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Abstract

Designing reinforcement learning agents to satisfy complex temporal objectives
expressed in Linear Temporal Logic (LTL), presents significant challenges, par-
ticularly in ensuring sample efficiency and task alignment over infinite horizons.
Recent works have shown that by leveraging the corresponding Limit Determin-
istic Biichi Automaton (LDBA) representation, LTL formulas can be translated
into variable discounting schemes over LDBA-accepting states to maximize a
lower bound on the probability of formula satisfaction. However, the resulting
reward signals are inherently sparse, making exploration of LDBA-accepting states
increasingly difficult as task horizons lengthen to infinity. In this work, we ad-
dress these challenges by leveraging finite-length demonstrations to overcome
the exploration bottleneck for LTL objectives over infinite horizons. We segment
demonstrations and agent exploratory trajectories at LDBA-accepting states and
iteratively guide the agent within each segment to learn to reach these accepting
states. By incentivizing the agent to visit LDBA-accepting states from arbitrary
states, our approach increases the probability of LTL formula satisfaction without
the need for extensive or lengthy demonstrations. We demonstrate the applicability
of our method across a variety of high-dimensional continuous control domains. It
achieves faster convergence and consistently outperforms baseline approaches.

1 Introduction

Linear Temporal Logic (LTL) has been extensively studied as an alternative framework for specifying
objectives for reinforcement learning (RL) agents [54} 127, 1311623 16} 163]]. LTL provides a powerful
and flexible language to define tasks with temporal dependencies, such as*“cycle between two subgoals
while always avoiding unsafe regions" or “eventually reach a goal after completing a sequence of
subtasks" [2]. Designing RL agents to satisfy these objectives is particularly challenging when
considering infinite horizons, where the agent must maintain behavior that satisfies the objectives
indefinitely. These challenges are compounded by the need to ensure sample efficiency in high-
dimensional, continuous systems.

Several works [28, 163\ [13]] have proposed proxy reward schemes to derive policies from the Limit
Deterministic Biichi Automaton (LDBA) representation of LTL specifications. A trajectory satisfies
an LTL formula if and only if it visits an LDBA-accepting state infinitely often. However, these proxy
rewards, defined over LDBA-accepting states, are inherently sparse, posing challenges for effective
exploration toward such states.

To address these limitations, we propose a novel framework, TiLoIL (Temporal Logic Imitation
Learning), which leverages Learning from Demonstrations to mitigate reward sparsity in policy
optimization for LTL objectives. The high-level idea is to combine the structure of LDBAs with finite-
length demonstrations to guide exploration. Specifically, TiLoIL segments expert demonstrations
and agent exploratory trajectories at each visit to LDBA-accepting states. Each segment represents
a sub-trajectory directed toward some accepting state. Using each segment of agent trajectories,
TiLolIL incentivizes the agent to learn how to effectively reach an LDBA-accepting state by imitating
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the expert behavior in the expert trajectory segments. In essence, TiLoIL encourages the agent
to consistently seek LDBA-accepting states from any non-accepting states, thereby increasing the
likelihood of satisfying infinite-horizon LTL formulas. Along the way, TiLoIL learns a reward
function for reaching LDBA-accepting states by contrasting successful trajectories with unsuccessful
ones. This reward function is then leveraged for policy training, hence reducing the need for extensive
or lengthy demonstration data.

Moreover, TiLolL uses the inherent multistage structure of LTL formulas to further densify the
reward function to reach the LDBA-accepting states. At each stage, the reward function provides the
agent with rich reward signals specifically tailored to that stage. This staged approach improves the
efficiency of the learning process compared to treating LDBA-accepting state reaching as a single
monolithic procedure.

We demonstrate the effectiveness of TiLolL across a range of tasks in high-dimensional continuous
systems, which have historically posed significant challenges for LTL-based RL methods. Our
method achieves faster convergence and outperforms baseline approaches, demonstrating superior
generalization to unseen scenarios. By leveraging the synergy between LTL specifications, LDBA
representations, and demonstration data, TiLolIL provides a practical and scalable solution for
designing RL agents that satisfy complex temporal objectives.

2 Background and Problem Setup

This section sets up our reinforcement learning problem to solve tasks specified by Linear Temporal
Logic (LTL).

2.1 Linear Temporal Logic (LTL)

LTL [50] is a specification language that combines atomic propositions (APs) and logical operators
to describe system behaviors and temporal properties. An atomic proposition AP represents a basic
indivisible statement about the state of a system that can be true or false at a given time. The logical
operators include: not (=), and (A), and implies (—); and the temporal operators include: next (X),
repeatedly/always/globally (G), eventually (F), and until (U). Appendix |C|defines the syntax and
semantics of LTL formulas. For a complete introduction, we refer the reader to Baier and Katoen [7].

Example. Consider the FlatWorld environment in Fig. With AP = {y,g,r,b} where r labels the
red region, g labels the green, y labels the yellow, and b labels the blue. If the task is to eventually
reach the yellow zone and remain there, we express this as ¢ = FGy. Alternatively, if we require
the agent to oscillate infinitely between the yellow, green, and red zones while avoiding the blue
zone, we express this as ¢ = GF(y A XF(g A XFr)) A G—b, which combines the properties of safety,
reachability, and progress.

From LTL to LDBA. The satisfaction of LTL
formulas can be formally defined using Limit
Deterministic Biichi Automata (LDBAs). An
LDBA can be derived from any LTL formula ¢
and keeps track of the progression of ¢ satisfac-
tion [57]].

Definition 2.1 (Limit Deterministic Biichi Au-
tomaton (LDBA)). An LDBA is atuple £ = . )
(B, U &, PB B*,by), where B is a finite set Figure 1: Left: FlatWorld Cycle environment with
of states, ¥ = 247 is an alphabet over atomic LTL spec ¢ = GF(y AXF(gAXFr)) AG-b. Right:
propositions, P8 : B x X UE — Bis atran- LDBA for ¢ accepts paths reaching state 3 in-
sition function, B* C B is a set of accepting finitely. Blue region b leads to a sink.

states, and by € B is the initial state. There ex-

ists a mutually exclusive partitioning of B = Bp U By such that B* C Bp, and for (b,a) € (Bp x %),
then P8 (b,a) C Bp. £ is a set of “jump" actions, also known as epsilon-transitions, for b € By that
transitions to Bp without evaluating any atomic propositions.

rAYAgA-b ~gA-b

Example. In the FlatWorld environment (Fig. [1} left) and its corresponding LTL specification
¢ = GF(y A XF(g A XFr)) A G-b, the LDBA is shown in Fig.[I] (right).



An infinite sequence of LDBA actions (a;)2, € X° induces a path p = (b;){2,, according to
biv1 = PP(b;, ;).
Definition 2.2 (Limit Deterministic Biichi Automaton (LDBA)). An LDBA L accepts a path (b;)5°

if and only if the path visits an accepting state b* € B* infinitely often, that is: V¢ € N, 3’ >
t such that by € B*.

Given an LTL formula ¢, we translate it into an LDBA L. Satisfaction of ¢ by an infinite sequence
of AP evaluations (w-word) corresponds directly to the acceptance of the path (b;)$°, induced by
the w-word in £ (Def.[2.2)).

2.2 Product MDP with LDBA

A Markov Decision Process (MDP) is defined as a tuple M = (S, A, P, up), where S and A
represent the state and action spaces, which may be continuous or discrete. The transition kernel
P : S x A— A(S) describes the system’s dynamics, representing probability distributions over S.
1o € A(S) specifies the initial state distribution.

To integrate atomic propositions (A Ps) into MDP states, as in previous work [63} 62} (6], we assume
the existence of a labeling function F : S — ¥ which returns the atomic propositions that are true
in that state. The labeling function can be thought of as a collection of event detectors that activate
whenever the propositions in AP are satisfied within the environment.

We define control policies over the product space of an MDP M and an LDBA L, aiming to generate
accepting trajectories that satisfy an LTL formula ¢ from which the LDBA L is derived.

Definition 2.3. [Product MDP] Given MDP M = (S, A, P, o) and LDBA £ = (B,X U
&, P B*,by), a product MDP M* = (S*,A*, PX, u) synchronizes M with £, where
S*=8xB, A% =AUE, and p (s,b) = po(s) - Lp—p,- The transition kernel P* is defined using
the labeling function F as follows:
P(s' | s,a), ifac A, b =PBb,F(s))
PX((s', V)] (s,b),a) =< 1, ifa €& b =PBb,a), s=s
0, otherwise

We say that (s, b) is an LDBA-accepting product state if b € B*. Def. allows the connection of
trajectories (and, consequently, policies) to the satisfaction of a given LTL formula. Consider an
LTL formula ¢ and its corresponding LDBA L, along with a trajectory 7 = (s;, b;)$2,, in the product
MDP M*. The trajectory T |= ¢ (i.e., 7 satisfies ¢) if and only if £ accepts the path (b;)52, the
projection of 7 onto the LDBA states.

