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ABSTRACT

Real-time trajectory optimization requires planners that can simultaneously ensure
safety and energy efficiency in environments containing both static and dynamic
obstacles. This paper introduces a generalized framework that combines diffusion-
based trajectory generation with deep reinforcement learning (DRL). The diffu-
sion component generates diverse candidate trajectories by modeling feasible sub-
paths, where a sub-path denotes a short-horizon segment aligned with receding-
horizon execution. In this formulation, the entire trajectory is decomposed into
consecutive sub-paths, enabling the diffusion model to learn local collision avoid-
ance and smoothness while maintaining consistency across the fully identified
path (e.g., global path and whole trajectory). The DRL component then evalu-
ates these candidates online, selecting actions that improve safety while adapting
to dynamic obstacles and maintaining energy-efficient behavior. The joint design
leverages the generative diversity of diffusion and the adaptive decision-making of
DRL, producing a planner that is both responsive and reliable. To assess effective-
ness, the method is evaluated in unmanned aerial vehicle (UAV) path optimization
scenarios with dynamic obstacles. The results demonstrate that sub-path training
enhances the generalization of diffusion-based planners by linking local feasibil-
ity to global performance, and that the approach offers a practical solution for
real-time UAV trajectory optimization with improved safety and efficiency.

1 INTRODUCTION

Trajectory generation in cluttered environments is a foundational capability for graphics, games,
and autonomous driving. In these settings, the planner must produce short, smooth, and safe paths
that consider static geometry while adapting to dynamic scene elements, all under tight latency bud-
gets. A practical system must trade progress and distance against energy curvature and clearance,
and it must do so quickly enough to close the loop as the environment changes. Classical sampling
methods, such as A∗ and Rapidly-exploring Random Tree (RRT), and optimization methods offer
guarantees in static worlds (LaValle, 1998; Hart et al., 1968). Their performance often deteriorates
as dynamics and horizon length grow. Prediction followed by replanning becomes heavy, cost land-
scapes are brittle to tuning, and learned priors are awkward to inject. Recent generative approaches,
especially diffusion models, encode compelling shape priors for trajectories (Wang et al., 2024b).
Safety is then typically enforced with soft penalties, and inference time scales with the number of
sampling steps. Reinforcement learning (RL) brings adaptivity, yet directly emitting full waypoint
sequences, for example, three coordinates per step over a long horizon, is high-dimensional and hard
to train stably, and it yields limited safety guarantees (Lillicrap et al., 2015).

These problems are addressed by replanning path generation as candidate selection. A diffusion-
based path provider proposes a small, diverse set of K candidates. These are built from line of
sight primitives with lightweight warps and then refined by the generative prior. The learned policy
network outputs a low-dimensional vector in RK , which is mapped with a softmax and normalized
over the subset of candidate trajectories that pass a safety filter to yield convex mixture weights. The
mixed path is executed over a short horizon. If it violates static or dynamic constraints, the system
immediately falls back to the maximum clearance candidate. Observations summarize the top M
nearby dynamic objects using relative pose velocity radius and type with scale normalization for in-
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variance. The policy is trained with Soft Actor Critic using a decomposed reward with explicit terms
for progress distance, energy, curvature, and clearance. A lightweight Shield applies smoothing and
a small lateral offset on detected grazes, which reduces jitter and near collisions without global re-
planning. This separation of concerns consists of three parts: priors for plausible paths, filters for
immediate safety, and policies for adaptive trade-offs. These yield three practical benefits. First, it
reduces control dimensionality, which stabilizes learning and clarifies credit assignment. Second,
it exposes compute to quality knobs that map cleanly to latency. Third, it preserves interpretabil-
ity because each reward term and each safety gate is tied to a specific, measurable behavior in the
system, which makes tuning straightforward at deployment. In the proposed approach, the overall
trajectory is further decomposed into multiple segments. For each segment, an optimal sub-path is
identified by combining the generative capabilities of diffusion models with the adaptive decision-
making of RL. This hierarchical formulation allows the planner to efficiently balance local safety
with global progress in dynamic environments. The proposed framework is evaluated in a simulated
UAV navigation environment. UAVs are chosen as the test domain because safe and efficient oper-
ation in cluttered 3D spaces requires continuous interaction with dynamic obstacles and real-time
adaptation. This environment emphasizes the practical relevance of the proposed benefits, and the
effectiveness of the approach is confirmed quantitatively through performance metrics.

