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ABSTRACT

Recent advancements in operator-type neural networks have shown promising
results in approximating the solutions of spatiotemporal Partial Differential Equa-
tions (PDEs). However, these neural networks often entail considerable training
expenses, and may not always achieve the desired accuracy required in many
scientific and engineering disciplines. In this paper, we propose a new learning
framework to address these issues. A new spatiotemporal adaptation is proposed
to generalize any Fourier Neural Operator (FNO) variant to learn maps between
Bochner spaces, which can perform an arbitrary-lengthed temporal super-resolution
for the first time. To better exploit this capacity, a new paradigm is proposed to
refine the commonly adopted end-to-end neural operator training and evaluations
with the help from the wisdom from traditional numerical PDE theory and tech-
niques. Specifically, in the learning problems for the turbulent flow modeling by
the Navier-Stokes Equations (NSE), the proposed paradigm trains an FNO only for
a few epochs. Then, only the newly proposed spatiotemporal spectral convolution
layer is fine-tuned without the frequency truncation. The fine-tuning loss function
uses a negative Sobolev norm for the first time in operator learning, defined through
a reliable functional-type a posteriori error estimator whose evaluation is exact
thanks to the Parseval identity. Moreover, unlike the difficult nonconvex optimiza-
tion problems in the end-to-end training, this fine-tuning loss is convex. Numerical
experiments on commonly used NSE benchmarks demonstrate significant improve-
ments in both computational efficiency and accuracy, compared to end-to-end
evaluation and traditional numerical PDE solvers under certain conditions.

1 INTRODUCTION

Recently, Deep Learning (DL) pipelines have proven particularly effective in addressing problems
formulated by Partial Differential Equations (PDEs). In this paper, we study the problem of learning
neural operators (NOs) between infinite-dimensional function spaces (Boullé & Townsend, 2023;
Kovachki et al., 2023; Azizzadenesheli et al., 2024; Hoop et al., 2022; de Hoop et al., 2023).
Specifically, the problem in consideration is for the Navier-Stokes Equations (NSE) in the turbulent
regime (Re = O(103) toO(104)). In computation, the difficulties of solving NSE in this regime roots
from its “stiffness” attributed to the nonlinear convection with a nearly singular viscous diffusion,
as well as the spatiotemporal nature of being highly transient. For this problem, we propose to
synergize operator learning with classical numerical PDE methods, complementing one’s drawbacks
and limitations with the other’s strengths.
Compromises and drawbacks of traditional numerical methods. To solve NSE, traditional
time stepping schemes include as Adams-Bashforth/-Moulton or Runge-Kutta (RK) families (e.g.,
see Canuto et al. (2007, Appendix D), Karniadakis et al. (1991)). If one opts to use an explicit
scheme, or there exists a certain portion of the forcing terms (e.g., the convection term in NSE)
computed via explicit schemes, then extremely small time step sizes (∆t ∼ O ((∆x)α), α ≥ 1, see
e.g., Rannacher (2000, Chapter 4)) must be used, and its necessity is often referred to as the “stiffness”
of the PDE. The threshold or constraint of the time step is called the Courant-Friedrichs-Lewy (CFL)
condition (e.g., see Johnston & Liu (2004); Wang (2012); He & Sun (2007)). CFL poses a sufficient
condition on the step size for “stability”, and this requires the step size usually much smaller than
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the requirement for “consistency”. Here, this temporal consistency usually refers to a first-order
optimal local truncation error, e.g., how the original Butcher tableau is derived for RK (Butcher,
1965). The CFL puts a threshold for all explicit time-marching schemes on how fast the local errors in
different frequencies can propagate, and thus prevent the accumulation “pollutes” the approximation
globally to ensure stability. This means that, for any time-marching schemes, finer mesh (better
spatial consistency) requires the time steps to be much smaller to prevent errors from traveling to
neighboring nodes and elements, which greatly increases the computational cost.

Spatiotemporal operator learning. Among the end-to-end operator learning for NSE, the common
approach is the so-called autoregressive “roll-out”. During rolling-out, several snapshots of solutions
are concatenated as the input to the NO, which outputs an approximated solution at the subsequent
time step. This procedure can be repeated recurrently until reaching the model’s stability capacity. In
contrast to the traditional time marching solvers whose step sizes are restricted by the CFL condition,
roll-out can withstand a much bigger time step size. NOs used in roll-out approach include the
original FNO2d (Li et al., 2020), and those in Li et al. (2022); Brandstetter et al. (2023); Gupta
& Brandstetter (2023); Fonseca et al. (2023). However, for an end-to-end operator learner, the
roll-out approach faces the same dilemma of super-resolution capacity in the temporal dimension as a
traditional solver: finer time steps cost prohibitively more, while larger time steps does not guarantee
stability. To solve this problem, we turn to the prevalent functional analytic framework for studying
the convergence and stability of solution trajectories for NSE: the theory of Bochner spaces, e.g.,
Aubin-Lions lemma (Lions & Magenes, 2012, Chapter 3), (Temam, 1995, Chapter 2), (Evans, 2022,
Chapter 7). Inspired by this theoretical insight, we propose a Spatiotemporal adaption for all Fourier
Neural Operator (ST-FNO) variants, which now can perform arbitrary zero-shot super-resolution
not only spatial dimensions, but also allows the temporal dimension to vary for the first time. For a
prototype spatiotemporal operator learner FNO3d in Li et al. (2020), it learns a map between a fixed
number of spatial “snapshots” (product spaces). The newly proposed ST-FNO directly learns a map
between Bochner spaces L2(T0;V) to L2(T ;V) on non-overlapping time intervals T0 and T . This
makes the model become “trajectory-to-trajectory”, where the initial trajectory is the input of an NO
to obtain the output evaluation as an approximation to the subsequent trajectory of the solution. Here
V denotes the spatial Hilbert space in which snapshots of the solution at a specific time reside, and
for a detailed notation list, we refer the readers to Appendix A.

Limits and the lack of accuracy for neural operators. The NO approach has the potential to
bypass various difficulties and compromises of traditional schemes of numerical PDEs. However,
in all end-to-end operator learning benchmarks of NSE, even the state-of-the-art NOs still fall short
in achieving high-accuracy solutions. For example, an end-to-end roll-out approach suffers from
error accumulation experimentally (e.g., see Li et al. (2022, Figure 9)). To our best knowledge,
no NO-only-based operator learning approach can break the barrier of a 2-digit accuracy in terms
of the relative difference with the ground truth under the Bochner norm. Moreover, to our best
knowledge, NO-only approaches have no theoretical stability estimate, such as the error propagation
operator is a contraction. Recently, a remarkable advancement called PDE-refiner (Lippe et al., 2023)
learns an extra error correction NO under the Denoising Diffusion framework (Ho et al., 2020). For
a single instance, it can get a stable long roll-out, and achieve for the first time O(10−8) relative
difference with the ground truth after a single time marching step, and O(10−6) in the Bochner norm.
Nevertheless, for all models above and their learning frameworks, the optimization is to minimize
the difference between the outputs from the NO, namely uN , and the ground truth uS , generated
by a traditional numerical PDE solver. The difference with the true solution u under a certain norm
is not directly optimized, as the analytical expression of u is unknown most of the time in real-life
applications. For difficult PDEs such as the NSE, in a linear time-stepping scheme, the ground truth
uS may on its own only have 3-digit accuracy in the Bochner norm. Note that this may already
be of optimal order O(∆t) by convergence estimates (Heywood & Rannacher, 1986). Therefore,
minimizing the difference between uN and uS becomes fruitless if the numerical approximation
(ground truth) uS is not accurate at the first place, as unnecessary computational resources may have
been spent to get closer to uS .

New hybrid scheme. To address these dilemmas for NSE’s approximation, we take an alternative
hybrid learning paradigm inspired by traditional numerical methods. Unlike the arduous training of
running hundreds of epochs, the newly proposed ST-FNO is trained for only a few epochs (e.g., 10),
concluding with the freezing of most model parameters. Then, the last new spatiotemporal spectral
convolution layer of ST-FNO, which is attributed to its temporal arbitrary-lengthed inference capacity,
is fine-tuned with the help of traditional solvers. During fine-tuning, this layer is relieved from the

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

common frequency truncation FNO has. A traditional solver with a single time step is used to obtain
highly accurate approximations for extra field variables to conform with the physics. These extra fields
help the evaluation of a new loss function in fine-tuning, a functional-type a posteriori error estimate
measured under a negative Sobolev norm, which is equivalent to the variational form-associated
norm for the NSE. Note that there shall be no training of extra error-correcting NOs (Dresdner et al.,
2023; Lippe et al., 2023). Moreover, unlike the same nonconvex optimization problem that the extra
error-correcting NOs try to tackle, our fine-tuning optimization problem is convex, and allows us
to achieve high accuracy with a fractional of computational resources when compared with other
fine-tuning approaches that optimize the whole model with a physics-informed loss.

Fine-tuning using functional-type a posteriori error estimation. To seek highly accurate NO
approximated solutions that are closer to the true solution directly, we turn to the a posteriori error
estimation techniques. This technique allows computing the error without knowing the true PDE
solutions, and has been widely studied for Galerkin-type methods, such as finite element (Ainsworth
& Oden, 1993; 1997; Oden et al., 1994), as well as for parameterized PDEs (Hesthaven et al., 2016;
Patera et al., 2007). Among all types of a posteriori error estimation techniques, functional-type a
posteriori estimator (Repin, 2008) views the error as a functional on the test Sobolev spaces and
evaluates accurate representations with the help of an extra dual variable (Ern & Vohralík, 2010). In
our hybrid approach, inspired by this, we combine the strengths of NOs and traditional numerical
solvers. Using the newly proposed spatiotemporal discretization-invariant NO, we propose to use a
negative Sobolev norm in the frequency domain as a functional-type a posteriori error estimation
as the fine-tuning loss. Traditionally, the a posteriori error estimation is used to refine local basis,
yet this constraint on the purpose of the method leads to inaccurate localized representations for the
H−1 error functional. Our new approach is not attached to the local refining requirement Bonito et al.
(2024). As a result, the negative Sobolev norm used in the new loss is handily defined through the
Gelfand triple in the frequency domain which is global. Our method needs no extra dual variable
reconstruction problem as in the traditional methods (Ern & Vohralík, 2010). Unlike commonly
adopted physics-informed operator learning (Li et al., 2024c), NO prediction for other field variables
are not needed either. The extra field variables for computing the error are recovered through an
auto-differentiable numerical solver with the NO output of the primal variable (vorticity or velocity).
Overall, this practice leads to “refining” the learnable set of the global spectral basis.

For a more detailed review of operator learning and further motivation discussion with a much higher
degree of mathematical rigor, we refer the readers to Appendix B.

Main contributions. The main contributions of this work are summarized as follows. For the
difference between the common roll-out approach versus direct spatiotemporal learning between
Bochner spaces, we refer the readers to Figure 1.

• Spatiotemporal Fourier Neural Operator. We design the first spatiotemporal adaption technique
for all FNO variants (ST-FNO) to enable them to learn maps between Bochner spaces.

• New hybrid operator learning paradigm. We propose to train and evaluate ST-FNOs using a
new strategy for spatiotemporal predictions, which has significantly improved over the existing
methods in speed and accuracy. Only a few epochs of training combined with fine-tuning yield
highly accurate approximations, extra field variables are obtained by auto-differentiable multistep
solvers (such as RK4), the input of which are neural predictions. The auto-differentiability of the
solver makes it possible for the fine-tuning to optimize the parameters in FNO.

• Functional a posteriori error estimation. Leveraging the spectral structure of the new ST layer
in ST-FNO, Parseval identity, and Gelfand’s triple, the fine-tuning utilizes a new loss, a posteriori
error estimation in the negative Sobolev norm (functional norm). This procedure does not require
any ground truth data (e.g., numerical solution of the underlying PDEs generated by traditional
numerical solvers), nor the knowledge of the true solution(s) to the PDE. This new loss is proven
to be reliable in theory, in the meantime much more efficient in the ablation experiments.

• Experimental results. We created a native PyTorch port of Google’s Computational Fluid
Dynamics written in JAX (Kochkov et al., 2021; Dresdner et al., 2023) with enhanced func-
tionality for tensor operations such as the facilitation of fine-tuning for the latent fields, publicly
available at https://anonymous.4open.science/r/torch-cfd-E6B0, with scripts to replicate the
experiments as well as the data generation. The data are available at https://www.kaggle.com/
datasets/anonymousauthor25/sfno-dataset .
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RK4

Rollout

SFNO
|| ||

|| || ||
min
θ

∥∥∥R
(
uN , DtGα(uN ),f

)∥∥∥
2

L2(T,V′)

where uN :=
{
uN
(
{θ}nt

m=1

)}

Figure 1: Schematic differences between approaches. 4th-order Runge-Kutta (RK4): small time
steps bounded by the CFL condition, de-aliasing filter needed; autoregressive NO rolling-out: using
previous evaluation as input repetitively, large time steps, no stability guarantees; Spatiotemporal FNO
(ST-FNO) with hybrid fine-tuning: large time steps, yielding arbitrary-lengthed temporal prediction
in a single evaluation, fine-tuning stability inheriting from traditional solvers, no de-aliasing filter
preserves all higher modes, parallel-in-time optimization.