Now, consider a policy 7 : S* — A(A*). The probability that 7 satisfies ¢ can be expressed
as the expected value of the indicator for trajectories satisfying ¢: P(7m = ¢) = E.or [17\:¢] .
Optimizing a policy 7 for the satisfaction of an LTL specification ¢ can therefore be formulated as
finding 7* € argmax,cr P(7m |= ) where II denotes the space of all admissible policies.

2.3 Imitation Learning for LTL-Constrained Tasks

To maximize the probability of satisfying the LTL formula P (7, |= ¢), an RL algorithm incentivize
the agent to visit LDBA-accepting states as frequently as possible [27, 63]]. However, this approach
presents a significant challenge for exploration due to the inherent sparsity of the feedback: the agent
receives rewards only upon making substantial progress toward task completion, such as reaching
an accepting state in the LDBA. Visits to multiple non-accepting states within the LDBA during
exploration may not provide meaningful learning signals, as there is no guidance from unexplored
regions of the LDBA. Our main idea is to leverage the global structure of the LDBA and integrate it
with expert task demonstrations to generate a dense reward signal along the LDBA paths for efficient
agent exploration.

Expert Demonstrations. TiLoIL assumes expert demonstrations Dexper in the form of sequences of
MDP states in .S observed during the execution of a task by an expert policy, providing information
about the regions of the state space relevant for task completion. First, we do not assume that
demonstrations are collected in the product MDP. This ensures that the discriminator cannot exploit
LDBA state information as a shortcut to bias its decisions, which could result in uninformed learning



signals. Second, our demonstrations consist solely of state trajectories, reducing the burden of
generating detailed action sequences. This choice also aligns with our goal of learning policies in
the action space A* of the product MDP. Since expert demonstrations operate within the raw MDP
action space A, the demonstrated actions do not include the "jump" actions in A*.

Imitation Learning. The introduction of the Generative Adversarial Imitation Learning (GAIL)
algorithm [29] has driven significant advances in scalable deep imitation learning methods [23} 24,
39,134} 21,18, 148]). Beyond adversarial approaches, several imitation learning algorithms aim to match
the state action distributions of the expert and the agent through non-adversarial techniques, such as
non-parametric models [38]], random network distillation [64], support estimation [10]], Wasserstein
distance minimization [15]], and moment matching [59].

In this paper, we adopt the GAIL framework. Recent studies [5] have shown that GAIL and its
extensions consistently perform well at varying sample sizes. However, TiLoIL is not restricted
to adversarial approaches and can be extended to other distribution matching imitation learning
techniques. TiLoIL shapes reward signals using a discriminator f(s), which is trained to distinguish
between states from high-quality trajectories B—comprising expert demonstrations Deyper—and
states from low-quality trajectories B~, consisting of the agent’s own exploratory rollouts 7 ~
sampled from M ™. States that resemble those in BT receive higher rewards from the discriminator
fw, while those similar to B~ receive lower rewards. TiLoIL employs an iterative training procedure,
alternating between updating the discriminator f,, and the policy 74. The policy is optimized to
generate trajectories that are increasingly indistinguishable from expert behavior, by maximizing
the shaped reward r%((& b),a) = tanh(fy(s)). Given a discount factor ~, the policy objective is:
Jﬂ'(¢) = ]ETNTr¢ [ t=0 'Yt Tdi((stvbt)vat)]

Temporal Logic Imitation Learning. Assuming access to expert demonstrations Deyper, TiLoIL
jointly optimizes the probabilistic satisfaction of an LTL formula ¢ and the imitation learning

objective J:
T = arg max (P(my = ©), Jr(9)) @

3 Imitation Learning with LTL Constraints

We emphasize that the learning objectives in our problem formulation, as presented in Eq. [T} are
not in conflict. Among the set of policies that mimic expert demonstrations Dexper; (i.€., maximize
Jr(¢)), there exists at least one policy 7, that adheres to the specified LTL formula ¢. Conversely,
there exists one policy satisfying the specification ¢ (i.e., P(my [= ¢)) that also closely aligns with
the behavior demonstrated by the expert. We formalize this intuition below:

Theorem 3.1. Let m; and 7 be two policies with corresponding occupancy measures pr, and pr,.
For any Linear Temporal Logic (LTL) formula ¢, the difference in the probabilities of satisfying
o under these policies is bounded by twice the total variation distance between their occupancy
measures:

|Plmy @] - Plrs E ¢l < 2D1v(pry, o), @)

where the total variation (TV) distance between the distributions p,, and p., is given by
DTV(p‘ﬂ'l s pTrz) = % fT |p7r1 (7—) — P (7—)| dr.

Let 71 be the expert policy mg from which demonstrations are collected, and 75 be the imitation
learning policy 7. This theorem shows that minimizing the total variation distance between 7g
and 74 leads to policies that maximize LTL satisfaction. The use of GAIL for imitation learning
to minimize the JS (Jensen—Shannon) divergence reduces this TV distance, driving policies toward
optimal satisfaction of LTL properties. The proof is in Appendix [D]

Main Challenge. Theorem does not directly apply in practice, as the infinite-length demon-
strations required by LTL tasks are impractical to generate. For tasks with cyclic structures (e.g.,
Fig. [I), it is unrealistic to assume that expert demonstrations contain a large number of visits to
LDBA-accepting states, due to the cost and complexity of constructing such demonstrations. Instead,
we assume that demonstrations may include only one or two visits to an accepting state. This high-
lights a fundamental tension between the theoretical requirement of infinite visits to LDBA-accepting
states and the inherently finite-horizon nature of expert demonstrations. First, the limited learning
signal from such sparse demonstration data makes it challenging for the agent to generalize its
behavior to satisfy LTL constraints over infinite horizons. Second, since environment states near



LDBA-accepting states are typically unique to expert demonstrations and differ substantially from the
agent’s exploratory behavior, particularly in the early stages of training, the discriminator may develop
a reward function that assigns higher rewards to these states. Consequently, optimizing J: (¢) under
finite-length demonstrations could lead the agent to become trapped near an LDBA-accepting state,
where the rewards are higher. In this way, the agent lacks incentive to actually reach the accepting
state and then leaves it to initiate another trail aimed at reaching the accepting state again. This would
result in suboptimal behavior, as the policy fails to reach LDBA-accepting states frequently enough.

3.1 Segmented Imitation

Our core idea to address the aforementioned main challenge is segmenting agent exploratory
trajectories in M based on visits to LDBA-accepting states, where each segment represents a
subtrajectory toward an accepting state. From the agent’s perspective, each segmented rollout can
start in any state within the state space and the goal is to reach an LDBA-accepting state; when
the agent reaches an accepting state, the next rollout starts directly from its current state, with
the goal remaining the same: reaching an LDBA-accepting state. This structure incentivizes the
agent to continuously seek LDBA-accepting states, regardless of the starting point of each trail,
thus encouraging their infinite visits and improving P(m4 = ¢) the probability of LTL formula
satisfaction. Even if the demonstration contains only a single visit to an accepting state, it can be
reused to guide the agent toward efficiently reaching LDBA-accepting states within each segment of
its rollout, thereby optimizing J,. (¢). We formalize our method based on off-policy Q learning.

Q-Function Update. The Q-function Qy((s, ), a) for state and action pairs from M* is updated
by minimizing the Bellman residual using data sampled from a sampled replay buffer B. The loss
function is defined as follows:

1 .
Jq(0) = E((s,b),a,(s',b/))~B 3 (Qo((s,b),a) — 9)°] , 3

The target value 3 is defined as:

yA_{l/(]-_’y)v be B*
R((S, b)) + ’yEa/NTrd)(_‘(S/’b/)) [Qtarg] s b ¢ B*.

where R((s,b)) = tanh(fy(s)) is the reward from the learned discriminator function f, that
separates BT as segmented expert demonstrations and B~ as segmented policy rollouts. Here,
Qiarg = Qz((s','),a") —alog s (a’|(s',b")) is the target Q value computed using a target network
with parameters 6, « is the temperature parameter controlling the trade-off between reward and
entropy, and log wg(a’|(s', b)) is the entropy term used to encourage exploration.

“

Intuitively, we use the discriminator reward in R((s, b)) to train )y to optimize J;(¢) in our learning
objectives in Eq.[I] encouraging the agent to mimic expert behavior to reach LDBA-accepting states.
Upon reaching an LDBA-accepting state (s, b) such that b € B*, we directly set the target value for
Q((s,b),a) (for any action a) to ﬁ First, this () value is sufficiently large to incentivize the agent

to reach the LDBA-accepting state (s, b), rather than lingering nearby, thereby ensuring continuous
progress toward satisfying the LTL constraint. Second, in this way, each segmented rollout does not
interfere with others, effectively addressing the main challenge.

