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ABSTRACT

Differential Privacy (DP) is a widely adopted technique, valued for its effectiveness
in protecting the privacy of task-specific datasets, making it a critical tool for large
language models. However, its effectiveness in Multimodal Large Language Mod-
els (MLLMs) remains uncertain. Applying Differential Privacy (DP) inherently
introduces substantial computation overhead, a concern particularly relevant for
MLLMs which process extensive textual and visual data. Furthermore, a critical
challenge of DP is that the injected noise, necessary for privacy, scales with pa-
rameter dimensionality, leading to pronounced model degradation; This trade-off
between privacy and utility complicates the application of Differential Privacy (DP)
to complex architectures like MLLMs. To address these, we propose Dual-Priv
Pruning, a framework that employs two complementary pruning mechanisms for
DP fine-tuning in MLLMs: (i) visual token pruning to reduce input dimensionality
by removing redundant visual information, and (ii) gradient-update pruning during
the DP optimization process. This second mechanism selectively prunes parameter
updates based on the magnitude of noisy gradients, aiming to mitigate noise impact
and improve utility. Experiments demonstrate that our approach achieves compet-
itive results with minimal performance degradation. In terms of computational
efficiency, our approach consistently utilizes less memory than standard DP-SGD.
While requiring only 1.74% more memory than zeroth-order methods which suffer
from severe performance issues on A100 GPUs, our method demonstrates lead-
ing memory efficiency on H20 GPUs. To the best of our knowledge, we are the
first to explore DP fine-tuning in MLLMs. Our code is avaliable in : https:
//anonymous.4open.science/r/Dual-priv-pruning-AE7E.

1 INTRODUCTION

Large Language Models (LLMs) Zhang et al. (2022); Radford et al. (2019); Touvron et al. (2023) have
showcased remarkable proficiency in natural language processing, driving their widespread adoption
in downstream tasks Ziegler et al. (2019), and Multimodal Large Language Models (MLLMs) Liu
et al. (2023); Wang et al. (2024a); Abdin et al. (2024)extend the power of LLMs by integrating
text and visual data, opening up possibilities for applications that require understanding across
different modalities. However, both models are easy to risk leaking sensitive information during
training Das et al. (2025); Meskó (2023). Differential Privacy Dwork (2006) (DP) , the technology
for providing privacy guarantees that limit the ability to infer whether a data point was used in the
training process of a model by observing its output. This technology is typically achieved by injecting
noise during training processes, limiting the discernible impact of single data point. The degree of
privacy guarantee is tuned using a privacy budget (ϵ), where stronger privacy guarantee (lower ϵ)
generally comes at the cost of adding more noise and degrading model performance. The inherent
trade-off between privacy and utility presents a significant challenge, particularly when applying
DP to large and complex models like LLMs, since the necessary noise often scales with parameter
dimensionality. Prior works Yu et al. (2021a); Li et al. (2021); Liu et al. (2024); Goel et al. (2025)
have shown that LLMs with hundreds of millions of parameters can be effectively and efficiently
fine-tuned to yield models with high performance under modest privacy leakage.
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However, it remains unclear whether such conclusions of LLMs are transferable to MLLMs. Similar
to unimodal models, DP also face challenges under MLLMs. The first is computation consumption.
This challenge is exacerbated in MLLMs, which rely on a large number of visual tokens ( e.g., 197
tokens per image in CLIP-ViT Radford et al. (2021) or hundreds in LLaVA Liu et al. (2023) ) to
represent detailed visual information, significantly increasing computation demands. Recent work Li
et al. (2021) introduced “ghost clipping” as an efficient technique to reduce the computational cost of
DP-SGD, which is in principle applicable to both sequential language models and non-sequential
architectures. Nevertheless, in multimodal large language models the coexistence of heterogeneous
modules (e.g., ViTs, projectors) imposes substantial practical barriers for ghost clipping and thus a
significant limitation in real-world MLLM settings. Zeroth-order methods (e.g., DP-ZO Tang et al.
(2024)) also aim to reduce computation overhead by avoiding explicit gradient calculations. However,
these methods introduce severe convergence issues. For instance, DP-ZO required more training
steps (75k vs 200) than standard DP-SGD to achieve comparable performance on SQuAD Tang et al.
(2024), making this gradient-free approach prohibitively slow for practical MLLM training. Another
challenge is model degradation. Differential privacy introduces noise to safeguard data privacy,
but this noise perturbs the gradient signals during training, leading to performance degradation. In
MLLMs, DP noise scales with parameter dimensionality, overwhelming gradient signals in high-
dimensional layers and necessitating more iterations to stabilize optimization, as noted in foundational
work on DP-SGD Abadi et al. (2016).

To tackle these challenges, we introduce Dual-Priv Pruning, a novel DP finetuning approach tailored
for MLLMs. Our approach integrates two complementary pruning mechanisms designed to work in
concert, addressing these issues from both the input representation and the optimization process. The
first key pruning mechanism focuses on optimizing the visual input stream prior to training: it employs
an attention-based mechanism to identify and prune redundant visual tokens, thereby substantially
reducing the input dimensionality and subsequent computational demands. The less critical visual
information pruned in this manner is then fused into some compact contextual representations, to
which a calibrated heuristic noise is added. This step aims to preserve essential global context while
further alleviating the processing load for the differential privacy mechanism. The second core
pruning mechanism refines the differential private fine-tuning process itself. While adhering to the
standard DP-SGD framework for rigorous noise addition to guarantee privacy, Dual-Priv Pruning
introduces a gradient-update pruning technique. This technique analyzes the noisy gradients resulting
from DP noise injection. It then selectively applies these gradients for parameter updates only to
those blocks where the underlying signal is deemed sufficiently strong and reliable to overcome the
obfuscating effect of the DP noise, thereby preserving model utility and stabilizing training. Dual-Priv
Pruning offers a robust solution. As the first work to explore DP finetuning specifically tailored
for MLLMs, our method achieves a superior privacy-utility trade-off and enhanced computational
efficiency, delivering competitive performance even under stringent privacy budgets.