2 SPATIOTEMPORAL OPERATOR LEARNING FOR NAVIER-STOKES EQUATIONS

Both drawbacks and advantages of traditional numerical methods and NO-based methods in Section
1 play vital roles in shaping our study. We first briefly discuss the spatiotemporal operator learning
problem on Bochner spaces associated with NSE. Then, we detail how to modify a generic FNO
architecture to obtain an operator learner between Bochner spaces.

2.1 SPATIOTEMPORAL OPERATOR LEARNING PROBLEM FOR NSE

For 2D NSE, the velocity field u(t,x) : [0, T ]×Ω→ R2 is seen as an element in the Bochner space
Lp([0, T ],V) where V is a spatial Sobolev space in which each snapshot at t of the solution u(t, ·)
resides. As in Li et al. (2020), we consider the vorticity-streamfunction (V-S) formulation (2.1) with
periodic boundary condition (PBC). We also consider the velocity-pressure (V-P) formulation (2.2).
In Ω× (0, T ], for vorticity ω := ∇×u, and streamfunction ψ, these two formulations read

(Vorticity-Streamfunction) ∂tω + rotψ · ∇ω − ν∆ω = ∇×f , ω +∆ψ = 0. (2.1)

(Velocity-Pressure) ∂tu+ (u · ∇)u− ν∆u+∇p = f , ∇ · u = 0. (2.2)

For all analyses in line with the Hilbertian framework, V = H1(T2) for vorticity and H1(T2) for
velocity, where T2 denotes the unit torus, i.e., Ω = (0, 1)2 with a component-wise PBC. For a fixed
forcing function in V ′, the initial condition is either ω(0,x) = ω0(x) or u(0, ·) = rot

(
(−∆)−1ω0

)
.

Here ω0 is drawn from a compactly supported probability measure µ, in which the compactness corre-
sponds to certain power/enstrophy spectrum decay law to produce isotropic turbulence (McWilliams,
1984), and we refer the reader to Appendix C for details. Then, we can consider the following map
Gµ :

∏ℓ
i=1 V →

∏nt

i=1 V:

Gµ : a :=
[
ω(t1, ·), . . . , ω(tℓ, ·)

]
7→ u :=

[
ω(tℓ+1, ·), . . . , ω(tℓ+nt

, ·)
]
, (2.3)

where tℓ+nt
≤ T , and the input and the output are snapshots obtained from a solution trajectory with

the same initial condition ω0. The operator learning task for NSE using a prototype spatiotemporal
operator learner, e.g., FNO3d (Li et al., 2020), is to learn thisGµ between a fixed number of Cartesian
products of spatial Sobolev spaces. Specifically, Gµ : X → Y maps elements in X =

∏ℓ
i=1 V to

elements in Y =
∏nt

i=1 V . In the task for this prototype “snapshots learner”, the number of snapshots
ℓ ∈ Z+ is fixed. As such, X and Y represent spaces of two non-overlapping temporal segments of
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solution snapshots. Based on these snapshots’ discretized approximations from data, these snapshots
learners learn an operator Gθ : X → Y , where the number of parameters in Gθ is independent of the
spatial discretization size, yet does depend on the number of snapshots ℓ. This dependence in the
setting of this task makes it not “trajectory-to-trajectory”.

In this study, the learning aims to recast (2.3) to a trajectory-to-trajectory operator learning problem,
conforming to the Hilbertian formulation of NSE using Bochner spaces. Using the fact that the weak
solutions to (2.1) and (2.2) at a given time interval T is in L2(T ;V), the operator to be learned is

G̃ : L2(t1, tℓ;V)→ L2(tℓ+1, tℓ+nt
;V) for V := H1(T2) or {v ∈H1(T2) : ∇ · v = 0}. (2.4)

In what follows, we shall present how to modify any common FNO variant to become a Bochner space
operator learner that can learn maps from arbitrary-sized discretization in Rℓ×n×n×d to Rnt×n×n×d

(d = 1 in V-S; d = 2 in V-P). This operator can be trained by a standard end-to-end supervised
learning pipeline using lower-resolution data, and for inference, the newly proposed spatiotemporal
trajectory-to-trajectory learner, ℓ, nt, n can all be of variable sizes. In contrast, the snapshot learner
FNO3d predicts the subsequent nt snapshots with the first ℓ snapshots as input, with both nt and ℓ
fixed, and only the spatial resolution n can be much higher than the input-output pairs used in the
training. Hereafter we omit the d dimension if no ambiguity arises.

2.2 SPATIOTEMPORAL ADAPTATION OF FOURIER NEURAL OPERATORS

For any FNO variant, such as FNO3d (Li et al., 2020) or Factorized FNO (Tran et al., 2023), with
the following meta-architecture: Gθ := Q ◦ σL ◦KL−1 ◦ · · · ◦ σ1 ◦K0 ◦ P , where P is a lifting
operator, Q is a projection operator that does a pointwise reduction in the channel dimension, σj can
be a pointwise universal approximator or simply chosen as a nonlinearity. Kj := Kϕj is the spectral
convolution that does a spatiotemporal 3D FFT. During training, the operator to be learned is restricted
to finite-dimensional subspaces X ⊃ Xn → Yn ⊂ X , in the sense that the continuous spatial Sobolev
space V in the product spaces is replaced by a finite-dimensional subspace V ⊃ S ≃ Rn×n with
continuous embeddings {aS ∈ Rℓ×n×n} ↪→ X , and {uS ∈ Rnt×n×n} ↪→ Y . The positional
encodings p := (ti,xj)

ℓ
i=1 ∈ R3×ℓ×n×n represents the spatiotemporal grid, and is concatenated to

aS before feeding to P .

For spatiotemporal problems, all FNO variants novelly exploit a convenient architectural advantage
of operator-valued NNs: the input temporal dimension ℓ is treated as the channel dimension of an
image, thus enabling channel mixing as a learnable temporal extrapolation. However, this neat trick
coincidentally makes the lifting operator the biggest hurdle forGθ to become a trajectory-to-trajectory
operator learner between Bochner spaces, since P ’s dimension must be hard-coded1 and thus depends
on the input pair’s time steps.

In what follows, we use FNO3d as an example to present three new modifications to FNO3d to
become a trajectory-to-trajectory learner ST-FNO3d, that is, to act as an operator that maps an
arbitrary-time-step input to an arbitrary-time-step output. We also note that this modification applies
to any FNO variant that predicts spatial and temporal dimensions at the same time. These changes
are so simple that the trajectory-to-trajectory modification can serve as drop-in replacements for
their snapshot learner counterparts when the temporal input dimensions are fixed. For the schematic
difference, please refer to Figure 2 and 3. For more technical details, we refer the readers to Appendix
D.2.
Modifications to 3D FFT. The first change is in the spatiotemporal FFT from an analytical point
of view. Using the spectral convolution K(·) in FNO3d as an example, with a slight abuse of
notation, denote the latent dimension (width) by dv, let the vector-valued latent representation with
dv channels be continuously embedded into

∏nt

i=1 V by vS ↪→ v in each channel, and denote
Λ := [tℓ+1, . . . , tℓ+nt ], then K(·) is “semi-discrete” in a sense as follows

(Kv)(t,x) := (Wv)(t,x) +
∑

s∈Λ

ˆ
Ω

κ
(
(t,x), (s,y)

)
v(s,y)dm(y), (2.5)

where t takes values only in a discrete set Λ, and x ∈ Ω. Here W ∈ R(dv+1)×dv is a pointwise-
applied affine linear operator, κ ∈ C

(
(Λ×Ω)× (Λ×Ω);Rdv×dv

)
, and m denotes an approximation

1Line 99 in fourier_3d.py in the master branch of gh/neuraloperator/neuraloperator
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{
ω
(ti)
S

}ℓ

i=1

ℓ×n×n×nt

dv×n×n×nt dv×n×n×nt dv×n×n×nt dv×n×n×nt n×n×nt

{
ω
(tℓ+i)
N

}nt

i=1

Figure 2: The FNO3d in Li et al. (2020) is a snapshot learner. : spectral convolution layer ; :
pointwise nn.Conv3d that works as channel expansion/reduction; : pointwise nonlinearity. The
TikZ source code to produce this figure is modified from the examples in Iqbal (2018).

{
ω
(ti)
S

}ℓ

i=1

n×n×ℓ dv×n×n×ℓ

dv×n×n×dt dv×n×n×dt dv×n×n×dt dv×n×n×dt n×n×(∗) {
ω
(tℓ+i)
N

}(∗)

i=1

Figure 3: The Spatiotemporal-adaptated FNO3d (ST-FNO3d) is now a trajectory-to-trajectory learner.
: layer normalization to replace a hard-coded global normalization. Combined with channel mixing,

the first spectral convolution layer serves as a time-depth-wise separable (global) convolution, after
which the time dimension is shrank to a fixed “latent” time dimension through iFFT’s resampling. :
the spatiotemporal spectral convolution layer as the final layer is fine-tuned after the training phase.

to the Lebesgue measure on Ω. Evolving K into a spatiotemporal spectral convolution acting on
Bochner space is straightforward. We change (2.5) slightly by adopting of an atom-like measure δ(·)
in the temporal dimension, which then generalizes to the variable-length temporal discretization for
any (t,x) ∈ (a, b)× Ω, i.e., one can obtain arbitrarily many snapshots on the interval of interest

(K̃(v))(t,x) := (Wv)(t,x) +

ˆ b

a

ˆ
Ω

κ
(
(t,x), (s,y)

)
v(s,y) dm(y)dδ(s). (2.6)

During training using the discretized data, each hidden layer is a map from Rdv×dt×n×n →
Rdv×dt×n×n, where dt is a “latent” dimension of time steps that is chosen≤ nt. The layerwise propa-
gation mechanics remains the same: K̃ϕv :=Wv+F−1 (Rϕ · (Fv)), where F and F−1 denote the
spatiotemporal Fourier transform and its inverse, respectively. The global spatiotemporal interaction
characterized by the kernel is truncated in terms of modes in the frequency domain at (τmax, kmax),
such that {(τ,k) ∈ Z3 : |τ | ≤ τmax, |kj | ≤ kmax, j = 1, 2} are kept. Rϕ is parametrized as a
Cτmax×kmax×kmax×dv×dv -tensor. Here (τ,k) denotes the coordinate in the spatiotemporal Fourier
domain. Note that the integral represented by matrix product with Fκ(·, (s,y)) can then be viewed
as residing in the continuous space as the Fourier basis (3.1) can be evaluated at arbitrary point.

Modifications to the lifting operatorP . The other major hurdle for FNO3d to become trajectory-to-
trajectory is that a global normalization is applied with a hard-coded temporal dimension using training
data.2 In ST-FNO3d’s modification, a periodic padding along the temporal dimension is applied to
the input, and then a time-depth separable convolution layer I with variable time steps is used to map
an arbitrary number of snapshots to a fixed number of channels dv with a fixed latent time steps dt.
The spatiotemporal positional encodings p̃S :=Wpp, with Wp a learnable random projection with
periodically padded p as input. This makes p̃S match the latent fields’ dimensions such that they can
be concatenated. The latent fields, concatenated with p̃S , are then normalized by a learnable layer
normalization layer Ln(·), instead of a global fixed pointwise normalizer for the raw data in FNO3d.
Finally, in ST-FNO3d, the lifting operator becomes P̃ := Ln

(
p̃S + I(·)

)
: Rℓ×n×n → Rdv×dt×n×n.

2Line 220 and 224 in fourier_3d.py in the master branch of gh/neuraloperator/neuraloperator
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Modifications to the projection operator Q. In FNO3d, the original out projection operator
Q : Rnt×dv×n×n → Rnt×n×n. In spatiotemporal-adapted Q̃ : Rdv×dt×n×n → Rnt×n×n, which
maps the last latent representation to match the dimension of the output uS . In Q̃, the key for
an arbitrary-lengthed inference is that we compose another spectral convolution KS after channel
reduction. KS can be thought of as a post-processing layer (also as the only to be fine-tuned).
It takes advantage of the FFT/iFFT’s natural super-resolution capacity, especially in the temporal
dimension, by zero-padding the latent temporal step dimension (dt) to given arbitrary output time
steps. For the necessity of this padding, we refer the reader to Figure 7 for an illustrative example.
For the V-P formulation, to impose the divergence-free condition for, S is implemented as an optional
non-learnable Helmholtz decomposition layer in Q̃.

