
AlphaDecay: Module-wise Weight Decay for
Heavy-Tailed Balancing in LLMs

Di He1,2,3, Songjun Tu2,3, Ajay Jaiswal4, Li Shen5, Ganzhao Yuan6,
Shiwei Liu7, Lu Yin8 †

1Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
2Peng Cheng Laboratory 3University of Chinese Academy of Sciences

4University of Texas at Austin 5Shenzhen Campus of Sun Yat-sen University
6Shenzhen University of Advanced Technology
7University of Oxford 8University of Surrey

l.yin@surrey.ac.uk

Abstract

Weight decay is a standard regularization technique for training large language mod-
els (LLMs). While it is common to assign a uniform decay rate to every layer, this
approach overlooks the structural diversity of LLMs and the varying spectral proper-
ties across modules. In this paper, we introduce AlphaDecay, a simple yet effective
method that adaptively assigns different weight decay strengths to each module of
an LLM. Our approach is guided by Heavy-Tailed Self-Regularization (HT-SR)
theory, which analyzes the empirical spectral density (ESD) of weight correlation
matrices to quantify “heavy-tailedness.” Modules exhibiting more pronounced
heavy-tailed ESDs, reflecting stronger feature learning, are assigned weaker decay,
while modules with lighter-tailed spectra receive stronger decay. Our method lever-
ages tailored weight decay assignments to balance the module-wise differences
in spectral properties, leading to improved performance. Extensive pre-training
tasks with various model sizes from 60M to 1B demonstrate that AlphaDecay
achieves better perplexity and generalization than conventional uniform decay and
other adaptive decay baselines. The code is available at https://github.com/hed-
ucas/AlphaDecay.

1 Introduction

Large language models (LLMs) have emerged as a core technology in artificial intelligence, with
extensive applications in chatbots, content generation, code synthesis, and other domains, significantly
enhancing the efficiency and user experience of human-computer interaction [5; 28; 23; 11]. However,
the formidable capabilities of these models rely on massive pre-training datasets and substantial
computational resources, rendering the training process fraught with challenges [44; 2]. Persistent
research challenges include, but are not limited to, the efficient optimization of ultra-large-scale
parameters and the trade-off between training costs and model performance.

Weight decay, one of the most widely used regularization techniques for training well-generalized
deep neural networks [25; 42; 13], critically influences the convergence and performance of state-of-
the-art machine learning algorithms when properly configured. Extensive prior studies [21; 32; 35]
have demonstrated its pivotal role in enhancing model generalization from diverse theoretical and
empirical perspectives. Recent work [20; 8] further highlights its importance in improving optimizer
stability and efficacy during the training of LLMs.

†Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/hed-ucas/AlphaDecay
https://github.com/hed-ucas/AlphaDecay

Increase Increase Increase
att.q

att.k

att.v

att.o

mlp.
gate

mlp.
up

mlp.
down

PL_Alpha_Hill

Uniform
Less balanced

AlphaDecay
More balanced

ESD of weight matrices

M
or

e
H

ea
vy

-t
ai

le
d

L
es

s H
ea

vy
-t

ai
le

d

Smaller
PL_Alpha_Hill

Larger
PL_Alpha_Hill

Smaller

Larger

1 2 3 4 5 6 7 8
Layer Index

0.0

0.5

1.0

1.5

2.0

2.5

3.0

W
ei

gh
t D

ec
ay

1e 5

att.q
att.k

att.v
att.o

mlp.gate
mlp.up

mlp.down
Uniform

Alpha

1.5

2.0

2.5

3.0

PL
_A

lp
ha

_H
ill

Figure 1: Module-wise Balance and AlphaDecay weight decay schedule. (a) Employing PL fitting
to derive module-wise PL_Alpha_Hill values (see formula (2)), AlphaDecay achieves module-wise
balance by increasing the lower values (e.g., att.Q and att.K, more heavy-tailed) while decreasing
the higher values (e.g., MLP components, less heavy-tailed). (b) Given the imbalanced module-wise
PL_Alpha_Hill of LLaMa-60M, AlphaDecay assigns lower weight decay to modules with lower
PL_Alpha_Hill.

The prevailing approach to weight decay assigns a globally fixed value per epoch across optimiz-
ers—including SGD [39], Adam [18], and their variants [47; 36]—where all model layers share an
identical decay coefficient. However, given the scaling parameter counts and architectural complexity
of modern LLMs, such a uniform weight decay scheme fails to capture their intricate structural
properties, making this conventional practice increasingly suboptimal. Notably, recent work has
begun investigating dynamic weight decay adaptation [16; 30; 12; 42] to address this limitation.
[12] observes that fixed-hyperparameter weight decay fails to balance robustness and accuracy in
adversarial training, causing robust overfitting. They propose Adaptive Weight Decay (AWD) to
dynamically adjust decay strength via classification and regularization loss gradients, automatically
enhancing robustness and adversarial performance without extra data.

Notably, prior studies on dynamic weight decay adaptation were exclusively designed for architectures
like ResNet18/34/50 [14], VGG [34], and DenseNet [15], employing time-wise modulation (i.e.,
uniform decay values across all layers at each timestep) while maintaining layer-wise uniformity.
This approach is reasonable for parameter-efficient, structurally simple models (e.g., ResNets) where
inter-layer feature distinctions are less pronounced. However,

Does there exist a better weight decay configuration for LLMs?

Three reasons behoove us to pose the above research question: First, the prevailing consensus holds
that certain transformer components exhibit greater functional importance than others [40; 4; 44; 26],
necessitating differentiated weight decay treatment. Second, weight decay manifests fundamentally
distinct roles in over-trained regimes (e.g., ResNets) versus under-trained regimes (e.g., LLMs) [8].

2

Most notably, existing research demonstrates that improper weight decay configuration for LLMs
may adversely affect model performance [3; 19; 42; 33; 17; 9]. Our main contributions are as follows:

❶ We identify substantial variation in the spectral properties of module-wise ESD (see figure 2), and
show that these inconsistencies are a core reason for degraded model performance, as evidenced by
figure 4.

❷ We propose a module-wise weight decay scheduling strategy AlphaDecay to ensure spectral
alignment across modules (see figure 1), thereby enforcing consistency in spectral properties and
achieving improved training performance (see figure 3).

❸ Extensive experiments spanning models from 60M to 1B parameters show that the proposed
approach, AlphaDecay, consistently outperforms the Uniform baseline as well as adaptive methods
such as AWD [12] and AdaDecay [30] (see table 2). These results highlight the critical role of
module-wise balance in achieving state-of-the-art performance in LLMs.

Overall, our research provides an unrecognized perspective on optimizer, revealing the critical yet
overlooked role of module-wise weight decay in LLM training. This novel insight can be readily
applied to all state-of-the-art optimizers and training methods, effectively enhancing their performance
without structural modifications.

2 Related Work

Weight decay in LLM training. Weight decay is a widely adopted technique for training deep
networks, spanning applications from image classification to LLMs [21]. In the context of GPT-3
training, [5] recommended incorporating weight decay primarily for its mild regularization benefits.
[20] showed that weight decay promotes optimizer equilibrium in scale-invariant systems. Recent
studies have provided deeper insights into weight decay’s role in LLM training. [38; 8; 37] challenged
the conventional view of weight decay’s generalization benefits for LLMs, and instead highlighting
its critical function in reducing training loss and enhancing stability during under-training through the
lens of Effective Learning Rate. Building on these findings, [3; 19] established a connection between
l2 regularization and spectral norms, discovering that weight decay induces low-rank attention
layers. Their work further showed that employing different weight decay values for attention and
MLP modules, carefully tuned via grid search, can significantly improve training outcomes. Our
work presents the first formal analysis of non-uniform module-wise weight decay in LLM training,
demonstrating its effectiveness through comprehensive empirical validation.

