iteration. This iterative refine-
ment has been consistently observed in our experi-
ments, where initial syntax errors in generated code
progressively disappear through our approach.

4 Experimental Analysis

In this section, we provide detailed discussion on
the experimental analysis with respect to the agen-
tic tasks below. For all our experiments, we have
utilized NVIDIA A100-SXM4-40GB GPU with
40GB of VRAM, running on CUDA 12.4 and driver
version 550.90.07.

4.1 Sketch2code Results and Analysis

Evaluation metrics and Baselines. We evaluate
our approach against SoTA baselines using (i) Lay-
out Similarity, (ii) Visual IoU, and (iii) Text loU
with reference HTML (Li et al., 2024b). These
metrics strongly correlate (=~ 90%) with human
satisfaction (Li et al., 2024b) (details in Appendix).
We use layout similarity as a verifier alongside
LLM-as-judge (Li et al., 2024b) to refine the gen-
erations for both BoN (Beirami et al., 2024) and
IAD. We compare our proposed approach IAD
against single-turn SoTA models (GPT-40, Claude-

0.69

0.69

0.76 IAD IAD IAD
0.74 Few-shot ICL 0.68 Few-shot ICL 0.68 BON
¥0.72 —é) rk?0.67
90.70 20.67 0.66
£o.65 5 g
: Z0.66 <0.65
0.66 0.64
0.64 0.65 0.63
1 2 4 6 8 10 1 2 4 6 8 10 1 2 4 6 8 10
Number of Candidates (k) Number of Candidates (k) Number of Candidates (k)
(@) (b) (©
0.78 0.69 0.69
IAD IAD IAD
0.76 Few-shot ICL i
€w-sho 0.68 Few-shot ICL 0.68 BON
0.74
- $ >
®0.72 20.67 £0.67
&V‘;O 70 é g
' 20.66 <0.66
0.68
0.66 0.65 0.65

1 1

2 4 6 8 10
Number of Candidates (k)

(@)

2 4 6 8 10
Number of Candidates (k)

(e)

1 2 4 6 8 10
Number of Candidates (k)

®

Figure 4: Text2SQL Experiments: (a) Pass@K performance comparison between queries generated using our
approach and Few-shot ICL with Gemini-1.5-flash. (b) Majority @K performance comparison between queries
generated using our approach and Few-shot ICL with Gemini-1.5-flash. (c) Accuracy comparison between the
best-of-N method and our approach for Gemini-1.5-flash. (d) Pass@K performance comparison between queries
generated using our approach and Few-shot ICL with Gemini-1.5-pro. (e) Majority @K performance comparison
between queries generated using our approach and Few-shot ICL with Gemini-1.5-pro. (f) Accuracy compari-
son between the best-of-N method and our approach for Gemini-1.5-pro. IAD consistently outperforms all the

baselines across the settings.

3, InternVL2, Gemini-1.5-Flash, CoT) and multi-
response approaches (BoN, Sk2code). We compare
the performance on the same evaluation setup and
dataset as used in (Li et al., 2024b).

Initial results. Figure 9 and Table 1 qualitatively
and quantitatively show that single-turn approaches,
including SoTA models, fail to maintain the layout
structure, block positions, text placement, and siz-
ing, leading to poor alignment with the reference
layout. These models score low across all three
metrics. Multi-response methods significantly im-
prove performance, even with N=2 samples. BoN,
using the weaker Gemini-1.5-Flash, outperforms
single-turn models. With N=4, BoN surpasses
SoTA single-turn models by 15%, accurately cap-
turing block positioning, title blocks, and overall
layout. Performance monotonically improves with
more responses, with layout scores rising from
20.41 to 25.7 as N increases to six.

Benefits of IAD (ours). BoN struggles with fine-
grained layout details and often repeats positional
errors across all N generations (Figure 1). In con-
trast, IAD iteratively refines responses, leading to

a =~ 15% improvement over BoN and single-turn
SoTA (Claude) in just two iterations (N=2), even
with the simpler Gemini-1.5-Flash model (Table
1). At each iteration, IAD incorporates the best and
worst HTML outputs as context, along with refine-
ment instructions. This enables progressive learn-
ing of layout components and image semantics, sig-
nificantly enhancing output quality. As iterations
increase, IAD achieves a high layout score of 26.75,
outperforming all baselines with the same number
of generations. We also evaluate Image and Text
IoU scores to check for reward over-optimization.
However, as shown in Table 1 and Figure 3, text
and image similarities also improve, confirming
consistency in IAD’s performance gains over BoN.
Notably, with more generations, the performance
gap between IAD and BoN narrows.

Ablation. We also consider the sensitivity of the
token length of the context plays a critical role in
this case, where providing the entire HTML can
affect the entropy of the distribution, and thus, over-
conditioning can hinder structured generation by
reducing diversity and exploration. Thus, we pro-

vide only the top 300-400 tokens of the best (and
worst) HTMLs. However, we remark that if there
were a judge to highlight which portion of the code
needs to be updated, that would be more targeted.
Hence, we incorporate LLM-judge (Gemini-1.5-
Pro), which has the reference policy, and it checks
with the current response and provides feedback on
improvement and sometimes snippets of HTML as
well (however, we restrict that to 200 tokens 5-6%
of the original HTML). This leads to a significant
improvement of 36% for the layout score with
just two iterations and a final score of 31.98 with
6 iterations, demonstrating the importance of itera-
tive approaches for agent performance. However,
Sk2code (Li et al., 2024b) also performs feedback
based design with LLLM as a judge, however their
approach doesn’t yield major improvements for sev-
eral models like Gemini-1.5, which we hypothesize
can be due to the incorrect design of the method
and also issues in the GPT-4 judge. Overall, in all
our analyses, our findings remain consistent, where
IAD outperforms baselines.

o
=}
|
|

Example 1
Example 2
= = Example 3
Example 4 -,

Layout Score
= N w B w
o o o o o
i\ |
|} |
n\
\

o

1.0 1.5 20 25 3.0 35 4.0
Iterations

Figure 5: Sketch2code : Illustrates the improvement of
our proposed approach over 4-turns w.r.t Layout simi-
larity score for 4 examples. It shows that for most of
the examples, there is a clear improvement in the scores
over the iterations

4.1.1 Text-to-SQL Results and Analysis

In this section, we detail the experiments con-
ducted on the BIRD text-to-SQL benchmark (Li
et al., 2024a). Our evaluation involved two models,
Gemini-1.5-pro and Gemini-1.5-flash, to test our
proposed approach and compare it against baseline
methods.

