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ABSTRACT

In this paper, we present a unified spatio-temporal attention MixFormer frame-
work for visual object tracking. Within the vision transformer framework, we
design a cohesive network consisting of target template and search region fea-
ture extraction, cross-attention utilizing spatial and temporal information, and
task-specific heads, all operating in an end-to-end manner. Incorporating spa-
tial and temporal attention modules within the network enables simultaneous fea-
ture extraction and emphasis, allowing the model to concentrate on target-specific
discriminative features despite changes in illumination, occlusion, scale, camera
pose, and background clutter. Stacking multiple non-hierarchical blocks allows
meaningful features to be extracted while irrelevant features are discarded from
the provided target template and search region. The simultaneous spatio-temporal
attention module is employed to accentuate target appearance features and alle-
viate variation in the object state across frame sequences. Qualitative and quan-
titative analysis, including ablation tests based on various tracking benchmarks,
validates the robustness of the proposed tracking methodology.

1 INTRODUCTION

Visual object tracking (VOT) is a traditional computer vision application that tracks the position
of a target object in space or across different camera viewpoints. VOT has been successfully em-
ployed in various applications, but its performance can still be hindered by changes in illumination,
scale, camera pose, occlusion, and background clutter. In this context, VOT methods that employ
deep neural networks tend to outperform conventional approaches. In particular, VOT using vi-
sion transformers (ViTs) (Dosovitskiy et al., 2021) is no longer merely considered an alternative
to convolutional neural networks (CNNs) for VOT but rather has become the leading candidate for
superior performance in visual object tasks. ViT based VOT involves three main steps: (1) utilizing
a ViT-based backbone to extract features from the target template and search region, (2) employing
a cross-attention module to integrate features between the target template and search region, and (3)
employing task-specific heads to precisely localize the target and estimate its bounding box. There
has been a trend in VOT to use a ViT-based backbone to extract features and emphasize them by
adding annexed encoders and decoders via the embedding of numerous attention modules. However,
these methods lead to greater model complexity and incur higher computational costs. As a result,
it is essential to find the appropriate balance between effective feature extraction and the incorpo-
ration of attention modules. ViT based VOT models also lack explicit modeling of the relationship
between spatial, which is related to the appearance of the object and assists in target localization,
and temporal information, which records changes in the state of the object between frames.

In this paper, we introduce a novel approach to VOT networks by designing a unified integration
of visual feature extraction and spatio-temporal cross-attention information within a single module.
The spatio-temporal attention mechanism is trained to identify target features from a given search re-
gion. The temporal attention generated from the previous search sequence for the same target object
is employed in the current search region, followed by spatial attention that reinforces any significant
features. The spatial attention module highlights appearance information within the present search
region, while the temporal block distills insights from previous time steps within the search region.
Ultimately, predictions are generated by weighting and combining current and past information to
produce a comprehensive understanding of the scene. Recognizing that the positional information
of the target in previous frame t−1 can be advantageous in determining its position in current frame
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t, our proposed tracker employs the attention map from the previous frame to guide the target posi-
tion in the present frame. Furthermore, we propose the unified spatio-temporal attention MixFormer
(USTAM) model, which amplifies significant targets from the search features to bolster tracking
performance. As demonstrated using experimental validation, this approach places fewer demands
on computational resources and can be readily applied to various attention modules.

The main contributions of the proposed method can be summarized as follows:

• We present a simple but effective unified VOT pipeline for feature extraction, target infor-
mation integration, and localization estimation within the framework of a ViT network.

• The spatio-temporal attention module in the network is designed to emphasize target ap-
pearance localization in the change of the environment.

• We propose an end-to-end VOT network to effectively extract discriminative features from
the MixFormer pipeline. The experiment results quantitatively and qualitatively verify the
robustness of the proposed approach.