Policy (74) Update. The policy m4(al(s, b)) is updated by minimizing the entropy-regularized
expected Q-value, balancing exploration and exploitation. The loss is:

Jﬂ(d)) = E(s,b)wB []anﬂqs(.us’b)) [O( log7r¢(a|(s, b)) — Q@((S, b), a)]] . (5)

Here, the entropy term «:log 74 (al(s, b)) promotes exploration, while the Q-value term —Qy((s, b), a)
encourages reward maximization.

The following theorem bounds the -function update in Eq. 3| relative to the optimal Q-value under
the assumption of infinite-horizon expert demonstrations:

Theorem 3.2. Let Qg be the learned soft (Q-function trained using a modified target value Q& =
ﬁ in accepting states (s, b) where b € B*, and soft Bellman backups elsewhere. Assume 74(a |
5,b) o< exp (£Qg((s,b),a)). Suppose that the reward function R((s,b)) = tanh(fy(s)) is bounded



by R((s,b)) € [Rumin, Rmax). Let Q* be the optimal Q-function under standard soft Bellman backups
(without the modified target). Then, for any state-action pair ((s, b), a),

Qo((,0),0) = Q((s,0),a) < 4* - b
where k(s, b) is the number of steps it takes from (s, b) under 74 to reach some accepting state

(s',0') with b’ € B*, and d,ax 1= ﬁ - Rm*"l%‘?[m“‘ is the worst-case overestimation error at any
accepting states. Hmin denotes the minimum entropy of 7.

The theorem shows that, while ()-values are inflated to make LDBA-accepting states attractive, this
overestimation decays exponentially with distance. For states that appear early in a segmented trajec-
tory—those farther from acceptance—the corresponding ()-values are not significantly overestimated.
The learning process therefore remains grounded. The proof is in Appendix D]

3.2 Multi-Stage Discriminator Learning

The learning strategy described in
Sec. still faces challenges when
long horizons are required to reach
each LDBA-accepting state. We ob- B R

serve that many LTL tasks inherently

consist of multiple stages. Take,

for example, the FlatWorld Cycle Buffer Bt~ SRSl Buffer Bu: |[BuliSdBE \im’ﬂ
task with the LTL specification ¢ =

GF(y A XF(g A XFr)) A G—b and its T

LDBA, illustrated in Fig.[I] Any valid
trajectory between the LDBA accept-
ing states can be divided into three

Discrimi 0 Discrimi 1 Discrimi 2

segmented
trajectories
reaching red

segmented
trajectories
reaching green

unsafe
trajectories

demonstrations
trajectories

distinct stages. Initially, the LDBA
state is 0 and the agent is in the white
space for the first stage of reaching the
red zone. Upon reaching the red zone
(), the LDBA transitions from O to 1
and the agent is the second stage of
reaching the yellow zone. If the agent
touches the blue region in the mid-
dle at any point, the LDBA transitions
into a sink state and remains there for
the rest of the episode. How can we
design a staged approach for LDBAs
that makes the learning process more
efficient compared to treating them as
a single monolithic stage?

Figure 2: We illustrate the multistage discriminator for the
FlatWorld Cycle environment in Fig[T] TiLoIL maintains
separate stage buffers to store trajectories corresponding to
different LDBA states. Here, the colors of the buffers match
the corresponding automaton states in Fig. [l Each seg-
mented trajectory is assigned to only one stage buffer based
on its maximal stage (Eq.[7). By, holds segmented trajec-
tories that do not enter any colored zones, while B, stores
segmented trajectories that visit the red region but do not
reach yellow. For Discriminator 0, negative data are drawn
from buffer By, and buffer B which stores unsafe trajecto-
ries, while positive data are sampled from buffers By, , By,,
and By,. As such, the discriminator provides reward signals
that encourage the agent to reach the red region and beyond.

We begin by presenting key definitions, followed by an illustration of our proposed approach. Define
b; ~~ b; as an acyclic path in the (graph representation of) LDBA L, where b; and b; are states in L,
such that the path begins at b;, ends at b;, and does not include any accepting states by € B* other
than possibly b; if b; is an accepting state:
b; ~ b; <= Jpath (b;,b;41,...,b;) in £ such that
bi & B*Vk # j, and Vk, 0, k # ¢ = b, # by. (6)

Define b; ~>* b; <= (b; ~» b; V b; = b;). We define a sink state of an LDBA £ as a state b € B
such that PB(b,, -) = b,. Once the agent transitions to a sink state, it cannot escape, thereby failing
to reach any accepting states. Sink states are useful for modeling safety properties, such as globally
avoiding the blue obstacle shown in Fig.|I} We use SINK(L) to denote all sink states of L.

Multistage Discriminators. In a dense reward setting for multistage tasks, the reward of an
environment state associated with an LDBA state b; should exceed that of by, if b, ~> b;, as this
encourages the agent to progress toward the LDBA’s accepting states. If each state in an LDBA L
is viewed as an individual stage, a separate discriminator can be trained for each stage to serve as a
dense reward for that particular stage. By training stage-specific discriminators, we can effectively



guide the agent’s progress through the different stages of the task. To train the discriminators for
different stages, we establish positive and negative data for each discriminator. We assign a maximal
stage to each trajectory 7, which is determined as the LDBA state that advanced the furthest towards
accepting states among all LDBA states within 7:

MaxStage(7 : ((s0,b0), .-, (sn,bn))) = b; such that 3 path p = (b; ~ by) A by € B*.
Vb; € {bo,...,bn}\b;, bjnotinp (7)

For the discriminator associated with the LDBA state by, positive data include trajectories 7 with
maximal stage MAXSTAGE(7T) progressing beyond b;, and up to an accepting state, formally
expressed as 3by € B*. by ~» MAXSTAGE(7") ~»* by. Conversely, negative data consist of
trajectories 7~ that only reach up to by, such that MAXSTAGE(77) ~»* by, or hit any sink state
MAXSTAGE(7~) € SINK(L). An example is given in Fig. 2}

Once the positive and negative data for each discriminator for an LDBA state by, have been established,
we train a discriminator f3, that predicts if an MDP state s € S comes from the positive trajectories
whose maximal stage is beyond the LDBA state by, as opposed to the negative trajectories that fail to
progress beyond by, or trap into sink states. The discriminator is trained using the BCE loss where
positive data BT includes states from 77 trajectories and negative data B~ consists of states from
T~ trajectories. We note that BT always includes (segmented) expert demonstrations that surpass all
LDBA states on the path toward accepting states.

Multistage Reward Formulation. The next step is to combine these discriminators to create a
reward function that guides the agent to LDBA-accepting states. Our formulation is inspired by [45].
We define our learned reward function for a product MDP state in a multi-stage task as follows:

R((S, b)) _ SIDX(b) —&-j@(bt)anh(fb(s)) 8)

where SIDX(b) computes the length of the longest acyclic path in the LDBA from the initial state
to b, serving as an approximation of the stage index of the product MDP state (s,b), and (3 is a
hyperparameter. The tanh function is used to bound the output of the discriminators. As the range of
the tanh function is (—1, 1), any 8 < % ensures that the reward of a state in stage k£ + 1 is always

higher than that of stage k. In practice, we use 3 = £. Dividing it by N/(b), where N (b) denotes the
length of the longest acyclic path in the LDBA from the initial state to any accepting state through b,
scales the rewards to values less than 1.

Main Algorithm. The main algorithm of TiLoIL is summarized in Algorithm[I} We use SAC [25]]
for policy training. In addition to the regular replay buffer B used in SAC, TiLoIL maintains different
stage buffers By, to store trajectories corresponding to different LDBA states by,. Each trajectory
is assigned to only one stage buffer based on its maximal stage (Eq.[7). During the training of the
discriminators, we sample data from the union of multiple buffers. Policy updates are then guided by
reward functions derived from these trained discriminators.

4 Experiments

This section empirically evaluates TiLoIL by addressing the following questions: (Q1) Does TiLolL
improve exploration in LTL-constrained tasks? (Q2) Are the new learning-from-demonstrations
strategies in TiLolIL necessary to learn policies that align with the LTL constraints?

Baselines. To answer Q1, we compare TiLolL with three state-of-the-art policy optimization al-
gorithms for LTL task objectives: (1) LCER [63]], a counterfactual experience replay scheme, (2)
Cycler [55], a method focusing on cycle environments, and (3) DRL? [6], a direct exploration algo-
rithm that encodes LDBAs as a Markov reward process for reward shaping. This evaluation focuses
on TiLoIL’s exploration capabilities relative to these RL-based approaches. For Q2, we compare
TiLolIL with conventional imitation learning algorithms GAIL [29], PWIL [14] and SQIL [53]]. As
discussed in Sec. TiLoIL can be integrated into any generative adversarial and distribution
matching imitation learning methods. However, rather than evaluating a broad range of algorithms,
our focus is on assessing how our proposed strategies improve the imitation learning algorithm that it
builds on (GAIL). In our experiments, we combined SAC [25] with TiLoIL, GAIL, PWIL, and SQIL
to perform policy updates on batches of data sampled from the agent’s replay buffer.