3 NEW HYBRID PARADIGM FOR SPATIOTEMPORAL OPERATOR LEARNING

Built upon a reasonably accurate approximation, the fine-tuning of ST-FNO is proposed. It is able to
yield accuracy on par with traditional numerical methods on the same time horizon, and computational
resources used are comparable to the evaluation of NOs. Taking advantage of the efficient ST-FNO
zero-shot arbitrary-lengthed temporal inference, this new approach does not need thousands of
marching steps like traditional methods. Meanwhile, it borrows the wisdom from traditional Galerkin
methods to improve the accuracy (consistency) of the NO approach, liberating the scheme from
trade-offs that the traditional methods must make to ensure stability and convergence.

3.1 A POSTERIORI ERROR ESTIMATION USING A FUNCTIONAL NORM

We shall present the proposed fine-tuning using the V-P formulation in subsequent subsections.
Denote an ST-FNO evaluation at a specific tm ∈ Tnt

:= {tℓ+1, · · · , tℓ+nt
} in the output time

interval as u(m)
N . The construction of Q̃ in ST-FNO renders u(m)

N ∈ W , whereW is the divergence-
free subspace of S |t=tm × S |t=tm ⊂ V := H1(T2), where

S := span
{
Re
(
eiτmteik·x

)
: −n/2 ≤ kj ≤ n/2− 1,−nt/2 ≤ m ≤ nt/2− 1

}
/R, (3.1)

for k = 2π(kj)j=1,2 and τm = 2πm/(T − tl). Then, a temporal continuous approximation
uN := uN (t, ·) can be naturally defined by allowing t vary continuously on T := [tℓ+1− tp, T + tp]
thanks to the spectral basis of S, where tp is the temporal periodic padding in Section 2.2. Define
residual functional R(uN ) ∈ L2(T ;V ′): at t ∈ T and for v ∈ V

R(uN ) := f − ∂tuN − (uN · ∇)uN + ν∆uN , and R(uN )(v) := ⟨R(uN ),v⟩ . (3.2)

R(uN ) measures how PDE (2.2) is violated by the finite-dimensional approximation uN , not in a
localized/pointwise fashion, but rather in a global way by representing the error based on its inner
product against arbitrary v. At a specific time t, the functional norm of R(uN )(t, ·) ∈ V ′ defined
as follows is then an excellent measure of the error to be a candidate for a loss function in view of
Theorem 3.1:

∥R(uN )(t, ·)∥V′ := supv∈V,∥v∥V=1 |(R(uN ),v)| . (3.3)

Theorem 3.1 (A posteriori error bound for any fine-tuned approximations, informal version). Let
the weak solution to (2.2) be u ∈ L2(T ;V), and ∂tu ∈ L2(T ;V ′). Assume u be sufficiently regular,
then the dual norm of the residual is efficient to estimate the error for any uN :

∥R(uN )∥2L2(T ;V′) ≲ ∥u− uN ∥2L2(T ;V) + ∥∂t(u− uN )∥2L2(T ;V′). (3.4)

Moreover, if u and uN are “sufficiently close”, then it is reliable to serve as an error measure:

∥u− uN ∥2L∞(Tm;H) + ∥u− uN ∥2L2(Tm;V) ≤
∥∥(u− uN )(tm, ·)

∥∥2
V + C

ˆ
Tm

∥R(uN )(t, ·)∥2V′ dt.

(3.5)
where Tm := (tm, tm+1], and the constants depend on the regularity of the true solution u.

3.2 FINE-TUNING USING NEGATIVE SOBOLEV NORM AS LOSS

The functional norm (3.3) is “global” because it does not have a natural ℓ2-like summation form
where each summand can be evaluated in a localized neighborhood of grid points. Nevertheless,
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thanks to the Gelfand triple, and viewing the Fourier transform as an automorphism in the tempered
distribution space (e.g., see Peetre (1975) and Gel’fand & Shilov (2016, Chapter 3)), we can define
the pairing between V and V ′ as follows without getting into the intricate natures of the tempered
distribution:

⟨f, g⟩V,V′ “=”
ˆ
Z2

(1 + |k|2)−sf̂(k)ĝ(k)(1 + |k|2)sdk, where v̂ := Fv for v ∈ V ′. (3.6)

The spatial Sobolev space Hs(T2) can be alternatively identified using norm ∥ · ∥s and seminorm
| · |s (e.g., see Ruzhansky & Turunen (2009, Def. 3.2.2)) as follows for any s ∈ R

∥f∥2s :=
∑

k∈Z2

(1 + |k|2)s|f̂(k)|2, and |f |2s :=
∑

k∈Z2
n\{0}

|k|2s
∣∣f̂(k)

∣∣2, s ̸= 0. (3.7)

Moreover, we have the subsequent lemma in our specific case.
Theorem 3.2 (Functional norm “≃” negative norm). If f ∈ H := L2(T2)/R, ∥f∥H′ = |f |−1.

Spatially, we realize a regularized negative Sobolev norm by the Fast Fourier Transform (FFT):

∥f∥2−1,α,n :=
∑

k∈Z2
n\{0}

(α+ |k|2)−1
∣∣f̂(k)

∣∣2, where Z2
n := (Z/nZ)2, and α ≥ 0. (3.8)

With this norm at hand, (3.3) and the Bochner norm in (3.4) of the residual are realized to serve as
the loss function in the fine-tuning

ηm(uN , ∂tuN ) := ∥R(uN )(tm, ·)∥−1,α,n. (3.9)

Parseval identity. In the context of using an optimization algorithm to train an NN as a function
approximator, it is known (e.g., Siegel et al. (2023)) that whether the integral in the loss function
is accurately computed affects whether the NN can achieve the scientific computing level of ac-
curacy. For example, on a uniform grid, the accuracy of the mesh-weighted spatial ℓ2-norm as
the numerical quadrature is highly affected by the local smoothness of the function in considera-
tion. Nevertheless, computing the integral in the frequency domain yields exponentially convergent
approximations (Trefethen & Weideman, 2014, Theorem 3.1) thanks to the Parseval identity.
Why functional-type norm for the residual evaluation? We note that in “physics-informed”
learning of operators, for example, in Li et al. (2024c), the PDE residual is evaluated using L2-norm
as loss. In the meantime, positive Sobolev norm, which is local in terms of differential operators, is
used in Li et al. (2022). To our best knowledge, the H−1-functional norm has not been applied in
either function learning or operator learning problems. In fact, the relation of the Gelfand triple is
so simple and elegant, leading to Theorem 3.2, that the functional norm is nothing but an inverse
frequency weight in the frequency domain that emphasizes the learning of low frequency information.
This suits especially well for the learning problem of NSE. Quite contrary to the intuition of FNO
variants having the frequency truncation that results error dominating in the high-frequency part, it
has been discovered in Lippe et al. (2023) that the error of operator learning for NSE is still dominant
in the lower end of the spectrum. This has been corroborated in our study as well, see Figure 8 and
Figure 6. For a more detailed and mathematically enriched discussion on why functional norm is not
widely popular in traditional numerical methods, we refer the reader to Appendix B.

3.3 NEW TRAINING-FINE-TUNING PARADIGM

With the trajectory-to-trajectory learner and the error estimators, we propose a new training-fine-
tuning paradigm. Another important motivation of this new paradigm is that, experimentally, all
FNO variants capture the statistical properties of the 2D turbulence (Benzi et al., 1987; Boffetta &
Ecke, 2012) quickly in training. Even after a single epoch, the evaluations of ST-FNO converge to a
tight neighborhood of the ground truth in terms of the frequency signature of the energy cascade of
the flow (for details, please refer to Appendix D.3). Then, 95% of the FLOPs spent in training has
marginal improvements, which motivates us to rethink a more efficient paradigm than end-to-end,
in the meantime not needing to initiate the expensive training of another nonlinear corrector as
PDE-refiner (Lippe et al., 2023) in the postprocessing phase.
The computation of extra fields. In evaluating the loss accurately and relying on this evaluation
to apply the gradient method, another key barrier is that the extra field variables in evaluating the
residual for the velocity (3.2), one needs to compute ∂tuN . Instead of a common approach of
using NO to represent the extra field variables (Wen et al., 2022; Brandstetter et al., 2023), we opt
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to apply a traditional numerical solver Gγ(·) with an extremely fine time step, e.g., O((∆t)γ) for
γ ≥ 2, to compute these extra field variables (Line 8 of Algorithm 1), while preserving the computa-
tional graph for auto-differentiation. We note that, in NSE simulations using traditional numerical
solvers, for efficiency, the magnitude of this fine time step is never realistic or attainable due to time
marching. Given the training data with trajectories at {t1, . . . , tℓ} aiming to predict the trajectories
at {tℓ+1, . . . , tℓ+nt

}, the new paradigm to train and fine-tune ST-FNO is outlined in Algorithm 1.

Algorithm 1 The new parallel-in-time training-fine-tuning strategy in small data regime.

Input: ST-FNOGθ,Θ := Q̃θ◦GΘ; time stepping schemeGα(·); optimizerD(θ,∇θ(·)); training
dataset: solution trajectories at [t1, . . . , tℓ′ ] as input and at [tℓ′+1, . . . , tℓ′+n′

t
] as output.

1: Train the ST-FNO model until the energy signature matches the energy cascade.
2: Freeze Θ in GΘ of ST-FNO Gθ,Θ, keep Q̃θ trainable.
3: Cast all nn.Module involved and tensors to torch.float64 and torch.complex128 hereafter.

Input: Evaluation dataset: solution trajectories at [t1, . . . , tℓ] as input, output time step nt.
4: for m = ℓ, · · · , ℓ+ nt − 1 do
5: Extract the latent fields v(m+1)

N output of GΘ at tm+1 and hold them fixed.
6: By construction of ST-FNO: u(m+1)

N (θ) := u
(ℓ)
N + Q̃θ

(
v
(m+1)
N

)
for all m.

7: for j = 1, · · · , Itermax do
8: March one step with (∆t)γ using Gγ and approximate the ∂tuN as follows:
Dtu

(m+1)
N (θ) := (∆t)−γ(Gγ(u

(m+1)
N (θ))− u

(m+1)
N (θ)) for all m.

9: Compute η2 :=
∑

m η2m(u
(m+1)
N (θ), Dtu

(m+1)
N (θ)) for all evaluation time steps.

10: Apply the optimizer to update parameters in Q̃: θ ← D(θ,∇θ(η
2)).

11: Forward pass only through Q̃ to update u
(m+1)
N ← u

(ℓ)
N + Q̃θ(v

(m+1)
N ) for all m.

Output: A sequence of velocity profiles at corresponding time steps {u(m)
N }ℓ+nt

m=ℓ+1.

Interpretations of the theoretical results. Theorem 3.1 establishes that the functional norm of the
residualR(uN ), without accessing u, is a good representation of the error u−uN in Bochner norms.
Estimate (3.4) indicates that reducing the a posteriori error estimator is a necessary condition for
reducing the true error. While estimate (3.5) is more delicate in that it is only reliable when uN gets
“close” to u. Theorem 3.2 lays the foundation to accurately evaluate this functional norm via FFT.
Nevertheless, (3.5) serves as a guideline to design the “refining” procedure (lines 11 in Algorithm
1), where the error estimator moves to refine the next time step once the error in the previous one
becomes less than a given threshold.

4 NUMERICAL EXPERIMENTS

4.1 ILLUSTRATIVE EXAMPLE: TAYLOR-GREEN VORTEX

In this illustrative example, we examine the 2D Taylor-Green vortex model (Taylor & Green, 1937),
whose analytical solution is known and frequently employed as a benchmark for evaluating traditional
numerical schemes for NSE (Gottlieb & Orszag, 1977). We create a toy train dataset with 10
trajectories on a 2562 grid with varying numbers of vortices per wavelength, and the test sample has
an unseen number of vortices yet still can be resolved up to the Nyquist scale. For details please refer
to Appendix C.2. The FNO3d used in this example is scaled down to 1 layer.

4.2 2D ISOTROPIC TURBULENCE

This meta-example contains a series of examples of isotropic turbulence (McWilliams, 1984), featured
in various work such as Kochkov et al. (2021); Li et al. (2020). The energy and the enstrophy spectra
satisfy the energy law of turbulence first proposed by A. N. Kolmogorov (Kolmogorov, 1941). The
data are generated using a second-order time-stepping scheme that is proven in theory to preserve the
inverse cascade of the energy/enstrophy spectra (Wang, 2012; Gottlieb et al., 2012). We consider two
cases:

9
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(I) NSE benchmark in Li et al. (2020), ν = 10−3, ω0 ∼ N (0, (−∆+ τ2I)−α/2), the energy density
in wavenumber k := |k| is f(k) ∼ (k2 + τ2)−α, no drag, fixed force with low wavenumber.