IAD vs test-time-compute methods: We com-
pared our method to two baselines: few-shot chain-
of-thought prompting and the best-of-N approach,

both implemented using the same models. These
comparisons highlight the effectiveness of our
multi-turn strategy in narrowing the gap between
the reference distribution and the optimal distri-
bution. Our multi-turn approach addresses com-
mon issues in single-turn generation, which can
produce SQL queries with syntax and semantic er-
rors. By incorporating multiple rounds of response
selection and feedback, our method effectively cor-
rects these errors. Moreover in the multi-turn set-
ting, the reward model benefits from observing
query execution results, allowing it to more read-
ily identify syntax and semantic issues. For the
few-shot prompting baseline, we employed two
metrics—Pass @K and Majority @ K—to evaluate
the quality of the generated candidate queries. As
shown in Figure 4, our approach consistently pro-
duces candidate sets with higher correctness. In
contrast, the best-of-N method aggregates results;
therefore, we used the original execution accuracy
for its evaluation. To compare the two, we com-
puted accuracy across different values of N. For
our method, we selected the best query among the
N candidates using self-consistency (Wang et al.,
2022)—executing the queries, grouping them by
their execution results into buckets, and then choos-
ing the query from the largest bucket as the most
consistent answer, as illustrated in Figure 4.

Method Exe Acc
DIN-SQL + GPT-4 50.72
DAIL-SQL + GPT-4 54.76
MAC-SQL + GPT-4 57.56
MCS-SQL + GPT-4 63.36
E-SQL + GPT-40 65.58
TIAD (Ours) + GPT-40 65.97
IAD (Ours) + Gemini-1.5-pro 68.05

Table 2: Text2SQL - Execution accuracy comparison
of previous works with our proposed approach

TAD vs Text-to-SQL baselines We also com-
pare our approach with several baseline methods
in the text-to-SQL domain that do not rely on fine-
tuning on the BIRD train set, ensuring a fair com-
parison. These baselines originate from different
families of methods, for example, MCS-SQL (Lee
et al., 2024) is a variant of the best-of-N method,
DIN-SQL (Pourreza and Rafiei, 2024) and DAIL-
SQL (Gao et al., 2023) employ human-engineered
few-shot prompts to achieve higher performance,
and MAC-SQL (Wang et al., 2023) is a multi-
agent approach designed specifically for text-to-

SQL tasks. The results of these comparisons are
provided in Table 2, where we achieved the highest
execution accuracy by 3% margin compared to the
second best method.

4.2 Webshop Results and Analysis

Models (PR) (SR)
Lemur-70b 71 11
Mistral-7b 68.2 139
Vicuna-13b-16k 73 21
Gemini-1.5-Flash 71.3 26.5
GPT-3.5-Turbo-16k 73 27
Text-Davinci-003 72 29
Gemini-1.5-Pro 73.5 293
BoN-SC + Gemini-1.5-Pro 74.12 30.31
DeepSeek-67b 72 31
GPT-3.5-Turbo 76 35
IAD + Gemini-1.5-Pro 71 38.3
GPT-4 75.8 385
GPT-40 73.1 40.3
BoN-SC + GPT-4o0 7421 41.09
IAD + GPT-40 74.6 44.68
Table 3: Webshop- Progress Rate (PR) and Suc-

cess Rate (SR) for Models in the Webshop Environ-
ment(Yao et al., 2023). Perform a comparison of IAD
(with two models GPT-40 and Gemini-1.5-Pro) against
SoTA baselines for the Webshop Leaderboard with the
evaluation similar to followed in Agentboard (Ma et al.,
2024)

For all the experiments, we use greedy decoding
with temperature=0.1, top p = 1.0 for our results.
For BoN-SC, we try to vary the temperature to gen-
erate more diverse responses. We compare IAD*
against SOTA baselines, including Lemur, Mistral,
Vicuna, Gemini, and GPT models, in the Webshop
environment, where agents interact with webpages
through search and click actions. Performance is
measured via progress rate (PR) and success rate
(SR), with SR being the key metric for exact at-
tribute satisfaction. We follow the same evalua-
tion methodology as AgentBoard (Ma et al., 2024).
IAD* consistently outperforms baselines, achiev-
ing over 25% improvement in SR across most mod-
els, with Gemini and GPT-4 variants performing
best. To further enhance performance, we introduce
feedback-based iterative refinement, where agents
receive prompts like "Reflect on your previous ac-
tion and improve upon it", "Improve the previous
actions focusing on key-attributes", "Follow the for-
mat to be action.name-’search’ and action.params
-’red tshirt....”" for allowing LLMs to iteratively re-
fine their decisions. A verifier-based LLM judge

[e2]
o

IAD
55 BON-SC

% 50 - = Baseline

hd

@45

2

a0 g B
35
30 1 4

2
No of responses (N)

Figure 6: Webshop : Progress-rate comparison of IAD
over Best of N with Self-consistency (BON-SC) and
baseline on random selected 20% of the total evaluation
set using weaker Gemini-1.5-Flash-01 (weaker model).
Figure highlights the importance of iterative feedback
while generation. Evaluation was done with a weaker
model and on a subset of eval examples.

determines when to iterate or finalize actions. We
also compare IAD* with BoN-SC (Best-of-N with
Self-Consistency, N=4) but find that BoN provides
limited improvement due to low diversity in gener-
ations, even with temperature = 0.6. Beyond this,
higher temperatures introduce irrelevant attributes,
reducing effectiveness. In contrast, IAD* improves
search queries by refining unwanted attributes, en-
hancing focus on key parameters. Additionally, to
show the effectiveness, we perform with a weaker
version of Gemini-1.5-Flash-01 and perform the ex-
periment, where we observe that it needs more iter-
ations to actually follow the action format, without
this iteration it fails to provide response in a mean-
ingful format. On the other-hand, we approach the
same with BoN-SC which couldn’t improve much
due to the issue in diverse response generation as
highlighted before.

5 Conclusion

In this work, we proposed IAD : an iterative decod-
ing approach for AI agent alignment with black-
box access which highlights the effectiveness of
iterative decoding (guided by a verifier) for these
complex agentic tasks. IAD enhances prior base-
lines by dynamically integrating verification and
critique mechanisms to iteratively refine and im-
prove response quality. Experimental results across
diverse domains show that our approach consis-
tently outperforms several existing baselines in-
cluding highly competitive BoN highlighting its
ability to bridge the gap between reference and
optimal policies at inference time.

6 Limitations

While IAD- our iterative decoding approach im-
proves upon prior baselines by leveraging verifier
feedback, it is inherently sequential, leading to in-
creased computational overhead compared to eas-
ily parallizable BoN approaches. Addressing this
trade-off between quality improvement and com-
putational efficiency remains an important area for
future research. Efficient optimization approaches,
such as adaptive stopping, speculative decoding,
and more efficient verifier-guided selection, could
improve the efficiency in iterative decoding for
agentic tasks. Additionally, verifier and judge plays
a crucial role in our approach. Thus a more con-
crete investigation and selection of a judge for these
challenging tasks is a valid and crucial next step
of our work. We highlight that this work is of
academic nature and has no direct or immediate
harmful impacts to society. However, since this
work deals with improving Al agents, it should be
done under safety protocols and guidelines. We
want to highlight that this study is limited to En-
glish language text primarily due to the nature of
open-source datasets used.