We summarize our main contributions as follows: (1) We pioneer the integration of DP into the domain
of MLLMs, addressing a critical research gap in privacy-preserving multimodal learning. (2) We
introduce a novel privacy-aware visual pruning mechanism that significantly reduces computational
overhead by optimizing visual inputs, thereby creating more favorable conditions for subsequent DP
fine-tuning. (3) We propose an DP-compatible gradient-update pruning strategy that intelligently
applies noisy gradients to mitigate the adverse effects of DP noise on model performance, thereby
enhancing utility while maintaining strong privacy guarantees. (4) Extensive experiments demonstrate
that our Dual-Priv Pruning achieves robust privacy protection, substantial memory reduction, and
competitive performance on diverse vision-language tasks, even under stringent privacy budgets.

2 RELATED WORK

Differential Privacy (DP) Dwork (2006) ensures privacy guarantees by limiting the ability to
infer whether a data point was used in the training process of a model, making it a cornerstone
for privacy-preserving learning. In the area of computer vision, Tang et al. (2023a) developed DP
methods for image classification by adding noisy priors, achieving strong privacy-utility trade-offs,
and Luo et al. (2024) applied DP to video recognition, enforcing video-level differential privacy
through clip-based classification models. In natural language processing, McMahan et al. (2017)
trained recurrent language models with DP, reducing risks of data memorization. For LLMs, Li et al.
(2024a) demonstrated DP fine-tuning but noted challenges with utility degradation due to noise, while
Kerrigan et al. (2020) showed that public pre-training followed by private fine-tuning can alleviate
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some performance losses. Memory-efficient techniques, such as “ghost-clipping” Li et al. (2021),
optimize DP-SGD for LLMs but rely on text-specific assumptions, limiting their applicability to
multimodal settings. Zeroth-order optimization Tang et al. (2024) offers an alternative for LLMs by
avoiding gradient instantiation, but it suffers from too long training times. Other efforts to improve
DP include manipulating gradients, such as GIP Yang et al. that perturbed individual gradient indices,
though its privacy analysis clarity was questioned; In contrast, our gradient-update pruning operates
as a post-processing step on entire noised logical parameter blocks, simplifying privacy analysis and
aligning with PEFT. In multimodal learning, Huang et al. (2023) introduced DP to CLIP training,
protecting vision-language data, and Yu et al. (2021b) proposed low-rank reparametrization for
scalable private learning, applicable to multimodal tasks. Additionally, Kaissis et al. (2021) applied
DP to medical image, emphasizing privacy in sensitive domains. Despite these advances, no prior
work has explored DP fine-tuning for MLLMs, which face unique challenges due to cross-modal
interactions and massive length visual tokens. Existing methods, do not address the memory demands
and model degradation of MLLMs, a gap that our work to addresses.

Multimodal Large Language Models (MLLMs) integrate visual and textual modalities to solve
a wide range of tasks. Flamingo Alayrac et al. (2022) introduced a query-based cross-attention
mechanism to enable multimodal interactions, while BLIP-2 Li et al. (2023b) proposed the lightweight
Q-Former to enhance efficiency. InstructBLIP Dai et al. (2023) further aligned models with user
intent via instruction tuning across diverse datasets. LLaVA Liu et al. (2023) improved visual
understanding using curated training data, while subsequent efforts such as Qwen-VL Bai et al.
(2023) and CogVLM Wang et al. (2024b) introduced advanced training strategies and modular visual
expert systems to boost performance. A major challenge in MLLMs is the redundancy of visual
tokens, which significantly increases memory and computational costs Chen et al. (2024). Recent
work addresses this inefficiency: FastVLM Vasu et al. (2024) prunes tokens based on attention
scores, and VisionZip Yang et al. (2024) identifies contextual tokens that retain global semantics (e.g.,
background information). Visual token redundancy offers a promising avenue for DP in MLLMs.
Pruning low-importance tokens reduces sensitive data exposure. We leverage this property to enable
even source-level privacy protection and efficient DP fine-tuning.

3 PRELIMINARY

3.1 DIFFERENTIAL PRIVACY

Differential privacy (DP) Dwork (2006) provides a rigorous framework to safeguard sensitive data
by ensuring that model outputs remain statistically indistinguishable for datasets differing by a
single record. This guarantee inherently limits the ability of inferring individual record participation,
mitigating risks such as membership inference attacks Shokri et al. (2017). A hallmark of DP is its
robustness to post-processing: if an algorithm A satisfies (ϵ, δ)-DP, any function f ◦ A preserves the
same (ϵ, δ)-DP guarantee.
Definition 1 ((ϵ, δ)-Differential Privacy). A randomized algorithm A is (ϵ, δ)-differentially private
if, for any two neighboring datasets D and D′, differing by one record, and any set of outputs
S ⊆ Range(A), the following holds:

Pr[A(D) ∈ S] ≤ eϵ · Pr[A(D′) ∈ S] + δ, (1)

where ϵ ≥ 0 is the privacy budget, controlling the strength of the privacy guarantee, and δ ∈ [0, 1) is
a small failure probability.

In the context of fine-tuning MLLMs, two datasets D and D′ are defined as neighboring if one can be
obtained from the other by adding or removing a single image-text pair. The application of DP in
iterative training (introduced in Section 3.1.1), relies on fundamental mechanisms and accounting
principles. The Gaussian Mechanism (detailed in Fact A.1) is employed to add noise. To manage the
overall privacy loss across multiple iterations, privacy accounting techniques like Rényi Differential
Privacy (RDP) (detailed in Fact A.2) are utilized. These principles are central to the DP application.

3.1.1 DIFFERENTIALLY PRIVATE SGD
Differentially Private Stochastic Gradient Descent (DP-SGD) Abadi et al. (2016) adapts SGD to
ensure the trained model parameters θ ∈ Rd satisfy an overall (ϵ, δ)-DP guarantee with respect to
Dtrain. In each iteration k, for a minibatch ξk of size m sampled with probability q = m/N : First,
per-sample gradients gi = ∇θL(θk−1, (Ii, Ti)) are computed for each i ∈ ξk. Second, to bound
sensitivity, the L2 norm of each gradient gi is clipped using a threshold C: ĝi = gi/max(1, ∥gi∥2/C).
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This ensures ∥ĝi∥2 ≤ C, thereby limiting the influence of any single sample and resulting in an L2

sensitivity of ∆f = C/m for the subsequent average gradient (details in Appendix B). Third, these
clipped gradients are aggregated by averaging: ḡ = 1

m

∑
i∈ξk

ĝi. Finally, calibrated Gaussian noise
is added to this average gradient before updating:

θk = θk−1 − η ·
(
ḡ +N (0, σ2C2Id/m

2)
)
. (2)

The hyperparameters C (clipping norm) and σ (noise multiplier) control the trade-off between privacy
and utility. The appropriate value for σ is determined based on the overall privacy budget (ϵ, δ), total
training steps, and sampling rate, typically using privacy accounting methods like RDP (Fact A.2).