(II) The famous decaying turbulence discovered by the McWilliams (McWilliams, 1984), the initial
power spectrum |ψ̂(k)|2 ∼ k−1(τ2 + (k/k0)

4)−1 is chosen that the decaying is slow and the
enstrophy density evolves to the energy cascade of Kolmogorov flows featured in Kochkov et al.
(2021); Lippe et al. (2023); Sun et al. (2023).

Tables 2 and 3 report the results for example (I) and example (II), respectively. Table 4 reports the
computational efficiency comparison with roll-out and traditional solver.

5 CONCLUSION AND LIMITATIONS

We designed a new pipeline to train and fine-tune a new spatiotemporal modification of FNO to
get close to the true solution (not the ground truth generated by the numerical solver) of NSE in
the turbulent regime. The evaluation errors in benchmark problems are up to 105 times better than
the non-fine-tuned FNO variants trained by a simple end-to-end pipeline. Due the exploitation of
the intricate connections with traditional spectral methods, e.g., the optimally learned parameters
correspond to a Fourier-Galerkin projection (Kovachki et al., 2021) using the Fourier basis, only
FNO-based neural operators benefit from this advancement. How to generalize this new pipeline to
other types of operator learners in Appendix B will be worthy of exploration.

Table 1: Results for Taylor-Green vortex ε := ωtrue −
ωN , the relative errors at the final time step.

Evaluation after training After fine-tuning

∥ε∥L2 ∥R∥−1,n ∥ε∥L2 ∥R∥−1,n

ST-FNO3d 1.94× 10−1 2.18× 10−1 1.24× 10−7 3.21× 10−7

PS+RK2 (GT) 5.91× 10−6 1.16× 10−5 N/A N/A

Table 2: Results for forced turbulence, original example
from Li et al. (2020). ε := ωS − ωN

Evaluation after training After fine-tuning

∥ε∥L2 ∥R∥−1,n ∥ε∥L2 ∥R∥−1,n

ST-FNO3d 10 ep + L2 FT 2.08× 10−2 1.27× 10−2 2.82× 10−4 2.78× 10−5

ST-FNO3d 10 ep + H−1 FT – – 3.16× 10−4 4.59× 10−7

Table 3: Evaluation metrics of the McWilliams isotropic turbulence example. All models are trained
using on 64×64 mesh and evaluated on 256×256 mesh. ε := uS−uN or ωS−ωN . S stands for the
Fourier approximation space (3.1) on a 256×256 fine grid. r := R(uN ) or R(ωN ). Y := H−1(T2).
All error norms are evaluated at the final time step. H−1 appending model means the training uses
the difference in the H−1-norm as the loss function. Errors are measured for 32 trajectories in the
test dataset. Fine-tuning uses 100 iterations of Adam optimizer in line 10.

Evaluation after training After fine-tuning

∥ε∥L2 ∥R∥−1,n ∥ε∥L2 ∥R∥−1,n

ST-FNO3d 10 epochs +H−1 train & H−1 FT 6.54× 10−2 6.19× 10−2 5.71× 10−3 2.24× 10−5

ST-FNO3d 10 epochs +L2 train & FT 3.69× 10−2 2.35× 10−2 1.79× 10−3 9.55× 10−5

ST-FNO3d 10 epochs +L2 train & H−1 FT – – 2.88× 10−4 4.02× 10−6

Table 4: The FLOPs/runtime comparison. FNO3d with a roll-out prediction (10 steps to predict
next 10), ST-FNO3d (spatiotemporal prediction), and a traditional numerical solver’s time marching
(IMEX 4-th order Runge-Kutta). Spatial grid size 256× 256, prediction time interval from t = 4.5 to
t = 5.5 (stable energy cascade regime), numerical solver ∆t = 10−3, roll-out δt = 10∆t, ST-FNO3d
δt = 25∆t. Note that ST-FNO3d gets all 40 steps in a single evaluation, the numerical solver has to
march 1000 steps, and the roll-out prediction inference is supposed to march 10 times yet becomes
de-correlated around t ≈ 4.8 after the third step. Runtimes are reported for a single instance averaging
20 runs with a 100w GPU power limiter on a single RTX 4500.

Architectures GFLOPs Runtime (×10−2 s)
# paramslayers channel modes Eval/Step FT All Single eval All

FNO3d roll-out Example 2 4 10 (5, 32) 28.7 N/A 2.9M 4.1± 1.5 45.6± 6.7 16.38m
ST-FNO3d Example 2 4 + 1

10 10 (5, 32) 1.06 2.51 337.6 22.7± 4.0 162± 4.1 16.42m
IMEX Runge-Kutta N/A N/A N/A 3.98 N/A 4M 0.449± 0.3 450± 8.7 10
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A NOTATIONS

Table 5: Notations used in an approximate chronological order and their meaning in this work.

Notation Meaning

Ω Ω = (0, 2π)2 or (0, 1)2 the modeling domain in R2

V,H Hilbert spaces defined on the domain Ω above, f ∈ H : Ω→ R
X ,Y product spaces

∏
j∈ΛH

|| concatenation, for fj ∈ H, ||j∈Λfj ∈
∏

j∈ΛH
ν viscosity, the inverse of the Reynolds number, strength of diffusion
T2 T2 := S1 × S1 where S1 is homeomorphic to [0, 1) with the point 1 being 0.

H1(T2) {u ∈ H1(Ω) : u satisfies the periodical boundary condition}
H1(T2) H1(T2) := H1(T2)×H1(T2)
Lp(T ;V) the Bochner spaces containing {u : T →V

∣∣ ´
T ∥u(t, ·)∥

p
V dt < +∞}, p ∈ [1,∞)

L∞(T ;V) Bochner space containing {u : T →H
∣∣ ess supt∈T ∥u(t, ·)∥V < +∞}

u the true weak solution to the NSE u(t, ·) ∈ V for any t
u
(l)
S the ground truth data generated at tl by the numerical solver in S ⊂ V

u
(m)
N neural operator evaluations at tm that can be embedded in S ⊂ V

(u, v) or (u,v) the L2-inner product onH, (u, v) :=
´
Ω
uv dx

∥u∥s the Hs-norm of u, computed by (3.7), ∥u∥ := ∥u∥0 falls back to L2-norm
|u|s the Hs-seminorm of u, computed by (3.7), is a norm on Hs(T2)/R
≲ a ≲ b means that ∃c independent of asymptotics if any such that a ≤ cb
≃ a ≃ b⇔ a ≲ b and b ≲ a
V ′ dual space of V , contains all continuous functionals f such that |f(v)| ≲ ∥v∥V
⟨f, v⟩ the pairing between v ∈ V and f ∈ V ′, can be identified as (f, v) if f ∈ H
V ↪→ H V is continuously embedded inH such that ∥u∥H ≲ ∥u∥V
V ⋐ H ⋐ V ′ compact embeddings by Poincaré inequality,H = L2(T2), V = H1(T2)

A : B A : B =
∑

1≤i,j≤2AijBij for A,B ∈ R2×2

a⊗ b ab⊤ if both are viewed as column vectors

B DETAILED LITERATURE REVIEW AND MOTIVATIONS

Interplay of deep learning and PDEs. PDE solvers are function learners to represent PDE
solutions using neural networks Han et al. (2018); Raissi et al. (2019); Chen & Koohy (2024). PDE
discovery encompasses all the techniques dedicated to identifying and optimizing PDE coefficients
from data Brunton et al. (2016); Champion et al. (2019). Recently, hybrid solver approach has been
explored in Greenfeld et al. (2019); Kochkov et al. (2021); Huang et al. (2023); Taghibakhshi et al.
(2023; 2021); Hu & Jin (2024); Huang et al. (2022). Reinforcement learning has been applied in
the field of mesh generation to build more efficient solving pipelines Yang et al. (2023); Gillette
et al. (2024). For neural operators, remarkable outcomes are achieved in diverse applications, such
as weather forecasting Keisler (2022) and turbulent fluids simulations Shu et al. (2023); Li et al.
(2023a); Lienen et al. (2023), the methods based on neural operators have significantly influenced
the progress of the interplay between PDE and deep learning. This success was a natural outcome
of several improvements brought to the field, for example, fast solution evaluations, a feature very
appealing in many engineering applications Zheng et al. (2023); and the ability to provide mesh-free
and resolution-independent solvers in cases of irregular domains Hao et al. (2023); Li et al. (2024b).

Neural operators. Looking at neural operator architectures, we can identify two different ap-
proaches. The first one creates “basis” (or frames) through nonlinear approximators and aggregates
them linearly. Developed architectures that belong to this category include Deep Operator Network
(DeepONet) Lu et al. (2021); Goswami et al. (2023); Wang et al. (2021), wherein aggregation occurs
via linear combination. Similarly, Fourier Neural Operator (FNO) Li et al. (2020), and some of its
variants Gupta et al. (2021); Rahman et al. (2023); Tran et al. (2023); Li et al. (2024b); Wen et al.
(2022), aggregate different latent representations through convolution with a learnable kernel in the
frequency domain. Additional examples with a linear aggregation with a U-Net meta-architecture
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can be found in Raonic et al. (2024); He et al. (2024). Bartolucci et al. (2024) further explores the
error analyses for the linear aggregations through the lens of the frame(let) theory. The second ap-
proach to designing neural operator architectures aims to obtain the “basis” through linear projections
of the latent representations. In this scenario, the aggregation is nonlinear, for example, using a
signal-dependent kernel integral. In this category, the most notable example is the scaled dot-product
attention operator in Transformer Vaswani et al. (2017), which builds an instance-dependent kernel.
In the context of operator learning applications, Transformer-based neural operatos have been studied
in Kissas et al. (2022); Cao (2021); Li et al. (2023b); Hao et al. (2023); Li et al. (2024a); Fonseca
et al. (2023). It is also shown in Lanthaler et al. (2023) that nonlinear aggregations outperform its
linear counterparts in learning solutions with less regularity.

Numerical methods for NSE. The NSE falls into the category of a stiff PDE (system) ∂tu =
Lu+N(u) + f , where f is the external forcing, L and N(·) are a linear and a nonlinear operator,
respectively. Trefethen noted back in Kassam & Trefethen (2005) on the difficulty to design a
time-stepping scheme as N(·) and L have to be treated differently. There are a long history of
numerical methods for NSE we draw inspiration from. Petrov-Galerkin methods have been developed
for NSE in Boffi et al. (2013); Girault & Raviart (2012). Nonlinear Galerkin method Marion &
Temam (1990) inspires us to prove Theorem E.9. Chorin (1968) uses a clever trick to impose the
divergence free condition without constructing a divergence-conforming finite element subspace.
Shen (1994) designed various Galerkin methods in the space of orthogonal polynomials. Pioneered
by Chorin, Shen, and E, projection methods are among the most popular schemes to solve NSE (see
e.g., Weinan & Liu (1995) for a summary), also serves as an inspiration to add the Helmholtz layer.
Bernardi et al. (1992) proposed a mixed discretization for the vorticity-streamfunction formulation.

Consistency-stability trade-offs. In view of the Lax equivalence principle (“consistency” + “sta-
bility” =⇒ “convergence” (Lax, 2002, Theorem 8)), the improvement of the stability of the method
has a trade-off with a method’s consistency at the cost of the approximation capacity. Numerical
methods for NSE is the epitome for such trade-off. For example, high-order explicit time stepping
schemes offer better local truncation error estimates near boundary layers of the flow Lele (1992), yet
the lack of stability is more severe and needs higher-order temporal smoothing. On the other hand,
implicit schemes can be unconditionally stable for stiff or highly transient NSE with relatively large
time steps O(1). The stability in implicit schemes becomes much less stringent on the time step, as
no CFL condition is required. However, the solution at the next time step requires solving a linear or
nonlinear system. Thus, computationally implicit schemes are usually an order of magnitude more
expensive compared to explicit schemes.