2 RELATED WORK

2.1 DIFFUSION MODELS IN GENERATIVE MODELING

Diffusion models have recently attracted significant interest in the field of path planning and trajec-
tory generation for autonomous driving. One line of work introduces a diffusion-based motion plan-
ning framework that learns a trajectory prior for robot motion and integrates it with a sampling-based
planning algorithm, thereby achieving both collision avoidance and smooth path generation (Car-
valho et al., 2023). Improving planning speed and efficiency has also been an important focus. For
example, PRESTO employs a diffusion model conditioned on key configurations summarizing the
environment to rapidly generate an initial trajectory, which is then refined through an optimization
step to support real-time path planning in autonomous driving scenarios (Seo et al., 2025). Re-
cent studies have further sought to bridge trajectory prediction and planning. MotionDiffuser, for
instance, models the probabilistic distribution of future multi-agent trajectories with a diffusion pro-
cess, and leverages a differentiable cost function to achieve controllable planning (Jiang et al., 2023).
Along similar lines, optimization techniques for diffusion-based joint trajectory prediction have been
shown to improve inference efficiency and controllability, resulting in stable planning performance
even in complex road environments with multiple interacting agents (Wang et al., 2024b). Finally,
transportation-focused research has explored intention-aware diffusion models, which incorporate
the intent of pedestrians and vehicles into the trajectory generation process. This integration has
been shown to enhance the reliability of both prediction and planning, and is increasingly recog-
nized as a promising foundation for autonomous driving decision-making and safe operation (Liu
et al., 2025).

2.2 DEEP REINFORCEMENT LEARNING FOR TRAJECTORY PLANNING

DRL has emerged as a central paradigm for trajectory planning in autonomous systems. Classi-
cal on-policy and off-policy methods remain influential. Proximal Policy Optimization (PPO) has
been applied in autonomous driving, where human-in-the-loop corrections accelerate learning and
improve safety (Shi et al., 2024). In continuous control domains, soft actor-critic (SAC) has been
extended with risk modeling (Wang et al., 2024a). risk assessment-based SAC (RA-SAC) augments
state features and reward design to generate smoother and more fuel-efficient routes. For high-
dimensional tasks such as robotic manipulation, hierarchical reinforcement learning (HRL) decom-
poses planning into subproblems, improving robustness and sample efficiency (Bischoff et al., 2013).
Recent work shifts the focus from single-step action selection toward sequence-level generation by
integrating generative models into the control loop. Generative architectures have been used for tra-
jectory prediction, such as TrajLearn for real-time flow forecasting and MTNet for travel-time and
route estimation (Nadiri et al., 2025; Wang et al., 2022a). A more recent line of research leverages
generative models as policy representations. Standard DRL policies often assume unimodal distri-
butions (e.g., Gaussians), which are restrictive in multimodal decision problems (Dong et al., 2025).
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Diffusion models, in contrast, naturally capture multimodal distributions, making them well-suited
for trajectory-level control. Planning with Diffusion formulates trajectory optimization as an itera-
tive denoising process, refining candidate paths (Janner et al., 2022). Extensions such as diffusion
q-learning and maximum entropy diffusion policy further combine diffusion with RL objectives,
replacing Gaussian parameterizations with diffusion-based ones to enable richer exploration while
retaining maximum entropy guarantees (Wang et al., 2022b; Dong et al., 2025).

These advances mark a shift from reactive action mapping to generative trajectory policies. Building
on this trend, the present work integrates diffusion-based sub-path generation with RL to enable real-
time trajectory optimization that enhances safety and energy efficiency in dynamic environments.

3 PRELIMINARIES

3.1 OVERVIEW OF DIFFUSION MODELS

Diffusion models learn to invert a forward noising process using a neural denoiser. The forward
process with variance schedule βt is

xt =
√
ᾱt x0 +

√
1− ᾱt ε, ‘ε ∼ N (0, I), (1)

where x0 denotes the original data, ε is Gaussian noise, αt = 1−βt is the retained signal coefficient
at step t, and ᾱt =

∏t
s=1 αs is the cumulative product controlling how much of the original data

survives after t noising steps. The reverse denoising distribution is parameterized as,
pθ(xt−1 | xt) = N

(
xt−1 | µθ(xt, t), Σθ(xt, t)

)
, (2)

where µθ and Σθ are outputs of a neural network with parameters θ that approximate the true mean
and variance of the reverse conditional. Intuitively, this network predicts how to remove one step of
noise from xt to recover a cleaner x + t− 1. Classifier-free guidance introduces a mechanism for
controlling how strongly the generation follows the conditioning signal c. It interpolates between
unconditional and conditional predictions of the noise as,

ε̂θ(xt, t, c) = εθ(xt, t, ∅) + w
(
εθ(xt, t, c)− εθ(xt, t, ∅)

)
, (3)

where εθ(xt, t, ∅) is the unconditional prediction, εθ(xt, t, c) is the conditional prediction, and w >
1 is the guidance scale that balances fidelity against diversity. Larger w values force the model to
adhere more strongly to c, often at the cost of reduced diversity.

