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Abstract

A fundamental component of human vision is our ability to parse complex visual
scenes and judge the relations between their constituent objects. AI benchmarks
for visual reasoning have driven rapid progress in recent years with state-of-the-art
systems now reaching human accuracy on some of these benchmarks. Yet, there
remains a major gap between humans and AI systems in terms of the sample
efficiency with which they learn new visual reasoning tasks. Humans’ remarkable
efficiency at learning has been at least partially attributed to their ability to harness
compositionality – allowing them to efficiently take advantage of previously gained
knowledge when learning new tasks. Here, we introduce a novel visual reasoning
benchmark, Compositional Visual Relations (CVR), to drive progress towards the
development of more data-efficient learning algorithms. We take inspiration from
fluid intelligence and non-verbal reasoning tests and describe a novel method for
creating compositions of abstract rules and generating image datasets correspond-
ing to these rules at scale. Our proposed benchmark includes measures of sample
efficiency, generalization, compositionality, and transfer across task rules. We
systematically evaluate modern neural architectures and find that convolutional
architectures surpass transformer-based architectures across all performance mea-
sures in most data regimes. However, all computational models are much less data
efficient than humans, even after learning informative visual representations using
self-supervision. Overall, we hope our challenge will spur interest in developing
neural architectures that can learn to harness compositionality for more efficient
learning.

1 Introduction

Visual reasoning is a complex ability requiring a high level of abstraction over high dimensional
sensory input. It highlights human’s capacity to manipulate concepts and relations as symbols
extracted from visual input. The efficiency with which humans learn new visual concepts and
relations, as exemplified by fluid intelligence and non-verbal reasoning tests, is equally fascinating. In
the pursuit of human-level artificial intelligence, a growing body of research is attempting to emulate
this skill in machines, and deep neural networks are at the forefront of the field.

Deep learning approaches are prime candidates as models of human intelligence due to their success
at learning from data while relying on simple design principles. However, these architectures are
imperfect models of human intelligence, as shown by their lack of sample efficiency, the inability to
generalize to unfamiliar situations [13] and the lack of robustness [14]. Their ability to perform well
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in large-data regimes has skewed research towards scaling up datasets and architectures with little
consideration for the sample efficiency of these systems.
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Figure 1: Visual reasoning benchmarks: State-of-
the-art models achieve super-human accuracy [40,
38] on several visual-reasoning benchmarks such
as RAVEN [43] PGM [3] and SVRT [12]. How-
ever, some benchmarks continue to pose a chal-
lenge for current models, such as ARC [9]. The
fundamental difference between these different
benchmarks is the number of unique task rules
they composed out of their priors and the number
of samples available for training architectures on
individual rules. This difference sheds light on two
poorly researched aspects of human intelligence:
learning in low-sample regimes and harnessing
compositionality. The proposed CVR challenge
aims to fill the gap between current benchmarks
to encourage the development of more sample-
efficient and more versatile neural architectures
for visual reasoning.

Only a few benchmarks address these aspects
of human intelligence. One such benchmark,
ARC [9] provides diverse visual reasoning prob-
lems. However, the extreme scarcity of training
samples, only 3 samples per task, renders the
benchmark difficult for all methods, especially
neural networks. Other benchmarks have led to
the development of new neural network-based
models that address particular gaps between hu-
man and machine intelligence [3, 43, 12]. Some
focus on evaluating the task’s perceptual require-
ments [12], which include detecting features,
recognizing objects, perceptual grouping and
spatial reasoning. Others evaluate logical rea-
soning requirements [3, 43], such as symbolic
reasoning, making analogies and causal reason-
ing. However, they lack either the variety of ab-
stract relations present in the scene or the seman-
tic and structural variety of scenes over which
they instantiate these abstract relations.

Creating novel visual reasoning tasks can be
challenging. In this benchmark, we standard-
ize a process for creating tasks compositionally
based on an elementary set of relations and ab-
stractions. This process allows us to exploit a
wide range of visual relations as well as abstract
rules, thus, making it possible to evaluate both
the perceptual and logical requirements of vi-
sual reasoning. The compositional nature of the
tasks provides an opportunity to investigate the
learning strategies wielded by existing methods.
Among these methods, we focus on state-of-the-
art abstract visual reasoning models and stan-
dard vision models. These models have been
shown to reach high performance on several visual reasoning tasks in previous works [40, 38], but
they always require large amounts of data. This paper’s subject of interest is quantifying these models’
sample efficiency.