De-aliasing filter sacrifices consistency for stability. One famous example of the consistency-
stability trade-off is the 3/2-rule (also known as 2/3-dealiasing dealiasing filter) for the nonlinear
convective term Orszag (1971b); Patterson & Orszag (1971); Hou (2009); Gottlieb & Orszag (1977)
for pseudo-spectral methods Orszag (1971a; 1972). The highest 1/3 modes, the inclusion of which
contributes to better approximation capacity, are filtered out to ensure long-term stability. Compro-
mises such as the CFL condition and the 3/2-rule must be made for traditional numerical schemes to
be stable, keeping the balance between stability and accuracy. These constraints apply to traditional
numerical methods because any solver has to march a consecutive multitude of time steps, which
makes the error propagation operator’s norm a product of many. Numerical results suggest that
for pseudo-spectral spatial discretization with no higher-order Fourier smoothing temporally, the
dealiasing filter is indispensable Tadmor (1987), as the time marching may experience numerical
instability Kreiss & Oliger (1979); Goodman et al. (1994) without it. This is due to the nonlinear
interaction in the convective term, which is caused by the amplification of high-frequency “aliasing”
errors when the underlying solution lacks sufficient smoothness. In this study, the hybrid approach we
adopted combines the strengths of NOs and traditional numerical solvers. There is no time marching
consecutively for a multitude of time steps, which renders the method free of the stability constraints
such as the CFL condition and the 3/2-rule.

Why and why not functional-type a posteriori error estimation? We consider the following
enlightening Pythagorean-type identity for the true solution u satisfying A(u) = f

∥u− uS∥2a + ∥uS − uN ∥2a = ∥u− uN ∥2a since (u− uS) ⊥a (uS − uN ) ∈ V. (B.1)
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For the sake of presentation, we make some handy assumptions to get this identity: (1) A : V → V ′

denotes a linear operator on the Gelfand triple; (2) uS is obtained through Galerkin methods Evans
(2022), which is a projection onto a finite-dimensional approximation subspace of S ⊂ V; and
(3) an evaluation of uN can be continuously embedded into S. Through the Riesz representation
theorem, uS is solved through (u− uS , v)a := ⟨A(u)−A(uS), v⟩ = 0, for any v ∈ S . This bilinear
form (·, ·)a induces a (semi)norm ∥ · ∥a inheriting the topology from V . Given this orthogonality,
minimizing the difference between uN and uS becomes fruitless if ∥u− uS∥a is relatively big in the
first place, and unnecessary computational resources may have been spent to get closer to uS . Rather,
(B.1) indicates that it is more efficient if one can design a method to reduce the error of ∥u− uN ∥a
directly, while circumventing the fact that u is not accessible.

Speaking of the a posteriori error estimation in traditional PDE discretization, part of the goal is to
help the adaptive mesh refinement to get a better local basis. In this regard, the global error functional
in negative Sobolev spaces must be approximated using localized L2 residuals to indicate where
the mesh needs to be refined. There are various compromises for this H−1-to-L2 representation to
happen that renders the estimate inaccurate, such as discrete Poincaré constant Veeser & Verfürth
(2012) or inverse inequalities Carstensen & Funken (1999); Veeser & Verfürth (2009), see also
(Verfürth, 2013, §1.6.2). Functional-type a posteriori error estimation Repin (2008) consider the
error as a functional, which is equivalent to error to bilinear form-associated norm as follows

R(uS) ∈ V ′, and ⟨R(uS), v⟩ = (u− uS , v)a,
where the weak form of the PDE is

(u, v)a = f(v) ∀v ∈ V and (uS , v)a = f(v) ∀v ∈ S ⊂ V.
The common approach is using the help from extra “flux” or “stress” dual variables ((Repin, 2008,
§6.4), see also Repin (2000)) for how to get an accurate representation of the error functional in
L2. For example, for the Stokes flow (steady-state viscous fluid, letting ∂tu = 0 and no nonlinear
convection in (2.2), ν ∼ O(1)), (Repin, 2008, §6.2) estimates error of an H(div)–L2 mixed
discretization as follows

ν∥∇(u− uS)∥ ≤ ∥σ + qI − ν∇uS∥+ CP ∥∇ · σ + f∥,
where CP is the Poincaré constant of the compact embedding and (σ, q) is a reconstruction field
pair. However, the drawback of this approach is that an expensive global minimization problem
needs to be solved, e.g., for (σ, q) above. Another main reason to introduce extra field variables is
that, for finite element methods, the basis functions are local and do not have a globally continuous
derivative, in that ∆uS yields singular distributions, whose proper norm is H−1-norm and cannot
be evaluated by summing up element-wise L2-norms. In computation, it has to be replace by∇ · σ
where σ ∈ H(div), and is constructed to be closer to the true solution’s gradient ∇u than ∇uS .
Meanwhile, for systems like NSE, the error estimation in Galerkin methods for NSE is further
complicated by its saddle point nature from the divergence-free constraint, in that consistency has
to be tweaked to ensure the Ladyzhenskaya-Babuška-Brezzi stability condition (Girault & Raviart,
2012, Chapter III §1 Sec 1.2). Recently, Fanaskov et al. (2024) considers NN as a function learner to
represent solutions of linear convection-diffusion equations, yet still falls into the traditional error
estimation framework in that an extra flux variable is learned by NN, and the error if of typical
accuracy of NN function learners O(10−3). In contrast, in our study, the need of extra “stress” or
“flux” variables to build the residual functional is circumvented as well.

Error correction for Bayesian inverse problems. The a posteriori error-correction approaches
through sampling for the output of surrogate NNs in Bayesian inverse problems Yan & Zhou (2020).
More recently, in Cao et al. (2023), the error equation in an inverse problem is approximated by
solving for a Galerkin projection of a linearized error equation, while in this paper, we leverage the
Gelfand triple directly to compute a nonlinear Galerkin projection directly by minimizing the spectral
norm.

Sobolev norms in operator learning In the context of function learning problems, Du et al.
(2024) applied an L2-spectral loss for PINN Raissi et al. (2019) and found superior results over
mesh-weighted spatial losses. Du et al. (2024) realized the PDE residual as a functional on L2 and
exploited the Parseval identity on this space, which computes supv∈L2⟨R, v⟩/∥v∥L2 . We note this is
not the natural space to measure the PDE residual according to the Hilbertian formulation of NSE.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

The natural space to consider the residual functional is the dual space of H1(T2), where the solution
to NSE belongs to H1(T2) at a given snapshot. The dual space of H1(T2) happens to be H−1 using
the Gelfand triple. We compute supv∈H1⟨R, v⟩/∥v∥H1 . Using the Poisson equation −∆u = f as an
example, if u ∈ H1, then the residual f +∆u ∈ H−1. However, H−1 is a non-localizable norm in
the spatial domain, and traditional wisdom (FEM or FVM) has to circumvent the direct evaluation of
it by localizing the residual, which introduced inaccurate compromises in the residual-based error
estimation.

A posteriori error estimation for flow problems There is a vast amount of literature for the a
posteriori error estimation for the viscous flow (1/Re > 0) problems under the Hilbertian framework
for traditional numerical methods. Our methods draw inspiration from these pioneers and try to
address the drawbacks. The most popular a posteriori error estimator for stationary Stokes problem is
from Verfürth (1989), and it is of residual-type by computing a mesh-weighted L2-norm elementwise,
and the singular distribution ∆uS is represented by the magnitude of flux jumps across the facets in
this mesh. In Bank & Welfert (1991), a more accurate a posteriori estimation technique is invented for
Stokes problem in which a local problem is solved to represent the residual functional on a collection
of neighboring elements. L2 residual-type error estimation for stationary NSE is considered in Oden
et al. (1994). To our best knowledge, no functional-type a posteriori error estimation has been applied
to solve the transient NSE, due to its in-efficiency for traditional finite element or finite volume
methods. As at every time step, a global nonlinear problem has to be solved if one ought to evaluate
the functional accurately using finite element local basis functions, whose computational cost is an
order of magnitude higher than implicit Euler methods.

Hybrid methods for turbulent flow predictions. There are quite a few approaches that combine
NN-based learners with traditional time-marching solvers. Notable examples include: solution from
Direct Numerical Simulation (DNS) corrected using an NN Um et al. (2020); interpolation to achieve
spatial super-resolution using solutions produced by traditional numerical solvers marching on coarser
grids Kochkov et al. (2021). orthogonal polynomial features (HiPPO from Gu et al. (2020)) to achieve
temporal super-resolution in addition to the spatial one Sun et al. (2023). McGreivy & Hakim (2023)
explores how to incorporate energy-preserving schemes such as upwinding into the ML solvers
through traditional numerical methods. Qi & Sun (2024) identifies important frequency bands in
FNO parametrization and improves FNO’s rolling-out performance in NSE benchmarks.

C DATA GENERATION

C.1 VORTICITY–STREAMFUNCTION FORMULATION

Here we derive the vorticity-streamfunction formulation for the convenience of the readers. Consider
the standard NSE in 3D, u’s z-component is 0, and u = u(t, x, y) has only planar dependence





∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∆u+ f .

∇ · u = 0

(C.1)

Taking ∇×(·) on both sides, and we assume that the solution is sufficiently regular that the spatial
and temporal derivative can interchange, as well as curl and the Laplacian can interchange, one gets
the following equation by letting ω = ∇× u

∂ω

∂t
+∇×∇

(
u2

2

)
+ u · ∇ω − ω · ∇u = −∇×

(
1

ρ
∇p
)
+ ν∆ω +∇×f . (C.2)

Next, one can have ω · ∇u = 0, thus the equation becomes

∂ω

∂t
+ u · ∇ω = ω · ∇u+ ν∆ω +∇×f . (C.3)

We need to introduce a streamfunction ψ to recover the velocity u = ∇× (0, 0, ψ). The main
simplification comes from the assumption of dependence on x- and y-variable only. Thus, in 2D this
becomes u = rotψ (a π/2 rotation of the 2D gradient ∇ψ). Therefore,

u = (u1, u2, 0) =⇒ u1 = ∂yψ, u2 = −∂xψ
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Figure 4: Ground truth streamlines for Taylor-Green vortex example.

and the vector vorticity can be equivalently represented by a scalar vorticity ω

ω = ∇×u = (0, 0, curl(u1, u2)) = (0, 0, ∂xu2 − ∂yu1) =: (0, 0, ω)

The equation becomes a nonlinear system for ω and ψ:
{
∂tω + rotψ · ∇ω − ν∆ω = ∇×f ,

ω +∆ψ = 0.

(C.4)
(C.5)

C.2 TAYLOR-GREEN VORTEX

Taylor-Green vortex serves as one of the most well-known benchmarks for NSE numerical methods,
as its flow type experiences from laminar, to transitional, and finally evolving into turbulent regime.
We consider the trajectory before the breakdown phase. We opt to use a doubly periodic solution on
[0, 2π)2 such that the inflow/outflow occurs on the “boundary” (see Figure 4). The exact solution is
given by:

u(t, x, y) = e−2κ2νt

(
sin(κx) cos(κy)
− cos(κx) sin(κy)

)
or e−2κ2νt

(
− cos(κx) sin(κy)
sin(κx) cos(κy),

)

where ν = 1/Re is chosen as 10−3. For a sample trajectory with κ = 1, please refer to Figure 4.
We apply the pseudo-spectral method with RK2 time stepping for the convection term and Crank-
Nicolson for the diffusion term. The dataset has 11 trajectories with κ ranging from 1 to 11, among
which κ = 11 is chosen as the test trajectory.

C.3 ISOTROPIC TURBULENCE (KOLMOGOROV FLOW)

The example featured in the original FNO paper Li et al. (2020) can be viewed as a special case
of the isotropic turbulence with a strongly regularized initial condition, no drag, and a force with
low wavenumber. This is our example (I). The example (II) has weakly-regularized initial condition,
small drag, and no external force. The initial condition spectra are chosen such that, after the warmup
time, the spectra are the same with the Kolmogorov flow featured in the Jax-CFD paper (Kochkov
et al., 2021), in the sense of the inverse cascade in the Fourier domain (see Figure 8 and 9). The
training data used in both (I) and (II) are generated using a pseudo-spectral method with a de-aliasing
filter using an RK4 marching for the convection term and implicit Euler for the diffusion term. The
Reynolds number used in this example is 1000. The time steps for both are ∆t = 10−3 on a 2562

grid, then downsampled to a 642 grid. The warmup time is 4.5. The δt for the ST-FNO training
and evaluations are δt = 55∆t. The testing data are generated on a 5122 grid with a 5× 10−4 time
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step then downsampled to 2562. There are 1024 trajectories in the training data. The input of model
has 10 snapshots from t = 4.5 to t = 4.5 + 9 δt. The output ground truth has the 10 subsequent
snapshots from t = 4.5 + 10 δt to t = 4.5 + 19 δt. There are 32 trajectories in the testing data.
Each of the testing data’s trajectory runs from the same time interval, and has 40 snapshots in the
input and 40 snapshots in the output. The initial energy distribution for the training and testing data
trajectories are draw from the same energy distribution, see (D.1). For additional experiments using
out-of-distribution data with different initial energy distribution and evaluation using trajectories with
different Reynolds number than the training data, we refer the reader to Section D.4.
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Figure 5: Contours plots of pointwise values of residuals for Example (I). (a): the residual of the
ground truth; (b): residual of ST-FNO, where the time derivative in the residual is using the ground
truth’s; (c): the residual after fine-tuning for 10 ADAM iterations where the time derivative is
computed using an extra-fine-step numerical solver.
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Figure 6: Pointwise values of residual of ST-FNO in the frequency domain in ln scale of Example
(I). (a): the residual of ST-FNO before correction, time derivative computed using the ground truth;
(b): the residual of ST-FNO after fine-tuning for 10 ADAM iterations where the time derivative is
computed using an extra-fine-step numerical solver.