Dynamic weight decay. While uniform weight decay is commonly used for model training, a line
of work employs gradnorm to adaptively determine weight decay settings. [16] analyzed gradient
descent with weight decay, finding that backpropagated gradients scale with upstream weights while
weight decay scales with each layer’s own weights. This mismatch in scaling causes layer-wise
overfitting or underfitting, leading them to propose using the gradient-to-decay magnitude ratio as a
layer-wise coefficient. [30] enhanced this approach by normalizing gradients and applying a scaled
sigmoid to compute the coefficient. Similarly, [12] used the ratio of gradient norms to parameter
norms. [42] showed weight decay amplifies late-stage gradient norms, harming convergence. Their
solution, AdamS, penalizes large gradients and outperforms both Adam and AdamW. Another line
of research [3; 10; 41] revealed that weight decay induces low-rank layer structures. [19] further
showed that applying distinct weight decay values to attention and MLP modules, meticulously tuned
via grid search, can substantially enhance training outcomes. Building upon these foundations, our
work advances this direction by introducing the first weight decay scheduling framework for LLMs.

Heavy-tail self-regularization. HT-SR Theory examines the ESD of weight matrices and identifies
its relationship with training quality based on principles from statistical physics and random matrix
theory [7]. HT-SR Theory posits that well-trained neural networks exhibit strong correlations in their
weights, manifesting as heavy-tailed structures in the ESD of each layer’s weight matrics [27; 29].
Recently, HT-SR has been applied to model selection [27; 29; 43], module-wise adaptive training [46],
and LLM pruning [26], demonstrating its efficacy in estimating model and layer quality. However, no
prior work has explored HT-SR theory in the context of weight decay configuration. Our work draws
inspiration from HT-SR theory and introduces a novel technique that leverages ESD structures to
guide weight decay settings.

3

0 1000 2000 3000 4000 5000
Rank

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 S
in

gu
la

r v
al

ue
s

Module Name:att.q

0 1000 2000 3000 4000 5000
Rank

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 S
in

gu
la

r v
al

ue
s

Module Name:att.k

0 1000 2000 3000 4000 5000
Rank

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 S
in

gu
la

r v
al

ue
s

Module Name:att.v

0 1000 2000 3000 4000 5000
Rank

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 S
in

gu
la

r v
al

ue
s

Module Name:att.o

0 1000 2000 3000 4000 5000
Rank

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 S
in

gu
la

r v
al

ue
s

Module Name:mlp.gate

0 1000 2000 3000 4000 5000
Rank

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 S
in

gu
la

r v
al

ue
s

Module Name:mlp.up

0 1000 2000 3000 4000 5000
Rank

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 S
in

gu
la

r v
al

ue
s

Module Name:mlp.down

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12
Layer 13
Layer 14

Layer 15
Layer 16
Layer 17
Layer 18
Layer 19
Layer 20
Layer 21
Layer 22
Layer 23
Layer 24
Layer 25
Layer 26
Layer 27

Layer 28
Layer 29
Layer 30
Layer 31
Layer 32
Layer 33
Layer 34
Layer 35
Layer 36
Layer 37
Layer 38
Layer 39
Layer 40

Figure 2: Visualization of singular values from weight matrices in each layer of the pretrained
LLaMa-2-13b-hf model. For all 40 transformer layers, the plots show the sorted distribution of 5120
singular values per layer.

3 Methodology

In this section, we first present the rationale motivating our study, emphasizing the heavy-tailed
singular value spectra exhibited by different modules of LLMs. We then revisit HT-SR theory
and introduce key HT-SR metrics that support our analysis. Finally, we examine the AlphaDecay
algorithm, which leverages “shape metrics” derived from HT-SR theory and exhibits significant
improvements in LLM pretraining tasks.

3.1 Rationale

Different modules in LLMs exhibit diverse spectral properties, particularly in the distribution of
their singular values. Figure 2 visualize the normalized singular value spectra of the weight matrices
for each module type (att.q, att.k, att.v, att.o, mlp.gate, mlp.up, mlp.down) across all
40 transformer layers in the pretrained LLaMa-2-13b-hf model. Notably, substantial variability is
observed in the heavy-tailedness of the singular value distributions: the attention-related modules
(att.q and att.k) consistently show heavier tails, while the MLP modules (mlp.gate, mlp.up,
mlp.down) exhibit lighter tails.

This phenomenon has been extensively studied within heavy-tailed random matrix theory. Specifically,
heavier tails in the singular value spectra reflect greater anisotropy, with much of the module’s
representational power concentrated in a few leading principal components—a feature especially
pronounced in attention-related modules (att.q, att.k). In contrast, the lighter-tailed spectra
observed in MLP modules (mlp.gate, mlp.up, mlp.down) exhibit a more uniform distribution
across components. These observations suggest that different modules may benefit from tailored
regularization strengths to achieve optimal performance, as attention modules could be more disrupted
by excessive regularization, while MLP modules may tolerate stronger regularization.

3.2 HT-SR Theory

The HT-SR theory provides a principled framework for analyzing the empirical spectral distribution
(ESD) of neural network weight matrices. Empirical evidence suggests that well-trained models
exhibit more pronounced heavy-tailed ESDs, which reflect higher training quality. Building on this
theoretical foundation, our method leverages the HT-SR metric to quantify spectral tail heaviness,
assigning lower weight decay to heavily-tailed modules (e.g., att.q, att.k) and higher weight
decay to less heavy-tailed ones (e.g., MLP components), thereby aligning with spectral characteristics
to potentially improve generalization and model performance (see figure 1). The degree of heavy-

4

https://huggingface.co/meta-LLaMa/LLaMa-2-13b-hf

10 2 10 1 100 101

Eigenvalues of correlation matrix

10 2

100

ES
D

Module Name:att.Q
Uniform (=1.62)
AlphaDecay (=1.74)

10 3 10 2 10 1 100 101

Eigenvalues of correlation matrix

10 2

100

102

ES
D

Module Name:att.K
Uniform (=1.60)
AlphaDecay (=1.73)

10 1 100

Eigenvalues of correlation matrix
10 3

10 1

101

ES
D

Module Name:att.V
Uniform (=1.84)
AlphaDecay (=1.95)

10 1 100

Eigenvalues of correlation matrix
10 3

10 1

101

ES
D

Module Name:att.O
Uniform (=1.80)
AlphaDecay (=1.91)

100 101

Eigenvalues of correlation matrix
10 3

10 2

10 1

100
ES

D
Module Name:MLP.gate

Uniform (=2.31)
AlphaDecay (=2.19)

100 101

Eigenvalues of correlation matrix
10 3

10 2

10 1

100

ES
D

Module Name:MLP.up
Uniform (=2.31)
AlphaDecay (=2.23)

100 101

Eigenvalues of correlation matrix
10 3

10 2

10 1

100

ES
D

Module Name:MLP.down
Uniform (=2.56)
AlphaDecay (=2.52)

Figure 3: Comparison of ESD distributions across modules of LLaMa-135M under different training
methods (AlphaDecay: Perplexity=22.55 vs. Uniform: Perplexity=23.14). Attention-related mod-
ules (e.g., att.q, att.k) exhibit notably heavier spectral tails in contrast to MLP-associated modules.
Our method systematically balances the heavy-tailed properties across modules by appropriately
configuring module-wise weight decay, thereby enhancing overall model performance.

tailedness is quantitatively assessed by fitting a power law (PL) to the ESD, using the resulting PL
exponent (α) as a metric.