Algorithm 1 TiLoIL Main Algorithm

Require: MDP M, LDBA £ = (B,X U&, PB, B*, by), Demonstration dataset D := {7°,71,...}
1: Initialize policy g, critic Qg, replay buffer B

2: Initialize discriminators f3, fp,, ... for by € B\ B*
3: Initialize stage buffers By, By, , ... for by € B
4: Populate the stage buffers for B* with D
5: for each iteration do
6:  Sample trajectories 7 by executing my in M* s m* = M x £
7. Segment 7 at LDBA-accepting states (s,b) such that b € B* to obtain {70™, 717 ..}
8:  for each trajectory 7. in {70, 717 ...} do
9: b; < MAXSTAGE(7: ")
10: if b; € SINK(L) then
11: B, + B, U{ri}
12: else
13: Bbi — Bbj U {T;,}
14 B+« BU{r%* 1% ..}
15:  for each gradient step for the discriminators do
16: for each state by, in B\ B* \ SINK(L) do
17: Sample positive data from | J By, for all b; s.t. by € B*. by, ~» b; ~* by
18: Sample negative data from | | By, U By, U B for all b; s.t. b; ~* by,
19: Update f, using BCE loss
20:  for each gradient step for the policy 74 do
21: Update Q via Eq.[3|and 7, via Eq.[5|by SAC via samples from B

Environments and Tasks. Our benchmarks, as visualized in Fig. E], include tasks drawn from
LCER [63] and DRL? [6], complemented by new environments we developed to highlight exploration
challenges in LTL tasks. On the top left, GridCircular Hard is a discrete 2D grid world where the
agent moves in four cardinal directions or stays stilﬂ The environment is a cross-shaped grid of
five squares, where the center is an obstacle. The agent must repeatedly loop through the outer
squares while avoiding the center. Next in the upper row, a point agent in FlatWorld Stabilization
must stabilize in the yellow zone, while in FlatWorld Cycle, it oscillates between red, yellow, and
green infinitely, always avoiding blue regions. On the left of the second row, the Doggo agent,
a 12-DoF quadruped robot [52]], must (i) traverse a narrow corridor collision-free (Doggo Avoid)
and (ii) sequentially navigate two designated zones (Doggo Navigate). In the bottom-left, a Fetch
robotic arm [[17] performs four tasks: (i) guiding its gripper to a target position while minimizing
lateral movements (Fetch Avoid); (ii) achieving horizontal alignment of three cubes (Fetch Align);
(iii) placing a block into a tray when the tray is present, or into the goal region when it is absent
(FetchPlace Tray); and (iv) repeatedly moving the cube to the current goal region (red) and pressing
the green button to change the goal location, requiring the agent to alternate between goal reaching
and button pressing (FetchPlace Button). On the right, in the Carlo environment, the agent drives
a self-driving simulator based on a bicycle model counterclockwise on a circular track, repeatedly
visiting two blue regions without crashing. In Cheetah Flip, the HalfCheetah agent performs frontflips
to alternate between standing on its front and back legs infinitely. In SixteenRooms, the agent is
initially positioned at the center of the bottom-left room. The task requires the agent to follow a
circular path indefinitely using one of two possible routes in a grid of rooms: a large loop passing
through a set of rooms and a smaller loop passing through another subset. The agent must avoid
collisions with walls separating rooms and learn to repeatedly traverse one of the valid loops. All
task specifications in LTL and additional environment details are provided in Appendix

Demonstrations. While TiLoIL assumes (finite-length) expert demonstrations, in evaluation, we
relax this assumption and use demonstrations that are not necessarily optimal. For our tasks, the
demonstrations are generated by designing dense rewards and training individual policies for each
stage of a task (e.g., training a policy to reach the yellow zone and another to reach the green zone in
FlatWorld Cycle). Trajectories that successfully reach accepting states are collected by sequentially
executing these policies. Both TiLoIL and the baselines—GAIL, PWIL, and SQIL—are provided

'We compared TiLoIL with the baselines in a suit of discrete environments from [6] in Appendix@



0
£
S

2
5]

4

Returns

N

40

GridCircular Hard

ﬁ?

Returns

N
o

N
o

o

FlatWorld Stabilization

&

FlatWorld Cycle

| [~/
A

0 50k 100k 150k 200k
Steps
Doggo Avoid

Cilis

0 100k 200k 300k 400k
Steps
Fetch Avoid

0 100k 200k 300k 400k
Steps
Fetch Align

=

Returns

Returns

N
=3
S

h

o
o
S

i

0 100k 200k 300k 400k
Steps
Doggo Navigate

0 100k 200k 300k 400k
Steps
FetchPlace Tray

0 500k 1M 1.5M 2M
Steps
FetchPlace Button

0 100k 200k 300k 400k
Steps
Carlo

o

0 100k 200k 300k 400k
Steps
Cheetah Flip

0 250k500k 750k 1M
Steps
SixteenRooms

—r
L b I} )
‘ 2 « + - .
ISP T £ € 504
-3 W o Pt R s
« e e 4 M <
P
0 250k 500k 750k 1M 0 500k 1M 1.5M 2M 0 200k 400k 600k 800K
Steps Steps Steps
mmm TilolL LCER mmm DRL2 mmm Cycler m GAIL PWIL s SQIL s BC

Figure 3: Returns under eventual discounting [63] comparing TiLoIL and the baselines over 10
random seeds. The shaded region indicates the standard deviation.

with only 5 demonstrations. In environments with cyclic structures—GridCircular, FlatWorld
Cycle, Carlo, Cheetah Flip, FetchPlace Button, and SixteenRooms—each trajectory contains at
most 2 visits to LDBA accepting states. Our goal is to show that even finite-length, non-optimal
demonstrations—obtained from suboptimal policies that visit LDBA-accepting states only once or
twice—can be effectively used to learn policies satisfying LTL objectives over infinite horizons.

Results. In Fig. 3] the x-axis shows the environment steps and the y-axis shows the cumulative
returns under eventual discounting (App. [H.3). Computing the probability of LTL satisfactions over
infinite horizons requires estimating policy occupancies, which is intractable. This return function, as
a proxy for the likelihood of task satisfaction [63]], counts visits to LDBA-accepting states, assigning
areward of 1 per visit with future discounts applied only at such states.

(Q1) Does TiLoIL help the learning process for LTL-constrained tasks? According to Fig.[3] TiLoIL
significantly accelerates learning compared to the RL-based policy optimization approaches LCER,
DRL? and Cycler. In our experience, Cycler faces challenges in scaling to high-dimensional continu-
ous environments. Integrating the global structure of an LDBA and with expert task demonstrations,
TiLoIL provides informative rewards in each LDBA transition, effectively guiding exploration toward
accepting states, an advantage absent in LCER. Although DRL? also learns an intrinsic reward signal
along LDBA paths to aid exploration, TiLoIL provides a stronger guidance through demonstrations,
allowing faster transitions to LDBA-accepting states, particularly in complex environments, e.g.
Fetch Align and Carlo. In Carlo, TiLolL completes 3—4 rounds within the track in 500 steps, while
the baselines struggle to complete even one.

(Q2) Are segmented imitation and multistage discriminator learning in TiLoIL necessary? Our results
show that TiL.oIL generates a significant lift over its baseline algorithms GAIL, PWIL and SQIL in
the learning curves in Fig. 3| for all tasks with cyclic structures, such as Cheetah Flip and FetchPlace
Button, highlighting the importance of segmented imitation for generalizing policies to repeated
accepting-state visits over infinite horizons. In other multistage tasks, such as Doggo Navigate, Fetch
Align, and SixteenRooms, the improvements over these imitation learning baselines are attributed to
the generation of stage-specific rewards that guide intermediate goal achievement, without which the
learning signal from a monolithic discriminator may lead to a flat value landscape.
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Figure 4: Ablation studies for TiLoIL over 10 random seeds using returns under eventual discounting.
Results for TiLolL-noSegment are omitted in Doggo and Fetch tasks. For these non-circular tasks,
their LDBAS absorb at accepting states when safety is ensured. Thus, trajectory segmentation has
negligible impact, leading to similar reward curves for TiLoIL-noSegment and TiLolL in these tasks.

Ablation Studies. We assess the individual contributions of (a) segmented imitation and (b) multistage
discriminator learning to the overall performance. The first ablation, TiLoIL-noSegment, only
performs part (b) for multistage discriminator learning. The second ablation TiLolIL-noStage only
performs part (a) for segmented imitation. Fig. 4| confirms the importance of segmented imitation, as
circular tasks (Carlo and Cheetah Flip) cannot be solved without it. Multistage discriminator learning
is also crucial to ensure sample-efficient learning in all tasks except Cheetah Flip. TiLolL-noStage
performs extremely well in this challenging task. We found that the multistage discriminator in
TiLolIL incorporates successful trajectories that barely achieve standing on the back legs, sometimes
leading the agent to just satisfy this subtask without generating sufficient momentum to round over.