D EXPERIMENTS

D.1 TRAINING AND EVALUATION

The training uses torch.optim.OneCycleLR Smith & Topin (2019) learning rate strategy with a 20%
warm-up phase. AdamW is the optimizer with no extra regularization. The learning rate starts and
ends with 10−3 · lrmax. The lrmax = 10−3. The result demonstrated is obtained from fixing the
random number generator seed. All models are trained on a single RTX A4500 or RTX A6000. The
codes to replicate the experiments are open-source and publicly available. 3

Despite using the negative Sobolev norm is quite efficient in fine-tuning, using it in training not be
the most efficient in minimizing the L2-norm due to the optimization being non-convex, we observe
that all norms are equivalent “bad” due to nonlinearity of NOs.

3Please download the code in the anonymous repository and follow the instructions in README.md.
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Figure 7: A simple illustration of necessity of padding using a 1D non-periodic data. FNO3d cannot
handle temporal non-periodic data. The free temporal super-resolution by FFT/iFFT has Runge-like
phenomena near the end points without padding. Padding in the ST-FNO3d modification resolves
this problem. Since data themselves are intrinsically lower-dimensional, we opt not to pad the latent
representations, but rather apply the padding only in the last spectral convolution layer to get the
output.

Table 6: The detailed comparison of FNO3d and its spatiotemporal modification. Layer: # of spectral
convolution layers; ST-FNO has an extra layer of spectral convolution in a single channel with skip
connection. Modes: (τmax, kmax). Pre-norm: whether a pointwise Gaussian normalizer is applied
for the input data. Eval FLOPs: Giga FLOPs for one evaluation instance. FT: finetuning GFLOPs
profiles per ADAM iterations for a 2562 grid for a single instance. A torch.cfloat type parameter
entry counts as two parameters.

Architectures GFLOPs
# paramslayers channel/width modes activation pre-norm Eval FT

FNO3d Example 2 (I) 4 20 (5, 8) GELU Y 13.3 N/A 9.03m
ST-FNO3d Example 2 (I) 4 + 1

20 20 (5, 8) GELU N 27.0 3.28 9.02m
FNO3d Example 2 (II) 4 10 (5, 32) GELU Y 28.7 N/A 16.38m

ST-FNO3d Example 2 (II) 4 + 1
10 10 (5, 32) GELU N 42.5 3.4 16.42m

D.2 MODELS

Helmholtz layer for the velocity-pressure formulation. For the V-P formulation in a simplified
connected convex or periodic domain, it is known that an exact divergence-free subspaceW ⊂ V for
velocity means that the pressure field is not needed. The reason is that in the weak formulation, the
pressure is a Lagrange multiplier to impose the divergence-free condition (Girault & Raviart, 2012,
Chapter III 1 Section 1.1). Inspired by the postprocessing to eliminate ∇p (Ku et al., 1987, eq. (15))
together with the neural Clifford layers Brandstetter et al. (2023), we add a Helmholtz layer S after
each application of σj ◦ (Wj +Kj). S performs a discrete Helmholtz decomposition (Girault &
Raviart, 2012, Chapter 1 §1 Section 3.1) in the frequency domain to project the latent fields to be
solenoidal. For details on the implementation, please refer to Appendix D.2.

Difference with Fourier Neural Operator 3d In view of (2.5), the FFTs in FNO3d transforms are
continuous integrals in the spatial dimensions yet a discrete sum in the temporal dimension. Despite
that no explicit restriction imposed on the output time steps, the dout cannot be trivially changed as
the data are prepared by applying a pointwise Gaussian normalizer that depends on dout. Denote
the lifting operator (channel expansion) in FNO3d by P : {ah} ⊕ {ph} → Rdv×dout×n×n. Before
the application of P in FNO3d, ah is artificially repeated dout times, then P is in a space of linear
operators ≃ R(din+3)×dv . This observation makes it independent of the spatial discretization size
n × n by dependent on din. In FNO3d, the channel reduction is a pointwise nonlinear universal
approximator, yet in ST-FNO3d, this is linear, which eventually facilitate the convexity of the
fine-tuning optimization problem.
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D.3 FINE-TUNING

In implementations, we choose Itermax = 100 and the ADAM optimizer with learning rate 10−1 in
Algorithm 1, i.e., an ADAM is simply run for 100 iterations to update parameters that count only a
fraction of a spectral layer since there is only 1 channel of weights.

To train or to stop? Investigating the frequency domain signatures In Stuart’s paper on the
convergence of linear operator learning de Hoop et al. (2023), the evaluation error scales with number
of samples, in the few-data regime, the overfitting comes fast. Part of the reason is that the operator
learning problems are in the “small” data regime.

Denote ω(t,x) := ∇×u, and ω̂ := Fω where F is applied only in space, then we can define
enstrophy spectra as follows:

E(t, k) =
∑

k−δk≤|k|≤k+δk

|ω̂(t,k)|2, and
∑

k

E(t, k) :=
ˆ
Ω

|ω|2dx

In Example (II), the enstrophy spectrum decays as O(k−3), which is slightly faster than kinetic
energy. This is usually referred to as the direct cascade, as opposed to the inverse cascade O(k−5/3)
discovered by Kolmogorov. For ST-FNO, it learns the frequency signature of the data after a single
epoch. See Figure 8 and Figure 9.

(a) (b)

Figure 8: Enstrophy spectrum density comparison for Example (II) to illustrate the “convergence” of
the SFNO training. The SFNO evaluation is on a 256× 256 grid for a fixed randomly chosen sample,
and the training is on a 64× 64 grid starting from 10 different seeds at different time steps. The error
bars are plotted with +/− 10 times the standard deviation from the mean to boost the visibility of the
convergence. (a): the comparison after 1 epoch, the average relative L2 difference with the ground
truth is 2.150× 10−1 ; (b): the comparison after 10 epochs, the average relative L2 difference with
the ground truth is 8.051× 10−2.

D.4 ADDITIONAL EXPERIMENTS

In this subsection, we perform the following additional experiments regarding the possibility of
fine-tuning ST-FNO3d for “out-of-distribution” data. All ST-FNO3d models are trained for 15
epochs (5 more than the model in Table 3) with the data generated using the McWilliams’s isotropic
turbulence data from Example (II) with ν = 10−3. The initial energy distribution satisfies:

|ψ̂(k)|2 ∼ k−1(τ2 + (k/k0)
4)−1. (D.1)

The parameter k0 in Example (II) roughly means that the initial energy is concentrated at |k| ≈ k0.
In Table 3 k0 is chosen as 4 according to McWilliams (1984). For all examples, the same “burn-in”
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(a) (b) (c)

(d) (e) (f)

Figure 9: Enstrophy spectrum density comparison for Example (II) for two randomly selected
trajectories for a given trained ST-FNO. Training and evaluation setups are identical to those in Figure
8. (a), (b), (c): the comparison of the spectra of the ST-FNO evaluation and the ground truth after 10
epochs of training at tℓ+4, tℓ+7, and tℓ+10 of the first trajectory; (d), (e), (f): the comparison for the
second trajectory at the same time steps.

time is used (t = 4.5), the training output time steps are 10 and evaluation output time steps are
40. Please refer to Figure 10 for sample trajectories and Figure 11 for the energy cascade after the
“burn-in” time period.

(Ex1) The initial energy is concentrated at k0 = 2. A sample trajectory can be found in Figure
10(a).

(Ex2) Same with above, k0 = 8. A sample trajectory can be found in Figure 10(c).

(Ex3) k0 = 4, ν = 1/Re = 1/5000. In order to resolve the small viscosity, the mesh size becomes
512× 512.

(Ex4) k0 = 8, ν = 1/Re = 1/10000, mesh size is 1024× 1024 for the same reason as above.

The evaluation and fine-tuning result can be found in Table 7. We found that the new paradigm
works reasonably well for first three example, yet fails to converge for the last example. For an
example plot of the prediction comparison please refer to Figure 12. The correlation graph between
the ST-FNO3d’s predictions and the ground truth can be found in Figure 13, in which the FNO(2+1)d
is adapted from the original FNO2d code. This roll-out-based model predicts the next snapshot based
on 10 given snapshots as input, and the predicted snapshot is concatenated to the current input as the
latest snapshot to form the input for the next prediction.

E ASSUMPTIONS AND PROOFS

Assumption E.1 (Assumptions for Theorems 3.1, 3.2, E.9). The following notions and assumptions
are adopted throughout the proof of the three theorems involved, all of which are common in the
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(a)

(b)

(c)

Figure 10: Examples trajectories of the evaluation datasets for additional experiments for Example
(II). (a): k0 = 2; (b): k0 = 4. (c): k0 = 8.

(a) (b) (c)

Figure 11: Energy spectrum densities datasets for additional experiments for Example (II). (a):
k0 = 2; (b): k0 = 4. (c): k0 = 8.

literature for NSE. While some of them can be proved, we opt for list them here to facilitate the
presentation.

(E1) The compact embeddings for Gelfand triple V ⋐ H ⋐ V ′ hold, where V = H1(T2), and
H = L2(T2).

(E2) The time interval T in consideration is fixed in that we consider the “refining” problem for a
fixed time interval but with variable time steps.

(E3) The initial condition u0 ∈ V , and f ∈ L2(T ;V ′).
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Table 7: Evaluation metrics of the McWilliams isotropic turbulence example for “out-of-distribution”
data. For details please refer to Section D.4 ε := ωS − ωN . r := R(ωN ). Y := H−1(T2). All error
norms are evaluated at the final time step. The training is under the L2-norm and the fine-tuning is
under the H−1-norm. Symbol “–” means the errors are the same as the entry on the row above.

In-distribution evaluation Out-of-distribution evaluation After fine-tuning

∥ε∥L2 ∥R∥−1,n ∥ε∥L2 ∥R∥−1,n ∥ε∥L2 ∥R∥−1,n

(Ex1) k0 = 2 5.39× 10−2 1.66× 10−2 8.52× 10−2 4.25× 10−2 2.73× 10−2 5.05× 10−5

(Ex2) k0 = 8 – – 1.46× 10−1 2.31× 10−2 2.06× 10−2 5.85× 10−6

(Ex3) Re = 5 · 103 – – 2.94× 10−1 2.73× 10−2 2.50× 10−2 2.96× 10−4

(Ex4) Re = 104 – – 4.92× 10−1 1.76× 10−1 2.355× 106 2.873× 104

(a) (b) (c)

Figure 12: The ground truth versus the ST-FNO3d evaluation/fine-tuning results for the Re = 5000
additional experiment for Example (II). (a): the ground truth at t = 5 (prediction step 20) generated
by IMEX RK4; (b): ST-FNO3d prediction. (c): ST-FNO3d fine-tuned prediction.

Lemma E.2 (Skew-symmetry of the trilinear term). For z,u,v ∈ H1(T2), where T2 denotes
Ω := (0, 1)2 equipped with component-wise PBC. Denote

c(z,u,v) :=
(
(z · ∇)u,v

)
=

ˆ
Ω

((z · ∇)u) · v dx.

If∇ · z = 0, then
c(z,u,v) = −c(z,v,u), (E.1)

and specifically c(z,v,v) = 0.

Proof. We note that this result is common in NSE literature, see e.g., (Temam, 1995, Part I Sec 2.3),
for homogeneous boundary or whole space. In this case, it suffices to verify that the boundary term
vanishes. Here we still provide a short argument for the convenience of readers. First by the product
rule, and a vector calculus identity of∇ · (v · u) (see e.g., (Balanis, 2012, Appendix II.3.2))

∇ · ((v · u)z) = ((z · ∇)u) · v + ((z · ∇)v) · u+ (v · u)∇ · z. (E.2)

By Gauss divergence theorem, we then obtain:ˆ
Ω

∇ · ((v · u)z) dx =

ˆ
∂Ω

(v · u)z · nds =
∑

ei⊂∂Ω,1≤i≤4

ˆ
∂Ω

(v · u)z · ni ds,

with n is outer normal with respect to ∂Ω, and ni denotes that with respect to edge ei. Now on
e1 := {x = 0} × {y ∈ (0, 1)}, n1 = (−1, 0)⊤, w|e1 = w|e2 by PBC where e2 := {x = 1} × {y ∈
(0, 1)} and w ∈ {z,u,v}. The integrals on e1 and e2 cancel with one another since n2 = −n1.
Furthermore, if∇ · z = 0, integrating (E.2) on Ω yields the desired result.