Contributions Our contributions can be summarized as follows:

• A novel visual reasoning benchmark called Compositional Visual Relations (CVR) with
103 unique tasks over distinct scene structures.

• A novel method for generating visual reasoning problems with a compositionality prior.
• A systematic analysis of the sample efficiency of baseline visual reasoning architectures.
• An empirical study of models’ capacity at using compositionality to solve complex problems.

Our large-scale experiments capture a multitude of setups, including multi-task and individual
task training, pre-training with self-supervision on dataset images to contrast learning of visual
representations vs. abstract visual reasoning rules, training over a range of data regimes, and testing
transfer learning between dataset tasks. We present an in-depth analysis of task difficulty, which
provides insights into the strengths and weaknesses of current models. Overall, we find that the best
baselines trained in the most favorable conditions fall short of human sample efficiency for learning
those same tasks. While models appear to be capable of transferring knowledge across tasks, we
show that they do not leverage compositionality to efficiently learn task components. We hope to
inspire research on more efficient visual reasoning models by releasing our dataset. The code for
generating the full dataset and training models is available here.
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Figure 2: Scene Generation: A scene in our image dataset is composed of objects. (a) An object
is a closed contour with several attributes. (b) A relation is a constraint for the generation process
over scene attributes. (c) The elementary relations control unique scene attributes. They are used
for building task rules in a compositional manner. Each task uses a Reference rule and an Odd-One-
Out rule to generate images. (d) Odd-One-Out problems are randomly generated using a program.
Three images are generated following the Reference rule, and a fourth image (highlighted in red) is
generated following the Odd-One-Out rule.

2 Compositional Visual Relations Dataset

Algorithm 1: Problem Generation Pro-
gram: Generates problem samples of the
shape-size task in Figure 2
n← 4 // Number of objects
for i← 1 to 4 do

s← sample_size()
s′ ← s× rand([2/3, 1/4])
if i = 4 then

// Odd-One-Out
[si]

1−n ← [s, s′, s, s′]
else

[si]
1−n ← [s, s, s′, s′]

end
[o, o′]← sample_shapes(n = 2)
[oi]

1−n ← [o, o, o′, o′]
[pi]

1−n ← sample_position([si]1−n)
[ci]

1−n ← sample_color(n = 1)
end
[scene]1−4 = [[o, p, s, c]1−n]1−4

[image]1−4 = [render(scene)]1−4

CVR is a synthetic visual reasoning dataset that
builds on prior AI benchmarks [12, 9] and is in-
spired by a cognitive science literature [37] on vi-
sual reasoning. In the following, we will describe
the generation process of the dataset.

Odd-One-Out The odd one out task has been em-
ployed in prior work to test visual reasoning [27].
A sample problem consists of 4 images generated
such that one of them is an outlier according to a
rule. The goal of the task is to select the outlier.
The learner is expected to test several hypotheses
in order to detect the outlier. This process requires
them to infer the hidden scene structure and rela-
tionships between the objects.

Scene generation Each image contains one
scene composed of multiple objects as shown in
Figure 2. An object is defined as a closed contour
with a set of object attributes: shape, position,
size, color, rotation and flip. Other attributes de-
scribe the scene or low-level relations between ob-
jects. Count corresponds to the number of objects,
groups of objects or relations. Insideness indicates
that an object contains another object within its contour. Contact indicates that two object contours
are touching. These 9 attributes are the basis for the 9 elementary relations. For example, a "size"
relation is a constraint on the sizes of certain objects in the scene. Relations are expressed with
natural language or logical, relational and arithmetic operators over scene attributes. Relations and
objects are represented as nodes in the scene graph. Relations define groups of objects and can have
attributes of their own. Thus, it is possible to create abstract relations over these relations’ attributes.
A scene can be generated from a template that we call a structure. The concepts of structure, scene
graph and relations are used for formalizing the process behind designing a task. In practice, the
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Figure 4: Examples of task rules that are composed of a pair of relations. More examples of tasks
and algorithms are provided in the SI.

generation process is a program implemented by the task designer to generate problem samples of
one task randomly. The Pseudo-code for an example program is detailed in Alg. 1.
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Figure 3: Dataset rules: Each
square represents the number of
rules that are a composition of the
associated elementary relations
and the bar plot shows the num-
ber of rules that involve each ele-
mentary relation.