In our reward formulation (Eq.[8), 3 controls the contribution of shaped rewards from multi-stage
discriminators. As shown in the ablation results in Appendix a larger f3 yields improved perfor-
mance on complex tasks, as the shaped rewards from the discriminator provide effective guidance for
learning. Additional ablations in Appendix [F2]and Appendix [F3]further examine TiLoIL’s scalability
to complex LTL formulas and its robustness to incomplete or unsafe demonstrations.

We experiment with TiLolL under different numbers of demonstrations and observed that it can
effectively bootstrap learning without requiring many demonstrations. See Appendix |G| for details.

5 Related Work

Reinforcement learning from linear temporal logic (LTL) has advanced significantly, with many
approaches leveraging structural insights to guide learning [54, (18} 130L 31, 12} [13]]. Early methods
aligned value and policy optimization using product MDPs and reward signals to encourage task
satisfaction [9} 12, [13} 127, 28, 137, 143]], leading to principled approaches that optimize lower bounds
on formula satisfaction [56,[63]]. To address reward sparsity, several methods emerged: rule-based
approaches [43]], accepting frontier function [27, 28], rewards for initial visits [L1] or adapted
annotated maps [67]]. Automata structure has also been used to learn hierarchical [28 31} 135], goal-
conditioned [51]], or modular [[11]] policies. Recent works further improve LTL-guided exploration via
meta-learning [4 1} 62], temporal reward shaping [6]], eventual discounting [63]] and cyclic temporal
constraints for recurring goals [55]]. We discuss related work in broader contexts in Appendix [B]

6 Conclusion

We present TiLolL, an imitation learning framework for policy optimization under LTL constraints.
TiLoIL employs segmented imitation learning to guide the agent toward LDBA-accepting states
following task demonstrations from any state within the state space, thus optimizing the satisfaction
of the LTL formula over infinite horizons. Furthermore, TiLoIL integrates LDBA structures with
task demonstrations to construct dense reward signals along LDBA paths, facilitating efficient
exploration toward accepting states. Our results demonstrate that TiLoIL effectively solves various
high-dimensional tasks with limited demonstrations, outperforming various baselines.

Limitations. While TiLoIL demonstrates strong performance in leveraging demonstrations to satisfy
LTL objectives, effectively exploiting suboptimal or incomplete demonstrations remains challenging.
We hypothesize that integrating more exploratory RL algorithms could mitigate this limitation. Future
work should focus on combining TiLoIL’s exploitation mechanism with exploration strategies that
exploit LDBA structure for more efficient learning of LTL-constrained policies.
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A Impact Statement

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none of which we feel must be specifically highlighted
here.

B Related Work Discussion

Learning from demonstrations. Learning from demonstration is particularly valuable when de-
signing a reward function is challenging. It allows agents to learn desired behaviors by observing
and mimicking expert demonstrations. Some methods utilize classification-based rewards, where a
reward function is trained by classifying goals [158 136, [19]] or by categorizing demonstration trajecto-
ries [69]. However, these rewards are trained exclusively on offline datasets, making them vulnerable
to exploitation by a reinforcement learning agent.

Unlike multi-task RL approaches for LTL [44} 60, 4} [33]] that define subtasks for zero-shot gener-
alization to long-horizon or unseen tasks, TiLoIL focuses on mitigating the inherent exploration
challenges in LTL-guided tasks, making it orthogonal to these approaches. Compared to approaches
that require large-scale offline pretraining for LTL tasks [20], TiLolL learns effectively from a small
number of expert trajectories. Temporal Logic Imitation [[65] integrates high-level LTL planning
with pre-existing low-level controllers for continuous motion execution, whereas TiLoIL jointly
learns both in an end-to-end manner. [32] transforms LTL specifications into a differentiable loss
function, while TiLolIL addresses tasks where the reward signal from LTL remains sparse where such
a differentiable loss approach is infeasible.

Inverse reinforcement learning. The above issue can be solved by Inverse Reinforcement Learning.
Inverse Reinforcement Learning (IRL) is a crucial tool in learning from demonstrations [[1}47]. It
aims at uncovering the underlying reward function from observed behaviors, which is particularly
useful in scenarios where reward structures are not explicitly defined. Recently, Adversarial Imitation
Learning (AIL) [29, 139, 24} 23]lmethods have been introduced, functioning in a manner akin to
Generative Adversarial Networks (GANS). In these approaches, a generator (the policy) is trained to
maximize the confusion of a discriminator, while the discriminator, acting as a surrogate for the reward
function, is trained to differentiate between the agent’s trajectories and the expert demonstrations.
The introduction of GAIL [29] has driven significant advances in scalable deep imitation learning
methods [23] 241 39| 34, 21} |8, 48]. Beyond adversarial approaches, several imitation learning
algorithms aim to match the state action distributions of the expert and the agent through non-
adversarial techniques, such as non-parametric models [38]], random network distillation [64], support
estimation [[10]], Wasserstein distance minimization [15]], and moment matching [59].

Rank reward learning The above issue could be solved by decomposing the tasks into easier
sub-tasks. Hierarchical Reinforcement Learning (HRL) [22 46, |42]] methods decompose policies
into sub-policies, each designed to address specific sub-tasks. Some approaches learn rewards with
underlying substructures. DrS [45]decompose tasks by stage indicators, rank2reward [68]] by learning
videos; some methods [6} 163} 155]combined Buchi Automaton with the problem of labeling subtasks.

C Linear Temproal Logic

Syntax of LTL The syntax of Linear Temporal Logic (LTL) is defined over a set of atomic propo-
sitions AP. A state labeling function F : S — X maps each state s € S to a subset of atomic
propositions ¥ = 2P where ¥ is the alphabet formed by the powerset of AP. An LTL formula ¢ is
constructed using the following grammar:

p = true [false | p [ —p | (9 AY) [ (9 V) [ Xe | Fo | Ge | (pUy)

where p € AP, and ¢ and 1 are LTL formulas. The logical connectives true, false, = (negation),
A (conjunction), and V (disjunction) are standard. The temporal operators are: X for "next", F for
"eventually", G for "globally", and U for "until".

Semantics of LTL The semantics of LTL is defined over infinite sequences of states 7 =
S0, 81, S2, - - ., where each state s; € S is associated with a set of atomic propositions F(s;) C AP.
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We write 7,4 = ¢ to indicate that ¢ holds at position ¢ of the sequence 7. The semantics are given
inductively as follows:

7,4 = true  (always holds)

7,4 [~ false  (never holds)

TiEp <<= pé€eF(s;) forpeAP

TViE—w << T7iltEe

TiE (e AY) <= T1iEgandT,ifFE

TiE(pVY) <<= TikEygorTiEY

TiEXye <<= T7it+lEe

iEFp << 3Jj>i,1,jEF@

TiEGy — Vi>iT,jE¢

7,1t = (pUy) <= Fji>i,(r,jEvYandVEk € [i,j), 7,k = p).

In English, the semantics of Linear Temporal Logic (LTL) are defined over infinite sequences of states
T = sg, S1, S2, . - ., where each state s; represents a snapshot of the system. A state labeling function
F S — ¥ assigns a set of atomic propositions (AP) to each state, indicating which propositions are
true. The satisfaction of an LTL formula is evaluated along these sequences. For example, p holds at
a state s; if p € F(s;), while Xp requires p to hold in the next state s; 1. Temporal operators like Fp
("eventually p") and Gp ("globally p") extend this reasoning over future states. Similarly, U ("¢
until ¢") requires ¢ to hold continuously until 1) becomes true at some future state.

For instance, the formula Fy expresses that the system must eventually reach a state where y holds,
which could represent a robot reaching a target area. The formula G—b specifies that b, such as a
hazardous condition, must always be avoided. More complex behaviors can also be modeled, such
as G(Fr), which ensures the system repeatedly visits states where r is true, or G(pUq), where p
must hold until ¢ becomes true. These examples demonstrate how LTL can express diverse temporal
properties for dynamic systems.