Given a network with L modules and weight matrices {Wl}Ll=1 of shape n × m (n ≤ m), we
compute the ESD by obtaining the eigenvalues of the correlation matrix Xl = W⊤

l Wl for each
module. The power law fit for the ESD takes the form:

p(λ) ∝ λ−α, λmin < λ < λmax (1)

where p(λ) denotes the density of eigenvalues λ within the specified range. The PL exponent, α,
serves as a proxy for the degree of heavy-tailedness.

To estimate α, we use the Hill estimator [46; 24]. For a given module’s eigenvalues {λi}ni=1 (sorted
in ascending order), the Hill estimator is given by:

PL_Alpha_Hill = 1 +
k∑k

i=1 ln
λn−i+1

λn−k

(2)

where k controls the lower cutoff for PL fitting. In our experiments, we fix k = n
2 , i.e., we estimate

the slope using the largest half of the eigenvalues.

PL_Alpha_Hill is a key spectral descriptor for analyzing model performance. Related works
[46; 24] suggest that lower PL_Alpha_Hill values indicate "overtrained" layers (compared to other
layers in the model), while higher values indicate "undertrained" layers. An important conclusion is
that a more uniform distribution of PL_Alpha_Hill across layers reflects more balanced training
quality, leading to better overall model quality. While these findings highlight the importance of
layer-wise training balance, our work emphasizes a complementary perspective:

Does module-wise balance matter for model performance?

We empirically demonstrate that promoting uniformity in PL_Alpha_Hill across modules (e.g.,
attention and MLP components) can further enhance overall model quality (see figure 3).

3.3 AlphaDecay

Building on the observed spectral diversity across modules, we introduce AlphaDecay, a simple
yet effective module-wise weight decay scheduling algorithm. AlphaDecay first calculates the
PL_Alpha_Hill values for all modules, and then assign larger weight decay to modules with higher

5

3 4 5 6 7 8 9 10
Weight Decay

22.8

23.2

23.6

Pe
rp

le
xi

ty
 (

)

10

AlphaDecay (Ours) Uniform

3 4 5 6 7 8 9 10
Weight Decay

1.5

2.0

2.5

PL
_A

lp
ha

_H
ill

 M
ea

n

10

att.q/k att.v/o mlp

3 4 5 6 7 8 9 10
Weight Decay

22.8

23.2

23.6

Pe
rp

le
xi

ty
 (

)

10

AlphaDecay (Ours) Uniform

3 4 5 6 7 8 9 10
Weight Decay

1.5

2.0

2.5

PL
_A

lp
ha

_H
ill

 M
ea

n

10

att.q/k att.v/o mlp

3 4 5 6 7 8 9 10
Weight Decay

22.8

23.2

23.6

Pe
rp

le
xi

ty
 (

)

10

AlphaDecay Uniform

3 4 5 6 7 8 9 10
Weight Decay

1.5

2.0

2.5

PL
_A

lp
ha

_H
ill

 M
ea

n

10

att.q/k att.v/o mlpFigure 4: Comparison of perplexity and module-wise PL_Alpha_Hill values of LLaMa-135M under
varying weight decay settings; For each group, att.q/k shows the mean PL_Alpha_Hill of att.q
and att.k; att.v/o shows the mean for att.v and att.o; mlp is the mean of mlp.gate, mlp.up,
and mlp.down. Shaded areas indicate the range between the maximum and minimum values within
each group.

PL_Alpha_Hill values, while assigning smaller weight decay to those with lower PL_Alpha_Hill
values. This strategy is designed to promote module-wise PL_Alpha_Hill balance, thus leading
to better overall model performance. We provide the details of AlphaDecay in Algorithm 1. The
assignment function is given by:

ft(i) = η · (αi
t − αmin

t

αmax
t − αmin

t

(s2 − s1) + s1) (3)

where η is the initial weight decay, and (s1, s2) define the range of scaling ratios applied to η. αi
t

is the PL_Alpha_Hill value of module i at step t, while αmin
t and αmax

t are the minimum and
maximum PL_Alpha_Hill values among all modules at step t. Formula (3) guarantees that the
adjusted weight decay, ft(i), remains within [s1η, s2η] as a scaled variant of η.

We compare AlphaDecay with the Uniform baseline under varying weight decay settings, and
present the results of perplexity and module-wise PL_Alpha_Hill values, as shown in figure
4. Notably, AlphaDecay assigns module-wise weight decay values in accordance with the im-
balance observed in module-wise PL_Alpha_Hill metrics (see Figure 1), and reallocates these
weight decays every 500 update steps. This dynamic assignment adaptively moderates the module-
wise PL_Alpha_Hill imbalance present in the Uniform baseline by decreasing the elevated
PL_Alpha_Hill values in MLP modules and increasing the lower values in attention-related modules
(i.e., att.v/o and att.q/k). As a result, our method achieves consistently lower and more stable
perplexity across different weight decay configurations, thereby improving model robustness and
overall performance.

Algorithm 1: AlphaDecay

Require : initial weight decay η, number of training steps T , interval t̃ of using AlphaDecay,
minimum and maximum scaling ratio s1, s2, and αi

t refers to ith module’s
PL_Alpha_Hill at update step t

for t← 0 to T do
if mod(t, t̃) = 0 then

Compute αi
t for all modules using the Hill estimator;

Leverage all αi
t and adopt ft(i) = η · (αi

t−αmin
t

αmax
t −αmin

t
(s2 − s1) + s1) to assign module-wise

weight decay between s1η and s2η;

4 Empirical results

In this section, we begin by presenting the complete experimental setup (Section 4.1), followed by a
comparison between AlphaDecay and several baselines (Section 4.2). Finally, we analyze the impact

6

Table 1: Hyperparameters used in pre-training experiments.

Model Size LR Tokens Weight Decay (s1, s2)

60M 0.001 1B 1e-5, 5e-6, 1e-6 (0.67,3), (0.67,5), (0.67,5)
135M 0.001 2B 1e-5, 5e-6, 1e-6 (0.67,3), (0.67,5), (0.67,5)
350M 0.001 6B 1e-5, 5e-6, 1e-6 (0.67,3), (0.67,5), (0.67,5)

1B 0.0006 8.9B 1e-5, 5e-6, 1e-6 (0.67,3), (0.67,5), (0.67,5)

Table 2: (Main result). Comparison with various weight decay scheduling strategies on pre-training
various sizes of LLaMa models on C4 dataset. Validation perplexity (↓) is reported. All baselines are
carefully tuned. ’WD=0’ indicates that weight decay is disabled during model training.