3.2 PROBLEM DEFINITION: DIFFERENTIALLY PRIVATE FINE-TUNING OF MLLMS

Our work focuses on fine-tuning a pre-trained MLLMMθ with parameters θ ∈ Rd. The fine-tuning
is performed on a private dataset Dfine = {(Ii, Ti)}Ni=1, where each pair consists of an image Ii
and a text sequence Ti = {w1, . . . , wi}. The primary objective is to adapt Mθ to downstream
vision-language tasks by learning parameters θfine that exhibit high utility. This utility is typically
achieved by minimizing an empirical risk, often the negative log-likelihood loss, over the Dfine.

A crucial and defining requirement for this process is that it must adhere to a strict (ϵ, δ)-Differential
Privacy (DP) guarantee (Definition 1) with respect to Dfine. This requires the learning algorithm A
to generate θfine from Dfine and θ under (ϵ, δ)-DP guarantees. The core problem can be summarized
as finding parameters θfine that balance utility and privacy, as formally stated below:

Problem Formulation
Objective: Minimize the empirical risk on the private dataset Dfine:

L(θ,Dfine) :=
1

N

N∑
i=1

(
−

Ti∑
t=1

logPMθ
(wi,t |Ii, wi,1, . . . , wi,t−1)

)
(3)

The learning algorithm A producing θfine from Dfine must be (ϵ, δ)-Differentially Private:

Find θfine ≈ argmin
θ∈Rd

L(θ,Dfine) s.t. A(Dfine) is (ϵ, δ)-DP. (4)

4 METHOD

We introduce Dual-Priv Pruning, the first framework for differential private (DP) fine-tuning of
MLLMs, designed to optimize the privacy-utility trade-off. Mechanism 1 performs attention-based
token pruning and fusion to transform visual input into compact representation V ′. Motivated
by evidence that token quality (not quantity) drives VLM utility and that many visual tokens are
redundant or misaligned, we use [CLS] attention as a prompt-invariant signal to retain information-
dense tokens and fuse non-dominant ones (Yang et al., 2024; Vasu et al., 2024; Shang et al., 2024;
Zhang et al., 2024b). The pruning decision depends on visual tokens (text-agnostic), which shortens
sequences and reduces compute without consuming the DP budget. See more details in Appendix O.
Mechanism 2 applies (ϵ, δ)-DP to trainable parameters θtrain using DP-SGD (Section 3.1.1), enhanced
with a gradient-update pruning strategy to improve utility. This provides formal (ϵ, δ)-DP guarantees
for the entire pipeline. Further details and motivations are in Appendix E, Appendix F,Appendix M
and Appendix O

4.1 MECHANISM 1: VISUAL TOKEN PRUNING AND FUSION

This initial stage reduces the computation cost associated with long visual token sequences before
the differential private fine-tuning process begins. It consists of identifying and retaining the most
important visual tokens based on attention, followed by merging the remaining tokens and applying
noise prior. This stage is not designed to provide the formal DP guarantee.

Dominant Token Selection via CLS Attention. For an input image Ii, the vision encoder extracts
an initial set of n visual tokens V = {vcls, v1, . . . , vn−1}, including a class token vcls and n − 1
patch tokens, where vj ∈ Rd. We hypothesize that tokens receiving significant attention from the
class token ([CLS]) include the most critical global information.

To identify these dominant tokens, we first compute the multi-head self-attention maps within a
selected layer of the vision encoder. The attention map for a single head h is given by:

4
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Figure 1: Overview of our Dual-Priv Pruning. (Left): Visual Token Pruning and Fusion. Using [CLS]
attention, dominant tokens are selected; less important ones are averaged with heuristic noise. (Right):
DP Fine-tuning with gradient pruning. Noise is added to gradients in LLM blocks, and updates are
selectively applied based on noisy gradient magnitude. Frozen parameters remain unchanged.

Sh = Softmax
(
QhK

⊤
h√

Dh

)
∈ Rn×n, (5)

where Qh,Kh are the query and key matrices, and Dh is the head dimension. We average these maps
across all H heads to get an aggregated attention map Savg ∈ Rn×n:

Savg =
1

H

H∑
h=1

Sh. (6)

The importance score sj for each patch token vj (j ∈ {1, . . . , n − 1}) is then determined by the
attention receives from the [CLS] token in the aggregated map. We select the K patch tokens with the
highest importance scores sj as the dominant patch tokens Vd = {vj | sj is among the top K scores}.
The class token vcls is always retained. The remaining patch tokens form the non-dominant set Vnd.

Contextual Token Fusion and Heuristic Noise. To preserve the visual context features from Vnd
while reducing sequence length, we uniformly randomly select tokens vcenter,i from Vnd as cluster
centers and enhance their representation based on cosine similarity with the remaining non-dominant
tokens. Subsequently, Gaussian noise scaled by σ2

fuse is heuristically applied to the enhanced vcenter,
producing the fused contextual tokens c, as defined in the following formula:

c =


vcenter,1 +

1
|C1|

∑
vj∈C1

vj
vcenter,2 +

1
|C2|

∑
vj∈C2

vj
...

vcenter,k + 1
|Ck|

∑
vj∈Ck

vj

+N
(
0, σ2

fuseIkd
)
, (7)

where Ci is the set of non-dominant tokens assigned to the i-th cluster based on similarity:

Ci =
{
vj ∈ Vnd | i = argmax

l
sim(vj , vcenter,l)

}
, i = 1, 2, . . . , k. (8)

The noise adding process serves as a form of regularization or stochasticity injection; A key aspect
of our design is to maintain consistency with the noise introduced by the DP mechanism in the
subsequent stage. Therefore, the variance of this heuristic noise, σ2

fuse, is set to be equivalent to
the variance of the Gaussian noise added per step in the DP optimization process (Mechanism 2,
Section 4.2). It does not contribute to the formal (ϵ, δ)-DP guarantee derived in Mechanism 2. The
final set of visual tokens passed to the MLLM for the DP fine-tuning stage is V ′ = {vcls}∪Vd∪{C},
which has a significantly reduced size of K + |C|+ 1 tokens.