3.2 MAXIMUM ENTROPY DEEP REINFORCEMENT LEARNING

Diffusion priors provide trajectory level structure and the candidate-selection framework reduces
control dimensionality, yet an additional mechanism is required to avoid premature convergence to
a narrow subset of behaviors during online operation. In dynamic environments with shifting con-
straints, purely reward-maximizing policies often under-explore the action space, leading to fragile
decision making and training instability. Maximum entropy reinforcement learning addresses this
issue by introducing an entropy regularization term that discourages the over-concentration of prob-
ability mass on a small set of actions and maintains exploratory behavior throughout training. Unlike
classical objectives that solely maximize expected return and are prone to insufficient exploration
and local optima, the entropy-regularized formulation explicitly trades off task reward against pol-
icy randomness. This regularization is particularly well-suited for the candidate-selection setting,
where the policy repeatedly chooses among a feasible set of diffusion generated sub-paths under
dynamic, time-varying conditions. By sustaining stochasticity, the policy avoids premature collapse
to suboptimal preferences.

Formally, the maximum entropy objective augments the standard expected return with an entropy
bonus that encourages exploration as,

JMaxEnt(π) = Eτ∼π

[∑∞

t=0
γt
(
R(S(t), A(t)) + αH(π(·|S(t)))

)]
, (4)

where S(t) ∈ S is the state, A(t) ∈ A the action, R(S(t), A(t)) the reward at step t, and γ ∈ [0, 1)
the discount factor. Then, the entropy of the policy can be as,

H(π(·|s)) = −Ea∼π(·|s)[log π(a|s)], (5)
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and the temperature parameter α > 0 controls the trade-off between maximizing reward and encour-
aging randomness. A larger α promotes exploration by favoring higher entropy. The optimal value
functions under this objective take the following soft forms,

V ∗(s) = α log

∫
A
exp

(
1
αQ

∗(s, a)
)
da, (6)

π∗(a | s) = exp
(

1
α

(
Q∗(s, a)− V ∗(s)

))
, (7)

where Q∗(s, a) is the optimal soft state-action value function and V ∗(s) is the corresponding soft
value. Intuitively, the optimal soft value V ∗(s) aggregates all possible actions at state s using a soft
maximum rather than a hard maximum, while the optimal policy π∗(a|s) assigns higher probabil-
ity to actions with larger Q∗(s, a) but retains nonzero probability mass on suboptimal actions to
encourage exploration. This formulation produces policies that are simultaneously reward-seeking
and entropy-seeking, leading to behaviors and stable learning.

4 PROPOSED METHOD

4.1 SYSTEM MODEL AND ARCHITECTURE

Diffusion models have difficulty guaranteeing real-time performance and stability, while RL on its
own struggles with an excessively large continuous action space to explore. To overcome these
limitations, a hybrid framework is proposed that integrates a generative diffusion model with an RL-
based selector, as illustrated in Fig. 1. The diffusion module first generates a diverse set of candidate
sub-paths, each annotated with attributes such as uncertainty, collision probability, and length. The
environment provides state information, including the current position, goal, and obstacles, which
are combined with candidate features to form a state representation. At each planning step t, the
policy observes this representation and selects the optimal trajectory from the candidate set based
on a multi-objective reward function. Rather than producing an entire trajectory at once, the process
is executed in a receding-horizon manner, where short sub-paths are repeatedly proposed, evaluated,
and executed. The design improves adaptability to dynamic environments and balances multiple
reward components such as goal reaching, collision avoidance, energy efficiency, smoothness, and
clearance. The state representation is defined as

S(t) =
[
∆gt, dt, ct, bt, ℓ

(1:K), f (1:K), v̄t
]
, (8)

where ∆gt is the relative displacement to the goal, dt is the goal distance, ct is the clearance to
obstacles, bt is a binary line-of-sight indicator, ℓk and f (k) denote length and feasibility of the k-th
candidate, and v̄t represents average environmental dynamics.