References

Afra Amini, Tim Vieira, and Ryan Cotterell.
2024. Variational best-of-n alignment. Preprint,
arXiv:2407.06057.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.
2022. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv
preprint arXiv:2204.05862.

Ahmad Beirami, Alekh Agarwal, Jonathan Berant,
Alexander D’ Amour, Jacob Eisenstein, Chirag Nag-
pal, and Ananda Theertha Suresh. 2024. Theoret-
ical guarantees on the best-of-n alignment policy.
Preprint, arXiv:2401.01879.

Souradip Chakraborty, Soumya Suvra Ghosal, Ming
Yin, Dinesh Manocha, Mengdi Wang, Amrit Singh
Bedi, and Furong Huang. 2024. Transfer q star:
Principled decoding for 1lm alignment. Preprint,
arXiv:2405.20495.

Patrick Chao, Alexander Robey, Edgar Dobriban,
Hamed Hassani, George J. Pappas, and Eric Wong.
2024. Jailbreaking black box large language models
in twenty queries. Preprint, arXiv:2310.08419.

Anthony Costarelli, Mat Allen, Roman Hauksson,
Grace Sodunke, Suhas Hariharan, Carlson Cheng,
Wenjie Li, Joshua Clymer, and Arjun Yadav. 2024.

Gamebench: Evaluating strategic reasoning abilities
of llm agents. Preprint, arXiv:2406.06613.

Yao Fu, Dong-Ki Kim, Jackyeom Kim, Sungryull
Sohn, Lajanugen Logeswaran, Kyunghoon Bae,
and Honglak Lee. 2024. Autoguide: Automated
generation and selection of context-aware guide-
lines for large language model agents. Preprint,
arXiv:2403.08978.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023.
Text-to-sql empowered by large language mod-
els: A benchmark evaluation. arXiv preprint
arXiv:2308.15363.

Yingqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi, Yin
Zhu, Yiming Wang, Shiqi Li, Wei Li, Yuntao Hong,
Zhiling Luo, et al. 2024. Xiyan-sql: A multi-
generator ensemble framework for text-to-sql. arXiv
preprint arXiv:2411.08599.

Xiang Huang, Sitao Cheng, Shanshan Huang, Jiayu
Shen, Yong Xu, Chaoyun Zhang, and Yuzhong Qu.
2024. Queryagent: A reliable and efficient reason-
ing framework with environmental feedback-based
self-correction. Preprint, arXiv:2403.11886.

Kevin G. Jamieson, Robert D. Nowak, and Benjamin
Recht. 2012. Query complexity of derivative-free
optimization. Preprint, arXiv:1209.2434.

Bowen Jiang, Yangxinyu Xie, Xiaomeng Wang, Yuan
Yuan, Zhuoqun Hao, Xinyi Bai, Weijie J. Su,
Camillo J. Taylor, and Tanwi Mallick. 2024. To-
wards rationality in language and multimodal agents:
A survey. Preprint, arXiv:2406.00252.

Yuu Jinnai, Tetsuro Morimura, Kaito Ariu, and Kenshi
Abe. 2024. Regularized best-of-n sampling to miti-
gate reward hacking for language model alignment.
Preprint, arXiv:2404.01054.

Maxim Khanov, Jirayu Burapacheep, and Yixuan Li.
2024. Args: Alignment as reward-guided search.
Preprint, arXiv:2402.01694.

Megan Kinniment, Lucas Jun Koba Sato, Haoxing
Du, Brian Goodrich, Max Hasin, Lawrence Chan,
Luke Harold Miles, Tao R. Lin, Hjalmar Wijk,
Joel Burget, Aaron Ho, Elizabeth Barnes, and
Paul Christiano. 2024. Evaluating language-model
agents on realistic autonomous tasks. Preprint,
arXiv:2312.11671.

Dongjun Lee, Choongwon Park, Jachyuk Kim, and
Heesoo Park. 2024. Mcs-sql: Leveraging multiple
prompts and multiple-choice selection for text-to-sql
generation. arXiv preprint arXiv:2405.07467.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, et al. 2024a. Can llm already serve
as a database interface? a big bench for large-scale
database grounded text-to-sqls. Advances in Neural
Information Processing Systems, 36.

https://arxiv.org/abs/2407.06057
https://arxiv.org/abs/2401.01879
https://arxiv.org/abs/2401.01879
https://arxiv.org/abs/2401.01879
https://arxiv.org/abs/2405.20495
https://arxiv.org/abs/2405.20495
https://arxiv.org/abs/2405.20495
https://arxiv.org/abs/2310.08419
https://arxiv.org/abs/2310.08419
https://arxiv.org/abs/2310.08419
https://arxiv.org/abs/2406.06613
https://arxiv.org/abs/2406.06613
https://arxiv.org/abs/2406.06613
https://arxiv.org/abs/2403.08978
https://arxiv.org/abs/2403.08978
https://arxiv.org/abs/2403.08978
https://arxiv.org/abs/2403.08978
https://arxiv.org/abs/2403.08978
https://arxiv.org/abs/2403.11886
https://arxiv.org/abs/2403.11886
https://arxiv.org/abs/2403.11886
https://arxiv.org/abs/2403.11886
https://arxiv.org/abs/2403.11886
https://arxiv.org/abs/1209.2434
https://arxiv.org/abs/1209.2434
https://arxiv.org/abs/1209.2434
https://arxiv.org/abs/2406.00252
https://arxiv.org/abs/2406.00252
https://arxiv.org/abs/2406.00252
https://arxiv.org/abs/2406.00252
https://arxiv.org/abs/2406.00252
https://arxiv.org/abs/2404.01054
https://arxiv.org/abs/2404.01054
https://arxiv.org/abs/2404.01054
https://arxiv.org/abs/2402.01694
https://arxiv.org/abs/2312.11671
https://arxiv.org/abs/2312.11671
https://arxiv.org/abs/2312.11671

Ryan Li, Yanzhe Zhang, and Diyi Yang. 2024b.
Sketch2code: Evaluating vision-language models
for interactive web design prototyping. Preprint,
arXiv:2410.16232.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xu-
anyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang
Deng, Aohan Zeng, Zhengxiao Du, Chenhui Zhang,
Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun,
Minlie Huang, Yuxiao Dong, and Jie Tang. 2023.
Agentbench: Evaluating llms as agents. Preprint,
arXiv:2308.03688.

Yanming Liu, Xinyue Peng, Jiannan Cao, Shi Bo,
Yuwei Zhang, Xuhong Zhang, Sheng Cheng, Xun
Wang, Jianwei Yin, and Tianyu Du. 2024. Tool-
planner: Task planning with clusters across multiple
tools. Preprint, arXiv:2406.03807.