4.2 MECHANISM 2: DP FINE-TUNING WITH GRADIENT-UPDATE PRUNING

This core mechanism performs the (ϵ, δ)-differential private fine-tuning of the trainable parameters
θtrain (e.g., LoRA matrices Hu et al. (2022)), leveraging the pruned visual inputs (V ′, T ) from
Mechanism 2. Our approach builds upon DP-SGD (Section 3.1.1) but introduces a post-noise
adaptive update mechanism designed to enhance utility without compromising the privacy guarantee.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The process within each training iteration t begins with standard DP-SGD procedures. For a
minibatch ξt of size m, we first compute per-sample gradients gi = ∇θtrainL(θt−1; (V ′

i, Ti)). To
bound the influence of individual samples, we clip the L2 norm of each gradient using a threshold
C: ĝi = gi/max(1, ∥gi∥2/C). These clipped gradients are then averaged across the minibatch to
produce ¯̂g = 1

m

∑
i∈ξt

ĝi. The crucial step for ensuring differential privacy follows. Gaussian noise
is added unconditionally to the entire aggregated gradient vector:

g̃ = ¯̂g +N
(
0,

σ2C2

m2
Idtrain

)
. (9)

Here, dtrain is the dimensionality of θtrain, and the noise multiplier σ is determined by the overall
privacy budget (ϵ, δ), number of steps T , and sampling rate q via privacy accounting (Fact A.2). At
this point, the noisy gradient g̃ is an (ϵt, δt)-differentially private quantity for the current step. Our
mechanism diverges from standard DP-SGD hereafter. Instead of directly using g̃ for the update, we
first analyze its structure and magnitude. We partition g̃ into components g̃j corresponding to logical
parameter blocks within θtrain and compute the L2 norm Nj = ∥g̃j∥2 for each block.

Based on these norms, we generate a binary mask M , structured identically to θtrain, to selectively
prune the parameter update. A block j is chosen for update (Mj remains 1): only if its noisy gradient
norm Nj is among the top K% of norms across all blocks, otherwise Mj remains 0.

Mj = I(Nj ∈ Top-K%({N1, N2, . . . , NJ})), (10)

where I(·) is the indicator function, J is the total number of parameter blocks, and Top-K%(·) denotes
the set of the K% largest norm values. The percentage for K% is a hyperparameter.

Finally, the model parameters are updated using the noisy gradient g̃, but applied selectively through
the generated mask M via element-wise multiplication (Hadamard product ⊙):

θt = θt−1 − ηt · (M ⊙ g̃). (11)

This ensures that parameter updates are only applied to blocks where the noisy gradient signal
was deemed sufficiently strong or reliable according to the gating criterion. The full step-by-step
procedure is formally detailed in Section L.

4.3 OVERALL PRIVACY GUARANTEE

The (ϵ, δ)-DP guarantee of the Dual-Priv Pruning method is entirely derived from Mechanism 2
(Section 4.2). Mechanism 1 (Section 4.1) involves data preprocessing before the DP mechanism is
applied and does not consume privacy budget. The adaptive update mechanism within Mechanism 2,
constitutes post-processing on the private intermediate result g̃ and thus does not affect the formal
(ϵ, δ)-DP guarantee (Section D).

5 EXPERIMENTS

We conduct a comprehensive experimental evaluation of our proposed Dual-Priv Pruning method.
Our experiments are designed to validate four core advantages of Dual-Priv Pruning: (1) Preserve
utility, especially under strict privacy budgets (ϵ ≤ 3), compared to baseline methods; (2) Significant
improvements in computation cost, highlighted by an approximate 14.34% reduction in peak GPU
memory usage; and (3) Validated effectiveness on challenging, visual tasks, encompassing high-
resolution real-world scenes and medical images, demonstrating the method’s practical applicability
in complex, privacy-sensitive domains. (4) Empirically shown to be effective against privacy attacks
like Membership Inference Attacks (MIA).

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate performance by fine-tuning on the training sets and evaluating on the test sets
of several vision-language benchmarks. These include standard datasets such as ScienceQA Lu et al.
(2022) (Scientific VQA), TextVQA Singh et al. (2019) (VQA over text in images), and GQA Hudson
& Manning (2019) (Compositional VQA). To specifically assess scalability and robustness on
complex inputs, we utilize MME-RealWorld Zhang et al. (2024a), an MLLM benchmark designed
for high-difficulty tasks involving high-resolution real-world images. Additionally, we incorporate
two medical visual question answering dataset, PathVQA He et al. (2020)and VQA-RAD Lau et al.
(2018), to further test generalization on specialized, challenging domains.

Model & Training Strategy. We utilize LLAVA-7B Liu et al. (2023) as our base MLLM. Specifically,
for tasks in the medical domain (PathVQA, VQA-RAD, and MIA on ROCOV2), we employ Med-
LLaVALi et al. (2023a), a LLaVA variant adapted for medical vision-language understanding. To
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Table 1: Comparison of different methods on standard benchmarks (BS = 12). For reference, non-
private performance (ϵ =∞) are included. Metrics reported are Accuracy (Acc) and Image-based
Accuracy (IMG). The best results for each ϵ setting are shown in bold.