As demonstrated in Fig. 1, the framework consists of four main components environment, candidate
generation using diffusion model, feature construction, and decision making with deep reinforce-
ment learning. The overall flow begins with the environment which provides state information such
as current position, goal and obstacles. This information is used by candidate generation to propose
diverse sub path trajectories with attributes including uncertainty collision probability and length.
Feature construction then encodes geometric and dynamic statistics by combining candidate infor-
mation with goal direction clearance and visibility. Finally decision making with reinforcement
learning evaluates these features and selects the most appropriate trajectory, balancing safety effi-
ciency and adaptability in dynamic environments.

4.2 SUB-PATH DIFFUSION FOR CANDIDATE GENERATION

To provide flexibility under changing conditions, the overall trajectory is decomposed into fixed-
length sub-paths. Unlike conventional diffusion planners that attempt to generate the entire trajec-
tory at once, the proposed framework restricts prediction to a short rolling horizon. As illustrated in
the candidate generation part of the action space in Fig. 1, at each step the diffusion model generates
candidate sub-paths only within the upcoming horizon window, while the RL policy selects one sub-
path to execute. When the agent moves forward, the horizon shifts and the next short candidate set
is generated, ensuring that the prediction range remains consistently limited. This rolling-horizon
design reduces computational cost, improves responsiveness to dynamic obstacles, and mitigates
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Figure 1: The architecture of the proposed diffusion-RL framework for trajectory generation. The
environment provides state information, a diffusion module proposes candidate sub-paths, and an
RL policy selects and executes safe trajectories in a receding-horizon loop.

error accumulation over long horizons. Formally, the diffusion model outputs a candidate set at each
step,

Ct = {τ (k), U (k), p
(k)
col , ℓ

(k)}Kk=1, (9)

where τ (k) is the k-th sub-path, U (k) is its uncertainty score derived from variance estimates, p(k)col
is the estimated collision probability, and ℓ(k) is its length. This representation provides both di-
versity and reliability, ensuring that downstream selection has sufficient options while maintaining
safety-awareness. From a computational perspective, generating a full trajectory of horizon length
T requires a complexity on the order ofO(M ·T ·H), where M is the number of denoising steps and
H is the number of replanning iterations. In contrast, when decomposed into sub-paths of length
Tsub ≪ T , the complexity reduces to O(M · Tsub ·H). The relative reduction is expressed as

Costsub

Costfull
=

Tsub

T
. (10)

Thus, shorter sub-paths yield a proportional speedup in candidate generation. Beyond computational
efficiency, sub-path decomposition enhances adaptability in dynamic environments. Since only the
upcoming segment needs to be re-generated when new obstacles appear, replanning latency is re-
duced, and the system remains responsive to unexpected changes. In this way, sub-path diffusion
not only reduces complexity but also enhances robustness by enabling rapid local corrections with-
out discarding the entire trajectory. Segmenting a path into sub-paths allows for the recalculation of
only a portion of the trajectory when environmental changes occur, rather than discarding the entire
path. This approach leverages the diversity provided by diffusion models to ensure fallback options
even in out-of-distribution scenarios, thereby enhancing adaptability.

4.3 REINFORCEMENT LEARNING-BASED PATH SELECTION

Existing selection methods provide only short-term improvements and cannot capture long-horizon
trade-offs between safety, efficiency, and smoothness. To overcome these limitations, the selection
process is formulated as a Markov Decision Process (MDP) and optimized using RL, which enables
principled exploration and stable learning. Given the candidate set Ct generated by the diffusion
model, the system requires a principled mechanism for selecting the most appropriate trajectory.
This selection process is formulated as a MDP, defined by the tuple M = {S,A,P, r, γ}, where
S is the state space, A the action space, P the transition dynamics, r the reward function, and
γ ∈ (0, 1) the discount factor. At the replanning step t, the environment provides a state vector

S(t) =
[
g − pt, |g − pt|, dmin(pt), bt, ℓ

(1:K), f (1:K), v̄t
]
, (11)
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which encodes the relative goal direction and distance, the clearance to obstacles, a binary line-of-
sight indicator, the lengths of all candidate sub-paths, pre-check feasibility flags, and the average
speed of dynamic obstacles. The SAC policy outputs a K-dimensional score vector

A(t) ∈ RK . (12)

The environment interprets this vector as candidate preferences and maps it to a discrete choice
among the K diffusion-generated sub-paths. Executing action A(t) therefore corresponds to fol-
lowing the selected candidate trajectory τ (k) for the next motion segment. The decision policy is
defined through a Q-function that estimates the expected cumulative return of selecting action a in
state s.