D Proofs of Theorem 3.1 and 3.2

Theorem 3.1 Let m; and 73 be two policies with corresponding occupancy measures p, and pr,.
For any Linear Temporal Logic (LTL) formula ¢, the difference in the probabilities of satisfying
o under these policies is bounded by twice the total variation distance between their occupancy
measures:

|Plm = @] — Pl = ¢]| < 2D1v(pr, , pra), ©)
where the total variation (TV) distance between the distributions p,, and pr, is given by

1
DTV(pmapﬂ'z) = 5 / |p7r1 (T) — Pra (T)| dr. (10)

Proof. The probability of satisfying ¢ under policy 7; can be expressed as an expectation:

Plms b= ¢ = Brmpe, (1 - 0)] = [ 17 = @)pn, (r)dr. an
Similarly, for policy 7s:
Plrs b= ¢ = By, (1 - 0)] = [ 1(r = @)pn,(r)ar. (12)
Thus, the absolute difference between these probabilities is:
[Plrs b 6] = Plra = ¢l = | [ 17 0)(6n, (1) = pra(r)ir | (13)

Applying the triangle inequality:

\Hm%ﬂfﬂmeS/MAﬂfmﬁwh (14)
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By the definition of total variation distance,

/ e () — oy (7)) dr = 2D1y (9 ). (15)

Thus, we obtain the desired bound:

|P[m = o] = Plme = ¢]| < 2D1rv(pay s pra)- (16)

This completes the proof. O

Theorem 3.2 Let Qg be the learned soft Q-function trained using a modified target value Q"¢ =
ﬁ in accepting states (s, b) where b € B*, and soft Bellman backups elsewhere. Assume 74(a |
5,b) o< exp (£Qg((s,b),a)). Suppose that the reward function R((s,b)) = tanh(fy(s)) is bounded
by R((s,0)) € [Rmin, Rmax|- Let @* be the optimal Q-function under standard soft Bellman backups
(without the modified target). Then, for any state-action pair ((s, b), a),

QQ((S, b)7 a) - Q*(<Sa b)a a) < ’Yk(S’b) . 6max

where k(s, b) is the number of steps it takes from (s, b) under 74 to reach some accepting state

(s',0') with b’ € B*, and dyax 1= ﬁ - R“‘*"l%";"m“‘ is the worst-case overestimation error at any
accepting states. Hnin denotes the minimum entropy of 7.

Proof. We prove the result by backward induction along the trajectory, using the soft Bellman
equation and the definition of d,,x.-

Base case: At the final step k = k(s, b), the overestimation is at most:

B 1 _ Rmin"‘aHmin
1y 1—7 ’

Inductive step: Suppose at step 7 + 1 we have:

Qo((5it1,bit1)s air1) < Q*((8i41,i41)s @ig1) + 7T 6.

Then for step ¢:

Qo((sibi), ai) =
= R((54,00) + Y Es i1 biys [Barmrmy ([(si41.0001)) [Q0 (841, big1),a)]]
< B0 b)) 7 B b [Ea'~m(-|<5i+1,bi+l)> [Q"((si41,bi41),d") + vk‘(i+1)5maxﬂ
< R((5i50i) + YEs; 4 0144 [Ea/wﬂ*(<|(s,;+1,b7:+1))[Q*((Si+1> bit1),a’) + ’Yk_(i-i_l)(smax]}
= Q" ((51,6i),ai) + 7" "Omax-

where 7* is the optimal policy under Q*.

Thus, the overesitmation error at (s, b) can propagate at most R0 L5 e
Qo((s,b),@) < Q*((5,0),a) +7*) - Ginax.

O

Even though our method clips the Q-value at accepting states to a large constant (e.g., ﬁ), the
theoretical bound shows:

Qe((s’ b)7 a) - Q*((S7 b)7 a’) S ’yk(s,b) . 6IIlaX
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Figure 5: Discrete environment evaluation. The three rows represent reach-avoidance, sequential,
and circular tasks, as shown on the right.

E Tabular Results

The evaluation environment is a deterministic 2D gridworld where the agent can move one unit in
any of the four cardinal directions at each timestep or stay still.

Fig. 5] presents the performance of various algorithms across different GridWorld tasks under Tabular
Q-Learning. The three rows correspond to distinct task categories: reach-avoidance (top row),
sequential (middle row), and circular (bottom row), with increasing levels of difficulty (Easy, Medium,
Hard) from left to right. The x-axis denotes the number of environment steps (up to 200k), while the
y-axis represents the cumulative returns achieved.

The first row of Figure 5] shows the results in three Grid Avoid environments with LTL specification
© = F(a) A G—b, with different grid sizes. The agent must navigate around a large area encompassing
everything except a narrow corridor. The goal area is located at the end of this corridor, and the
task becomes more challenging as the corridor’s length increases. Here, the discriminators of our
method will assign a bad reward whenever the agent exits the corridor, causing the LDBA to transition
to a sink state. The discriminators direct the trajectory to align with the behavior observed in the
demonstrations. Therefore, it has enhanced learning efficiency. Our approach shows a consistent and
significant improvement in returns, especially in the hard setting.

The second and third row of Figure [5] shows the results in Sequential environments with LTL
specification ¢ = F(a A XF(b A XF(c)) and circular environments with LTL specification ¢ =
GF(a A XF(b A XF(c¢))G—b. Here, a, b, and ¢ are different zones. The agent needs to reach each
zone in order. The hardness increases with the number of zones. For the sequential task, the number
of zones increases progressively, with 3, 4, and 5 zones for the easy, medium, and hard levels,
respectively. For the circular task, each mode has 2, 3, and 4 zones. In the first scenario, the agent
must visit a specific sequence of zones in a predetermined order. Our method quickly achieves optimal
returns, outperforming other methods. In the second scenario, the agent must repeat this sequence
indefinitely while avoiding the center of the room. In this case, our method not only converges faster
but also achieves significantly higher returns compared to other baselines, particularly in the medium
and hard settings. For the GridCircular Medium, each trajectory has 72 steps; the GridCircular Hard
144 steps in each trajectory.
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Table 1: Effect of the reward-shaping coefficient 3 on TiLoIL performance, measured by eventual

discounted returns over 10 seeds.

Env =049  p=1/3 B=1/4 LCER DRL2 GAIL  CYCLER
GridCircular Hard 340 340 340 24+12 340 0+0 3+0
FlatWorld Stabilization 4740 4740 47+0 4740 46.840.5  9.6+19 4740
FlatWorld Cycle 15415 23408 15408  1.6+0.6 040 040 0+0
Doggo Avoid 268478 296+74 246+110 424125  79.9467.1 00  164.6+125
Doggo Navigate 342438 246461  192+81 0+0 4594647  0£0 0+0
Fetch Avoid 35419 36428 3715 13.7+£14.8 357455 349467  12.1+8.8
Fetch Align 301464 21+159 20418  1.8433 0+0 0+0 0+0
Carlo 26411 32418 23408 0+0 0.3+0.5 0+0 0+0
CheetahFlip 725413 35421 33433 0+0 2545  24+16 0+0

Table 2: Comparison between TiLoIL with multiple discriminators and a shared global discriminator,
measured by eventual discounted returns (mean =+ standard deviation) over 5 seeds.

Env TiLolIL (multiple discriminators) TiLolL (shared discriminator)
Doggo Avoid 29674 360+20
Doggo Navigate 246+61 286+91
Fetch Avoid 36+2.8 37+0.7
Fetch Align 21£15.9 26£22
Carlo 3.2+1.8 3.94+0.5
CheetahFlip 3.5+£2.1 35425
FlatWorld Cycle 2.3£0.8 2.8£0.1

F Additional Ablation Studies

F.1 [ Sensitivity

In the reward formulation Eq.[8} 8 controls how much the shaped rewards from multi-stage discrimi-
nators weigh. Table[I|shows how different values of 3 : (0.49,1/3,1/4) affect performance across
environments, measured by eventual discounted returns over 10 seeds.

All the ablations outperform the baselines. For easy tasks like GridCircular Hard and FlatWorld
Stabilization, this hyperparameter doesn’t have a significant impact. Some challenging tasks such
as Fetch Align and CheetahFlip perform better with larger 5, meaning the shaped reward from the
discriminator guides the learning more effectively.

F.2 Scalability: Shared vs. Multiple Discriminators

More complex LTL specifications can increase the number of discriminators, making training more
computationally intensive and potentially unstable. We have conducted additional experiments to ad-
dress this scalability concern. In our reward formulation in Eq.[8} SIdx(b) serves as an approximation
of the stage index of the product MDP state (s, b), 3 is a hyperparameter, and f3(s) is a discriminator
associated with LDBA state b. To mitigate the scalability issue of training a separate discriminator
per LDBA state, we experiment with a single global discriminator f(b, s), which is conditioned on
the current LDBA state b, and reformulate the reward as

R((s, 1)) = ZEDED t(glh(f(@ )

In implementing f (b, s), we concatenate a one-hot encoding z, € R¥ of the LDBA state b (where K
is the number of LDBA states) with the state vector s as input to the discriminator network.

As in the original implementation, we train f (b, s) to predict whether an MDP state s € .S originates
from a positive trajectory whose maximal stage exceeds the LDBA state b, as opposed to a negative
trajectory that fails to progress beyond b or gets trapped in a sink state. As shown in Table [2] the
shared global discriminator achieves comparable or better performance than the per-state variant,
demonstrating improved scalability without loss of effectiveness.
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We hypothesize that the improvement arises from more efficient data sharing across LDBA states,
which stabilizes training and mitigates overfitting to individual states with limited positive samples.
This result suggests that structured conditioning of a shared discriminator is a promising future
direction to improve scalability without compromising performance (for example, one could future
explore introducing FiLM layers that modulate hidden activations in the shared discriminator based
on the LDBA state).