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang,
Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Lingpeng
Kong, and Junxian He. 2024. Agentboard: An an-
alytical evaluation board of multi-turn 1lm agents.
Preprint, arXiv:2401.13178.

Karime Maamari, Fadhil Abubaker, Daniel Jaroslaw-
icz, and Amine Mhedhbi. 2024. The death
of schema linking? text-to-sql in the age of
well-reasoned language models. arXiv preprint
arXiv:2408.07702.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: It-
erative refinement with self-feedback. Preprint,
arXiv:2303.17651.

Ninareh Mehrabi, Palash Goyal, Christophe Dupuy,
Qian Hu, Shalini Ghosh, Richard Zemel, Kai-
Wei Chang, Aram Galstyan, and Rahul Gupta.
2024. Flirt: Feedback loop in-context red teaming.
Preprint, arXiv:2308.04265.

Youssef Mroueh. 2024. Information theoretic guaran-
tees for policy alignment in large language models.
Preprint, arXiv:2406.05883.

Sidharth Mudgal, Jong Lee, Harish Ganapathy,
YaGuang Li, Tao Wang, Yanping Huang, Zhifeng
Chen, Heng-Tze Cheng, Michael Collins, Trevor
Strohman, Jilin Chen, Alex Beutel, and Ahmad
Beirami. 2024. Controlled decoding from language
models. Preprint, arXiv:2310.17022.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and
Tatsunori Hashimoto. 2025. sl: Simple test-time
scaling. Preprint, arXiv:2501.19393.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,

10

Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022a.
Training language models to follow instructions
with human feedback. Preprint, arXiv:2203.02155.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022b.
Training language models to follow instructions
with human feedback. Preprint, arXiv:2203.02155.

Ajay Patel, Markus Hofmarcher, Claudiu Leoveanu-
Condrei, Marius-Constantin Dinu, Chris Callison-
Burch, and Sepp Hochreiter. 2024. Large lan-
guage models can self-improve at web agent tasks.
Preprint, arXiv:2405.203009.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun,
Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and
Sercan O Arik. 2024. Chase-sql: Multi-path reason-
ing and preference optimized candidate selection in
text-to-sql. arXiv preprint arXiv:2410.01943.

Mohammadreza Pourreza and Davood Rafiei. 2024.
Din-sql: Decomposed in-context learning of text-to-
sql with self-correction. Advances in Neural Infor-
mation Processing Systems, 36.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Avi-
ral Kumar. 2024. Recursive introspection: Teach-
ing language model agents how to self-improve.
Preprint, arXiv:2407.18219.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D. Manning, and Chelsea Finn.
2023. Direct preference optimization: Your lan-
guage model is secretly a reward model. Preprint,
arXiv:2305.18290.

Lior Shani, Aviv Rosenberg, Asaf Cassel, Oran Lang,
Daniele Calandriello, Avital Zipori, Hila Noga, Or-
gad Keller, Bilal Piot, Idan Szpektor, Avinatan Has-
sidim, Yossi Matias, and Rémi Munos. 2024. Multi-
turn reinforcement learning from preference human
feedback. Preprint, arXiv:2405.14655.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen
Chang, Azalia Mirhoseini, and Amin Saberi. 2024.
Chess: Contextual harnessing for efficient sql syn-
thesis. arXiv preprint arXiv:2405.16755.

Karthik Valmeekam, Kaya Stechly, and Subbarao
Kambhampati. 2024. Llms still can’t plan; can
Irms? a preliminary evaluation of openai’s ol on
planbench. Preprint, arXiv:2409.13373.

Mudit Verma, Siddhant Bhambri, and Subbarao Kamb-
hampati. 2024. On the brittle foundations of re-
act prompting for agentic large language models.
Preprint, arXiv:2405.13966.

https://arxiv.org/abs/2410.16232
https://arxiv.org/abs/2410.16232
https://arxiv.org/abs/2410.16232
https://arxiv.org/abs/2308.03688
https://arxiv.org/abs/2406.03807
https://arxiv.org/abs/2406.03807
https://arxiv.org/abs/2406.03807
https://arxiv.org/abs/2406.03807
https://arxiv.org/abs/2406.03807
https://arxiv.org/abs/2401.13178
https://arxiv.org/abs/2401.13178
https://arxiv.org/abs/2401.13178
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2308.04265
https://arxiv.org/abs/2406.05883
https://arxiv.org/abs/2406.05883
https://arxiv.org/abs/2406.05883
https://arxiv.org/abs/2310.17022
https://arxiv.org/abs/2310.17022
https://arxiv.org/abs/2310.17022
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2405.20309
https://arxiv.org/abs/2405.20309
https://arxiv.org/abs/2405.20309
https://arxiv.org/abs/2407.18219
https://arxiv.org/abs/2407.18219
https://arxiv.org/abs/2407.18219
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2405.14655
https://arxiv.org/abs/2405.14655
https://arxiv.org/abs/2405.14655
https://arxiv.org/abs/2405.14655
https://arxiv.org/abs/2405.14655
https://arxiv.org/abs/2409.13373
https://arxiv.org/abs/2409.13373
https://arxiv.org/abs/2409.13373
https://arxiv.org/abs/2409.13373
https://arxiv.org/abs/2409.13373
https://arxiv.org/abs/2405.13966
https://arxiv.org/abs/2405.13966
https://arxiv.org/abs/2405.13966

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang,
Jiaqi Bai, Qian-Wen Zhang, Zhao Yan, and Zhou-
jun Li. 2023. Mac-sql: Multi-agent collaboration
for text-to-sql. arXiv preprint arXiv:2312.11242.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc
Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. 2022. Self-consistency im-
proves chain of thought reasoning in language mod-
els. arXiv preprint arXiv:2203.11171.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanx-
iao Liu, Quoc V. Le, Denny Zhou, and Xinyun
Chen. 2024. Large language models as optimizers.
Preprint, arXiv:2309.03409.

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2023. Webshop: Towards scalable
real-world web interaction with grounded language
agents. Preprint, arXiv:2207.01206.

Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine,
and Aviral Kumar. 2024. Archer: Training language
model agents via hierarchical multi-turn rl. Preprint,
arXiv:2402.19446.

11

https://arxiv.org/abs/2309.03409
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2402.19446
https://arxiv.org/abs/2402.19446
https://arxiv.org/abs/2402.19446

A Appendix

A.1 Detailed Environment Description

1. Text-to-SQL Text-to-SQL serves as a critical interface between natural language and structured query
languages by enabling users to translate natural language queries into executable SQL commands. This
functionality empowers individuals without SQL expertise to interact with complex databases, thereby
facilitating data exploration, informed decision-making, automated analytics, and advanced feature
extraction for machine learning. Generally, a Text-to-SQL system receives a natural language question and
any pertinent metadata about the tables and columns, which serves as external knowledge to aid in database
comprehension. Consequently, such systems are responsible not only for interpreting user intent and
identifying relevant information from a potentially vast set of tables and columns but also for generating
SQL queries that may include multiple conditions—a process that is inherently reasoning intensive. To
evaluate our proposed framework, we employ the BIRD benchmark (Li et al., 2024a), a challenging and
widely used dataset in the Text-to-SQL domain. BIRD comprises an extensive collection of 12,751 unique
question-SQL pairs drawn from 95 large databases with a total size of 33.4 GB. The benchmark spans
more than 37 professional domains, including blockchain, hockey, healthcare, and education, making it a
comprehensive resource for assessing the robustness and generalizability of Text-to-SQL systems. The
primary metric for model comparison in this domain is execution accuracy (EX), where the ground truth
SQL query and the predicted SQL query are both executed over the target database, if they both generate
same sets of results the accuracy for the predicted SQL query is considered as accurate.