Lemma E.3 (Poincaré inequality). V/R ⋐ H/R is compact and the following Poincaré inequality
holds with constant 1: for any v ∈ V/R

∥v∥ ≤ |v|1 (E.3)
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Figure 13: Comparison of the correlation with the ground truth (on 1024× 1024 grid) generated by
IMEX RK4 solver.

Proof. A common textbook proof exploits the equivalence of sequential compactness and compact-
ness, once the norm topology is introduced, we prove this in a very intuitive way under our special
setting: by definition (3.7), if v ∈ V/R then v̂(0, 0) = 0

∥v∥20 =
∑

k∈Z2\{0}
|v̂(k)|2 ≤

∑

k∈Z2\{0}
|k|2|v̂(k)|2 = |v|21.

E.1 PROOF OF THEOREM 3.1

To prove Theorem 3.1, we need Lemmas E.4, E.5, and E.6, all of which can be found in classical
textbook on analysis and approximations of NSE, such as Temam Temam (1995), or Girault &
Raviart Girault & Raviart (2012) for homogeneous Dirichlet boundary condition for the velocity field
or slip boundary condition for the (pseudo-)stress tensor. We shall complement some proofs with
simple adaptations to PBC whenever necessary for the convenience of readers.

Before presenting any lemmas, we need the following definitions, a weighted H1-norm on V =
H1(T2) for α > 0 on Ω is defined as

∥v∥α,1 :=
(
∥v∥2L2 + ∥α∇v∥2L2

)1/2
, and |v|α,1 := ∥α∇v∥L2 .

For f ∈ V ′, define a weighted dual norm as follows:

∥f∥α−1,−1 := sup
v∈V

⟨f ,v⟩
∥v∥α,1

(E.4)

Lemma E.4 (Contuinity and embedding results for the convection term). For trilinear convection
term (

(u · ∇)v,w
)
≤ ∥u∥L4 |v|1∥v∥L4 . and

(
(u · ∇)v,w

)
≤ |u|1 |v|1|w|1 (E.5)

Proof. The first result is obtained by the Hölder inequality, and the second holds with suite Sobolev
embedding results (Temam, 1995, Part I, §2.3, Lemma 2.1).

Lemma E.5 (Energy stability of NSE in a bounded domain).

∥u∥2L∞(T ;H) ≤ ∥u0∥2H + ∥f∥2L2(T ;V′). (E.6)

Proof. (E.17) is a classical result, see e.g., (Temam, 1995, Section 3.1).
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Lemma E.6 (Fréchet derivative of the convection term). Given v,u ∈ V , the linearization of the
difference of the convection term reads

v · ∇v = u · ∇u+D(u)(v − u) + r where D(u)ξ :=
(
ξ · ∇

)
u+ (u · ∇)ξ, (E.7)

is the Fréchet derivative and ∥r∥ ≲ ∥u− v∥ ∥u− v∥1.

Proof. This result is normally used without proof in linearizing NSE, see e.g., (Girault & Raviart,
2012, Chapter 4 eq. (6.5.2)). Define F (u,G) := u⊤G, then expanding F at v and G = ∇u yields
the desired result.

Theorem 2.1 Part I (Functional-type a posterior error estimate is efficient (rigorous version)).
Consider the Gelfand triple V ⋐ H ⋐ V ′, and the weak solution u ∈ L2(T ;V)∩L∞(T ;H) to (2.2)
be sufficiently regular, then the dual norm of the residual is efficient to estimate the error:

∥R(uN )∥2L2(T ;V′) ≲ ∥∂t(u− uN )∥2L2(T ;V′) + ∥u− uN ∥2L2(T ;V). (E.8)

The constant depend on the regularity of the true solution u.

Proof. The proof of the lower bound (efficiency) (E.8) follows the skeleton laid out in (Verfürth, 2003,
Lemma 4.1) for diffusion and temporal derivative terms, while not needing to extend approximation
using an affine linear extension operator as Verfürth (2003) does. The treatment of the nonlinear
convection term follows (Fischer, 2015, Lemma 7) for the steady-state NSE (no temporal derivatives),
barring the technicality of the divergence-free condition. Consider at t ∈ T , for any test function
v ∈H1(T2) and ∇ · v = 0, integrating v against R(uN ) in (3.2) yields

⟨R(uN ),v⟩ =
(
f − ∂tuN − (uN · ∇)uN + ν∆uN ,v

)

=
(
∂t(u− uN ),v

)
−
(
ν∆(u− uN ),v

)

+
(
(u · ∇)u− (uN · ∇)uN ,v

)
.

Integrating by parts for the diffusion term, using the same argument for PBC as in Lemma E.2, and
inserting (u · ∇)uN yield

⟨R(uN ),v⟩ =
(
∂t(u− uN ),v

)
︸ ︷︷ ︸

(I)

+
(
ν∇(u− uN ),∇v

)
︸ ︷︷ ︸

(II)

+
(
(u · ∇)(u− uN ),v

)
︸ ︷︷ ︸

(III)

+(((u− uN ) · ∇)uN ,v)︸ ︷︷ ︸
(IV)

.
(E.9)

Applying the definition of a weighted dual norm (E.4) on (I) we have

(I) ≤ ∥∂t(u− uN )(t, ·)∥ν−1/2,−1 ∥v∥ν1/2,1.

For (II) we simply have

(II) ≤ ∥ν1/2∇(u− uN )∥L2∥ν1/2∇v∥L2 .

For (III), applying Lemma E.4 and the stability estimate in Lemma E.5 for u:

(III) ≤ C∥u∥ν−1,1∥u− uN ∥ν1/2,1∥v∥ν1/2,1 ≤ ν−1C1(t,u0)∥u− uN ∥ν1/2,1∥v∥ν1/2,1.

For (IV), applying Lemma E.4 and the stability estimate in Lemma E.5 for uN :

(IV) ≤ C∥u− uN ∥ν1/2,1∥uN ∥ν−1,1∥v∥ν1/2,1 ≤ ν−1C2(t,u0)∥u− uN ∥ν1/2,1∥v∥ν1/2,1.

Applying the Cauchy-Schwarz inequality, one has

|⟨R(uN ),v⟩|2 ≤ C
(
∥∂t(u− uN )(t, ·)∥2ν−1/2,−1 + ∥u− uN ∥2ν1/2,1

)
∥v∥2ν1/2,1.

Finally, equipping V ′ with the weighted norm (E.4), and by the definition of L2(T ;V ′), we have

∥R(uN )∥2L2(T ;V) =

ˆ
T
sup
v∈V

|⟨R(uN ),v⟩|2
∥v∥2

ν1/2,1

dt

≤ C
ˆ
T

(
∥∂t(u− uN )(t, ·)∥2ν−1/2,−1 + ∥u− uN ∥2ν1/2,1

)
dt,

where C = C(u0, ν, T ).

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Theorem 2.1 Part II (Functional-type a posterior error estimate is reliable (rigorous version)).
Consider the Gelfand triple V ⋐ H ⋐ V ′, and the weak solution is u ∈ L2(T ;V) ∩ L∞(T ;H) to
(2.2). We assume that

(2.1.1) uN and u are sufficiently close in the sense that: there exists γ ∈ [0, C) for a fixed C ∈ R+,
for J defined in Lemma E.6

∥J(u,uN )∥V′ ≤ γ∥∇(u− uN )∥. (E.10)

(2.1.2) u satisfies the Gårding inequality (a weaker coercivity): for any v(t, ·) ∈ V , define

B(v,w;u) := (∂tv,w) + ν(∇v,∇w) +
(
(u · ∇)v,w

)
,

and for v in a neighborhood such that Assumption (2.1.1) holds, there exists α, β > 0 such
that α− β ≥ ν,

B(v,v;u) + β∥v∥2 ≥ d

dt
∥v∥2 + α∥∇v∥2. (E.11)

The dual norm of the residual is then reliable to serve as an error measure in the following sense:
denote Tm := (tm, tm+1]

∥u− uN ∥2L∞(Tm;H) + ∥u− uN ∥2L2(Tm;V) ≤
∥∥(u− uN )(tm, ·)

∥∥2
V + C

ˆ
Tm

∥R(uN )(t, ·)∥2V′ dt.

(E.12)
The constant C = C(ν).

Proof. The proof of part II of Theorem 3.1 combines the meta-framework of Verfürth (2003) for
time-dependent problems and (Verfürth, 1994, Section 8) for the stationary NSE. Note that thanks for
the construction of divergence-free uN , the technicality of applying the Ladyzhenskaya-Babušška-
Brezzi inf-sup condition is avoided. In the meantime, no interpolations are needed to convert the
functional norm for the negative Sobolev spaces to an L2 representation.

To prove the upper bound (reliability) (3.5), we simply choose a time step t = tm, and let v =
(u− uN )(t, ·) on (tm, tm+1). Note that the discretized approximation’s evaluation at t, which may
not be the temporal grids tm or tm+1 are naturally defined using the basis in (3.1). Using the error
representation in (E.9), we have the (I) and (II) terms in ⟨R(uN ),u− uN ⟩ are

(I) + (II) =
(
∂t(u− uN ),u− uN

)
+
(
ν∇(u− uN ),∇(u− uN )

)

=
1

2

d

dt
∥u− uN ∥2L2 + ν∥∇(u− uN )∥2L2

(E.13)

For the (III) and (IV) terms we have

(III) + (IV) =

=0 by Lemma E.2︷ ︸︸ ︷(
(u · ∇)(u− uN ),u− uN

)
+

=:(∗)︷ ︸︸ ︷
(((u− uN ) · ∇)uN ,u− uN ) . (E.14)

Note by Lemma E.2, (∗) is also:
(∗) = (((u− uN ) · ∇)u,u− uN ) , (E.15)

since c(z, z, z) = 0 for z = u− uN . Consequently, by a vector calculus identity, we haveˆ
Ω

(z · ∇)u · z dx =

ˆ
Ω

∇u : (z⊗z) dx.

Thus, we reach the following error equation:

⟨R(uN ),u− uN ⟩ =
1

2

d

dt
∥u−uN ∥2L2+ν∥∇(u−uN )∥2L2+

ˆ
Ω

∇u : ((u− uN )⊗(u− uN )) dx.

(E.16)

Now, by Assumption (2.1.2) , Poincaré inequality from Lemma E.3,
1

2

d

dt
∥u− uN ∥2 + ν∥∇(u− uN )∥2 ≤ d

dt
∥u− uN ∥2 + (α− β)∥∇(u− uN )∥2

≤ d

dt
∥u− uN ∥2 + α∥∇(u− uN )∥2 − β∥u− uN ∥

≤ B(u− uN ,u− uN ;u).
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By (E.13), (E.14), and (E.15),

B(u− uN ,u− uN ;u) = (I) + (II) + (III) + (IV) = ⟨R(uN ),u− uN ⟩
≤ ∥R(uN )∥ν−1/2,−1|u− uN |ν1/2,1

≤ 1

2
∥R(uN )∥2ν−1/2,−1 +

1

2
|u− uN |2ν1/2,1.

As a result, we have

d

dt
∥u− uN ∥2 + ν∥∇(u− uN )∥2 ≤ ∥R(uN )∥2ν−1/2,−1. (E.17)

Integrating from tm to any t ∈ (tm, tm+1] yields

∥(u−uN )(t, ·)∥2−∥(u−uN )(tm, ·)∥2+ν∥∇(u−uN )∥2L2(tm,t;H) ≤
ˆ t

tm

∥R(uN )(t, ·)∥2ν−1/2,−1 dt.

Since t ∈ (tm, tm+1] is arbitrary, we have proved the reliability (E.12).

Remark E.7 (Necessity of the “sufficient close” and the regularity conditions). First, the main hurdle
to prove the reliability is that the convection term (∗) is not positive definite, one would encounter
some difficult in deriving the upper bound as yet moving (∗) to the right-hand side in (E.16) does not
yield a meaningful estimate,

norm of the error ≃ (I) + (II) = ⟨R(uN ),u− uN ⟩ − (∗) ̸≤ ⟨R(uN ),u− uN ⟩
We note that Assumption (2.1.2) is equivalent to putting a threshold on ∥u(t, ·)∥L∞ , which is
commonly assumed in the analysis of numerical methods for convection-dominated problems. A
stronger alternative assumption than Assumption (2.1.2) would be imposing a stronger constraint
on γ in Assumption (2.1.1) Using the “sufficient close” assumption (E.10) on the nonlinear term,
we have

|(∗)| ≤ ∥ ((u− uN ) · ∇)uN ∥V′∥u− uN ∥V ≤ γ∥∇(u− uN )∥2.
Now if ν̄ := ν − γ ≥ 0, one would reach a similar estimate as (E.17) by replacing ν with ν̄. If no
extra assumption on γ is imposed.