ϵ

DZPO DP-SGD Dual-Priv(ours)

ScienceQA TextVQA GQA ScienceQA TextVQA GQA ScienceQA TextVQA GQA

Acc(%) IMG Acc(%) Acc(%) Acc(%) IMG Acc(%) Acc(%) Acc(%) IMG Acc(%) Acc(%)

1 23.30 21.50 1.13 0.00 81.54 72.51 34.52 38.61 84.20 78.43 34.74 39.06
3 21.50 19.90 2.82 0.00 78.80 70.59 35.64 39.11 82.80 75.98 35.17 39.65
8 21.50 19.90 1.31 0.00 82.52 74.00 35.60 39.16 85.10 76.47 35.71 39.78
∞ 22.16 0.98 0.95 0.00 81.10 73.53 34.89 38.92 84.60 79.41 35.53 39.06

isolate the impact of DP fine-tuning methods, we do not perform additional instruction tuning stages
beyond the initial pre-training of LLAVA. Parameter-efficient fine-tuning is achieved using LoRA Hu
et al. (2022) (rank r = 128, scaling α = 256) with batch size 12. The reported batch size (B = 12)
serves as a user-facing hyperparameter to define the sampling rate q = B/N , where N is the total
number of training samples. Our privacy accounting rigorously uses this sampling rate with the Rényi
Differential Privacy (RDP) Accountant, which correctly handles the mechanics of Poisson sampling..
All models are trained on the train set using the Adam optimizer Kingma & Ba (2014) with a learning
rate of 2e-4 for 1 epoch. We use 4 A100 40G GPUs for training.

DP Implementation. We guarantee (ϵ, δ)-DP via the Gaussian Mechanism Privacy loss is tracked
using Rényi Differential Privacy(RDP) Mironov (2017). We set δ close to the inverse dataset size
(1/N ) and evaluate across strict to mild privacy budgets: ϵ ∈ {1, 3, 8}. Per-sample gradients are
clipped at a maximum L2 norm of C = 1.0.

Baselines. Our Dual-Priv Pruning method is compared against: DP-SGD Abadi et al. (2016): The
standard baseline for DP fine-tuning, applying Gaussian noise to the averaged clipped gradients of
all trainable parameters. DPZO Tang et al. (2024): A representative zeroth-order DP optimization
method, included to assess alternatives that avoid direct gradient computation. Detailed for baselines
are in Appendix G.

Dual-Priv Pruning Configuration. Mechanism 1 (Section 4.1) retains K = 191 attention-selected
visual tokens plus [CLS] and 30 fused token (40% of total). Mechanism 2 (Section 4.2) employs
gradient-update pruning by selecting parameter blocks for update if their noisy gradient norms are
among the top 80% of all block norms (Eq. (10)).
5.2 PERFORMANCE ON STANDARD BENCHMARKS

The performance comparison on standard benchmarks is presented in Table 1. Our proposed Dual-
Priv method consistently outperforms both DP-SGD and DP-ZO across all tested settings. The
advantage is particularly pronounced on ScienceQA, where at ϵ=3, our method achieves an accuracy
of 82.80%, significantly surpassing DP-SGD (78.80%). This demonstrates our approach’s superior
ability to preserve essential visual information through token and gradient pruning. While DP-ZO’s
performance is non-competitive due to convergence issues, our method maintains a consistent edge
over the strong DP-SGD baseline.

Table 2: Average accuracy (%) on visual
tasks, showing the global privacy-utility
trend.

Method ϵ = 1 ϵ = 3 ϵ = 8 ϵ = ∞
DP-SGD 48.54 48.44 49.11 49.58
Dual-Priv 50.74 50.26 50.65 51.33

We observe a non-monotonic relationship between util-
ity and the privacy budget ϵ in some individual cases, a
known phenomenon in DP fine-tuning of large models
where noise can act as a regularizer against overfitting Liu
et al. (2025a; 2024). However, despite these local fluctua-
tions, the average performance across all our benchmarks,
summarized in Table 2, already conforms to the expected
global privacy-utility trade-off. It shows that, on average,
higher privacy budgets generally lead to higher utility for both methods. To rigorously and definitively
demonstrate this trade-off at a granular level, we performed an extended analysis under much stricter
privacy constraints (ϵ∈{0.5, 0.1, 0.05}). These results, detailed in Appendix N, show a clear and
consistent trend where utility systematically declines as privacy becomes stricter. This confirms the
robustness of our method and its adherence to the fundamental trade-off, especially in the challenging
low-ϵ regime where our performance margin over baselines remains significant.
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Table 3: Comparison on PathVQA and VQA-RAD under different DP budgets (ours on the right).

ϵ

DPZO DP-SGD Ours (Dual-Priv)

PathVQA VQA-RAD PathVQA VQA-RAD PathVQA VQA-RAD

BLUE EXT F1 Acc(%) BLUE EXT F1 Acc(%) BLUE EXT F1 Acc(%)

1 0.6534 0.0301 0.0592 0.0 0.7222 0.3732 0.3675 47.3 0.7385 0.3840 0.3792 48.6

3 0.6534 0.0301 0.0592 0.0 0.7257 0.3712 0.3653 48.1 0.7263 0.3738 0.3701 48.8

8 0.6534 0.0301 0.0592 0.0 0.7140 0.3683 0.3635 46.8 0.7195 0.3763 0.3713 49.0
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Figure 2: Average GPU memory consumption (in GB) during fine-tuning for DPZO, DP-SGD, and
our Dual-Priv Pruning across four datasets: ScienceQA, MME-RealWorld (evaluated on 4xA100 40G
GPUs), and TextVQA, GQA (evaluated on a single H20 96GB GPU). Experiments were conducted
with varying privacy budgets (ϵ ∈ {1, 3, 8}). Lower bars indicate greater memory efficiency.

5.3 PERFORMANCE ON MEDICAL VISUAL TASKS

To further assess applicability in privacy-sensitive domains, we evaluated performance on
PathVQA He et al. (2020) (pathology) and VQA-RAD Lau et al. (2018) (radiology). Table 3
presents a detailed comparison of performance under different privacy budget. Our method, con-
sistently outperformed DP-SGD across all the metrics, particularly under stricter privacy budgets.
For ϵ = 1: on PathVQA, our approach achieved scores of 0.74(BLUE), 0.38 (EXT), and 0.38 (F1),
compared to DP-SGD’s 0.72, 0.37, and 0.37, respectively. On VQA-RAD, our method achieved an
accuracy of 48.60%, surpassing DP-SGD (47.30%). The DPZO baseline performed poorly on both
medical datasets. These consistent gains underscore the potential of Dual-Priv Pruning for tuning
MLLMs on sensitive medical data while effectively balancing privacy and utility.

5.4 PERFORMANCE ON HIGH RESOLUTION VISUAL TASKS

Table 4: Accuracy (%) on the MME-RealWorld
Benchmark (Lite version evaluation, BS=12).