Rules and problem creation The generation process described
above can be used to instantiate different tasks; binary classifi-
cation, few-shot binary classification, or a raven’s progressive
matrix. In this paper, we choose to apply this process to cre-
ate odd-one-out problems. First, the task designer selects target
relations and incorporates them into a new scene structure. In
Figure 2, the target relations are size and shape similarity; they
are added to a scene with 4 objects. Then, a reference rule and
an odd rule are chosen such that they combine target relations in
different ways. The reference and odd rules in the example vary
only in the size or shape attributes. A valid odd-one-out rule con-
tradicts the reference rule such that any strategy used to solve the
task must involve exclusively reasoning over the target relations.
Given a scene structure, a reference and an odd-one-out rule, the
generation process has a set of free parameters that control the
generation process for new samples. The problem’s difficulty
level can be varied by randomizing or fixing these parameters. In
the shape-size task, the range of color values and the variation
of objects across the 4 images are examples of free parameters.
More random parameters result in a higher difficulty. We create
generalization test sets by changing the sets of fixed or random
parameters. For more details on the generalization test sets we
refer the reader to the SI.

Dataset details CVR incorporates 103 unique reference rules,
including 9 rules instantiating the 9 elementary visual relations
and 94 additional rules built on compositions of the relations.
These compositions span all pairs of elementary rules and include up to 4 relations. While some
rules are composed of the same elementary relations, they remain unique in their scene structure
or associations with other relations. 20 are compositions of single elementary relations, 65 are
compositions of a pair of relations and 9 are compositions of more than 2 elementary relations.
Figure 3 details the number of unique rules for each pair of elementary relations. The procedural
generation of problem samples helps us create an arbitrary number of samples. We create 10,000
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N train samples 20 50 100 200 500 1000 SES AUC 10000

ra
nd

-i
ni

t
in

d

ResNet-50[15] 28.0 1 31.1 1 32.5 3 34.0 6 38.7 12 44.8 24 33.7 34.9 - -
ViT-small[11] 28.6 1 30.1 4 30.9 4 31.9 4 33.8 4 35.1 7 31.3 31.7 - -
SCL[40] 26.9 0 30.0 1 30.3 2 30.0 2 31.4 2 33.4 5 29.9 30.3 - -
WReN[3] 30.0 0 32.0 2 32.9 2 34.1 3 36.3 6 39.0 15 33.4 34.1 - -
SCL-ResNet 18 31.4 1 37.3 9 37.8 9 39.6 15 42.7 21 48.3 26 38.4 39.5 - -

jo
in

t

ResNet-50 27.5 0 28.2 0 29.9 2 33.9 6 52.1 29 59.2 34 36.0 38.4 93.7 93
ViT-small 27.3 1 27.8 2 28.0 1 28.1 1 29.9 2 31.4 3 28.4 28.7 58.7 37
SCL 25.8 0 25.8 0 28.3 1 34.1 3 43.2 22 46.2 27 32.2 33.9 56.9 34
WReN 26.8 0 27.6 0 28.5 0 30.1 0 36.4 9 42.3 20 30.9 32.0 64.5 43
SCL-ResNet 18 26.4 0 28.4 0 31.6 4 40.7 13 51.4 32 64.0 42 37.6 40.4 78.9 73

SS
L in

d ResNet-50 40.5 13 47.3 18 52.9 29 56.8 34 61.9 42 67.7 50 52.4 54.5 - -
ViT-small 46.7 16 51.6 24 54.8 29 57.5 38 62.0 44 65.5 46 54.9 56.4 - -

jo
in

t ResNet-50 44.3 16 50.3 24 55.3 30 59.5 42 68.9 49 79.2 59 57.0 59.6 93.1 97
ViT-small 39.3 15 39.5 13 40.8 14 44.1 16 53.3 30 60.7 41 44.7 46.3 81.6 67

IN jo
in

t ResNet-50 32.0 2 35.1 5 39.0 9 43.8 13 57.7 48 69.5 48 43.4 46.2 - -
ViT-small 27.9 2 28.2 1 28.6 2 30.0 2 35.6 5 47.2 24 31.7 32.9 - -

C
L

IP
jo

in
t ResNet-50 28.7 0 32.0 2 40.8 11 46.9 18 59.7 40 74.4 53 43.7 47.1 - -

ViT-base 31.1 1 37.4 7 43.9 14 56.0 30 68.9 48 78.8 62 48.9 52.7 - -

Table 1: Performance comparison: For each model, we report the accuracy and number of tasks with
accuracy above 80%. SES is the Sample Efficiency Score; it favors models with high performance
in low data regimes and consistent accuracy across regimes. SES and AUC are computed over the
20-1000 data regimes. OOD generalization results are provided in the SI.

training problem samples, 500 validation samples and 1,000 test samples for each task. We also
create a generalization test set of 1000 samples.