Another way is to consider a Sobolev embedding directly after applying the Hölder inequality, for
(E.15) we have

|(∗)| ≤
ˆ
Ω

|∇u||u− uN |2 ≤ ∥∇u∥ ∥u− uN ∥2L4 ≤ ρ∥∇u∥ ∥∇(u− uN )∥2,

where ρ is the constant in the following Sobolev embedding

∥u− uN ∥L4 ≤ ρ∥∇(u− uN )∥.
Now if ν̃ := ν − ρ∥∇u∥ ≥ 0, one would reach a similar estimate as (E.17) by replacing ν with ν̃.

E.2 PROOF OF THEOREM 3.2

Theorem 2.2 (Equivalence of functional norm and negative Sobolev norm). Consider the Gelfand
triple V ⋐ H ⋐ V ′, then

∥f∥V′ = |f |−1 for f ∈ H/R. (E.18)

Proof. This proof leverages the spectral basis forH without the extra technicality of Schwartz space
involved if one ought to assume that f ∈ V ′. Recall (3.1), and define an infinite version

S∞ := span
{
eik·x : k ∈ 2πZ2

}
. (E.19)

In what follows, we shall omit the extra technicality that one has to work on partial sums first, and
then considers the convergence in the corresponding norms. We simply take for granted that the
differentiation and integration/sum can be interchanged, and directly identify f ∈ H/R with its
Fourier series in S∞,

f(x) =
∑

k∈2πZ2

f̂(k)eik·x.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Note since f lies in the quotient space, f̂(0, 0) = 0. Then, the duality pairing can be identified as an
L2-inner product, as well as the test function v ∈ H,

⟨f, v⟩V′,V = (f, v) =

( ∑

k∈2πZ2

f̂(k)eik·x,
∑

m∈2πZ2

v̂(m)eim·x

)

=
∑

k∈2πZ2
n\{0}

f̂(k)v̂(k)

≤


 ∑

k∈2πZ2
n\{0}

|k|−2|f̂(k)|2



1/2
 ∑

k∈2πZ2
n\{0}

|k|2|v̂(k)|2



1/2

≤ |f |−1|v|1.
As a result, by the definition in (3.7) and the estimate above

∥f∥V′ = sup
v∈V/R,|v|V=1

|⟨f, v⟩| = sup
v∈V/R

(f, v)

|v|1
≤ |f |−1.

To show the other direction, let v = (−∆)−1f ∈ H1(T2) by the well-posedness of −∆v = f for
f ∈ L2(T2). We have

⟨f, (−∆)−1f⟩ =
(
−∆v, v

)
=
(
f, (−∆)−1f

)

=

( ∑

k∈2πZ2

f̂(k)eik·x,
∑

m∈2πZ2

(−∆x)
−1f̂(m)eim·x

)

=

( ∑

k∈2πZ2

f̂(k)eik·x,
∑

m∈2πZ2

1

|m|2 f̂(m)eim·x

)

=
∑

k∈2πZ2
n\{0}

|k|−2|f̂(k)|2 = |f |2−1.

Note that by the construction of v above, |v|1 = |f |−1, thus,

sup
v∈V

(f, v)

|v|1
≥
(
f, (−∆)−1f

)

|v|1
= |f |−1,

which proves the theorem.

E.3 CONVERGENCE RESULT OF FINE-TUNING

In the following theorem, Theorem E.9, we show that a sufficient condition for the optimizer to
converge is to get in a neighborhood of the true solution, thus corroborating the necessity of training.
Note in both Theorems 3.1 and E.9, the error term of u

(m)
N − u(tm, ·) is present. We have to

acknowledge that the “initial value” for the predicted trajectory, which is the last snapshot in the input
trajectory, may have errors. This is the major motivation that we opt to use u

(ℓ)
N , which is the input

trajectory’s last snapshot in the skip-connection in Q̃

u
(m+1)
N = u

(ℓ)
N + Q̃θ(v

(m+1)
N ), for m = ℓ, . . . , ℓ+ nt − 1. (E.20)

In some sense, SFNO learns the derivative ∂tu’s arbitrary-lengthed integral. If one wants to modify
Algorithm 1 in view of Theorem E.9 such that the error control is guaranteed, the following algorithm
can be used but loses the “parallel-in-time” nature. We also note that , thanks to the spectral
convolution in Q̃ being affine linear, showing Theorem E.9 is quite straightforward, as one has
to establish the connection between fine-tuning and seeking a nonlinear Galerkin projection in
Fourier space (3.1) under the functional norm. Let θ∗ = argminθ ∥R(uN (θ))(tm+1, ·)∥−1, then
Q̃θ∗(uN ) = argminv∈S ∥u(tm+1, ·)− (u(tm, ·) + v)∥∗.
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Algorithm 2 An error-guarantee fine-tuning strategy.

Input: ST-FNO Gθ,Θ := Q̃θ ◦ GΘ; time stepping scheme Gα(·); optimizer D(θ,∇θ(·)); training
dataset: solution trajectories at [t1, . . . , tℓ′ ] as input and at [tℓ′+1, . . . , tℓ′+n′

t
] as output.

1: Train the ST-FNO model until the energy signature matches the inverse cascade.
2: Freeze Θ in GΘ of ST-FNO Gθ,Θ, keep Q̃θ trainable.
3: Cast all nn.Module involved and tensors to torch.float64 and torch.complex128 hereafter.

Input: Evaluation dataset: solution trajectories at [t1, . . . , tℓ] as input, output time step nt.
4: for m = ℓ, · · · , ℓ+ nt − 1 do
5: Extract the latent fields v(m+1)

N output of GΘ at tm+1 and hold them fixed.
6: By construction of ST-FNO: such that u(m+1)

N (θ) := u
(m)
N + Q̃θ

(
v
(m+1)
N

)
.

7: March one step with (∆t)α using Gα: DtuN (θ) := (∆t)−α(Gα(uN (θ))− uN (θ)).
8: j ← 0
9: while ηm(uN (θ), DtuN (θ)) > Tol do

10: Apply the optimizer to update parameters in Q̃: θ ← D(θ,∇θ(η
2
m)), j ← j + 1.

11: Forward pass only through Q̃ to update uN ← u
(m)
N + Q̃θ(v

(m+1)
N ).

12: if j > Itermax then break
13: u

(m+1)
N ← uN

Output: A sequence of velocity profiles at corresponding time steps {u(m)
N }ℓ+nt

m=ℓ+1.

Lemma E.8 (Local strict convexity for the fine-tuning loss). Define ∥ · ∥∗,δ to be a (dual) graph
norm on L∞(Tδ;L2(T2)

)
∩ L2

(
Tδ;H1(T2)

)
, where Tδ := [t− δ, t+ δ]

∥v∥∗,δ =

{ 
Tδ

∥v(t, ·)∥2dt+
 
Tδ

∥(∂tv + v · ∇v) (t, ·)∥2V′ dt

}1/2

For u ∈ L∞(Tδ;L2(T2)
)
∩ L2

(
Tδ;H1(T2)

)
the weak solution to (2.2) on Tδ that is sufficiently

smooth, there exists δ, ϵ ∈ R+, such that on

B(u; ϵ) :=
{
v ∈ L∞(Tδ;L2(T2)

)
∩ L2

(
Tδ;H1(T2)

)
: ∥u− v∥∗,δ ≤ ϵ

}
,

the functional

J(v(t, ·)) := 1

2
∥R(v)∥2V′ where R(v) := f − ∂tv − (v · ∇)v + ν∆v

is strictly convex.

Proof. First, by Theorem 3.2,

J(v) =
1

2

〈
R(v), (−∆)−1R(v)

〉
V′,V

Then,

DJ(v; ξ) := lim
τ→0

J(v + τξ)− J(v)
τ

=
d

dτ
J(v + τξ)

∣∣∣∣
τ=0

= ⟨DR(v)ξ, (−∆)−1R(v)⟩V′,V .

where

DR(v)ξ = ∂tξ +
1

2

((
ξ · ∇

)
v + (v · ∇)ξ

)
− ν∆ξ

is the Fréchet derivative DR(v) : V → V ′ by Lemma E.6. The Hessian is then

Hess J(v; ξ, ζ) =
〈
DR(v)ξ, (−∆)−1DR(v)ζ

〉
+
〈
ζ ·D2R(v)ξ, (−∆)−1R(v)

〉
.

Now, since R(u) = 0 on Tδ , we have

Hess J(u; ξ, ξ) =
〈
DR(v)ξ, (−∆)−1DR(v)ξ

〉
.
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If we assume that DR(u)ξ ∈ V ′ has its functional norm bounded above and below in B(u; ϵ), one
has for any ξ

∥ξ∥2V ≲ ∥DR(u)ξ∥2V′ ≤ Hess J(u; ξ, ξ).

Simply choosing ϵ small enough such that v is sufficiently close to u in graph norm associated
with the PDE to make the coercivity above still true for Hess J(v; ξ, ξ) yields the desired local
convexity.

Theorem E.9 (Guaranteed convergence of the fine-tuning). In addition to the same assumptions
with Theorem 3.1, suppose Lemma E.8 holds for ϵ ∈ (0, 1), and a given uN can be embedded in
B(u; ϵ′) for a 0 < ϵ′ ≤ ϵ. Denote u

(k)
N ,j the evaluation in Line 9 of Algorithm 2, and j the iteration

of optimizer in Line 10, then the fine-tuning using the new loss function (3.9) produces a sequence
{u(k)

N ,j}∞j=1 ⊂ B
(
u; ϵ′

)
Furthermore, suppose that the optimizer in Line 10 of Algorithm 2 has a

learning rate converging to 0. Then, then the fine-tuning using the new loss function (3.9) produces a
sequence of evaluations converging to the best possible approximation u

(m+1)
N ,∞ ∈ S of u(tm+1, ·)

starting from u
(m)
N , in the sense that for m = ℓ, . . . , ℓ+ nt − 1

∥u(m+1)
N ,∞ − u(tm+1, ·)∥V ≤ ∥u(l)

N − u(tm, ·)∥V + c1ntn
−2|u(tm+1, ·)|2 + c2nt(∆t)

α−1. (E.21)

Proof. For simplicity, we denote u0 := u(tl, ·) ∈ V , and uN := u
(m)
N ∈ S |t=tm =: S. First, by

line 10 fine-tuning algorithm, if one solves the optimization in the functional norm exactly, we have

θ∗ = argmin
θ
δt
∥∥R
(
GαuN (θ)

)∥∥2
S′ where uN (θ) := uN + Q̃θ(vN ) (E.22)

where R(·) is the residual functional computed using the time derivative term from an extra-fine-step
solver’s result

R(v) := f −Dtv − (v · ∇)v + ν∆v

Unlike representing the derivative using output from the neural operator, one of the keys of our
algorithm is that the error for ∂tu−DtuN (θ) can be explicitly estimated using the framework to
develop estimates for truncation error in traditional time marching schemes for NSE. Due to the
choice of the time step, this truncation error will be of higher order. Note for any vN , Q̃θ(vN ) ∈ S,
as a result, solving (E.22) is equivalent to solve the following: denote uδ := Gα(uN + δu) for
δu ∈ S

min
δu∈S

(δt)1/2 ∥Dt(uδ) + (uδ · ∇)uδ − ν∆uδ − f∥S′ .

Replacing Dt(·) by ∂t(·) we have a truncation error term, whose error is of order (∆t)α−1 due to
taking the time derivative:

∥Dt(uδ) + (uδ · ∇)uδ − ν∆uδ − f∥S′

≤ ∥∂tuδ + (uδ · ∇)uδ − ν∆uδ − f∥S′ + ∥Dt(uδ)− ∂tuδ∥S′

We focus on estimating the first term above,

min
δu∈S

(δt)1/2 ∥∂tuδ + (uδ · ∇)uδ − ν∆uδ − f∥S′ (E.23)

By the fact that ∥ · ∥S′ inherit the scaling law and the triangle inequality from ∥ · ∥V′ , it is convex
as well in this neighborhood. As a result, any gradient-based optimizer with a converging step
size shall converge to the minimum, achieved at u(m)

N ,∞, with a linear convergence rate. Moreover,

u
(m)
N ,∞ := u

(m)
N + (δu)∗ is the (nonlinear) Galerkin projection of u(tm, ·) ∈ V .
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