2 RELATED WORKS

CNN-based trackers. Most CNN-based VOT methods aim to provide an improved target repre-
sentation via hierarchical feature representation learning on larger-scale datasets (Pu et al., 2018;
Gundogdu & Alatan, 2018), instead of utilizing pre-training (Han et al., 2018; Wu et al., 2019),
formulating numerous target models to capture a variety of target characteristics (Li et al., 2018c;
Wang et al., 2018), enhancing the generalizability of models with spatial-temporal information (Li
et al., 2018b; 2020), or fusing different deep features to complement semantic and spatial informa-
tion (Bhat et al., 2018; Ma et al., 2019). Zhang et al. Zhang et al. (2020) proposed an object-aware
anchor-free network (Ocean) consisting of an offline anchor-free component and an online model
update component. In another study, Xie et al. (2022) presented a target-dependent feature net-
work (SBT-B) that learns cross-image feature correlation through multiple layers. Siamese networks
(SNNs) (Bromley et al., 1993), which use two identical CNN branches, have been employed for VOT
because SNNs offer improved performance with a relatively low computational complexity. Many
SNN-based VOT approaches have appeared (Bertinetto et al., 2016; Li et al., 2018a; 2019; Chen
et al., 2020; Guo et al., 2021; Cheng et al., 2021; Voigtlaender et al., 2020). For example, Bertinetto
et al. (2016) introduced a fully-convolutional Siamese VOT network (SiamFC) trained in an end-
to-end manner, while Li et al. (2018a) proposed a Siamese region proposal network (SiamRPN)
consisting of an SNN for feature extraction and a region proposal network for regression and the
classification of targets. SiamRPN was extended to SiamRPN++ (Li et al., 2019) with training on
ResNet and both layer-wise and depth-wise aggregation to improve its accuracy. In another study,
Chen et al. (2020) introduced a Siamese box adaptive network incorporating a fully convolutional
network into an SNN (TransT), while Voigtlaender et al. (2020) presented a re-detection strategy us-
ing two-stage object detection network. Guo et al. (2021) attempted to solve the problems associated
with a pre-fixed target region size and global matching by proposing target-aware region selection
that adopts a graph attention mechanism. Cheng et al. (2021) also designed an SNN with two mod-
ules: a relation detector for filtering distractors and a refinement module for more precise tracking.
Similarly, Mayer et al. (2021) proposed a target candidate association network (KeepTrack) robust
to distractor. SNN-based approaches aim to reduce the computational costs of CNN-based VOT
methods for real-time applications.

CNN-transformer-based trackers. A number of researchers have conbined CNNs with transform-
ers, with most of these hybrid CNN-transformer-based trackers adopting an SNN as the feature-
extracting backbone and feeding the extracted features into the transformer to obtain similar features
for the target in the search region. Wang et al. (2021) was the first to propose a CNN-transformer
VOT approach, which they referred to as TrDiMP, in which features from both template patches and
the search region are extracted using a CNN, with the template features fed into the encoder and the
search region features fed into the decoder of the transformer. Similarly, Yu et al. (2021) presented a
CNN-transformer tracker using an encoder-decoder transformer, and Yang et al. (2023) reduced the
computational cost of TrDiMP by adopting a deformable transformer. Chen et al. (2021) suggested
a CNN-transformer network consisting of three modules: a CNN as a backbone, a transformer for
feature fusing, and a prediction network. Zhong et al. (2022) employed feature fusion by incorpo-
rating a correlation module into a transformer network. Zhao et al. (2021) also used a transformer
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to capture global information from target templates, and the learned global features were utilized as
cues to calculate the correlation between the target and search region. Yan et al. (2021) proposed
VOT based on the object detection transformer STARK, which captures both the spatial and tempo-
ral cues of the target. Mayer et al. (2022) proposed VOT with a transformer-based model prediction
module (ToMP) in which features from the target templates and search regions were extracted from
the CNN and concatenated, with both features jointly fed into the encoder and decoder of the trans-
former. Gao et al. (2022) designed an attention-in-attention (AiATrack) module by incorporating an
inner attention module into a transformer network to focus on appropriate correlations and ignore
erroneous ones.