Method ϵ = 1 ϵ = 3 ϵ = 8 ϵ =∞
DPZO 0.89 19.80 6.33 22.67
DP-SGD 35.44 44.03 42.17 44.50
Ours (Dual-Priv) 43.98 45.34 44.40 42.16

We evaluate our method on the MME-
RealWorld benchmark Zhang et al. (2024a) to
test its efficacy on tasks requiring fine-grained
visual perception, a known challenge for DP
methods. After DP-finetuning on the training
set, models are evaluated on the benchmark’s lite
version. As shown in Table 4, Dual-Priv demon-
strates a decisive advantage over both baselines.
Under the strict ϵ = 1 constraint, our method reaches 43.98% accuracy, significantly outperforming
DP-SGD’s 35.44%. This robust performance gain highlights Dual-Priv’s effectiveness in preserv-
ing complex reasoning abilities despite DP noise, suggesting its strong potential for deploying
privacy-preserving MLLMs in real-world applications

5.5 COMPUTATIONAL EFFICIENCY ANALYSIS

Figure 2 illustrates the average GPU memory usage during fine-tuning for our method compared to
the baselines. Across the evaluated datasets, scienceqa on 4 A100s, Dual-Priv Pruning achieves an
average reduction in average GPU memory usage of approximately 14.34%. Although DPZO
slightly reduces 1.74% GPU memory compared with our approach. ( It costs 16.7% more time per
training step and causes a 56.3% performance loss ). But during tested in H20, our method achieve
the lowest consumption of GPU memory. This highlights Dual-Priv Pruning’s strength in achieving a
favorable balance between model performance and robust computational efficiency, thereby making
DP fine-tuning for MLLMs more practical. Dual-Priv enables the DP fine-tuning of MLLMs with
more constrained resources.
5.6 ABLATION STUDY
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Table 5: Ablation on ScienceQA.

Configuration ACC IMG

Full Method 84.20 78.43
w/o Fusion Noise 83.50 76.47
Mechanism 2 Only 83.00 76.96
Mechanism 1 + Uniform DP 82.80 74.51

Ablation results on ScienceQA (ϵ = 1) are in Table 5. The
”w/o Fusion Noise” setting (omitting input-level noise) re-
duces performance to 83.50/76.47 (ACC/IMG) versus the
Full Method’s 84.20/78.43, indicating that preconditioning
inputs with DP-consistent noise provides an auxiliary perfor-
mance benefit without adding a tunable hyperparameter for
this noise. Removing Mechanism 1 (token pruning; Mecha-
nism 2 Only) lowers accuracy to 83.00/76.96 and eliminates the computational-efficiency benefits.
Replacing Mechanism 2’s selective update with uniform DP-SGD noise further degrades performance
to 82.80/74.51, confirming the effectiveness of our adaptive update strategy. These findings demon-
strate that both Mechanism 1 and Mechanism 2 are crucial components to the overall performance of
dual-private pruning.

5.7 IMPACTS OF PRUNING RATIOS

81

81.5

82

82.5

83

83.5

84

84.5

85

82.80 

84.20 

81.60 

82.00 

81.10 

ACC 
ACC 

100% 80% 60% 50% 10%
62

64

66

68

70

72

74

76

78

80

82

IMG 
IMG 

70% 40% 30% 20% 10%

 （a)

75.49 

78.43 

76.47 

74.51 

62.75 

  （b)

Figure 3: Pruning ratios impacts on ScienceQA
(ϵ = 1). (a) percentage of top K% gradient blocks
updated (Mechanism 2). (b) percentage of visual
tokens retained (Mechanism 1).

We examine the impact of different pruning ra-
tios within the Dual-Priv Pruning framework
on the ScienceQA dataset (ϵ = 1). Figure 3
(a) shows how the gradient-update pruning
ratio relates to overall accuracy (ACC): ACC
peaks at 84.20 when updating the top 80% of
blocks; updating all blocks lowers ACC to 82.80,
and lower ratios (60%, 50%, 10%) yield 81.60,
82.00, and 81.10. Figure 3 (b) shows how the vi-
sual token retention ratio affects image-based
accuracy (IMG): IMG peaks at 78.43% with
40% token retention; retaining more (70%) lowers IMG to 75.49, and retaining fewer reduces perfor-
mance (76.47 at 30%, 74.51 at 20%), dropping sharply to 62.75 at 10%. These results highlight a
trade-off in both pruning mechanisms: optimal performance retains sufficient signal (visual features
or gradient updates) while pruning elements that might be redundant or overly affected by DP noise.

5.8 PERFORMANCE UNDER MEMBERSHIP INFERENCE ATTACKS
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Figure 4: Radar chart of AUC under
varying Rényi entropy orders and top en-
tropy percentages. Metrics use strict pri-
vacy budget (ϵ=1). Distribution places
smaller values near edges.

To further test the privacy protection capability of our ap-
proach, we validate the performance through membership
inference attack.The latest MIA design for MLLM Li et al.
(2024b) was adopted as the evaluation pipeline. Models
were DP-finetuned on privacy sensitive medical image
caption dataset ROCOV2Rückert et al. (2024) with the
batchsize of 12 following the standard setup (Section 5.1).
Extensive experiments demonstrate that our work outper-
form both DPZO and DPSGD across metrics include AUC
and ACC, especially in protecting visual information as it
benefit from adding heuristic fusion noise in Mechanism
1. As shown in Figure 4, attacks on our model yield the
lowest AUC under almost every Rényi-entropy order and
top-entropy selection percentage, meaning that under the
same attack pipeline Dual-Priv Pruning makes distinguish-
ing a database member least likely compared with other
methods. Further data suggest that our method has a strong ability to prevent the MLLM from
assigning a higher “membership score” to a randomly chosen member than to a randomly chosen
non-member, bringing the membership-inference attack close to random guessing; see Appendix I
for details.
6 CONCLUSION

In this work, we introduced Dual-Priv Pruning, the first framework for efficient differential private
fine-tuning of Multimodal Large Language Models. Our approach combines visual token pruning with
an input noise strategy aligned with DP noise intensity, and a gradient-update pruning mechanism.
Extensive experiments demonstrate that Dual-Priv Pruning achieves a compelling privacy-utility
trade-off, significantly reducing computational overhead while maintaining competitive performance,
especially under stringent privacy budgets. This work represents a crucial first step towards practical
privacy-preserving MLLM deployment.
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7 ETHICS STATEMENT