We define the compositionality prior as the task’s design constraint which ensures that solving the
task requires reasoning over its elementary components. In the size-shape task, shown in figure 2,
the outlier can be differentiated from the other images by reasoning purely on size and shape. In the
context of CVR, compositional extends beyond combinations of object attributes, such as novel color
and shape combinations in an object, to higher levels of abstractions; groups of objects and scene
configurations. For example, the position-rotation composition rule in Fig. 4 requires reasoning over
the rotation properties of two sets of objects in each scene, and the position properties of objects
within each set.

CVR constitutes a significant extension to the Synthetic Visual Reasoning Test (SVRT) [12] in that it
provides a systematic reorganization based on an explicit compositionality prior. Among the 23 SVRT
tasks, many share relations, such as tasks #1 and #21, which both involve shape similarity judgments.
Most of these tasks can still be found amongst CVR’s rules. At the same time, CVR is more general
because it substitutes binary classification tasks with odd-one-out tasks which allows one to explore
more general versions of these tasks, with a broader set of task parameters. For example, in SVRT’s
task #7, images of 3 groups of 2 same shapes are discriminated from images of 2 groups of 3 same
shapes. This task is a special case in CVR of a more general shape-count rule with n groups of
m objects where the values are randomly sampled across problem samples. Unlike procedurally
generated RPM benchmarks [3, 43], CVR does not rely on a small set of fixed templates for the
creation of task rules. The shapes are randomly created and positions are not fixed on a grid (for most
rules), which renders the visual tasks difficult for models that rely on rote memorization [20]. Other
attributes are sampled uniformly from a continuous interval.

3 Experimental setting

Baseline models In our experiments, we select two vision models commonly used in computer
vision. We evaluate ResNet [15], a convolutional architecture used as a baseline in several bench-
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marks [3, 43, 38] and also used as a backbone in standard VQA models. We also evaluate ViT, a
transformer-based architecture [11]. ViT is used for various vision tasks, such as image classification,
object recognition, captioning and recently in visual reasoning on SVRT [28]. To compare the
architectures fairly, we choose ResNet-50 and ViT-small, which have an equal number of parameters.
Additionally, we evaluate two baseline visual reasoning models designed for solving RPMs: SCL [40]
which boasts state-of-the-art accuracy on RAVEN and PGM, and WReN [3] which is based on a
relational reasoning model [33]. Finally, we present SCL-ResNet-18 which consists of an SCL with
ResNet as a visual backbone thus combining ResNet’s perception skills with SCL’s reasoning skills.

Joint vs. individual rule learning Models are either trained in a single task (individual) or multi-
task (joint) setting. In the context of the multi-task training on CVR, one image is considered an
odd-one-out with respect to a reference rule. However, because of the randomness of scene generation,
a different image might be considered an odd-one-out with respect to a different, irrelevant rule. To
illustrate this problem, let’s take the elementary size rule as an example. In this rule, each image
contains one object. Due to the random sampling of object attributes, it is possible for one image to
be considered an outlier with respect to the color rule (The attributes in the 4 images are i-small/green,
ii-large/green, iii-small/green, iv-small/blue). Without specifying that the task to solve involves a size
relation, the model could incorrectly choose the fourth image because it is an outlier with respect
to the color rule. Thus, models trained on several tasks could easily confound rules. To avoid this
problem, models are provided with a rule embedding vector. Given the rule token, models can learn
several strategies and use the correct one for each problem sample. We also compare the multi-task
and single task settings, as they allow for testing the model’s capacity and efficiency at learning
several strategies and routines to solve different rules. All hyperparameter choices and training details
are provided in the SI.

N training samples 20 1000

ResNet-50 28.0 0 57.9 14
ViT-small 29.3 1 32.7 3
SCL 26.4 0 44.9 11
WReN 27.5 0 42.4 10
SCL-ResNet 18 26.8 0 64.1 18
ResNet-50 SSL 45.7 7 78.3 25
ViT-small SSL 38.7 6 60.3 17

Humans 78.7 26 - -

Table 2: Human Baseline: performance of
models on joint training experiments is com-
pared to the human baseline. The analysis is
restricted to the 45 tasks used for evaluating
humans. ResNet 50 approaches human-level
performance only after SSL pre-training and
finetuning on all task rules with 1000 sam-
ples per rule. Which is 50 times higher than
the number of samples needed by humans.