Fully transformer-based trackers. Because CNN-transformer trackers use a CNN as the back-
bone for feature extraction, it is difficult for these hybrid CNN-transformer VOT methods to capture
global features, thus research has started to focus on global information learned by transformers.
Fully transformer-based trackers can be classified into two-stream transformer trackers, in which
one transformer acts as the backbone and the other is used to discover relationships, and one-stream
transformer trackers, which employ a single transformer. Xie et al. (2021) proposed a VOT method
using dual transformers for the target template and search region. The two transformers consisted
of local and global attention blocks, and the output features of the dual branches were fed to a
cross-attention block to calculate the relationship between the target and the search region. Lin et al.
(2022) adopted Swin Transformer (Liu et al., 2021), which was originally designed as a general-
purpose backbone, to propose SwinTrack as a means to improve the interactions in learning the
features of the target template and search region. SwinTrack has three modules: a feature extrac-
tion transformer, a feature fusion transformer, and a prediction module. Cui et al. (2022) presented
MixFormer as a transformer tracking method whose core component is a mixed attention module
(MAM) used to extract features and integrate target information simultaneously. Ye et al. (2022)
also proposed a one-stream tracker that unifies feature extraction and feature fusion using a trans-
former with an early candidate elimination module to improve the inference efficiency (OSTrack). A
problem associated with one-stream trackers is that they often unnecessarily calculate the attention
between template patches and all search patches, and Gao et al. (2023) attempted to overcome this
by introducing a generalized relation model based on the adaptive selection of search region patches.
Xie et al. (2023) also attempted to fully utilize both temporal and spatial information within a one-
stream transformer tracker. Wu et al. (2023) employed two cores: a masked autoencoder in the
tracking network to capture both spatial and correlated spatial information and an attention dropout
mechanism to restrict the within-frame token interactions. Wei et al. (2023) proposed ARTrack, an
encoder-decoder transformer without a prediction head, which solves VOT as a coordinate sequence
interpretation problem.

3 USTAM: UNIFIED SPATIO-TEMPORAL ATTENTION MIXFORMER

In this section, we present the USTAM model, a ViT-based VOT method within an updated search
area by integrating temporal and spatial information from target-specific features into a coupled
VOT framework as shown in Fig. 1. Motivated by MixFormer (Cui et al., 2022), which unifies

Figure 1: Proposed USTAM model for VOT involving the embedding of a mixed attention module
and a bounding box prediction head.
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feature extraction and target information integration using an MAM for target-specific feature ex-
traction and extensive communication between the target and search area, we design an end-to-end
tracking model. This model primarily consists of an iterative MAM-based backbone with an embed-
ded spatio-temporal feature emphasis module and a bounding box prediction head. To effectively
and efficiently unify target-based search area detection and spatio-temporal information communi-
cation, we adopt an asymmetric attention scheme for each MAM block. In the first MAM block of
the backbone, we devise a temporal information update mechanism, while we incorporate spatial
attention into the last MAM block. We refer to the combination of spatial and temporal attention as
Spatio-Temporal attention. This is expected to facilitate the effective extraction of target and back-
ground information. The spatial attention map of the last block is the updated temporal information
and serves as input for the first block in the subsequent step. The remaining MAM blocks maintain
a consistent structure.

3.1 TEMPORAL ATTENTION

Given target template IT and search area ItS at time t ≥ 0, the proposed network detects target
bounding box Bt, with search area It+1

S automatically adjusted by Bt and fed as input into the
following t+ 1 time step. The network consists of iterative MAM blocks as its backbone, and
temporal attention is installed in the first block. The information on which attention is focused for
the target at time t − 1 is guided at time t so that attention is focused on the target from among
similar objects and confusing background. The MAM block is used to unify feature extraction and
information integration by adopting the target (or self-) attention and search (or cross-) attention.
With the query, key, and value (Qtg,Ktg, Vtg) and (Qs,Ks, Vs) at time t for target and search
attention, respectively, the mixed key and value are generated via concatenation as follows :

Km = Concat(Ktg,Ks), Vm = Concat(Vtg, Vs), (1)

and the asymmetric attention feature map at time t is defined as :

Attentiont
tg = softmax

(QtgK
T
tg√

d

)
Vtg, Attentiont

s = softmax
(QsK

T
m√
d

)
Vm, (2)

where d is the dimension of the key. Because the target in temporal motion moves continuously
without sudden jumps, meaning that the location of the target at the current time is close to its
location at the immediately preceding time step, we apply temporal attention to the search attention
of the first block. For notational simplicity, Gt is used to represent the attention map at time t as :