This work introduces Dual-Priv Pruning, a framework that integrates visual token pruning and
gradient-update pruning as complementary mechanisms for differentially private fine-tuning in
MLLMs. We acknowledge the dual-use nature of security research and have taken deliberate steps to
mitigate associated risks. All experiments are strictly confined to public benchmarks and open-source
models, never involving deployed or proprietary systems, which ensures reproducibility while prevent-
ing real-world harm. This study did not involve new data collection, human subjects, or personally
identifiable information, and complies with all dataset licenses. To prevent misuse, any released arti-
facts will be shared under a research-only license. We are committed to the responsible advancement
of scientific knowledge, were mindful of our computational budget to limit environmental impact,
and adhere to the ICLR Code of Ethics.

8 REPRODUCIBILITY STATEMENT

We ensure the reproducibility of our results by releasing the source code, baseline implementations,
and all experimental scripts upon publication. Our evaluation is conducted entirely on publicly
available benchmarks (ScienceQA, TextVQA, GQA, MME-RealWorld, PathVQA, and VQA-RAD)
using accessible backbones (LLaVA-7B and Med-LLaVA). Detailed descriptions of datasets, model
architectures, training strategies, hyperparameters, and privacy accounting are provided in Section 5.1
and the Appendix, enabling independent verification of our findings.
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A KEY DIFFERENTIAL PRIVACY FACTS

The following facts elucidate key DP properties essential for MLLM fine-tuning:

Fact A.1 (Sensitivity and the Gaussian Mechanism Dwork et al. (2014)). To protect the output of a
function f using noise, we first need to leverage its L2 sensitivity ∆f . This measures the maximum
possible change ∥f(D)− f(D′)∥2 when the input dataset changes by one record. If ∆f is known
(or bounded), the Gaussian Mechanism adds noise N (0, σ2

GMI) where the standard deviation σGM

is related to ∆f and depends on the desired single-step privacy (ϵ, δ), calculated as:

σGM ≥
∆f
√

2 ln(1.25/δ)

ϵ
. (12)

Fact A.2 (Privacy Accounting via RDP Mironov (2017)). Privacy accounting methods are essential
for tracking this privacy loss. Rényi Differential Privacy (RDP) Mironov (2017) is widely used for
such accounting Abadi et al. (2016). The RDP accountant’s practical role is to, given a target overall
privacy budget (ϵ, δ), total training steps T , and sampling rate q, compute the required per-step noise
multiplier σ ( 3.1.1) and suggest a clipping norm C to meet the (ϵ, δ)-DP guarantee. Mathematical
details are in Appendix C.

B SENSITIVITY ANALYSIS FOR DP-SGD UNDER ADD-OR-REMOVE
ADJACENCY

In DP-SGD (Definition 3.1.1), we apply the Gaussian Mechanism to the average of per-sample
clipped gradients. The choice of adjacency definition for datasets D and D′ (i.e., how they differ
by ”one record”) impacts the sensitivity calculation. As stated in Definition 1, our work considers
add-or-remove adjacency, where neighboring datasets differ by the addition or removal of a single
image-text pair.

Consider the function f(D, θ) =
∑

xi∈D ĝi(θ), which is the sum of clipped gradients ĝi for all
samples xi in a dataset D. Each per-sample clipped gradient satisfies ∥ĝi∥2 ≤ C. If we consider two
neighboring datasets D and D′ where D′ = D ∪ {x∗} (i.e., x∗ is added), then:

∥f(D, θ)−f(D′, θ)∥2 = ∥
∑
xi∈D

ĝi(θ)−(
∑
xi∈D

ĝi(θ)+ ĝx∗(θ))∥2 = ∥− ĝx∗(θ)∥2 = ∥ĝx∗(θ)∥2 ≤ C.

Similarly, if D′ = D \ {x∗} (i.e., x∗ is removed), the difference is also bounded by C. Thus, the L2

sensitivity of the sum of clipped gradients is ∆2f = C.

In DP-SGD, we typically compute gradients over a minibatch ξt of size m sampled from the full
dataset Dtrain (of size N ) with sampling probability q = m/N . The noisy update is applied to the
average of these clipped gradients: ḡ = 1

m

∑
i∈ξt

ĝi. For the per-iteration application of DP-SGD
with minibatch sampling, the effective L2 sensitivity of the quantity to which noise is added (the
average gradient) is commonly taken as C

m under the add-or-remove model when considering the
privacy implications for each individual sample’s contribution to this average Abadi et al. (2016);
Dwork et al. (2014). More precisely, the clipping ensures that the maximum influence of any single
user’s data on the sum of gradients in a batch is C. When this sum is averaged over m samples, the
change due to one user’s data (if that user were removed from the entire dataset) can be bounded
appropriately, leading to the noise calibration based on C.

The noise added in DP-SGD (Eq. (2)) is N (0, σ2C2Id/m
2). This formulation inherently uses C as

the sensitivity for the sum of gradients in the batch if we consider each sample’s gradient to be a
distinct quantity to be protected, and then this noise is scaled by 1/m due to averaging (equivalently,
the sensitivity of the average is C/m). The critical point is that clipping each per-sample gradient to
C bounds its maximum possible contribution. The privacy analysis with subsampling (accounted for
by the RDP accountant) then correctly tracks the privacy loss given this per-sample bound C.

Therefore, the clipping norm C directly bounds the L2 norm of each individual’s contribution before
aggregation and noise addition. The Gaussian Mechanism (Fact A.1) is then applied using this
understanding, where the effective sensitivity for the noisy average gradient computation in DP-SGD
is appropriately scaled by C.
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C RÉNYI DIFFERENTIAL PRIVACY (RDP) ACCOUNTING

RDP Mironov (2017) provides a way to track privacy loss using Rényi divergence of order
α, denoted Dα(P ||Q). An algorithm A is (α, ρ)-RDP if for all neighboring datasets D,D′,
Dα(A(D)||A(D′)) ≤ ρ. Key properties include:

• Composition: If A1 is (α, ρ1)-RDP and A2 is (α, ρ2)-RDP, their composition A2 ◦ A1 is
(α, ρ1 + ρ2)-RDP. This simplifies tracking loss over multiple steps.