Q(s, a) = E
[∑∞

t=0
γtR(S(t), A(t))

∣∣∣s0 = s, a0 = a
]
. (13)

The decision rule is
a∗ = arg max

a∈{1,...,K}
Q(S(t), a), (14)

ensuring that at each replanning step, the candidate with the highest long-term utility is chosen. The
reward function R(t) integrates multiple interpretable objectives, reflecting both task-oriented and
safety-oriented considerations.

R(t) = wgrg(t) + wcrc(t) + wprp(t) + wdrd(t) + wuru(t) + wvrv(t) + wlrl(t). (15)

where rg(t) and rc(t) represent goal-reaching and collision outcomes, rp(t) and rd(t) capture goal
progress and residual distance, ru(t) penalizes uncertainty, rv(t) discourages excessive curvature,
and rl(t) rewards clearance from obstacles. The weights {wg, . . . , wl} control the trade-offs be-
tween safety, efficiency, and stability. This integration of diffusion-based candidate generation and
RL-based selection yields two key benefits. First, the diffusion model supplies a diverse and safety-
aware candidate set at each step. Second, RL provides a principled selection mechanism that bal-
ances immediate feasibility with long-term efficiency. Moreover, by retaining the continuous policy
formulation of SAC, entropy regularization can be directly applied, maintaining a balance between
exploration and exploitation. This prevents premature convergence to suboptimal and enhances ro-
bustness under uncertainty, leading to more stable behavior in dynamic environments.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Evaluation is conducted in a simulated 3D UAV planning environment containing both static and
dynamic obstacles. UAV autonomous navigation typically involves interaction with dynamic enti-
ties such as vehicles, pedestrians, birds, or other UAVs. Accordingly, experiments in this setting
allow for a realistic evaluation of the proposed algorithm under conditions where rapid and reli-
able responses to moving obstacles are essential. Safe and efficient navigation requires real-time
adaptation to time-varying constraints, which makes UAV environments suitable for assessing the
effectiveness of the proposed diffusion–RL framework.

Static obstacles are represented by randomly placed axis-aligned bounding boxes and spheres, while
dynamic obstacles are modeled as agents that move with stochastic velocities and reflect upon world
boundaries. Each episode begins with the UAV initialized at a random start position, and the target
goal is sampled within a bounded region.

5.1.1 MODELING

To reflect UAV-specific considerations, the environment incorporates simplified kinematic motion
and an energy consumption model. The UAV state evolves in discrete steps, advancing along sub-
paths of fixed temporal length. The simulator evaluates multiple aspects of each executed trajectory:
the path length L(τ) and aggregate curvature κ(τ) capture maneuver efficiency, while the mini-
mum clearance dmin(τ) quantifies safety with respect to obstacles. Energy consumption E(τ) is
accumulated from both propulsion dynamics and onboard compute operations. In addition, success
ratio, collision ratio, and time-to-goal are tracked to measure overall task performance. The detailed
algorithm and hyperparameters are provided in A.
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5.1.2 BASELINES

To demonstrate the effectiveness of the proposed diffusion-RL architecture, three representative
classes of baselines are considered.

• Heuristic planning: Straight-line navigation and greedy waypoint tracking are used as sim-
ple heuristics. The straight-line planner directly connects start and goal without obstacle
awareness, while greedy tracking iteratively steers toward the goal while avoiding colli-
sions locally.

• Classical sampling-based planners: Standard motion planning algorithms such as RRT are
included. These approaches explore the search space to construct feasible paths, but lack
the learned adaptability of data-driven methods.

• Learning-based trajectory generation: A pure diffusion model without RL guidance is used
to generate candidate sub-paths. Candidate selection is performed by random sampling
or simple scoring heuristics, allowing us to evaluate the added value of RL in the online
selection loop.

5.1.3 METRICS

Performance is assessed across both safety and efficiency dimensions. The primary performance
metrics are success rate, collision rate, energy consumption, path efficiency, clearance, and uncer-
tainty. The success rate measures the fraction of episodes where the UAV reaches its goal, while
the collision rate measures failures due to static or dynamic obstacles. Energy consumption evalu-
ates propulsion and computes costs normalized by trajectory duration. Path efficiency is calculated
as the ratio between the shortest feasible distance and the actual path length. Clearance reflects
the minimum distance to obstacles along the trajectory, and the uncertainty score is derived from
diffusion variance, reflecting robustness to sampling variability. Together, these metrics provide a
comprehensive evaluation of safety, efficiency, and reliability for UAV trajectory generation.