F.3 Robustness under Suboptimal Demonstrations

To examine TiLolIL’s robustness under suboptimal demonstrations, we consider cases where demon-
strations fail to reach LDBA accepting states. In such cases, the underlying RL component must
discover these transitions through exploration. As described in Line [4] of Algorithm [T we assign
demonstration trajectories to the stage buffers corresponding to LDBA accepting states, even if
they fail to fully complete the task. Demonstrations that fall short of fully satisfying the LTL for-
mula—such as those that progress through some sub-goals or approach accepting states without fully
reaching them—can still provide valuable learning signals during training.

We validate this in Carlo environment. This environment involves a self-driving agent trained to
follow a circular track counterclockwise while visiting two blue regions repeatedly and avoiding
crashes. We trained TiLoIL using only failed or incomplete demonstrations, including those that
either entered unsafe regions or failed to complete a full loop by missing one blue region. While
there is a performance drop—as expected—TiLolL remains effective, significantly outperforming the
RL for LTL baselines and GAIL, as reported in the main paper.

Table 3: Performance comparison between TiLolL trained with original demonstrations and with
only unsafe or incomplete demonstrations.

Environment TiLolL (Original Demos) TiLoIL (Unsafe or Incomplete Demos Only)
Carlo 32+1.8 2.14+0.5

G Demonstrations

G.1 Demonstration Assumption

Our primary contribution is to show that finite-length, non-optimal demonstrations—collected by
suboptimal policies that reach LDBA accepting states only once or twice—can be leveraged to learn
policies that satisfy LTL objectives over infinite horizons. The key lies in generalizing from such
limited behaviors to policies that reach accepting states infinitely often. If demonstrations fail to
cover certain transitions to LDBA accepting states, it becomes the responsibility of the underlying RL
algorithm (SAC in TiLoIL) to discover trajectories that reach those states through its own exploration.
TiLolL is able to leverage the agent’s own behaviors—those that have progressed beyond certain
LDBA states—as positive trajectories to train discriminators that guide learning for those trajectories
that fail to meet such LDBA states as in Algorithm[I] thereby reducing reliance on large demonstration
datasets. However, if the RL algorithm fails to explore LDBA accepting states, TiLoIL is likely to
fail. A promising future direction is to combine TiL.oIL’s exploitation strategy—which leverages
demonstrations—with advanced exploration techniques from recent RL-for-LTL algorithms, aiming
to overcome the reliance on demonstrations as a bottleneck.

G.2 Demonstration Sizes

Demonstrations can be difficult to obtain, especially in complex environments, making it important
to work with a limited number of demonstrations. In Fig. [3] the results are based on 5 demonstrations.
We aim to investigate whether more demonstration data would improve learning. As shown in
Fig.[6] the demonstration size does not significantly limit our learning efficiency, though it has some
impact on challenging tasks like Fetch Align and Cheetah Flip. This is mainly because TiLolL trains
multi-stage discriminators from stage-specific buffers. TiLolIL is able to leverage the agent’s own
behaviors—those that have progressed beyond certain LDBA states—as positive trajectories to train
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Figure 6: This figure illustrates our method with different numbers of demonstrations. The lines
represent 5, 10, and full-size demonstrations. The full demonstration (number of episodes) varies
across environments due to differences in episode length. Specifically, the full demonstration numbers
are as follows: Doggo Avoid is 25, Doggo Navigate is 15, Fetch Align and Fetch Avoid are 100, Carlo
is 111, and Cheetah Flip is 50.

discriminators that guide learning for those trajectories that fail to meet such LDBA states, thereby
reducing reliance on large demonstration datasets. We conclude that our method does not require
large numbers of demonstrations.

We also compared our method with GAIL across varying numbers of demonstrations. As shown in
Fig.[7] while GAIL improves with more demonstrations, TiLoIL consistently outperforms it by a
significant margin.
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Figure 7: Returns under eventual discounting comparing TiLolIL with GAIL under different sizes
of demonstrations. The full demonstration (number of episodes) varies across environments due to
differences in episode length.

G.3 Demonstration Lengths

Table @ illustrates the impact of demonstration length on performance. Performances are measured
by eventual discounted returns over 10 seeds. The first column uses demonstrations of 100 steps,
while the second and third columns extend this to 200 and 400 steps, respectively. In the Carlo
environment, longer demonstrations improve learning outcomes. For CheetahFlip, extending the
demonstration length does not help because the demonstrations are suboptimal, and longer trajectories
do not provide more visits to accepting states.

Table 4: Effect of demonstration length on TiLoIL performance, measured by eventual discounted
returns over 10 seeds.

Env demo length=100 200 400
Carlo 1.6+0.7 2.15+£09 3.2+1.8
CheetahFlip 3.54+2.1 33+23 23£1.8

H Implementation Details

H.1 Environments and Tasks

The experiments presented in this paper are conducted within simulated environments.
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H.1.1 Tabular Environments

The environments explored in the Fig. [5]are variations of the standard gridworld, represented as a 2D
grid with the agent occupying a single cell. The action space is discrete, comprising five actions: four
corresponding to movements in the cardinal directions and one no-op action. The observation space
is 2-dimensional, consisting of the agent’s x and y coordinates.

Although the dynamics are consistent across tasks, the labeling functions mapping MDP states to
atomic propositions, as well as task-specific details, differ from each other.

Reach-avoidance Reach-avoidance is assessed in a gridworld without obstacles as shown in the first
row of Fig[5] The agent starts at one end of a narrow corridor with a unit-width layout. While the
opposite end of the corridor is unbounded, the atomic proposition a evaluates to true in all cells of
the corridor located beyond a certain fixed distance from the starting position. Conversely, the AP
z evaluates to true in all areas outside the corridor. The LTL formula is F(a) A G—z. The task’s
difficulty increases with the distance to the target zone, set to 7, 9, and 11 for the easy, medium, and
hard variants, respectively. Each episode lasts for the minimum number of steps required to reach the
target zone, plus an additional 10 steps.

Sequential Sequential task is shown in the second row of Fig.[5] it also takes place in a gridworld
without obstacles, consisting of contiguous 7x7 squares aligned horizontally. The agent starts at the
center of the leftmost square, and in each subsequent square to the right, a different atomic proposition
(AP) evaluates to true in alphabetical order. Specifically, a evaluates to true in the first square to
the right of the starting position, b in the second, and so on. The task’s difficulty is scaled by using
progressively longer temporal logic formulas: F(a A XF(b A XFc)), F(a A XF(b A XF(c A XFd))),
and F(a AXF(b A XF(c A XF(d A XFe)))) for the easy, medium, and hard variants, respectively. Each
episode has a fixed length of 72 steps.

Circular Circular tasks are shown in the third
row of Fig.[5| They consist of 5 contiguous 7 x
7 squares arranged in a cross formation. The
central zone with 6 x 6 cells acts as an ob-
stacle, labeled with the atomic proposition z,
and the agent is unable to access it. The re-
maining 4 zones are labeled a, b, ¢, and d in
a counterclockwise order, with the agent ini-
tialized near the first zone. Task difficulty is
scaled by increasing the number of zones in- _
volved in the loop, with the following formulas =
used: GF(a AXF(b)) A G-z for the easy variant, Y| £
GF(a A XF(b A XFc)) A G—zfor medium, and o J | NG
GF(a A XF(b A XF(c A XFd))) A G—z for hard. ' '
Each episode has 72 steps for easy and medium
mode; hard mode has 144 steps.
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Figure 8: Disjunctive LTL objective in FlatWorld.
The task requires reaching (yellow — green) or
(red — green) while avoiding blue. The first row

H.1.2 Continuous Environments

Carlo The Carlo environment (illustrated in the
second row, last column of Fig. [3) is a simplified
self-driving simulator based on a bicycle model
for its dynamics. The agent observes its position,
velocity, and heading (in radians), resulting in
a 5-dimensional observation space. The agent
controls its heading and throttle, with an action
space of [—1,1]%. For this domain, we use a
circular track where the agent starts at the cen-

ter of the road at an angle of %, 1 =10
and drives counterclockwise around the circle

shows that returns under eventual discounting com-
paring TiLoIL with the baselines over 10 random
seeds. The second row illustrates the trajectories of
TiLoIL and LCER. The first image shows TiLolL
starting near the red zone, while the second shows
TiLolL starting near the green zone. The third im-
age depicts the LCER trajectory from a red-zone
start. Although LCER achieves similar returns to
TiLolL, it fails to adapt its path based on the initial
state, always following yellow — green. In con-
trast, TiLoIL dynamically selects the optimal path
(e.g., red — green when starting closer to red).

without crashing. The task is defined by GF(wpg A XF(wp1)) A G—erash, to visit the blue regions
wpg, wpy repeatedly while avoiding the gray region crash. The episode length is 500.
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Doggo Doggo is a 12-DoF quadruped adapted from the most challenging tasks in SafetyGym [52],
designed to navigate a flat plane. The observation space is 66-dimensional, the action space is
12-dimensional, and each episode lasts 500 steps. Similar to other reach-avoidance tasks, Doggo
Avoid requires the agent to navigate directly to a distant goal along a straight path, avoiding any
detours as shown in the first column, the second row of Fig.[3] In contrast, Doggo Navigate involves
navigating through a sequence of two circular zones as shown in the first column, the third row of
Fig.|3| These tasks are defined by the following specifications: Fa A G-z for Doggo Avoid and
F(a A XF(b)) for Doggo Navigate. Both tasks have a fixed episode length of 500 steps.