3 Whatis theaver alary of the worst performing managers?
7
Webpages Sketches e T ®
= FROM e AS 11 JomN A5 T2 ON Ti.p
= = — Reasoned Database:
- N
(Employees
| ——
== <
- 0000 Milgrom Milgrom US$57,500.00
. e 2222 Adams Sandy US$19,500.00
6543 Wood Emily US$69,000.00
L e I e R [R L L
\
(a) Sketch2Code Environment (b) Text-to-SQL Environment

A tem-detail

WebShop seazeh
Instruction:
i'm looking for a small portable folding desk that i

already fully assembled; it should have a khaki
wood finish, and price lower than 140.00 dollars.

1) IS

K knoki wood

'MENHG Folding Lebtop Table Bed Desk i tem
PBC Lap Desk with,Drawer Book Stand

<_. Trdy Foldable Lagy Table Breakfast
T v7<; Desk Sofa Small Desk for Smal Space
mputer rce: 000 .

v e
Color

black whi(e@ o

B Tastruction: v
I'm looking for a small portable folding desk
that is already fully assembled [...]

[btn] Back to Search [/btn

Page 1 (Total results: 50) [btn] Next [/btn]
[btn] MENEG Folding Breakfast Tray [...] [/btn]
109.0

U (Instruction): I'm looking for a small portable

7J (Description): MENHG Folding Laptop Table Bed..
Yprice : $109.0

Yopt (Options): { black, khaki, white

Y (Attributes): { steel pipe, no as:

[btn) KPSP Folding Study Desk Bed [...] [/btn]

(c) Webshop Environment

Figure 7: These three figures given an overview of three diverse and challenging agentic tasks that we consider
to evaluate the performance of agents with our proposed approach vs baselines -(a) Sketch2code(Li et al., 2024b)
(b)Text2SQL (Li et al., 2024a) and (c) Webshop (Yao et al., 2023)

2. Sketch2code: Sketch2code (Li et al., 2024b) challenges and evaluates the multi-modal capabilities
of agent where the objective is transform wireframe-style rough userk sketches into functional HTML
prototypes with embedded CSS. Sketch2Code uniquely tests multi-modality, requiring structured code
generation from imprecise visual input, often leading to misaligned text, incorrect spacing, and structural

12

N
[}
N
©
-
w
o

IAD IAD IAD
24 SoTA 26 SoTA 125 SoTA
2 == Baseline 24 == Baseline == Baseline
& 922 -12.0
E 3 o
£ 222
n o ©11.5
520 % g
=2
g 0 E110
—1 18 = mr e — T == — === 18- memm— SN SEUNE SN .0 ___ _ _NEEEN U SUUEE
10.5
16 16
1 2 4 6 1 2 4 6 100y 2 4 6
No of responses (N) No of responses (N) No of responses (N)
(a) (b) (©
22 22
24 IAD 9 IAD IAD
Sen SoTA 20 SoTA
-'§'22 —— Baseline 20 == Baseline 18 T Baseline
K 2
E 319 o
@ 20 = 216
5 318 g
[S) = £
& =14
S18 = puin = S TR - 17" mahE-T T T
12
16 &N B B B e | B B
1 2 4 6 By 2 4 6 0y 2 4 6
No of responses (N) No of responses (N) No of responses (N)
(d) ©) ®

Figure 8: Sketch2code: This figure provides a comparison of IAD (ours) with Best-of-N sampling (SoTA) and
single-turn generation with Gemini-1.5-Flash for the metrics - (a, d) Layout Similarity (b,) TextloU (c, f) Im-
ageloU across varying the number of generations (N). Top 3 rows, the optimization is done taking Text IOU as the
verifier and the bottom 3 rows with Image IOU as the verifier. So, this also shows both the generalisability and
performance improvement of IAD over baselines.

inconsistencies. This leads to challenges such as misaligned text, incorrect spacing, missing components,
structural inconsistencies, making it an extremely challenging benchmark for multimodal LLMs. The
complexity of this task arises from: ambiguity in hand-drawn sketches, where component boundaries,
spacing, and positioning are not precisely defined. The evaluation of the generation is done primarily
with three key metrics : Layout Similarity, Text IOU, Image IOU. Layout Similarity (IoU-based metrics):
Intersection-over-Union (IoU) is computed for different UI components (e.g., buttons, images, text blocks)
to measure how well their positions match the reference. Intersection-over-Union (IoU) is computed for
different UI components (e.g., buttons, images, text blocks) to measure how well their positions match the
reference implementation. Text-IOU similarly measures how accurately the generated text aligns with the
reference design. Image IOU uses CLIP embeddings to compare the visual appearance of the generated
webpage with the reference design and evaluates color similarity, element positioning, and component
rendering. These metrics provide a reliable way to measure the quality of the generated response and
strongly correlates with human judgement. Evaluations are done also with LLM as judge to compare the
performance.

3. Webshop is a large-scale, web-based interactive environment designed to test an Al agent’s capability
to perform sequential decision-making in an online shopping scenario under sparse feedback (Yao et al.,
2023). The environment is modeled as a partially observable Markov decision process, where the agent
navigates a simulated e-commerce platform to fulfill a user’s product request based on natural language
instructions. At each step, the agent receives an observation in the form of a webpage—such as search
results, product details, or checkout options—and must decide on an action, including searching for a
product, clicking on an item, or selecting options. The evaluation is based on success rate (SR), which
measures whether the agent successfully selects a product that matches all specified criteria (attributes,
price, and options), and task score, which represents the overall alignment of the final selection with the
given instruction. The WebShop environment presents significant challenges, including sparse rewards
(since feedback is only provided at the end of an episode), the need for strategic backtracking and
exploration, and handling noisy or ambiguous natural language instructions. This setup makes WebShop a

13

Algorithm 1 Proposed Approach: Iterative Decoding Black-Box Inference with AI Agents

Require: Proposal distribution 7g(-|z, ¢;), input prompt x, reward function R(x,y), threshold § > 0,
number of iterations T’
Ensure: Final accepted response ¢
1: Inmitialize: Sample an initial response yo ~ mo(+|z)

2: Compute its reward ro = R(z, yo)

3: Accept the initial response: ¢y < o and r* < rg
4: fort =1,2,...,T do

5: Sample a new candidate response y; ~ 7o (+|z, Ji—1)
6: Compute its reward ry = R(x, y;)

7. ifr; — r* > 0 then

8: Accept the candidate: ¢; < y; and r* < 1y
9: else

10: Reject the candidate: §; < 9;—1

11: endif

12: end for

13: return yr

rigorous benchmark for evaluating long-horizon reasoning, language understanding, and decision-making
in real-world-like online navigation scenarios.