5.2 RESULTS AND DISCUSSIONS

Diffusion-RL (segment=16) Diffusion-RL (segment=32) Diffusion-RL (full horizon)

Figure 2: Training rewards versus episode. The full-horizon model learns fastest initially but is
overtaken by the segmented variants (segment=16, segment=32), which converge to higher returns.
Segment 16 is the most stable and attains the highest asymptotic reward.

As shown in Fig. 2, the full-horizon model attains higher returns at the very beginning of training,
indicating faster early learning. However, after about 200 episodes, both segmented variants (seg-
ment=16 and segment=32) consistently overtake the full-horizon baseline and converge to higher
return levels. This pattern implies that segment-wise decision making stabilizes optimization and
improves final policy quality, whereas the full-horizon setting exhibits larger variance and weaker
convergence. Among the segmented models, segment=16 shows the most stable trajectory and
the highest asymptotic return. Table 1 presents the evaluation results of the proposed diffusion-
RL framework under different segment lengths (16, 32, and full horizon), compared to representa-
tive baselines including heuristic planners, classical sampling-based methods, and a pure diffusion

7
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Table 1: Comparison of planning strategies

Method Success
rate

Collision
rate

Timeout
rate

Mean energy
consumption

Mean obstacle
clearance

Diffusion-RL (segment=16) 0.92 0.00 0.08 348.8 58.20
Diffusion-RL (segment=32) 1.00 0.00 0.00 392.9 59.20
Diffusion-RL (full horizon) 0.52 0.00 0.48 168.9 50.70

Heuristic 0.32 0.68 0.00 1065.8 5.55
Classical planner 0.37 0.63 0.00 505.1 4.90
Diffusion model 0.27 0.01 0.72 406.1 53.00

(a) Diffusion-RL (segment=16) (b) Diffusion-RL (segment=32) (c) Diffusion-RL (full horizon)

(d) Heuristic (e) Classical planner (f) Diffusion model

Departure ArrivalTrajectory Time-step

Figure 3: Trajectories generated by 6 planners in a 3D scenario.

model. All models are tested under identical static and dynamic obstacle environments. The results
highlight several findings. First, heuristic planners achieved low success rates while consuming ex-
cessive energy and frequently colliding with obstacles, indicating that simple rule-based navigation
is inadequate for complex environments. Classical planners such as RRT performed somewhat bet-
ter, but still suffered from low success rates and high collision rates, reflecting their limited adaptabil-
ity in dynamic scenarios. Second, the pure diffusion model without RL guidance produced feasible
trajectories but lacked robustness, further underscoring the importance of adaptive candidate selec-
tion. In contrast, the proposed diffusion-RL approach with segment planning achieved markedly su-
perior performance. Both the 16- and 32-step configurations attained near-perfect success rates with
zero collisions, while maintaining lower energy consumption and on average larger clearance from
obstacles. This demonstrates the advantage of combining diffusion-based proposals with RL-based
online decision making. Notably, the 32-step variant delivered the most consistent balance between
success rate, safety, and efficiency. On the other hand, the full-horizon variant showed reduced re-
liability, suggesting that overly long planning horizons are less effective in dynamic environments
where frequent replanning is required. These findings confirm that diffusion-RL with appropriate
segmentation outperforms traditional baselines and pure generative models, offering both robustness
and efficiency in challenging navigation tasks.
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As illustrated in Fig. 3, the qualitative trajectories further validate these quantitative results. Heuris-
tic and classical planners often produce jagged or inefficient paths, sometimes failing to reach the
goal when obstacles appear in close proximity. The pure diffusion model generates smoother paths
but occasionally drifts toward unsafe regions due to the lack of adaptive selection. In contrast, the
diffusion-RL variants yield trajectories that are both smooth and collision-free, adapting effectively
to dynamic obstacles by continuously replanning sub-paths. Notably, the segmented approaches
maintain shorter and safer prediction horizons, which results in tighter clearance around obstacles
and more reliable progress toward the goal. These observations confirm that horizon segmentation
not only stabilizes policy training but also translates into safe behaviors at execution time. This
balance highlights that the choice of segment length serves as a practical design parameter to adjust
the trade-off between stability and efficiency depending on deployment requirements.