Self-Supervised pre-training Unlike humans who
spend a lifetime analyzing visual information, ran-
domly initialized neural networks have no visual expe-
rience. To provide a more fair comparison between hu-
mans and neural networks, we pre-train baseline mod-
els on a subset of the training data. Self-Supervised
Learning (SSL) has seen a rise in popularity due to
its usefulness in pre-training models on unlabelled
data. By using SSL, we aim to dissociate feature learn-
ing from abstract visual reasoning in standard vision
models. We pre-trained ViT-small and ResNet-50 on
1 million images from the dataset following MoCo-
v3 [8]. In addition to SSL pre-trained models, we also
finetune models pre-trained on object recognition and
image annotation. Since image annotation requires
visual reasoning capabilities, these pretrained models
provide a more fair comparison with humans, who
regularly perform the task. We select ResNet-50 and
ViT-small pre-trained on ImageNet [10]. We also pick
CLIP [31] visual encoders ResNet-50 and ViT-Base,
which are trained jointly with a language model on
image annotation.

Human Baseline As found in [12], having 21 participants solve the 9 tasks based on elementary
relations and 36 randomly sampled complex tasks is sufficient to yield a reliable human baseline. We
used 20 problem samples for each task which corresponds to the lowest number of samples used
for training baseline models. Each participant completed 6 different tasks. More details about the
behavioral experiment are provided in the SI.

4 Results

Sample Efficiency Baseline models are trained in six data regimes ranging from 20 to 1000 training
samples. All sample efficiency results are summarized in Table 1. Randomly guessing yields 25%
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(b) Reverse Curriculum

Figure 5: Compositionality: We evaluate models’ capacity to reuse knowledge. (a) Models trained
with a curriculum are compared to models trained from scratch. Models trained with a curriculum are
overall more sample efficient. (b) Models trained on compositions are evaluated zero-shot on the
respective elementary rules. Models fail overall to generalize from compositions to elementary rules.

accuracy. We observe that most randomly initialized models are slightly above chance accuracy after
training in low data regimes. They achieve an increase in performance only when provided with
more than 500 training samples. SCL-ResNet-18 performs the best in high data regimes, followed
by ResNet-50. SCL and ViT have the lowest performance in high data regimes. This result is
unsurprising since transformer architectures generally learn better in high data regimes (millions
of data points). This is consistent with prior work [38] which finds that ViTs do not learn several
SVRT tasks even when trained on 100k samples. Although SCL’s performance is near chance, it
achieves the best performance when it is augmented with a ResNet-18, which is a strong vision
backbone. This jump in performance is indicative of the two architectures’ complementary roles
in visual reasoning. Results in Table 1 and Fig. 6 show a clear positive effect of pretraining on all
models. SSL pre-trained models achieve the highest performance compared to object recognition and
image annotation pretrained models. We observe that ViT benefits from a larger architecture coupled
with pre-training on a large image annotation dataset. This highlights transformers’ reliance on large
model sizes and datasets.

In order to quantify sample efficiency systematically for all models, we compute the area under the
curve (AUC), which corresponds to the unweighted average performance across data regimes. We also
introduce the Sample Efficiency Score (SES) as an empirical evaluation metric for our experimental
setting. It consists of a weighted average of accuracy where the weights are reversely proportional to
number of samples: SES =