LLaMa-60M LLaMa-135M LLaMa-350M LLaMa-1B
Weight Decay 1e-5 5e-6 1e-6 1e-5 5e-6 1e-6 1e-5 5e-6 1e-6 1e-5 5e-6 1e-6

WD=0 33.23 24.60 18.62 16.11
Uniform 32.39 32.56 33.03 22.99 23.14 24.14 17.12 16.74 17.50 15.36 14.66 15.03
AWD[12] 33.78 33.74 33.74 24.25 24.45 24.53 18.32 18.55 18.79 16.03 16.22 16.38

Adadecay[30] 32.24 32.52 33.03 23.20 23.08 23.96 18.21 17.42 17.91 17.23 18.14 15.35
AlphaDecay 31.56 31.58 32.61 22.76 22.55 23.49 17.00 16.66 16.88 15.13 14.55 14.63

of weight decay assignment functions, HT-SR module-wise metrics, PL fitting methods, and PL
fitting time gaps through ablation studies (Section 4.4).

4.1 Experimental setup

Models and Datasets. We conduct a systematic evaluation of AlphaDecay across LLaMa-based
architectures spanning four model scales (60M, 135M, 350M, and 1B parameters). All experiments
employ the C4 dataset [31], a rigorously processed subset of Common Crawl widely adopted for
language model pretraining. Our experimental design incorporates two key components: (1) a
non-repeating data regime with sufficient tokens for convergence, and (2) standardized preprocessing
pipelines across all model scales. This multi-scale approach facilitates systematic comparison of
model behaviors across different capacity regimes, while minimizing potential confounding factors
in the analysis.

Hyperparameters. The detailed hyperparameter settings for all model sizes are summarized in Table
1. All models are trained with Adam optimizer (gradient clipping at 1.0) and a cosine learning rate
schedule, with 10% of the training tokens used for learning rate warmup. We conduct grid search
over learning rates {0.01, 0.001, 0.0001} and report the best configuration for each scale in the table.
Weight decay settings and the corresponding (s1, s2) parameter settings are also detailed in the table.
AlphaDecay is performed every 500 update steps throughout all experiments.

4.2 LLM Pre-training

Table 2 presents the main results of our study, where we evaluate the effectiveness of different weight
decay scheduling strategies on the pre-training of LLaMa models with varying parameter scales
(60M, 135M, 350M, and 1B) on the C4 dataset. For each model size, we conduct comprehensive
experiments across three commonly used weight decay values (1e-5, 5e-6, and 1e-6). Our proposed
method is compared against several baselines, including the commonly used Uniform scheduling,
adaptive global weight decay (AWD) [12], and adaptive per-module weight decay (Adadecay) [30].
All baseline methods are carefully tuned for a fair comparison.

Observations. ❶ Weight Decay is Beneficial for Model Performance. Comparing ’WD=0’ (i.e.,
no weight decay) and Uniform across all model sizes, applying weight decay consistently leads to
substantial reductions in validation perplexity. This provides empirical support for the importance
and effectiveness of weight decay in LLM pre-training. ❷ Superior and Consistent Gains Across
All Weight Decay Settings. AlphaDecay consistently yields the lowest validation perplexity across
all evaluated weight decay settings (1e-5, 5e-6, 1e-6) and model sizes, surpassing both the Uniform
baseline and the adaptive weight decay methods (AWD and Adadecay). This consistent superiority
across various regularization strengths demonstrates the robustness of our approach and underscores
its potential applicability in LLM pre-training. ❸ Scalability to Larger Models. The performance

7

improvements achieved by AlphaDecay are consistently observed from the smallest (60M) to the
largest (1B) parameters, indicating the scalability and generality of our approach.

Furthermore, our experiments reveal that existing adaptive weight decay methods, originally designed
for architectures without attention components, such as AWD and Adadecay, do not yield optimal
results for LLMs. This may be attributed to their lack of consideration for the distinct characteristics
and optimization requirements of attention and MLP modules within transformer architectures. In
contrast, our approach is, to the best of our knowledge, the first to demonstrate that a tailored weight
decay scheduling strategy can consistently enhance LLM training by explicitly accounting for the
heterogeneous characteristics of different modules.

4.3 Downstream tasks & architectures

This section introduces our evaluation of downstream gains across zero-shot commonsense reasoning
and fine-tuning tasks, with results on additional model architecture and image classification task
(GPT-nano/C4 perplexity; ViT-tiny/ImageNet-1K Top-1).

Zero-shot Results. We evaluate the pretrained LLaMa-1B checkpoints from Table 2 on seven
zero-shot commonsense reasoning tasks using lm-eval-harness with its default prompts. As shown in
Table 3, AlphaDecay delivers the best results on 6 of 7 benchmarks, indicating that its pretraining
gains transfer well to downstream reasoning tasks and support broad applicability.

Table 3: (Zero-shot results of commonsense-reasoning tasks). Zero-shot evaluation results (↑) on
seven commonsense reasoning benchmarks using the LLaMa-1B model pretrained with different
methods.

Method ARC-c ARC-e PIQA Hellaswag OBQA Winogrande BOOLQ Avg.
Uniform 20.22 46.72 67.68 32.94 18.8 49.41 54.74 41.50
AdaDecay 19.20 46.72 66.97 32.96 18.0 51.54 56.36 41.68

AWD 19.18 46.34 66.65 31.37 18.0 51.07 57.25 41.41
AlphaDecay 20.90 48.86 68.44 34.16 19.80 50.59 60.70 43.35

Finetuning Results. We evaluate all baselines on GLUE finetuning tasks with roberta-base. As re-
ported in Table 4, AlphaDecay attains the top result on 6 of 7 tasks. This evidences that AlphaDecay
is effective not only during pretraining but also transfers well to finetuning settings.

Table 4: (Finetuning tasks). Finetuning results (↑) on eight benchmarks from the GLUE dataset
using roberta-base with different methods.

Method cola mnli mrpc qnli qqp rte sst2 stsb Avg.
Uniform 59.73 86.78 87.01 92.59 89.97 70.11 93.69 90.78 83.83
AdaDecay 60.45 87.23 88.19 92.62 89.95 73.36 93.73 90.9 84.55

AWD 60.72 87.44 89.53 92.58 90.08 72.27 93.72 90.9 84.66
AlphaDecay 62.82 87.11 89.61 92.73 90.12 73.86 93.77 90.91 85.12

Across architectures and datasets. We evaluate all methods on GPT-nano/C4 (perplexity) and ViT-
tiny/ImageNet-1K (Top-1 accuracy). As shown in Table 5, our method attains the lowest perplexity
on GPT-nano/C4 and the highest Top-1 accuracy on ViT-tiny/ImageNet-1K, outperforming Uniform,
AWD, and AdaDecay. These results demonstrate consistent effectiveness across different architectures
and datasets, and strong generalization beyond a single setting.

Table 5: (Across architectures and datasets). Results on GPT-nano/C4 (Perplexity) and ViT-
tiny/ImageNet-1K (Top-1) with different methods.