More broadly, the results illustrate the complementary roles of diffusion and reinforcement learning
within the proposed framework. Diffusion provides a diverse and semantically meaningful set of
candidate sub-paths, while RL adaptively selects the most appropriate one given the current envi-
ronment and task objectives. This division of labor combines the generative strengths of diffusion
with the decision-making adaptivity of RL, producing trajectories that are both feasible and context-
aware. Such a synergy suggests that diffusion-RL integration can serve as a promising paradigm for
trajectory planning in complex and dynamic environments.

6 CONCLUSION

This paper introduces a framework that fuses diffusion-based planning with DRL to produce safe,
energy-efficient 3D trajectories amid static and dynamic obstacles. Long horizons are split into
fixed-length sub-paths, with a diffusion model that proposes diverse, safety-aware candidates, and
RL selects among them online. This design reduces computational load, improves responsiveness,
and mitigates long-horizon error. In UAV simulations, the approach outperforms heuristic plan-
ners, classical planners, and pure diffusion, with segment-wise selection yielding high success,
near-collision-free execution, strong clearance, and low energy use. These results show diffusion
and RL are complementary for real-time planning under uncertainty and indicate applicability to
autonomous driving, multi-robot coordination, and manipulation. Future work includes scaling to
higher-dimensional systems, integrating semantic information into candidate generation, and sys-
tematically evaluating transfer to real-world robotic platforms. In addition, promising directions
include developing theoretical guarantees for safety and stability under diffusion-based candidate
generation, reducing computational overhead through lightweight diffusion sampling techniques,
and integrating multi-modal sensory cues such as vision and language to support more informed
decision making. Another avenue is benchmarking across standardized large-scale simulation suites
and deploying on physical platforms, which will be essential steps toward validating the practicality
and robustness of the framework in diverse, real-world scenarios.
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A APPENDIX

PROOF OF DIFFUSION AND RL ALGORITHM

A diffusion model learns to reverse a fixed forward noising process. Given clean data x0, the forward
process is

q(xt|x0) =
√
ᾱt x0 +

√
1− ᾱt ϵ, ϵ ∼ N (0, I), (16)

where αt = 1− βt, ᾱt =
∏t
i=1 αi, and {βt} is a variance schedule.

A neural denoiser εψ(xt, t, c) is trained to predict ϵ (or x0 or v, depending on parameterization).
The standard training objective is a mean-squared error:

LDM = Et,x0,ϵ

[
∥ϵ− εψ(xt, t, c)∥22

]
. (17)

DDIM (denoising diffusion implicit models) provides a deterministic or low-variance sampling rule:

xt−1 =
√
ᾱt−1 x̂0 +

√
1− ᾱt−1 ϵ̂, (18)

where x̂0 and ϵ̂ are obtained from the network prediction. Optional noise σtz, z ∼ N (0, I) can be
added for stochastic sampling.

Classifier-free guidance To amplify conditional signals, one can interpolate between conditional
and unconditional predictions:

ĝψ(xt, t, c) = ĝψ(xt, t, ∅) + s
(
ĝψ(xt, t, c)− ĝψ(xt, t, ∅)

)
, s ≥ 1. (19)

At each time step, the agent observes S(t), samples an action A(t) ∼ πθ(·|S(t)), receives reward
R(t), and transitions to st+1.

Soft value functions Define the soft Q-function and state value:

Qπ(S(t), A(t)) = R(t) + γ Est+1,at+1∼π
[
V π(st+1)

]
, (20)

V π(S(t)) = EA(t)∼π
[
Qπ(S(t), A(t))− α log π(A(t)|S(t))

]
, (21)

where α is the temperature controlling entropy weight.

Soft Bellman backup The target for critic learning is

y = r + γ
(
min
j

Qϕ′
j
(s′, a′)− α log πθ(a

′|s′)
)
, a′ ∼ πθ(·|s′). (22)

Policy update The actor is trained by minimizing

Jπ(θ) = Es∼D,a∼πθ

[
α log πθ(a|s)−min

j
Qϕj (s, a)

]
, (23)

where D is the replay buffer.