∑
n anwn∑
n wn

where wn = 1
1+log(n) and n is the number of samples. This

score favors models that learn with the fewest samples while considering consistency in the overall
performance. We observe that SCL-ResNet-18 scores the highest in the individual and joint training
settings. In the SSL finetuning condition, ViT and ResNet-50 have a similar SES when trained on
individual tasks, but ResNet-50 performs better in the joint training setting. These results hint at
the efficiency of convolutional architectures in visual reasoning tasks. Collapsing across all data
regimes and training paradigms, the best performance on CVR is given by ResNet-50, in the joint
training setting with 10k data points per rule. It achieves 93.7% accuracy. This high performance in
the 10,000 data regime demonstrates the models’ capacity to learn the majority of rules in the dataset
and suggests that failure in lower data regimes is explained by their sample inefficiency.
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Finally, we compare model performance to the human baseline. We observe in Table 2 that humans
far exceed the accuracy of all models with only 20 samples. This result aligns with previous work
on the SVRT dataset [12] where participants solved similar tasks with less than 20 samples. These
results highlight the gap between humans and machines in sample efficiency and emphasize the need
to develop more sample-efficient architectures.
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Compositionality Transferring knowledge and skills across
tasks is a crucial feature of intelligent systems. With our ex-
perimental setup, this can be characterized in several ways. A
compositional model should reuse acquired skills to learn effi-
ciently. Thus, when it is trained on all rules jointly, it should
be more sample efficient because the rules in the dataset share
elementary components. In Table1 and Figure6, we observe that
ResNet-50 achieves higher performance on joint training compared
to individual rule training, while ViT has the opposite effect. The
trend is consistent across data regimes and other settings. These
results highlight convolutional architectures’ learning efficiency
compared to transformer architectures.

We investigate compositionality further by asking whether learn-
ing elementary rules provides a good initialization for learning
their compositions. For example, a model that can judge object
positions and sizes should not require many training samples to
associate sizes with positions. We pick a set of complex rules
with at least two different elementary relations, train models to
reach the maximum accuracy possible on component relations,
then finetune the models on the compositions. We call this exper-
imental condition the curriculum condition since the condition is
akin to incrementally teaching routines to a model. We compare
model performance in the curriculum condition to performance
when training from scratch. The results highlighted in Figure 5a
show positive effects for most models but more significantly for
convolution-based architectures. These results indicate that the
baselines use skills acquired during pre-training to learn the compo-
sition rules, and that this pretraining helps to varying degrees. We
refer the readers to the SI for additional analyses and quantitative
results.

Finally, we evaluate transfer learning from composition rules to
elementary rules. We name this condition the reverse curriculum
condition. The working hypothesis is that models that rely on
compositionality will be able to solve elementary relations without finetuning if they learn the
composition. We compare performance on a composition rule to zero-shot accuracy on the respective
elementary rules in Figure 5b. We observe that all models perform worse on the elementary relations.
These results might indicate that although the baselines could transfer skills from elementary rules to
their compositions, they do not necessarily use an efficient strategy that decomposes tasks into their
elementary components. Additional analyses are presented in the SI.

Task difficulty We analyze the performance of all models in the standard setting: joint training on
all rules from random initialization. Figure 7 shows the average performance of each model on each
elementary rule and composition rule. Since the dataset contains several compositions of each pair of
elementary rules, the accuracy shown in each square is averaged over composition rules that share
the same pair of elementary rules. Certain rules are solvable by all models, such as the position, size,
color, and count elementary rules. Additionally, other rules pose a challenge for all models, these
rules are compositions of count, flip, rotation or shape. Models that rely on a convolutional backbone
were able to solve most spatial rules; position, size, inside and contact. However, they fail on rules
that incorporate shapes and their transformations; shape, rotation, flip. Composition rules built with
the Count relation proved to be a challenge for most models. We believe that models are capable of
solving several tasks, such as the counting elementary rule, by relying on shortcuts; this could be a
summation of all pixels in the image, for example. These shortcuts prevent models from learning
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Figure 7: Task analysis: The performance at 1000 samples is shown for each model. Performance
on elementary rules is shown on the top row of each matrix. The elementary relations of each
composition are indicated by the annotations. Performance is averaged over different compositions
of the same pair. We observe that most models fail on “color” based tasks.

abstract rules and hinder generalization. In line with the previous results, SCL-ResNet-18 seems to
solve more elementary rules and compositions than the other 3 models.

5 Related Work

Visual reasoning benchmarks Visual reasoning has been a subject of AI research for decades,
and several benchmarks address many relevant tasks. This includes language-guided reasoning
benchmarks such as CLEVR [18], which has been extended in its visual composition by recent
work [23], physics-based reasoning and reasoning over time dynamics [42, 2]. Abstract visual
reasoning benchmarks are more relevant to our work. Raven’s Progressive Matrices (RPMs) which
were introduced in 1938 [6] are one example used to test human fluid intelligence. Procedural
generation techniques for RPMs [39] enabled the creation of the PGM dataset and RAVEN [3, 43].
They also inspired Bongard-Logo [29], a concept learning and reasoning benchmark based on
Bongard’s 100 visual reasoning problems [4]. Another reasoning dataset, SVRT [12], focuses on
evaluating similarity-based judgment and spatial reasoning. Besides these synthetic datasets, real-
world datasets were developed with similar task structures to Bongard-Logo and RPM [35, 17]. In
this work, we take inspiration from SVRT and develop a more extensive set of rules with careful
considerations for the choice of rules and using a novel rule generation method. Finally, Abstract
Reasoning Corpus [9] is a general intelligence test introduced with a new methodology for evaluating
intelligence and generalization. The numerous problems presented in this benchmark are constructed
with a variety of human priors. The unique nature of the task, requiring solvers to generate the answer,
and the limited amount of training data render the benchmark difficult for neural network-based
methods. We follow a similar approach in our dataset by creating several unique problem templates.
However, we restrict the number of samples to a reasonable range to evaluate the sample efficiency
of candidate models.