Gt := softmax
(QsK

T
m√
d

)
. (3)

Temporal attention is then defined to modify the search attention feature map given in Eq. 2 as :

Attentiont
s−t =

[
Gt ⊗Gt−1

sp +Gt
]
Vm =

[
Gt ⊗ (Gt−1

sp + 1)
]
Vm, (4)

where Gt−1
sp is the spatial attention map in the last MAM block at time t− 1, and the notation ⊗

denotes the element-wise product (or Hadamard) of the matrices. As explained in the following
subsection, the spatial attention map Gt−1

sp can distinguish the target from the background so that
Gt ⊗Gt−1

sp in Eq. 4 has the effect of strengthening the location information for the target, while the
target-specific features are preserved by again adding Gt to it, Gt ⊗Gt−1

sp +Gt in Eq. 4.

3.2 SPATIAL ATTENTION

We employ spatial attention in the last MAM block to distinguish the target from the complex
background, while the network integrates the target information. The search attention in the final
block generates map Gt

f at time t,

Gt
f = softmax

(Qs,fK
T
m,f√
d

)
, (5)
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Figure 2: Spatial attention used to emphasize the
meaningful features and remove the noisy features
from a given image.

for search query Qs,f and mixed key Km,f ob-
tained from the block. This attention map re-
flects the similarity between the query row vec-
tors and key row vectors calculated using the
inner product. That is, the attention map has
higher similarity values in target-related rows in
a complex background and low similarity val-
ues in background-background or background-
target related rows. In order to enhance these
properties further, the spatial attention is placed
in the search attention before applying mixed
value Vm,f . The spatial attention takes Gt

f =

(gij)
n
i,j=1 (with n the number of tokens related

to the search area) as input and produces map
Gt

sp of the relative average score given by :

(
Gt

sp

)
i,j

= gi,j −mave

( 1
n

n∑
i=1

gij
)
, (6)

where mave represents the largest of the mean values in each row of Gt
f , which is given in paren-

theses on the right side of Eq. 6. The spatial attention then sequentially applies softmax, FC, and
residual connection to map Gt

sp to finally obtain an enhanced attention map. This process using
the relatively average score given in Eq. 6 experimentally results in the strengthening of the target-
related features and the weakening of the background-related features. The structure of the spatial
attention module is presented in Fig. 2.

3.3 TRAINING AND INFERENCE

We predict the target bounding box given the top left and bottom right vertices of the box. The
bounding box is the output of the bounding box prediction head fed by the feature map from the
final MAM block. The search area It+1

S is given as twice the width and height of the bounding
box centered on the box, and it is used as input for the next step at time t + 1 along with target
template IT . We train the proposed tracking network according to the standard training process for
conventional trackers (Chen et al., 2021; Cui et al., 2022; Yan et al., 2021), and we optimize the
model using loss function L, given as :

L = L1(U, V ) + λLGIoU ((U, V )), (7)

for ground-truth bounding box U and predicted bounding box V for the target. Here, L1 is the
L1-loss and LGIoU is the GIoU loss (Rezatofighi et al., 2019) defined as :

LGIoU ((U, V )) = 1−GIoU(U, V ) = 1−
( |U ∩ V |
|U ∪ V |

− |C \ (U ∩ V )|
|C|

)
(8)

for the smallest box C containing U ∩ V. Parameter λ is the trade-off weight.

4 EXPERIMENTAL RESULTS

This section presents the results of experiments comparing the proposed approach with current state-
of-the-art (SOTA) VOT methods using public datasets. We also visualize the attention maps of the
target objects to easily understand how the proposed network and attention modules work. Ablation
analysis is also employed to verify the robustness of the proposed approach by analyzing the effects
of the spatial and temporal attention modules in the backbone network.

Experiment setup. The proposed method is implemented on a PC with Intel(R) CoreTM i7-7700
CPU (3.66 GHz) and an NVIDIA(R) A100 GPU in Python using the PyTorch framework. To ensure
a fair performance evaluation for VOT with SOTA methods, we analyze their VOT performance
using the TrackingNet (Müller et al., 2018), LaSOT (Fan et al., 2019), and GOT-10k (Huang et al.,
2021) datasets. We measured the accuracy (AUC), normalized precision (PNorm), and precision (P)
for the LaSOT and TrackingNet datasets, and the average overlap (AO), SR50, SR75 for the GOT-10k
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Table 1: The hyperparameters used in the experiments. All of the parameters are equally applied to
all models for a fair evaluation of their performance.