A.2 Limitation of Single-turn Approach

In this section we characterize the performance gap A as the difference between the reward the optimal or
ground-truth agent is achieving vs the reward achieved by the reference achieved by the reference agent
policy.

A=Ey () [R(7,9)] = Eyry (o) [B(2,)]

< sup Eyww*(-\x) [R(l‘, y)] - Eywwo(-\m) [R($, y)]
ReR

< ||R”maxdTV(7T*(“x), 7T0('|£C)),

where R(x,y) represents the reward function measuring the quality of the generated response, and
dry(7*(+|x), mo(:|z)) is the total variation (TV) distance between the optimal policy 7*(-|x) and the
reference policy mo(-|z) (Mroueh, 2024). This result demonstrates that the performance gap A is
inherently limited by the quality of the reference agent policy 7o(+|z), as measured by its divergence from
the optimal policy. Thus, if 7o (+|z) is close to 77*(-|x) (in terms of TV distance), the performance gap will
be small, resulting in near-optimal responses and viceversa.

A.3 Motivation of our Proposed approach

In this section, we provide an intuitive explanation of why our proposed approach works via connecting
to the equivalence of the reward function and the log-probability of the optimal policy. In our proposed
approach, at each turn ¢, the response y; is sampled from the proposal distribution mo(-|x, g;—1) which
refines the sampling process by updating the "context" of the generation based on the previously accepted
response. Next, we estimate the mean of this updated distribution which can be given as :

e = EytNWOWO(yt‘$7@t—l) = g(z,9t—1)

which shows that the updated policy mean is a function g(x, ;1) of the best response till the current step.
It is important to note that at any point, we are selecting the response y; which has the reward R(z,y). A
keey insight from the alignment literature (Rafailov et al., 2023) lies in the fact , that there exists a direct
equivalence between the reward function and the corresponding optimal policy under the reward as:

1
log 7*(y|z) = —log Z(z) + ER(m, Y) “)

14

Thus the above equation highlights that maximizing the reward is equivalent to maximizing the log-
probability of the optimal policy. Our acceptance criterion ensures a response ¥ is retained only if
it improves upon the previous best §;_1, thus enacts a step-wise refinement of the policy toward an
optimal target policy 7*(-|x), where the verifier R(x, y) plays the role of the unnormalized log probability
of the optimal policy. Specifically, while comparing the responses ¥, y2 using the reward function

R(x,y), we estimate R(xz,y2) — R(z,y1) which is equivalent to evaluating log :igﬂg Thus, the
acceptance/rejection mechanism ensures that the refinement process is guided toward responses with
higher rewards, progressively reducing the gap between the proposal distribution and the target distribution.
This is an intuitive explanation of our proposed approach and providing a rigorous connection and
convergence analysis of our algorithm remains a valid scope of future research. Also this highlights the
importance of an accurate verifier, since an erroneous verifier might bias the proposed approach and a

detailed investigation of the same is a valid direction of future research.

Security Wall Products
Security Wall Products

............

mmmmmmmmmmmmmmmmmmmm

1

1

I

I

|

1

1

I

I

Security Wall Products :ou:n I‘p vvvvvv I
‘ |
|

1

1

1

1

1

I

1

1

Figure 9: Sketch2code: Qualitative evaluation of the generated HTMLs with BoN sampling (N=4) corresponding
to the user-sketch (left-bottom) and reference html (left-top). The figures show that BoN performs much better in
matching the reference HTML but still misses specific properties like rectangular structue, position of text, relative
positioning of smaller blocks etc.

A.4 Detailed Experimental Analysis
A.5 Text-to-SQL Detailed Results and Analysis

In this section, we detail the experiments conducted on the BIRD text-to-SQL benchmark (Li et al.,
2024a). For these experiments, we employed the Gemini-1.5-pro and Gemini-1.5-flash models both
to generate actions at each state and as judge models to predict the reward. At each state, the LLM is
provided with the database schema and the user’s query, based on which it generates a draft SQL query.
This draft query is then evaluated by the judge model, which also produces feedback on how to improve
the draft. The LLM uses this feedback to generate a revised query, establishing a self-correction loop.
Finally, the answer with the highest reward value is selected as the candidate output. This process can be
repeated to generate multiple candidate SQL queries. We then apply self-consistency (Wang et al., 2022)
by executing all candidate queries over the database, grouping them based on their execution results, and
selecting a query from the largest result cluster as the final answer. In the following sections, we first
compare our proposed method with the widely used few-shot prompting approach in terms of Pass@k
performance and final accuracy after self-consistency (Majority @K)) using execution accuracy as the
metric in order to demonstrate that using our method we can generate a pool of candidates with a higher

15

Security Wall Products

Products designed for applications where
high impact wall strength are required

Layout Score : 0.13 Layout Score : 0.09

Security Wall Products

Security Wall Products

lorem ipsum..

Our Products —_———

lorem ipsum..

3033 S Wil s -

Layout Score : 0.24 Layout Score : 0.31 e, T

. [— 3

Figure 10: Sketch2code: Provides a qualitative verification of layout score as a metric and corresponding corre-
lation to human judgement. It is evident that HTMLs with higher match with the reference layout (right-top) and
user sketch(right-bottom) has higher layout score and vice-versa showing that its a valid metric.

quality. Subsequently, we compare our approach with the best-of-N approach which is one of the strong
baselines as a test-time compute approaches to demonstrate the effectiveness of the proposed framework.
Finally, we compare our method with all previously proposed test-time methods on the BIRD development
set benchmark, excluding works that rely heavily on fine-tuning LL.Ms (Pourreza et al., 2024; Talaei et al.,
2024; Maamari et al., 2024; Gao et al., 2024) for a fair comparison.

Comparing with Few-shot prompting We compared our method with the widely used few-shot
in-context learning approach for text-to-SQL tasks. We evaluated and reported the Pass@K and self-
consistency performance for up to 10 candidates using both the Gemini-1.5-flash-002 and Gemini-1.5-pro-
002 models, as illustrated in the Figure 4. As demonstrated by these figures, our approach consistently
outperforms the few-shot in-context learning method by a significant margin on both pass@K and
self-consistency scores.