Backbone / Dataset Metric Uniform AWD AdaDecay AlphaDecay

GPT-nano / C4 PPL(↓) 27.56 27.64 27.68 27.37
ViT-tiny / ImageNet-1K Top-1(↑) 66.41% 64.98% 66.26% 67.73%

8

Uniform Linear Sqrt Log2 Sigmoid-like

31.2

31.6

32.0

32.4

Pe
rp

le
xi

ty
-0.82

-0.06 -0.09 -0.19

(a) Weight Decay = 1e-5

31.0

31.5

32.0

32.5

Pe
rp

le
xi

ty

-0.98

-0.04 -0.06
-0.39

(b) Weight Decay = 5e-6

31.5

32.0

32.5

33.0

Pe
rp

le
xi

ty -0.49

+0.05 +0.01 +0.07

(c) Weight Decay = 1e-6

Figure 5: (Varying weight decay assignment functions). Results of using different weight decay
assignment functions under different weight decay settings. All experiments are conducted on
LLaMa-60M. The value on the top of each bar indicates the difference from the leftmost bar in each
plot and the same processing is applied in Figure 6, Figures 7, and Figures 8.

Uniform PL_Alpha_Hill GradNorm FrobeniusNorm SpectralNorm

22.40

22.80

23.20

Pe
rp

le
xi

ty

-0.23 -0.14

+0.27 +0.36

(a) Weight Decay = 1e-5

22.20

22.50

22.80

23.10

Pe
rp

le
xi

ty

-0.59
-0.42

-0.23
-0.13

(b) Weight Decay = 5e-6

23.40

23.70

24.00

24.30

Pe
rp

le
xi

ty

-0.65

-0.34
-0.55 -0.54

(c) Weight Decay = 1e-6

Figure 6: (Varying HT-SR metrics). Comparing PL_Alpha_Hill with multiple HT-SR metrics
under different weight decay settings. All experiments are conducted on LLaMa-135M.

Goodness-of-fit Fix-finger Median Time (sec)

22.4

22.6

22.8

23.0

Pe
rp

le
xi

ty

-0.03 -0.03

5

10

15

20

25

Ti
m

e
(s

ec
)

(a) Weight Decay = 1e-5

21.5

22.0

22.5

23.0

Pe
rp

le
xi

ty

+0.15

-0.35

5

10

15

20

25

Ti
m

e
(s

ec
)

(b) Weight Decay = 5e-6

21.6

22.4

23.2

24.0

Pe
rp

le
xi

ty

+0.13

-0.48

5

10

15

20

25

Ti
m

e
(s

ec
)

(c) Weight Decay = 1e-6

Figure 7: (Varying PL fitting methods). Comparison of various PL fitting methods. The bar plot
and left y-axis represent perplexity (lower the better), while the line plot and right y-axis indicate the
time taken for AlphaDecay once (in seconds, lower the better). The computation times are averaged
over all PL fitting operations throughout the model training process. All experiments are conducted
using LLaMa-135M.

4.4 Analysis

Varying Weight Decay assignment functions. We examine the performance of PL_Alpha_Hill
with different weight decay assignment functions, which determine the allocation ratios of weight
decay across different modules. Figure 5 presents the results obtained by different assignment
functions: Uniform, Linear, Sqrt, Log2, and Sigmoid-like. Among these, Linear achieves the
best results across all weight decay settings, showing a notable advantage over other methods.

Varying HT-SR metrics. To investigate the impact of various HT-SR metrics on regulating weight
decay during model training, we conducted ablation studies comparing these metrics. While prior
work has primarily utilized GradNorm [30; 20; 42] and FrobeniusNorm [12; 16] as indicators for
adjusting weight decay, our study further evaluates additional metrics, including PL_Alpha_Hill
and SpectralNorm, under the same experimental settings. Results in Figure 6 show that most HT-SR
metrics outperform the uniform baseline, while PL_Alpha_Hill achieves the lowest perplexity
(lower the better) among all evaluated methods.

9

Uniform GAP=500 GAP=100 GAP=50 GAP=1 Time (h)

22.4

22.6

22.8

23.0

Pe
rp

le
xi

ty -0.23 -0.21 -0.24 -0.18

20

40

60

Ti
m

e
(h

)

(a) Weight Decay = 1e-5

21.5

22.0

22.5

23.0

Pe
rp

le
xi

ty -0.59 -0.57 -0.60 -0.56

20

40

60

Ti
m

e
(h

)

(b) Weight Decay = 5e-6

21.6

22.4

23.2

24.0

Pe
rp

le
xi

ty

-0.65 -0.66 -0.67 -0.65

20

40

60

Ti
m

e
(h

)

(c) Weight Decay = 1e-6

Figure 8: (Varying PL fitting gaps). We conduct PL fitting at varying specified gaps of training
steps. The bar plot and left y-axis represent perplexity (lower the better), while the line plot and
right y-axis indicate the time required for training completion (lower the better). The computation
times reflect the NVIDIA A100 hours utilized for completing model training. All experiments are
conducted using LLaMa-135M.

Varying PL fitting methods. In our proposed framework, the HT-SR metric PL_Alpha_Hill
is employed to guide the projection-based adjustment of weight decay during training. Since
PL_Alpha_Hill is derived through PL fitting, and the choice of fitting method can influence both
computational efficiency and the final training effectiveness, we conduct an ablation study to sys-
tematically assess its impact. Figure 7 presents a comparative analysis of three PL fitting methods—
Goodness-of-fit [1; 29; 6], Fix-finger[43], and Median[46] —across multiple weight decay
values. Across all settings, Median not only ensures optimal training performance but also notably
decreases computation time compared to the other approaches, making it the preferred choice for PL
fitting within our method.

Varying PL fitting gaps. To further analyze the stability of our proposed approach, we investigate
the impact of varying update gaps for weight decay adjustments during training. It is computationally
inefficient to update weight decay at every training step. Thus, we explore the performance of our
method by updating weight decay at different training step gaps: 1, 50, 100, and 500 steps. Figure 8
shows that our approach achieves stability across all gap settings. Notably, across all weight decay
settings, using training step intervals from 1 to 500 consistently outperforms the Uniform setting,
including when the interval is as large as 500 training steps. This demonstrates the robustness of our
method to update frequency. Therefore, we select a gap of 500 in all experiments because it provides
substantial computational savings while maintaining stable and competitive model performance
across various settings.

5 Conclusion

Weight decay is a standard regularization technique in deep learning, typically implemented with a
single decay rate for all parameters. However, this uniform application lacks theoretical justification
and may not be optimal. We present a systematic study of module-wise weight decay scheduling,
an overlooked but important aspect of model regularization. The proposed AlphaDecay framework
provides a principled approach to module-specific decay rates based on HT-SR theory. Through
extensive experiments, we demonstrate that AlphaDecay consistently improves model performance
across different pretraining scales. To our knowledge, this is the first work to formally investigate
and establish a framework for module-level weight decay scheduling in LLMs. Our results indicate
that weight decay scheduling represents a promising direction for future research. While this work
represents an initial exploration, it opens new possibilities for understanding and improving weight
decay in LLMs.

Limitations. While our study offers initial insights into module-wise weight decay scheduling,
several limitations remain. First, evaluation on Mixture-of-Experts (MoE) models is left for future
work. Second, interactions with other regularization and optimization techniques are yet to be
systematically assessed. Addressing these issues represents valuable directions for future research.

10

References
[1] Jeff Alstott, Ed Bullmore, and Dietmar Plenz. powerlaw: a python package for analysis of

heavy-tailed distributions. PloS one, 9(1):e85777, 2014.

[2] Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng, Jian-Guang Lou, and Weizhu Chen.
Make your llm fully utilize the context. Advances in Neural Information Processing Systems,
37:62160–62188, 2024.