Learning rate 1e-4 (initial) , 1e-5 (epoch 400)
Optimizer AdamW with weight decay 10−4

Search region image size L : 384 × 384, B : 288 × 288
Target template image size L : 192 × 192, B : 128 × 128

Trade-off parameter 0.4

Table 2: Performance comparison of state-of-the-art VOT models using the LaSOT, TrackingNet and
GOT-10k datasets. Where * denotes for tracker only trained on GOT-10k. The two best-performing
methods are highlighted in red and blue, respectively.

Tracker Published
LaSOT TrackingNet GOT-10k

AUC (%) PNorm(%) P (%) AUC (%) PNorm(%) P (%) AO (%) SR50(%) SR75(%)

Ocean ECCV20 56.0 65.1 56.6 - - - 61.1 72.1 47.3
TransT CVPR21 64.9 73.8 69.0 81.4 86.7 80.3 67.1 76.8 60.9
STARK ICCV21 67.1 77.0 - 82.0 86.9 - 68.8 78.1 64.1

KeepTrack ICCV21 67.1 77.2 70.2 - - - - - -
SwinTrack-B NeurIPS22 69.6 78.6 74.1 82.5 87.0 80.4 69.4 78.0 64.3

SBT-B CVPR22 65.9 - 70.0 - - - 69.9 80.4 63.6
AiATrack ECCV22 69.0 79.4 73.8 82.7 87.8 80.4 69.6 80.0 63.2

ToMP CVPR22 67.6 78.0 72.2 81.2 86.2 78.6 - - -
MixFormer-L CVPR22 70.1 79.9 76.3 83.9 88.9 83.1 75.6 85.7 72.8
OSTrack-B384 ECCV22 71.1 81.1 77.6 83.9 88.5 83.2 73.7* 83.2* 70.8*
ARTrack-B384 CVPR23 72.6 81.7 79.1 85.1 89.1 84.8 75.5* 84.3* 74.3*

USTAM-L Ours 72.0 81.1 78.8 84.7 89.0 84.8 75.2 83.8 74.4

dataset as the metrics for quantitative evaluation and comparison. The AO measures the accuracy
of a tracking algorithm by calculating the average intersection-over-union (IoU) overlap between
the predicted bounding boxes and the ground truth bounding boxes across all frames in the dataset.
SR50 and SR75 represent a tracking algorithm’s ability to successfully track target objects with IoU
overlap thresholds of 0.50 and 0.75 or higher, respectively. Table 1 presents the hyperparameters
used for the training process. To ensure a fair evaluation and comparison, all parameters were
equally set to large and base models1.

4.1 QUANTITATIVE ANALYSIS

Table 2 presents a comparison of the results for the LaSOT, TrackingNet, and GOT-10k datasets
obtained from our proposed method and the SOTA VOT methods. The performance of the proposed
method is competitive across all datasets, which is attributed to the emphasis on spatial and temporal
features extracted from the search region image, which accounts for changes in illumination, scale,
occlusion, camera pose, and other variables. Our method produces a good performance for all
three datasets with little overfitting because the backbones of both USTAM-Base and USTAM-Large
are initialized with the parameters for the Masked Autoencoder (He et al., 2022) pretrained on the
large ImageNet dataset. Table 2 also illustrates that there is an overall improvement in performance
resulting from the transition from CNN-based algorithms to ViT-based models. This improvement
is achieved by considering global and local features from both the target template and the search
region.

LaSOT dataset. The LaSOT dataset is one of the largest and most densely annotated tracking
benchmark datasets. ARTrack, which is based on a plain ViT encoder, achieves the best performance
by employing an additional decoder that uses previous estimates (i.e., spatio-temporal prompts) as
command tokens. Although the AUC values for the proposed method are 0.6% lower than those of
ARTrack, our method achieves the second-best results by simultaneously emphasizing spatial and
temporal features even when the target object disappears in a video sequence. Thus, our method

1Source code will be released on our GitHub account
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effectively mitigates irrelevant noise by preserving spatio-temporal features. In contrast, existing
methods often have difficulty locating meaningful patches because they tend to lose significant fea-
tures for the target and may erroneously emphasize incorrect features or accumulate errors following
the target’s reappearance in the scene.