Temperature update The temperature α is adapted to match a target entropyH⋆:

J(α) = Ea∼πθ

[
− α

(
log πθ(a|s) +H⋆

)]
. (24)

Gradient descent on J(α) adjusts α automatically.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

ALGORITHM

Algorithm 1 Integrated Training and Inference of Diffusion-RL Framework

Require: Dataset D, diffusion steps T , segment length L, DRL hyperparameters (α, γ, τ, η)
Ensure: Trained diffusion components (Eϕ, fθ) and DRL policy πψ with critics Qθ1 , Qθ2

Diffusion model Condition encoder Eϕ maps state, goal, and obstacle map to a compact context
c. The denoiser fθ is a Transformer-based network that predicts noise or clean trajectories at
each diffusion step.
DRL agent The policy πψ outputs a distribution over candidate sub-paths, while twin critics
Qθ1 , Qθ2 estimate long-term returns. Target networks are used for stability.
Training loop
for each epoch do

for mini-batch (τ, s, g,O) ∼ D do
Generate sub-path segment x0 (length L) with anchored endpoints.
Encode condition c← Eϕ(s, g,O).
Apply forward diffusion xt =

√
ᾱtx0 +

√
1− ᾱtϵ with t ∼ {0, . . . , T − 1}.

Predict denoised sample ŷ = fθ(xt, t, c) and reconstruct xpred
0 .

Update (Eϕ, fθ) using diffusion loss (denoising + smoothness + clearance).
In the environment, propose candidate set Ct via diffusion model.
Sample action A(t) ∼ πψ(·|S(t)), execute sub-path, and obtain reward R(t) and next state
S(t+ 1).
Store transition (S(t), A(t), R(t), S(t+ 1)) in replay buffer B.
Update critics by minimizing Bellman error, update policy via entropy-regularized objec-
tive, and adjust temperature α.

end for
end for
Inference Given (s, g,O), the diffusion model generates candidate set Ct. The DRL agent
selects a∗ = argmaxaQ(s, a) or samples stochastically from πψ , executes the sub-path, and
repeats online replanning until termination.
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TRAINING AND PLANNING HYPERPARAMETERS

DIFFUSION MODEL – TRAINING AND SAMPLING

Table 2: Diffusion model hyperparameters for training and sampling.

Category Parameter Value
Data / schedule Epochs / Batch 500 / 64

Diffusion steps (Tdiff) 1000

Geometry Global horizon steps (T ) 64
Grid resolution (H,W ) 32× 32
Segment-wise planning On (fixed segments)
Segment length / stride 16, 32 / 4

Network Denoiser backbone Transformer
dmodel / heads / layers 256 / 4 / 6
FFN / Dropout 512 / 0.1
Conditioning dim 256
Prediction parameterization v-prediction
Classifier-free dropout 0.15

Training-time proposal Candidates per step (K) 12
Clearance weighting wclear / margin 0.5 / 0.02

Sampling (standalone) DDIM steps / η / CFG scale 50 / 0.0 / 2.0

DEEP REINFORCEMENT LEARNING – TRAINING AND ONLINE PLANNING

Table 3: Deep reinforcement learning training and online planning hyperparameters using DDIM
proposals.

Category Parameter Value
Planning geometry Segment length / Exec stride 16, 32 / 4

Max planning iterations 128

Kinematics / safety Cruise speed vcruise / time step dt 6.0 m/s / 0.2 s
Goal radius / Collision radius 2.0 m / 1.0 m
Time penalty (per step) 0.15

DDIM (online) Grid (H,W ) 64× 64
DDIM steps / η / CFG scale 10 / 0.0 / 3.0
MC samples 1
Motion cap δmax / line-blend 0.12 / 0.01
Regularizers (λlen, λcol) (1.0, 100.0)

Environment Dynamic obstacles 10

SAC training Episodes 1000
Discount γ / Target update τ 0.99 / 0.005
Optimizer LR / Batch size 3.0× 10−4 / 256
Replay capacity 400,000
Warmup: start steps / update after 2000 / 2000
Update every / Eval cadence 1 / every 20 episodes (10 eps)
Actor/Critic MLP widths [256, 256]

Reward shaping rgoal, rcollision, rtimeout 1000, 500, 500
rprog, renergy, runcert., rcurv 30.0, 25.0, 12.0, 7.0
rdist, rclear 0.4, 0.5

13


	Introduction
	Related Work
	Diffusion Models in Generative Modeling
	Deep Reinforcement Learning for Trajectory Planning

	Preliminaries
	Overview of Diffusion Models
	Maximum Entropy Deep Reinforcement Learning

	Proposed Method
	System Model and Architecture
	Sub-Path Diffusion for Candidate Generation
	Reinforcement Learning-Based Path Selection

	Experiments
	Experimental Setup
	Modeling
	Baselines
	Metrics

	Results and Discussions

	Conclusion
	Appendix