Comparing with Best-of-N In this section, we compare our proposed framework with the well-
established best-of-N method to highlight the importance of searching through possible answers based on
their rewards. For this comparison, we generated up to 20 candidate queries for each sample in the BIRD
development set and utilized the model itself to select the best answer from the candidates. As shown in
the Figure 4, our proposed method outperformed the best-of-N approach for both the Gemini-1.5-pro and
Gemini-1.5-flash models, demonstrating the significance of incorporating a feedback loop to enhance the
quality of candidate responses.

Comparison with Previous works In this section, we compare our approach with Gemini-1.5-Pro
and other previous methods that rely on test-time computation. As shown in the Table 2, our method
outperforms all previous approaches, demonstrating the effectiveness of the proposed framework in
leveraging test-time computations to enhance model performance on the BIRD benchmark development
set.

16

Sketch2code : Oracle Judge Prompt for providing Feedback

Input: Act as you are a front-end designer working with a code agent to implement an
HTML webpage . You are provided with two images : the first image is the reference
webpage, and the second one is the current implementation from the code agent . Note that
images have already been replaced with blue rectangles as the placeholder. The task is to
carefully compare the agent ’s implementation against the reference webpage , and provide
feedback to help the agent make its implementation closer to the reference webpage . Your
feedback should be specific to the differences in layouts and visual components on the two
webpages. If required provide small code snippets to help the user-agent but provide very
few lines. Don’t focus on the style components too much and focus on layout similarity and
visual match with the reference webpage.

Sketch2code : Feedback from LLM as a Judge (Self Verification)

Feedback provided : Iterl : The HTML structure and CSS styling do not reflect the pro-
vided wireframe. Iter2 :The layout needs to be revised to accurately represent the sketch’s
two-column image section and the distribution of text blocks. Iter 3: The layout of the
text blocks and image containers does not accurately reflect the provided wireframe. The
layout uses flexbox but doesn’t accurately reflect the sketch’s proportions and image place-
ment. The large image should be centered and the smaller images should be positioned to
the left of their respective text blocks. Iter4 : Implement a more precise grid-based lay-
out using CSS grid or flexbox to achieve the correct positioning and sizing of all elements.
Iter 5: The provided HTML closely resembles the wireframe but still needs significant lay-
out adjustments. Use CSS Grid to precisely position and size all elements according to the
wireframe’s proportions.

A.6 Sketch2code

For Sketch2code (Li et al., 2024b), we provide a detailed comparison of our approach against SoTA
baselines on several evaluation criterion and metrics. We used the hyperparameter setting of temperature
= 0.5, max tokens = 4096, top p = 1.0, frequency/repetition penalty = 0.0, and presence penalty = 0.0
for all our results. For the metrics, we consider metrics centring /.Layout Similarity, 2. Visual IoU, 3.
Text IoU with reference HTML following (Li et al., 2024b). These metrics offer a comprehensive and
reliable assessment of HTML generation quality, demonstrating a strong correlation (90%) with human
satisfaction, as shown in (Li et al., 2024b) (further details in Appendix). Hence, we use Layout similarity
as a verifier along with LLM-as-judge (Li et al., 2024b) to guide the generations for both BoN (Beirami
et al., 2024) and IAD. We report comparison with baseline single-turn approaches including SotA models
GPT-40, Claude-3, InternVL2, Gemini-1.5-Flash, CoT and variants along with multi-response generation
approaches including BoN, Sk2code and IAD (Ours). Single turn approaches even from SoTA models
fail to match the layout structure, position of blocks, textual content, size of the blocks etc in the given
user-sketch, causing a mismatch w.r.t to the reference layout as can be clearly seen in Figure and achieves a
low score in-terms of all the three metrics in-comparison with multi-response generation approaches even
with N=2. Best-of-N sampling (BoN) with a weaker model Gemini-1.5-Flash improves over single-turn
approaches and , with N = 4 generations, it outperforms SoTA models with single-turn responses by
a margin of 15-18%, by correctly identifying the block position, title block, overall layout structures
etc. We see monotonic improvement in performance over the number of responses as the layout score
improves from 20.41 to 25.7 with 6 responses. However, BoN struggles in incorporating fine-grained
details about layout structure and makes some-times makes repetitive mistakes in the position of block in
all the N generation for the prompts (as shown in Fig). Our proposed approach IAD, mitigates this gap by
iteratively improving the responses and as shown in Table 1, it achieves a major improvement of 15%

17

Sketch Reference

Performance

1

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Seeurity Wall Products

securty] [rrSr—" pr—r—

Ours

Figure 11: Sketch2code : Top row shows the user sketch, reference image and the performance of IAD over
iterations. The figure highlights improvement of IAD over 4-turns w.r.t Layout similarity score (1/100) for 3
examples. It shows clear improvement over iterations. We also qualitatively analyse the snapshots of the HTMLs
generated by the agent, which demonstrates that over iteration the qualitative performance improves and matches
the input sketch/reference HTML.

from BoN as well as single-turn SoTA Claude with just 2 iterations (eq : N=2) even with simpler model
Gemini-1.5-Flash. At each iteration, we pass the best and worst HTML as a context along with instruction,
for generating the next iteration. We observe IAD is able to learn fine-grained layout components, image
semantics over iterations with the context of the Best and Worst HTML. We see that with increased
iterations, performance of IAD improves reaching to a very high layout score of 26.75, outperforming all
baselines with same generations. We also report the Image and Text IoU scores while optimizing with the
layout-score, to check for reward-overoptimization of the metric.

However, as can be observed in Table 1 and Figure-3, that text and image similarities are also improving
over the iterations and our findings regarding comparison with baseline BoN are consistent with the
same. However, we observe that with increase number of generations the performance gets closer to
BoN. We also consider sensitivity of the token-length of the context plays a critical role in this case,
where providing the entire HTMLs can affect the entropy of the distribution, and thus over-conditioning
can hinder structured generation by reducing diversity and exploration (as shown in Figure). Thus,
we provide only the top 100-200 tokens of the best (and worst) HTMLs. However, it is clear that if
there would be a judge to highlight which portion of the code needs to be updated that will be more
targeted. Hence, we incorporate LLM-judge (Gemini-1.5-Pro) which has the reference policy and it
checks with the current response and provide feedback on improvement and sometimes snippets of HTML
as well (however, we restrict that to 100 tokens 5-8% of the original HTML). This leads to a significant
improvement of 36% for the layout score with just two iteration and final score of 31.98 with 6 iterations,
demonstration the important of iterative approaches for agent performance. However, Sk2code (Li et al.,
2024b) also performs feedback based design with LLM as a judge, however their approach doesn’t yield
major improvements for several models like Gemini-1.5, which we hypothesize can be due to the incorrect
design of the method and also issues in the GPT-4 judge. Overall, in all our ablation our findings remain
consistent where IAD outperforms baseline by a major margin.