FlatWorld The Flatworld environment (illustrated in the first row of Fig.[3) is a two-dimensional
continuous world. The agent, represented by a green dot, starts at position (—1, —1). The dynamics of
the environment are defined by: x = x + {;; where z € R%and a € [0, 1]2. Here we define three tasks
FlatWorld Stabilization, FlatWorld Cycle and FlatWorld Disjunction. FlatWorld Stabilization also
inspired by the reach-avoidance task in tabular settings, requires the agent to reach the yellow zone at
left and avoid the blue zones in the middle. FlatWorld Cycle requires the agent to visit red, yellow, and
green zones in order repeatedly while avoid the blue zone. FlatWorld Disjunction requires the agent
to visit yellow then green, or red then green while avoid the blue zone. The three tasks are defined by
the following specifications: FG(y) A G—b for FlatWorld Stabilization, GF(r A XF(g A XFy)) A G—b
for FlatWorld Cycle, and (F(y A XFg) V F(r A XFg)) A G—b for FlatWorld Disjunction. Fig. shows
the result for FlatWorld Disjunction. The episode length is 50 for all tasks.

Fetch Fetch environments are based on the widely used Fetch robotic benchmark [[17]. We eval-
uate two tasks where the agent controls the end effector position of a 7-DoF robotic arm using
4-dimensional actions over 50-step episodes. Fetch Avoid, inspired by the reach-avoidance task in
tabular settings, requires the arm to fully extend while avoiding lateral movements (i.e., reaching the
green zone and avoiding red zones as shown in the second row of Fig.[3). In this task, the observation
space is 10-dimensional. Fetch Align, on the other hand, involves interacting with three cubes on
one side of the table and aligning them horizontally at the center. For this task, the observation
space includes information about the cubes and is 45-dimensional. The two tasks are defined by the
following specifications: Fa A G-z (reach the end of the table while avoiding lateral movements)
for Fetch Avoid, and F(a A XF(b A XFc)) (position the first, second, and third block sequentially) for
Fetch Align.

FetchPlace FetchPlace environments are based on the widely used Fetch robotic benchmark [[17].
We evaluate two tasks where the agent controls the end effector position of a 7-DoF robotic arm using
4-dimensional actions over 500-step episodes. In FetchPlace Button, pressing the button causes a goal
region to appear. The manipulator must (1) press the button, (2) pick up a block, and move it to the
goal region, and then (3) repeat this sequence with the goal region appearing in a new location each
time. In this task, the observation space includes the button information and goal information, and is
31-dimensional. FetchPlace Tray contains a movable block and two potential destination regions: a
tray and a goal region. A tray may or may not appear in the scene in each episode. If the tray appears,
the agent must place the block into the tray. If the tray is absent, the block should be placed into
the goal region. For this task, the observation space includes information about the goal and is 28-
dimensional. The two tasks are defined by the following specifications: FgraspAGF(Goal Reached\
XFButtonReached (first grasp the block, reach the goal, and then reach the button) for FetchPlace
Button, and (—=TrayPresentV F(grasp AXFInTray)) A (TrayPresentV F(grasp AXFInGoal))
(if tray not present, grasp the block and go into the tray; if tray present, grasp the block and go to the
goal) for FetchPlace Tray.

HalfCheetah HalfCheetah [61], a standard environment in deep reinforcement learning, involves
controlling a 6-DoF robot in a vertical 2D plane. In Cheetah Flip, the agent follows the formula
GF(b A XFd), where each variable corresponds to a specific range of angles for the robot’s main
body. These angles represent the Cheetah standing on its front legs and standing on its back legs,
respectively. The task requires the agent to perform a sequence of frontflips to satisfy the formula.
The episode length is 1000.

SixteenRooms This environment with continuous observation and action space is adapted from the
16 rooms environment [35]]. In this walled environment with 16 rooms, each room has the same
size 8x8 divided by walls and corridors with thickness. We deployed the FlatWorld agent in this
environment. The task ¥ requires the agent to traverse a circular path indefinitely via one of two
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Table 5: Hyperparameters for Q-learning and SoftActorCritic.

HYPERPARAMETER VALUE
0% 0.99
« 0.2
BUFFER SIZE 1-10°
BATCH SIZE 64
LEANING STARTS 2000
T 1-107*
Q LEARNING RATE 3.107*
ACTOR LEARNING RATE 3.107%
CRITIC LEARNING RATE 3.1074
DISCRIMINATOR LEARNING RATE 3.1074

DISCRIMINATOR UPDATE FREQUENCY 1 STEP
TARGET NETWORK UPDATE FREQUENCY 1 STEP

possible routes. The rooms are arranged in a 4 X 4 grid, and are indexed as room; ; with 7 denoting
the row index (from left to right) and j the column index (from bottom to top).

The LTL formula: ¥ = (GF(roong A XF(room; 4 A XF(rooms s A XF(roomss)))) V

GF(rooms 1 AXF(roomz 3 A XF(rooms 4 A XF(roomy 4 A XF(room4,3)))))> AG(—Wall) spec-

ifies that the agent must repeatedly visit either one of two possible loops. The large loop
goes through rooms (1,2) — (1,4) — (3,4) — (3,2). The small loop goes through rooms
(3,3) = (3,4) — (4,4) — (4,3). The agent must avoid collisions with wall segments between
rooms. The agent departs from the center of the bottom-left room to reach the desired goal positions.
The initial state of the agent is created with random noise. The optimal policy needs to identify and
traverse the smaller loop repeatedly while avoiding all walls.

H.2 Methods and Algorithms

We utilize SAC [25] and tabular Q learning [66] as the backbone RL algorithm. The architectures of
the SAC networks are shown below:

* Actor Network:4-layer MLP, hidden units(256,256,256)
¢ Critic Networks:3-layer MLP, hidden units(256,256)
* Discriminator Networks(Reward):2-layer MLP,hidden units(32)

The corresponding hyperparameters are provided in Table[5] For challenging tasks, we allow more
steps for initial random exploration. For Cheetah Flip, learning starts is 2 - 10%.

H.3 Metrics

Performance is evaluated using cumulative return under eventual discounting [63]], an RL-friendly
proxy objective from prior work [27, 63]] that optimizes a lower bound on the probability of LTL
formula satisfaction.

oo
X —_.
) € argmax B, - ;FZR 0:) | (= V),
where
i—1
R*(b;) = Lipyep-y, To=1, Fi:HVX(bt), (17)
t=0
and
b, € B*
() =4 0 ET 18
77 () {1, otherwise. (18)

All performance curves represent the mean estimated across 10 seeds, with shaded areas indicating
variance.

25



H.4 Tools

Our codebase primarily utilizes NumPy [26] for numerical computations and Torch [49] for its
autograd capabilities. Additionally, we partially automate the synthesis of LDBAs from LTL formulas
using Rabinizer [40].

H.5 Computational Costs

All methods exhibit similar runtimes within their respective settings (tabular or continuous). Each
experimental run was conducted using NVIDIA Quadro RTX 6000 GPU. On average, a single run
took approximately 30 minutes in the tabular setting and 3 hours in the continuous setting.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, the abstract and introduction clearly state the main claims of the paper,
including the background on LTL with RL, motivations and contributions. The conclusions
made are based on a wide range of benchmarks and results.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We included a clear discussion on the limitations. TiLoIL requires suboptimal
demonstrations for imitation learning. So the future work will focus on using suboptimal
demonstrations to guide agent exploration toward LTL satisfaction.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We included clear theorems and proof at Theorem. [3.1] Theorem. [3.2] and
Appendix [D] They are cross linked in the main paper.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provided the necessary details to reproduce the main experimental results in
Appendix This includes that we use SAC and Q learning as a backbone RL algorithm.
It shows the structure of the sac network, the structure of the discriminators, and the
corresponding hyperparameters.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include our code and demonstrations as a zip file in the supplementary
material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We include the experimental details in Sec. 4] and Appendix [H] Appendix [H.2]
shows the hyperparameters.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our experimental results shown in Fig. [3]are over 10 random seeds. The solid
line represents the mean, and the shaded area indicates the standard deviation.

Guidelines:
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8.

10.

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We include the compute resources in Appendix [H.3]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Our work fully adheres to the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss broader impacts in Appendix
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not release any models, datasets, or tools that pose a high risk
of misuse or dual-use concerns.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We mentioned the assets we used in Sec. |4} and cited to their original publica-
tions.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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13.

14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Our work included new assets and are submitted in supplementary material.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve any crowdsourcing activities or research with
human subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve human subjects. So there are no participant risks or
Institutional Review Board (IRB) approval.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We only use LLM for writing, editing, or formatting purposes. Our work does
not involve the use of LLM in any important or original way.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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