TrackingNet dataset. TrackingNet is a comprehensive dataset and a benchmark for object tracking
in natural settings. The proposed method produces competitive results for this dataset, achieving
the second-best results (about 0.5% lower than ARTrack) despite only employing an encoder using
spatio-temporal attention without the assistance of a decoder. The results from TrackingNet, as
presented in Table 2, demonstrate the superiority of ViT-based algorithms over their CNN-based
counterparts. This is attributed to the enhanced ability of ViTs to detect both global and local
features. Our method, which utilizes a ViT backbone network, successfully preserves the global
and local features of the target object while also emphasizing its crucial attributes. The proposed
model thus proves its usefulness for transformer-based models with an attention module because it
reliably tracks objects under various environments.

GOT-10k dataset. The GOT-10k dataset contains over 10,000 video segments featuring real-world
moving objects, along with more than 1.5 million manually labeled bounding boxes. While Mix-
Former achieves the best performance in terms of the AO and SR50 metrics by utilizing the flexibility
of an MAM for simultaneous feature extraction and target information integration. Our USTAM-
L, MixFormer-L, OSTrack384, and ARTrack384 exhibit an improved AO performance by over 5%
compared to previous algorithms due to the use of a ViT in the VOT.

4.2 QUALITATIVE ANALYSIS

(a) Qualitative tracking comparison (b) Attention map comparison

Figure 3: Example of the sequential tracking results (left) from our proposed approach (red box) and
MixFormer (yellow box). Target is indicated by the dotted green box at time t− 3. Attention maps
(right) in the last block of backbone w/ and w/o spatio-temporal attention from GOT-10k. Target is
indicated by the dotted green box in the search region.

Figure 3(a) presents a comparison between the tracking results for the proposed USTAM model and
MixFormer, an SOTA approach to VOT. In the first case in Fig. 3(a), rapid changes in scale within
the scene can result in tracking failure, even when the target template is distinguishable from the
background. However, the proposed method employs temporal attention to consistently transmit the
object’s information to the model over time, leading to an enhancement in object tracking perfor-
mance. In the second and third cases, objects with similar appearances undergo partial occlusion, re-
sulting in tracking failure due to the presence of similar features. However, in the proposed method,
it becomes apparent that emphasizing the object’s features enables stable tracking even in scenarios
where objects share similar colors and shapes. To understand the underlying reasons for the effective
performance of the proposed algorithm across various environments, attention maps are employed
for visualization in Fig. 3(b). The absence of a spatio-temporal attention module leads to a tendency
to emphasize the wrong objects with similar characteristics, leading to tracking failure. However, the
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spatio-temporal attention module enhances the tracking performance by simultaneously considering
location and appearance information even in the presence of diverse environmental changes.

4.3 ABLATION STUDY

To verify the robustness of the proposed USTAM tracker, we conduct the ablation study. Table 3
presents the evaluation results for the models trained with the GOT-10k dataset. While the AO
for USTAM-Base is 2.9% lower than that of USTAM-Large, the evaluation and comparison results
demonstrate that the proposed method is less dependent on the training data. Furthermore, Table 3
reveals that the tracking algorithms continue to be influenced by the size of the search region. Using
the same USTAM-Base model, we only increase the search region image size from 288 to 384, and
the AO performance improves by 2.3%. ARTrack, which utilizes an autoregressive model with a
general encoder-decoder architecture, achieves the best evaluation performance by eliminating the
customized heads and post-processing to simplify the tracking pipeline.

Table 3: Performance comparison for state-of-the-art models using the GOT-10k dataset. Tracker*
is trained on the GOT-10k training set only. The two best-performing methods are highlighted in red
and blue respectively.