Compositionality Compositionality is a highly studied topic in AI research. Although there is
agreement over the high-level definition of compositionality; the ability to represent new abstractions
based on their constituents and their contexts, there is little consensus on methods for characterizing
compositional generalization in neural networks. Several tests for compositionality have been
proposed in language [26], mathematics [34], logical reasoning and navigation [5, 21, 32, 41] and
visual reasoning [18, 36, 1]. Recent work [16] attempts to identify components of compositionality
and proposes a test suit that unifies them. These tests evaluate the model’s capacity to manipulate
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concepts during inference. Systematicity tests the novel combination of features, akin to CLEVR’s
CoGenT [18] and C-VQA [1] where novel combinations of shapes and colors introduced in the
test set, and localism tests the model’s ability to account for context similarly to samples from
Winoground [36]. Our work explores compositional generalization from a new perspective; CVR
evaluates the model’s compositionality while learning novel concepts. A compositional model reuses
previously learned concepts to accelerate learning and decomposes complex tasks into elementary
components. These aspects of compositionality are tested under settings that employ curricula.
Furthermore, we evaluate compositionality over the reasoning operations necessary to solve a given
problem. Finally, generating a synthetic dataset allows for evaluating reasoning at high levels of
abstraction; groups of objects and scene configurations, as exemplified by tasks in Figure 4.

Neuroscience/Psychology Several theories attempt to propose an understanding of the mechanisms
behind visual reasoning. Gestalt psychology provides principles hypothesized to be be used by
the visual system as an initial set of abstractions. Another theory describes visual reasoning as a
sequence of elemental operations called visual routines [37] orchestrated by higher-level cognitive
processes. These elemental operations are hypothesized to form the basis for spatial reasoning, same-
different judgment, perceptual grouping, contour tracing and many other visual skills [7]. Evaluating
these skills in standard vision models is a recurring subject in machine learning and neuroscience
research [19, 24, 30]. To provide a comprehensive evaluation of visual reasoning, it is important to
include task sets that require various visual skills within humans’ capabilities.

6 Discussion and Future Work

In this work, we have proposed a novel benchmark that focuses on two important aspects of human
intelligence – compositionality and sample efficiency. Inspired by visual cognition theories [37], the
proposed challenge addresses the limitations of existing benchmarks in the following ways: (1) it
extends previous benchmarks by providing a variety of visual reasoning tasks that vary in relations
and scene structures, (2) all tasks in the benchmark were designed with compositionality prior, which
allows for an in-depth analysis of each model’s strengths and weaknesses, and (3) it provides a
quantitative measure of sample efficiency.

Using this benchmark, we performed an analysis of the sample efficiency of existing machine learning
models and their ability to harness compositionality. Our results suggest that even the best pre-trained
neural architectures require orders of magnitude more training samples than humans to reach the
same level of accuracy, which is consistent with prior work on sample efficiency [22]. Our evaluation
further revealed that current neural architectures fail to learn several tasks even when provided an
abundance of samples and extensive prior visual experience. These results highlight the importance
of developing more data-efficient and vision-oriented neural architectures for achieving human-level
artificial intelligence. In addition, we evaluated models’ generalization ability across rules – from
elementary rules to compositions and vice versa. We find that convolutional architectures benefit
from learning all visual reasoning tasks jointly and transferring skills learned during training on
elementary rules. However, they also failed to generalize systematically from compositions to their
individual rules. These results indicate that convolutional architectures are capable of transferring
skills across tasks but do not learn by decomposing a visual task into its elementary components.