Verifier and Reward function: We provide qualitative evaluation of considering layout similarity as a
verifier due to its Interpretability and also correlation with human judgements also shown in (Li et al.,
2024b). Additionally, we want to highlight that Sketch2code represents an extremely complex and

18

challenging task for using self-LLM as a judge (Madaan et al., 2023) (without significant prompting)
to compare between two generated HTMLs (by the agent) with its similarity to the input sketch and
prompt. The input sketch has entirely different distribution than the image snapshot of the generated
HTML which makes it harder for LLM as a judge to perform which is one of the reason we hypothesize
that Self-refine (Madaan et al., 2023) type approaches doesn’t provide improvements as shown in Table 1.
On the other-hand, although LLM judge (oracle) provides more meaningful feedback when it has access
to the reference HTML, however needs to be prompted efficiently to generate meaningful responses. We
accept the fact that our judge (oracle) for the feedback was allowed to provide more context than the one
used in (Li et al., 2024b). However, the performance improvement in (Li et al., 2024b) feedback approch
is very less and we hypothesize major reasons can be not performing IAD type approach, where we take
previous best response (HTML) in the context along with specific instructions. Even for LLM-judge
(oracle), we leverage feedback along with the previous best and worst HTMLs, which helps in providing
more meaningful context to the agent in generating the correct HTML.

s)
DB_SCHEMA:
CREATE TABLE satscores (

sname TEXT NULL, -- Example: 'FAME Public Charter'

AvgScrRead INTEGER NULL, -- Example: 418

AvgScrMath INTEGER NULL, -- Example: 418

NumTstTakr INTEGER NOT NULL, -- Example: 88

enroll12 INTEGER NOT NULL, -- Example: 398

cds TEXT NOT NULL PRIMARY KEY
);

CREATE TABLE frpm (
SchoolName TEXT NULL, -- Example: 'FAME Public Charter’
PercentEligibleFRPM REAL NULL, -- Example: 0.656
FRPMCount REAL NULL, -- Example: 702
Enrollment REAL NULL, -- Example: 1087

CDSCode TEXT NOT NULL PRIMARY KEY
);

CREATE TABLE schools (
School TEXT NULL, -- Example: 'FAME Public Charter'
County TEXT NOT NULL, -- Example: 'Alameda"
Latitude REAL NULL, -- Example: 37.658212
Longitude REAL NULL, -- Example: -122.09713

CDSCode TEXT NOT NULL PRIMARY KEY
);

Question: List the top five schools, by descending order, from the highest
to the lowest, the most number of Enrollment (Ages 5-17). Please give their
NCES school identification number.

. J

v v

SELECT DISTINCT T2.NCESSCHOOL FROM FRPM AS T1
INNER JOIN SCHOOLS AS T2 ON T1.CDSCODE =
T2.CDSCODE WHERE T1'ENROLLMENT (AGES 5-17)" IS
NOT NULL ORDER BY T1.'ENROLLMENT (AGES 5-17)
DESC LIMIT 5

SELECT T1'NCESSCHOOL’, T2'ENROLLMENT (AGES 5-17)
FROM SCHOOLS AS T1 INNER JOIN FRPM AS T2 ON
T1.CDSCODE = T2.CDSCODE ORDER BY

T2 'ENROLLMENT (AGES 5-17)° DESC LIMIT 5

BEST OF N: QUR METHOD:
INCORRECT ANSWER CORRECT ANSWER

Figure 12: Text2SQL: An example of two responses is presented: the first response, generated using our proposed
approach, is correct, while the second response, produced using the best-of-N method, is incorrect.

Webshop - Task Execution Flow - IAD (Success)

Search: "blue color toothbrushes” —— ProductList Found —— Selected: Hoomall
Kids U-Shaped Toothbrush (Blue, $10.95) —— Clicked on Product —— Purchased
— Task Completed (Reward: 1.0)

19

Query

Search Attempts

Results Found

Final Outcome

Men’s Black Loafers (Size
10.5, Rubber Soles, <60)

Multiple searches, clicked
"Next" repeatedly, found
unrelated shoes (sneakers,
sandals, pumps)

None matched the require-
ment

Task Failed - No

suitable options
found (Reward:
0.0)

Blue Diamond Almonds
(Gluten-Free, Pecan, 12
Pack)

Repeated searches, en-
countered "No Search but-
ton" error multiple times,
retrieved irrelevant snack
items

Nut Thins Crackers, Keto
Bars, M&M’s Chocolate

Task Failed - No rel-
evant product found
(Reward: 0.0)

Folding Storage Box
Ottoman (Faux Leather,
60x40x40cm, <170)

Initial product matched
but had incorrect size, next
searches returned irrele-
vant furniture items

Found an ottoman, but
wrong size & overpriced

Task Failed - No
exact match found
(Reward: 0.0)

Official Cleveland Uni-

Search led to incorrect

No official Cleveland Uni-

Task Failed - No

versity Drawstring Shorts results (Marvel T-Shirts, versity shorts found suitable options
(Small, Charcoal, Ma- Women’s Yoga Shorts), found (Reward:
chine Washable, <60) agent attempted refine- 0.0)

ment but couldn’t find ex-

act product
Organic Hair Growth Search retrieved some Found a set, but incorrect Task Failed - No

Serum Roller Set (For All
Hair Types, <60)

serums but none matched
exact request (wrong
quantity or expensive)

product version

exact match found
(Reward: 0.0)

Table 4: Webshop : Highlights several Failure Cases of the Baseline Agent (Gemini-1.5-Pro) in Retrieving Rele-
vant products given the task. This represents the challenge of current model in performing strategic exploration in
Webshop.

Webshop - Task: Buy a Folding Storage Box Ottoman- IAD (Success)

Size: 60x40x40cm Material: Faux Leather Price: Under $170
* Search — "folding storage box ottoman faux leather 60x40x40cm"

¢ Product List — Found 50 results

— Ottoman Footstool (40x40x40cm) - $149.97
— Other options did not match size or price

* Click — Select "Ottoman Footstool"
* Size Selection — Click "60x40x40cm"
* Buy Now — Proceed to checkout

» Task Completed

20

Webshop - Task: Buy a Vegan, Gluten-Free Protein Shake - IAD (Success)

Requirements: 100% Vegan, Gluten-Free, Soy-Free Price: Under $40
* Search — "gluten free vegan plant based protein shake"

¢ Product List — Found 50 results

— OWYN Protein Shake (Cold Brew Coffee, 120z) - $11.07
— Other products exceeded price or dietary restrictions

Click — Select "OWYN Protein Shake"

* Buy Now — Proceed to checkout

Task Completed

21

	Introduction
	AI Agent Alignment
	Limitation of Prior approaches

	Proposed Methodology
	Experimental Analysis
	Sketch2code Results and Analysis
	Text-to-SQL Results and Analysis

	Webshop Results and Analysis

	Conclusion
	Limitations
	Appendix
	Detailed Environment Description
	Limitation of Single-turn Approach
	Motivation of our Proposed approach
	Detailed Experimental Analysis
	Text-to-SQL Detailed Results and Analysis
	Sketch2code