Trackers Search region GOT-10k
image size AO SR50 SR75

STARK-ST101* 320 68.8 78.1 64.1
SwinTrack-B* 384 69.4 78.0 64.3

MixFormer-22k* 320 70.7 80.0 67.8
MixFormer-1k* 320 71.2 79.9 65.8

TATrack-B* 224 73.0 83.3 68.5
ARTrack-B* 256 73.5 82.2 70.9
USTAM-B* 288 70.8 80.8 65.9
USTAM-B* 384 73.1 82.5 69.5

Table 4 presents an analysis of how the spatial and temporal attention modules within the network
impact a range of performance factors. When spatial attention is added to the network, there is a
slight difference in terms of speed and parameters. In both the base and large models, the MACs
metric increases slightly by 0.4 G and 3G, respectively. However, the performance of the base
model trained with only the GOT-10k dataset improves by 1.2%, and the LaSOT dataset with the
large model trained on the entire dataset improves by 1.7%. By also adding temporal attention, the
GOT-10k and LaSOT base models improve by 0.7% and 1.6% respectively, despite minimal changes
in speed, MACs, and the parameters. When both spatial attention and temporal attention are applied,
the performance with the GOT-10k dataset improves by 2.3% and by 1.9% on the LaSOT dataset
with a minimal difference in speed, MACs, and parameters. As a result, applying both spatial at-
tention and temporal attention simultaneously leads to the highest model performance. We conduct

Table 4: Comparison of the speed, MACs, and parameter performance according to spatial and
temporal attention using the GOT-10k and LaSOT datasets

Trackers Spatial attention Temporal attention Speed(A100) MACs Params AO
(FPS) (G) (M) (%)

USTAM-Base*288

✓ ✓ 47.1 43.6 97.2 70.8
✓ 47.2 43.6 97.2 69.7

✓ 47.3 43.2 97.1 69.2
47.4 43.2 97.1 68.5

Trackers Spatial attention Temporal attention Speed(A100) MACs Params AUC
(FPS) (G) (M) (%)

USTAM-Large

✓ ✓ 30.1 274.6 318.0 72.0
✓ 30.4 274.6 318.0 71.8

✓ 30.3 271.6 317.7 71.7
31.1 271.6 317.7 70.1
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Table 5: Ablation study of the effectiveness by embedding spatio-temporal attention in the the pre-
vious VOT models.

Model Spatio-temporal GOT-10k
attention AO SR50 SR75

SwinTrack-Tiny* 66.5 75.9 60.2
✓ 68.1 78.0 61.8

MixFormer-Base*288
68.5 77.7 64.3

✓ 70.8 80.8 65.9

MixFormer-Base*384
72.3 81.5 69.3

✓ 73.1 82.5 69.5

experiments with and without the spatio-temporal attention on the GOT-10k dataset to demonstrate
the performance and flexible applicability of the spatio-temporal attention module. The spatio-
temporal attention module is attached next to the backbone in the encoder-decoder module of the
SwinTrack-Tiny and MixFormer-Base models. As shown in Table 5, with the spatio-temporal atten-
tion, the SwinTrack-Tiny model performance improves by 1.6% and the MixFormer-Base models
improve by 2.3% and 0.8%, respectively. This verifies the flexibility of the spatio-temporal attention
module for use in any model to enhance performance.

Figure 4: Visualization of incorrect sequential tracking results (left) and attention maps (right) from
the GOT-10k dataset. The target and our results are indicated by the dotted green box and red box
in the images, respectively.

5 DISCUSSION

In this paper, we present a straightforward yet effective unified VOT network. Our proposed USTAM
is designed as an end-to-end VOT network to effectively extract discriminative features from the
MixFormer pipeline. The modularized spatial and temporal attention simultaneously emphasize the
target’s appearance and localization, efficiently eliminating redundant and irrelevant features within
the search region. The quantitative and qualitative analysis, including ablation test, demonstrate that
the proposed USTAM model can be effectively employed in various real-world applications. How-
ever, the proposed USTAM model still has notable limitations, such as incorrect feature extraction,
partial occlusion, and similar object overlapping. Figure 4 presents examples of qualitative error
related to the predicted target, which may be caused by the influence of environmental changes. In
further research, we plan to work on emphasizing meaningful patches and eliminating noisy patches
through lightweight modeling and knowledge distillation techniques in VOT.
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