While our work addresses important questions on sample efficiency and compositionality, we note
a few possible limitations of our proposed benchmark. CVR is quite extensive in terms of the
visual relations it contains, but it can always be further improved in its use of elementary visual
relations. For example, the shapes could be parametrically generated based on specific geometric
features. Hopefully, CVR can be expanded in future work to test more routines by including
additional relations borrowed from other, more narrow challenges, including occlusion [19], line
tracing [25], and physics-based relations. The rules in the current benchmark are limited to 2 or 3
levels of abstraction to evaluate relations systematically. Similarly, our evaluation methods for sample
efficiency and compositionality could be further improved and adapted to different settings. For
example, the sample efficiency score is an empirical metric used only for evaluating our benchmark.
It requires training all models on all data regimes for the score to be consistent. Although our work is
not unique in addressing sample efficiency, its aim is to promote more sample efficient and general
models. We hope that the release of our benchmark will encourage researchers in the field to test
their own model’s sample efficiency and compositionality.
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[27] Jacek Mańdziuk and Adam Żychowski. Deepiq: A human-inspired ai system for solving iq test problems.
In 2019 International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2019.

[28] Nicola Messina, Giuseppe Amato, Fabio Carrara, Claudio Gennaro, and Fabrizio Falchi. Recurrent vision
transformer for solving visual reasoning problems. arXiv preprint arXiv:2111.14576, 2021.

[29] Weili Nie, Zhiding Yu, Lei Mao, Ankit B Patel, Yuke Zhu, and Anima Anandkumar. Bongard-LOGO:
A new benchmark for human-level concept learning and reasoning. Adv. Neural Inf. Process. Syst.,
33:16468–16480, 2020.

[30] Guillermo Puebla and Jeffrey S Bowers. Can deep convolutional neural networks support relational
reasoning in the same-different task? September 2021.

[31] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning
transferable visual models from natural language supervision. In Marina Meila and Tong Zhang, editors,
Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pages 8748–8763. PMLR, 18–24 Jul 2021.

[32] Laura Ruis, Jacob Andreas, Marco Baroni, Diane Bouchacourt, and Brenden M Lake. A benchmark for
systematic generalization in grounded language understanding. Advances in neural information processing
systems, 33:19861–19872, 2020.

[33] Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pascanu, Peter Battaglia,
and Timothy Lillicrap. A simple neural network module for relational reasoning. Advances in neural
information processing systems, 30, 2017.

[34] David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical reasoning
abilities of neural models. arXiv preprint arXiv:1904.01557, 2019.

[35] Damien Teney, Peng Wang, Jiewei Cao, Lingqiao Liu, Chunhua Shen, and Anton van den Hengel. V-
prom: A benchmark for visual reasoning using visual progressive matrices. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 12071–12078, 2020.

[36] Tristan Thrush, Ryan Jiang, Max Bartolo, Amanpreet Singh, Adina Williams, Douwe Kiela, and Candace
Ross. Winoground: Probing vision and language models for visio-linguistic compositionality. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5238–5248,
2022.

12



[37] Shimon Ullman. Visual routines. In Readings in computer vision, pages 298–328. Elsevier, 1987.

[38] Mohit Vaishnav, Remi Cadene, Andrea Alamia, Drew Linsley, Rufin VanRullen, and Thomas Serre.
Understanding the computational demands underlying visual reasoning. Neural Computation, 34(5):1075–
1099, 2022.

[39] Ke Wang and Zhendong Su. Automatic generation of raven’s progressive matrices. In Twenty-fourth
international joint conference on artificial intelligence, 2015.

[40] Yuhuai Wu, Honghua Dong, Roger Grosse, and Jimmy Ba. The scattering compositional learner: Dis-
covering objects, attributes, relationships in analogical reasoning. arXiv preprint arXiv:2007.04212,
2020.

[41] Zhengxuan Wu, Elisa Kreiss, Desmond C Ong, and Christopher Potts. Reascan: Compositional reasoning
in language grounding. arXiv preprint arXiv:2109.08994, 2021.

[42] Kexin Yi, Chuang Gan, Yunzhu Li, Pushmeet Kohli, Jiajun Wu, Antonio Torralba, and Joshua B Tenenbaum.
Clevrer: Collision events for video representation and reasoning. arXiv preprint arXiv:1910.01442, 2019.

[43] Chi Zhang, Feng Gao, Baoxiong Jia, Yixin Zhu, and Song-Chun Zhu. Raven: A dataset for relational and
analogical visual reasoning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5317–5327, 2019.

13


	Introduction
	Compositional Visual Relations Dataset
	Experimental setting
	Results
	Related Work
	Discussion and Future Work
	Acknowledgments