[3] Srinadh Bhojanapalli, Chulhee Yun, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar.
Low-rank bottleneck in multi-head attention models. In International conference on machine
learning, pages 864–873. PMLR, 2020.

[4] Srinadh Bhojanapalli, Ayan Chakrabarti, Andreas Veit, Michal Lukasik, Himanshu Jain, Freder-
ick Liu, Yin-Wen Chang, and Sanjiv Kumar. Leveraging redundancy in attention with reuse
transformers. arXiv preprint arXiv:2110.06821, 2021.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[6] Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. Power-law distributions in
empirical data. SIAM review, 51(4):661–703, 2009.

[7] Romain Couillet and Zhenyu Liao. Random matrix methods for machine learning. Cambridge
University Press, 2022.

[8] Francesco D’Angelo, Maksym Andriushchenko, Aditya Vardhan Varre, and Nicolas Flammar-
ion. Why do we need weight decay in modern deep learning? Advances in Neural Information
Processing Systems, 37:23191–23223, 2024.

[9] Adriana Fernandez-Lopez, Shiwei Liu, Lu Yin, Stavros Petridis, and Maja Pantic. Full-rank no
more: Low-rank weight training for modern speech recognition models. In ICASSP 2025-2025
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
1–5. IEEE, 2025.

[10] Tomer Galanti, Zachary S Siegel, Aparna Gupte, and Tomaso Poggio. Characterizing the
implicit bias of regularized sgd in rank minimization. arXiv e-prints, pages arXiv–2206, 2022.

[11] Yingqiang Ge, Wenyue Hua, Kai Mei, Juntao Tan, Shuyuan Xu, Zelong Li, Yongfeng Zhang,
et al. Openagi: When llm meets domain experts. Advances in Neural Information Processing
Systems, 36:5539–5568, 2023.

[12] Mohammad Amin Ghiasi, Ali Shafahi, and Reza Ardekani. Improving robustness with adaptive
weight decay. Advances in Neural Information Processing Systems, 36:79067–79080, 2023.

[13] Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of
stochastic gradient descent. In International conference on machine learning, pages 1225–1234.
PMLR, 2016.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[15] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4700–4708, 2017.

[16] Masato Ishii and Atsushi Sato. Layer-wise weight decay for deep neural networks. In Pacific-
Rim Symposium on Image and Video Technology, pages 276–289. Springer, 2017.

[17] Ajay Jaiswal, Lu Yin, Zhenyu Zhang, Shiwei Liu, Jiawei Zhao, Yuandong Tian, and Zhangyang
Wang. From galore to welore: How low-rank weights non-uniformly emerge from low-rank
gradients. arXiv preprint arXiv:2407.11239, 2024.

11

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[19] Seijin Kobayashi, Yassir Akram, and Johannes Von Oswald. Weight decay induces low-rank
attention layers. Advances in Neural Information Processing Systems, 37:4481–4510, 2024.

[20] Atli Kosson, Bettina Messmer, and Martin Jaggi. Rotational equilibrium: How weight decay
balances learning across neural networks. arXiv preprint arXiv:2305.17212, 2023.

[21] Anders Krogh and John Hertz. A simple weight decay can improve generalization. Advances in
neural information processing systems, 4, 1991.

[22] Vladislav Lialin, Namrata Shivagunde, Sherin Muckatira, and Anna Rumshisky. Relora: High-
rank training through low-rank updates. arXiv preprint arXiv:2307.05695, 2023.

[23] Shiwei Liu, Lu Yin, Decebal Constantin Mocanu, and Mykola Pechenizkiy. Do we actually need
dense over-parameterization? in-time over-parameterization in sparse training. In International
Conference on Machine Learning, pages 6989–7000. PMLR, 2021.

[24] Zihang Liu, Yuanzhe Hu, Tianyu Pang, Yefan Zhou, Pu Ren, and Yaoqing Yang. Model
balancing helps low-data training and fine-tuning. arXiv preprint arXiv:2410.12178, 2024.

[25] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[26] Haiquan Lu, Yefan Zhou, Shiwei Liu, Zhangyang Wang, Michael W Mahoney, and Yaoqing
Yang. Alphapruning: Using heavy-tailed self regularization theory for improved layer-wise
pruning of large language models. Advances in Neural Information Processing Systems, 37:
9117–9152, 2024.

[27] Michael Mahoney and Charles Martin. Traditional and heavy tailed self regularization in neural
network models. In International Conference on Machine Learning, pages 4284–4293. PMLR,
2019.

[28] Pratyush Maini, Hengrui Jia, Nicolas Papernot, and Adam Dziedzic. Llm dataset inference:
Did you train on my dataset? Advances in Neural Information Processing Systems, 37:124069–
124092, 2024.

[29] Charles H Martin, Tongsu Peng, and Michael W Mahoney. Predicting trends in the quality of
state-of-the-art neural networks without access to training or testing data. Nature Communica-
tions, 12(1):4122, 2021.

[30] Kensuke Nakamura and Byung-Woo Hong. Adaptive weight decay for deep neural networks.
IEEE Access, 7:118857–118865, 2019.

[31] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of machine learning research, 21(140):1–67, 2020.

[32] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

[33] Pratyusha Sharma, Jordan T Ash, and Dipendra Misra. The truth is in there: Improving reasoning
in language models with layer-selective rank reduction. arXiv preprint arXiv:2312.13558, 2023.

[34] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[35] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The
implicit bias of gradient descent on separable data. Journal of Machine Learning Research, 19
(70):1–57, 2018.

[36] Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory.
Advances in neural information processing systems, 31, 2018.

12

[37] Songjun Tu, Jingbo Sun, Qichao Zhang, Xiangyuan Lan, and Dongbin Zhao. Online preference-
based reinforcement learning with self-augmented feedback from large language model. arXiv
preprint arXiv:2412.16878, 2024.

[38] Twan Van Laarhoven. L2 regularization versus batch and weight normalization. arXiv preprint
arXiv:1706.05350, 2017.

[39] Jianyu Wang and Gauri Joshi. Cooperative sgd: A unified framework for the design and analysis
of local-update sgd algorithms. Journal of Machine Learning Research, 22(213):1–50, 2021.

[40] Wenxuan Wang and Zhaopeng Tu. Rethinking the value of transformer components. arXiv
preprint arXiv:2011.03803, 2020.

[41] Zihan Wang and Arthur Jacot. Implicit bias of sgd in l_{2}-regularized linear dnns: One-way
jumps from high to low rank. arXiv preprint arXiv:2305.16038, 2023.

[42] Zeke Xie, Zhiqiang Xu, Jingzhao Zhang, Issei Sato, and Masashi Sugiyama. On the overlooked
pitfalls of weight decay and how to mitigate them: A gradient-norm perspective. Advances in
Neural Information Processing Systems, 36:1208–1228, 2023.

[43] Yaoqing Yang, Ryan Theisen, Liam Hodgkinson, Joseph E Gonzalez, Kannan Ramchandran,
Charles H Martin, and Michael W Mahoney. Test accuracy vs. generalization gap: Model
selection in nlp without accessing training or testing data. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pages 3011–3021, 2023.

[44] Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, Ajay
Jaiswal, Mykola Pechenizkiy, Yi Liang, et al. Outlier weighed layerwise sparsity (owl): A
missing secret sauce for pruning llms to high sparsity. arXiv preprint arXiv:2310.05175, 2023.

[45] Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024.

[46] Yefan Zhou, Tianyu Pang, Keqin Liu, Michael W Mahoney, Yaoqing Yang, et al. Temperature
balancing, layer-wise weight analysis, and neural network training. Advances in Neural
Information Processing Systems, 36:63542–63572, 2023.

[47] Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon
Papademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in
observed gradients. Advances in neural information processing systems, 33:18795–18806,
2020.

13

Appendix
A Details of Experiments

A.1 Architecture

To ensure reproducibility and consistency with prior research ([45; 22]), we adopt the LLaMa
architectural specifications and pre-training hyperparameters as detailed in Table 6. All model
variants are trained with a uniform maximum sequence length of 256, a batch size of 512, and an
aggregate of 13K tokens per batch.

Table 6: Hyperparameters of LLaMa models used in this paper.

Params Hidden Intermediate Heads Layers Steps Data amount LR Batch Size

60M 512 1376 8 8 10K 1B 1× 10−3 512
135M 768 2048 12 12 20K 2B 1× 10−3 512
350M 1024 2736 16 24 60K 6B 1× 10−3 512

1B 2048 5461 32 24 90K 9B 6× 10−4 512

A.2 Hyperparameter settings for reproducing our figures

We report all hyperparameters and all numerical values of experimental results shown in the main
paper. First, Table 7 reports the details of experiments shown in Figure 3 and Figure 4. Then, Table 8,
Table 9, Table 10 and Table 11 respectively report the details of the experiments shown in Figure 5,
Figure 6, Figure 7 and Figure 8.

Table 7: Parameter settings of the experiment reported in Section 3.3 Figure 3 and Figure 4.

Method Model Size Weight
Decay Perplexity Scaling Ratio

(s1, s2)
Method Model Size Weight

Decay Perplexity Scaling Ratio
(s1, s2)

3e-6 33.306 - 3e-6 23.604 -
4e-6 33.219 - 4e-6 23.437 -
5e-6 33.131 - 5e-6 23.272 -
6e-6 33.157 - 6e-6 23.161 -
7e-6 33.077 - 7e-6 23.136 -
8e-6 33.028 - 8e-6 23.109 -
9e-6 33.008 - 9e-6 23.083 -

Uniform LLaMa
60M

1e-5 33.002 -

Uniform LLaMa
135M

1e-5 23.111 -
3e-6 32.557 (0.67,5) 3e-6 22.895 (0.67,5)
4e-6 32.364 (0.67,5) 4e-6 22.812 (0.67,5)
5e-6 32.171 (0.67,5) 5e-6 22.730 (0.67,5)
6e-6 32.144 (0.67,5) 6e-6 22.770 (0.67,5)
7e-6 32.122 (0.67,5) 7e-6 22.772 (0.67,3)
8e-6 32.077 (0.67,5) 8e-6 22.830 (0.67,3)
9e-6 32.097 (0.67,5) 9e-6 22.885 (0.67,3)

AlphaDecay LLaMa
60M

1e-5 32.099 (0.67,5)

AlphaDecay LLaMa
135M

1e-5 22.934 (0.67,3)

Table 8: Parameter settings of the experiment reported in Section 4.4 Figure 5. All experiments are
conducted on LLaMa-60M.

Weight Decay Uniform Linear Sqrt Log2 Sigmoid-like Scaling Ratio
(s1, s2)

1e-5 32.386 31.565 32.326 32.301 32.201 (0.67,3)
5e-6 32.562 31.582 32.517 32.501 32.171 (0.67,5)
1e-6 33.028 32.537 33.074 33.033 33.095 (0.67,5)

Table 9: Parameter settings of the experiment reported in Section 4.4 Figure 6. All experiments are
conducted on LLaMa-135M.

Weight Decay Uniform PL_Alpha_Hill GradNorm FrobeniusNorm SpectralNorm Scaling Ratio
(s1, s2)

1e-5 22.993 22.763 22.855 23.265 23.348 (0.67,3)
5e-6 23.138 22.551 22.714 22.91 23.006 (0.67,5)
1e-6 24.142 23.488 23.801 23.596 23.601 (0.67,5)

14

Table 10: Parameter settings of the experiment reported in Section 4.4 Figure 7. The computation
times are averaged over all PL fitting operations throughout the model training process.

Goodness-of-fit Fix-finger Median

Model Size Weight Decay Perplexity Computation
Time (sec) Perplexity Computation

Time (sec) Perplexity Computation
Time (sec)

Scaling Ratio
(s1, s2)

1e-5 32.166 8.73±0.30 32.231 7.90±0.33 31.628 1.67±0.01 (0.67,3)
5e-6 32.436 10.62±0.04 32.381 9.22±0.47 31.614 1.69±0.01 (0.67,5)LLaMa

-60M 1e-6 32.993 8.28±0.03 33.059 7.80±0.67 32.703 1.66±0.01 (0.67,5)

1e-5 22.937 24.86±0.11 23.004 21.53±0.83 23.004 4.67±0.02 (0.67,3)
5e-6 22.937 24.43±0.11 23.090 22.00±0.86 22.588 4.68±0.03 (0.67,5)LLaMa

-135M 1e-6 23.924 24.64±0.13 24.058 21.90±0.80 23.448 4.63±0.01 (0.67,5)

Table 11: Parameter settings of the experiment reported in Section 4.4 Figure 8. The computation
times reflect the NVIDIA A100 hours utilized for completing model training.

Model Size Weight Decay Uniform GAP=500 GAP=250 GAP=100 GAP=50 GAP=1 Scaling Ratio
(s1, s2)

LLaMa
-60M

1e-5 32.386 31.614 31.628 31.555 31.618 31.594 (0.67,3)
5e-6 32.562 31.628 31.633 31.673 31.717 31.712 (0.67,5)
1e-6 33.029 32.703 32.718 32.754 32.663 32.769 (0.67,5)

Computation Time 1.4h 1.4h 1.4h 1.5h 1.6h 9.3h

LLaMa
-135M

1e-5 22.994 22.763 22.756 22.779 22.758 22.809 (0.67,3)
5e-6 23.138 22.551 22.537 22.569 22.539 22.581 (0.67,5)
1e-6 24.142 23.488 23.477 23.479 23.468 23.488 (0.67,5)

Computation Time 5.6h 5.7h 5.9h 6.3h 7.1h 74.5h

A.3 Assignment Function Formulas

For AlphaDecay, we selected the linear interpolation (fomula 3) for weight decay assignment
function ft, based on its superior performance in our ablation study. We provide the remaining
assignment functions here:

• Sqrt : ft(i) = η

√
αi

t

1
L

∑L
j=1

√
αj

t

• Log2 : ft(i) = η
log2(αi

t)
1
L

∑L
j=1 log2(αj

t)

• sigmoid-like : ft(i) = η 2
1+exp(−βg̃t

j)
with g̃tj = (|gtj | − µt

l)/σ
t
l

Here, η denotes the initial weight decay, αi
t is PL_Alpha_Hill of the module i at step t, and L is the

total number of model modules. µt
l is the mean of gradient norms |gtj | in the layer l; σt

l is the std of
gradient norms |gtj | in the layer l; β = 4 is a control parameter for the steepness of function value
transition.

A.4 Derivation of Formula 2

We provide the derivation for estimating the power-law exponent α from empirical singular value
data, which is central to our approach. We assume the empirical distribution follows a power-law
(Pareto) distribution:

p(x) = cx−α

For normalization over x ≥ xmin:

∫ ∞

xmin

p(x) dx = 1 =⇒ c = (α− 1)xα−1
min

Thus, the probability density function (PDF) becomes:

15

p(x) = (α− 1)xα−1
min x

−α =
α− 1

xmin

(
x

xmin

)−α

Given a set of observed data x1, x2, . . . , xn with xi ≥ xmin, the likelihood function is:

p(x1, x2, . . . , xn) =

n∏
i=1

p(xi) =

n∏
i=1

α− 1

xmin

(
xi

xmin

)−α

The log-likelihood is therefore:

L =

n∑
i=1

[
ln(α− 1)− lnxmin − α ln

xi

xmin

]
To obtain the maximum likelihood estimate, we set the derivative of L with respect to α to zero:

∂L
∂α

= 0 =⇒ α = 1 + n

[
n∑

i=1

ln
xi

xmin

]−1

This result is known as the standard Hill estimator, and we denote the fitted exponent as
PL_Alpha_Hill.

B More experiments

B.1 LLM Pre-training with AdamW

Table 12 provides a comparison of several weight decay scheduling strategies for pre-training LLaMa-
60M and LLaMa-130M models with the AdamW optimizer. The results clearly demonstrate the
effectiveness of applying weight decay, as all scheduling strategies outperform the baseline with no
weight decay (WD=0) in terms of validation perplexity.

Table 12: (AdamW.) Comparison of various weight decay scheduling strategies using AdamW
optimizer for pre-training LLaMa-60M and LLaMa-130M models under different weight decay
values. Validation perplexity (↓) on the C4 dataset is reported. All baselines are carefully tuned.
’WD=0’ indicates that weight decay is disabled during model training.

LLaMa-60M LLaMa-135M
Weight Decay 0.1 0.05 0.01 0.1 0.05 0.01

WD=0 32.73 24.39
Uniform 31.95 32.31 32.66 23.32 23.81 24.28

AWD 32.58 32.67 32.67 24.30 24.35 24.41
Adadecay 31.88 32.25 32.58 23.18 23.62 24.21

AlphaDecay 31.20 31.65 32.45 22.66 23.04 23.98

AlphaDecay consistently outperforms other weight decay scheduling strategies across different
model sizes and hyperparameter settings, demonstrating superior regularization and generalization
when training with AdamW. These results highlight the robustness and effectiveness of AlphaDecay,
supporting its adoption for optimizing large-scale transformer-based language models.

B.2 Dependent t-test for paired samples

Table 13 provides a comparison of several weight decay scheduling strategies using the Adam
optimizer, evaluated through repeated experiments with different random seeds.

16

Table 13: (Dependent t-test with Adam.) Each method (Uniform, AWD, AdaDecay, and
AlphaDecay) is evaluated by conducting six repeated experiments with random seeds { 5, 6, 7,
8, 9, 10 }. Validation perplexity is reported as mean ± standard deviation. For each weight decay
setting, a dependent t-test for paired samples is performed, comparing AlphaDecay against Uniform,
AWD, and AdaDecay, respectively. The resulting p-values are presented alongside perplexity scores.

Method Weight Decay=0 Weight Decay=1e-5 Weight Decay=5e-6 Weight Decay=1e-6
Perplexity Perplexity P-value Perplexity P-value Perplexity P-value

Uniform

24.55 ± 0.07

22.97 ± 0.07 8.38e-4 23.12 ± 0.03 1.47e-6 24.12 ± 0.04 1.05e-7
AWD 24.13 ± 0.15 6.94e-6 24.46 ± 0.07 5.34e-8 24.53 ± 0.03 5.34e-9

AdaDecay 23.18 ± 0.05 1.46e-5 23.07 ± 0.04 1.11e-7 24.00 ± 0.03 2.69e-9
AlphaDecay 22.77 ± 0.02 22.54 ± 0.03 23.44 ± 0.02

The results demonstrate the benefit of applying weight decay for improved validation perplexity,
with AlphaDecay consistently exhibiting superior performance and stability across all tested settings.
The dependent t-test results further substantiate these findings, with statistically significant p-values
supporting the advantage of AlphaDecay over Uniform, AWD, and AdaDecay in nearly all cases.

B.3 Varying assignment function hyperparameters

Uniform (0.33,1.5) (0.67,1.5) (0.67,3) (0.67,5)

(s1, s2)

22.40

22.80

23.20

Pe
rp

le
xi

ty -0.11 -0.15 -0.23

+0.08

(a) Weight Decay = 1e-5

(s1, s2)22.00

22.40

22.80

23.20

Pe
rp

le
xi

ty

-0.03 -0.16
-0.45

-0.59

(b) Weight Decay = 5e-6

(s1, s2)23.20

23.60

24.00

24.40

Pe
rp

le
xi

ty -0.00 -0.06

-0.38
-0.65

(c) Weight Decay = 1e-6

Figure 9: (Hyperparameter study on (s1, s2)). Search for hyperparameters (s1, s2) of different
weight decay settings on C4. The hyperparameter choice used in the paper (see table 1) performs
best among all the cases. All experiments are conducted on LLaMa-135M. The value on the top of
each bar indicates the difference from the leftmost bar in each plot.

We provide additional results of a hyperparameter study on (s1, s2), in which we consider four
different settings for (s1, s2): [(0.33, 1.5), (0.67, 1.5), (0.67, 3), (0.67, 5)]. We run tasks on C4 with
LLaMa-135M. Our results in figure 9 show that using a larger weight decay scaling range, such as
(0.67, 3) or (0.67, 5), yields the best performance. This hyperparameter setting is the default setting
used in our paper. All hyperparameters are consistent with those described in the main paper.

17

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract, we highlighted our contributions, including algorithm develop-
ment, theoretical analysis, and empirical study.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the Conclusion, we discuss limitations in applicability to MoE models,
interactions with alternative regularization approaches.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

18

Answer: [NA]

Justification: We do no have relevant theories or proofs

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided sufficient details for reproducing the results of the paper,
such as parameter settings, runtime environments, and dataset descriptions.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

19

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have included all the code and data in the supplemental materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided sufficient details for tranining, encompassing hyperparame-
ter settings and dataset generation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: For simplicity, we prove the validity of the method only by changing the
hyperparameters and the number of model parameters. Our method has obvious advantages
over the compared methods. These results have proved their significance in the experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The machines we used in the experiment have been described in the corre-
sponding table.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research aligns with the ethical guidelines outlined by NeurIPS.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper solves the problems in model training. To our knowledge, this will
not cause negative social impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

21

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The dataset used in the experiments is published on an open site without
license.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

22

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The experiments do not involve new datasets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing or human object is involved.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No crowdsourcing or human object is involved.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

23

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is not an important, original, or non-standard component of the core
methods in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

24

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Methodology
	Rationale
	HT-SR Theory
	AlphaDecay

	Empirical results
	Experimental setup
	LLM Pre-training
	Downstream tasks & architectures
	Analysis

	Conclusion
	Details of Experiments
	Architecture
	Hyperparameter settings for reproducing our figures
	Assignment Function Formulas
	Derivation of Formula 2

	More experiments
	LLM Pre-training with AdamW
	Dependent t-test for paired samples
	Varying assignment function hyperparameters