• Gaussian Mechanism RDP: Adding N (0, σ2
GMI) noise to a function with L2 sensitivity

∆f satisfies (α, α(∆f)2

2σ2
GM

)-RDP for any α > 1.

• Subsampling Amplification: Sampling a minibatch with rate q before applying a DP
mechanism amplifies privacy. RDP provides tight bounds for this, especially for Poisson
sampling Abadi et al. (2016) and uniform sampling without replacement.

• Conversion to (ϵ, δ)-DP: If an algorithm is (α, ρ)-RDP for all α in some range, it satisfies
(ϵ, δ)-DP where ϵ = ρ+ log(1/δ)

α−1 . We typically optimize over α to find the tightest ϵ for a
given δ.

The privacy accountant takes T, q, the per-step RDP parameters (derived from the Gaussian mecha-
nism using C and σ), applies composition and subsampling rules to get the total RDP parameters
(α, ρtotal), and converts this to the final (ϵ, δ). It can also work backwards: given target (ϵ, δ), T, q,
find the required σ.

D POST-PROCESSING PROPERTY OF DIFFERENTIAL PRIVACY

The post-processing property is a fundamental and powerful feature of differential privacy Dwork
et al. (2014). It states that applying any arbitrary data-independent computation to the output of a
differentially private algorithm does not compromise its privacy guarantee.

Formal Statement: Let A : Dn → R be an (ϵ, δ)-differentially private algorithm, where Dn is the
space of possible datasets andR is the output range. Let f : R → R′ be any arbitrary randomized or
deterministic function whose computation does not depend on the original private dataset D (it only
takes the output of A as input). Then the composite algorithm f ◦ A (which first runs A on the input
dataset and then applies f to the result) is also (ϵ, δ)-differentially private.

Intuition: The privacy guarantee provided by A ensures that its output Y = A(D) is already
”privacy-safe” – observing Y reveals limited information about any individual in D. The function f
only gets access to this already protected output Y . Since f has no additional access to the original
sensitive data D, it cannot ”undo” the privacy protection or learn anything more about individuals in
D than what was already bounded by the (ϵ, δ)-DP guarantee of A.

Proof Sketch: We want to show that for any neighboring datasets D,D′ and any set of outcomes
S′ ⊆ R′:

Pr[(f ◦ A)(D) ∈ S′] ≤ eϵ · Pr[(f ◦ A)(D′) ∈ S′] + δ

Let Y = A(D) and Y ′ = A(D′). The event (f ◦ A)(D) ∈ S′ means f(Y ) ∈ S′. Let Sf = {y ∈
R | f(y) ∈ S′} be the set of outputs from A that f maps into S′. Then, Pr[(f ◦ A)(D) ∈ S′] =
Pr[Y ∈ Sf ] = Pr[A(D) ∈ Sf ]. Similarly, Pr[(f ◦ A)(D′) ∈ S′] = Pr[A(D′) ∈ Sf ]. Since A is
(ϵ, δ)-DP and Sf is a valid subset of its output rangeR, we know from Definition 1:

Pr[A(D) ∈ Sf ] ≤ eϵ · Pr[A(D′) ∈ Sf ] + δ

Substituting back, we get:

Pr[(f ◦ A)(D) ∈ S′] ≤ eϵ · Pr[(f ◦ A)(D′) ∈ S′] + δ

This holds for any S′, proving that f ◦ A is (ϵ, δ)-DP.

Relevance to MLLM Fine-tuning: In our context, the DP-SGD algorithmA takes the private dataset
Dfine and produces the model parameters θfine. The act of generating a prediction for a new input x,
i.e., computing Mθfine(x), can be viewed as a post-processing function f applied to θfine. Therefore,
the generated predictions inherit the same (ϵ, δ)-DP guarantee with respect to the fine-tuning dataset
Dfine.
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E MOTIVATION FOR MECHANISM 1: VISUAL TOKEN PRUNING AND FUSION

This appendix details the motivation behind the visual input preprocessing performed in Mechanism
1 of our Dual-Priv Pruning method (Section 4). This stage operates before the formal Differentially
Private (DP) fine-tuning in Mechanism 2 (§4.2) and is designed to address key challenges in applying
DP to Multimodal Large Language Models (MLLMs). Specifically, it aims to reduce computation
cost and potentially improve the utility outcome under DP constraints by modifying the visual token
sequence.

E.1 ADDRESSING COMPUTATION COST AND VISUAL REDUNDANCY

Fine-tuning MLLMs using DP-SGD can be computationally demanding, due to the high number of
visual tokens (n) generated by the vision encoder. It has been observed that considerable redundancy
exists within the visual tokens generated by Vision Transformers (ViTs), and not all tokens are equally
important for downstream task performance Kong et al. (2022); Haurum et al. (2023). Building on the
insight that attention scores often correlate with token importance Haurum et al. (2023), Mechanism 1
identifies and retains only the top-K tokens receiving the highest aggregated attention from the [CLS]
token. This selective pruning significantly shortens the sequence length processed in Mechanism
2, thereby directly reducing computation overhead. This strategy aligns with research exploring
attention-based token pruning in ViTs Kong et al. (2022); Rao et al. (2021).

E.2 PRESERVING CONTEXT VIA TOKEN FUSION

While pruning reduces costs, simply discarding less attended tokens might remove valuable contextual
information. To mitigate this, Mechanism 1 adopts a fusion strategy inspired by techniques that aim
to compress information from pruned parts of a network or input Wei et al. (2023). We merge the
non-dominant tokens (Vnd) into selected context tokens (c). This allows us to maintain a drastically
reduced sequence length for efficiency while still incorporating a summarized representation of
the less critical visual information, aiming for a better balance between computational savings and
information preservation.

E.3 HEURISTIC NOISE INJECTION: MOTIVATIONS AND POTENTIAL BENEFITS

The final step of Mechanism 1 introduces heuristic Gaussian noise to the fused context tokens (c)
(Eq. equation 7). This deliberate noise injection is multifaceted, aiming to potentially enhance the
subsequent DP fine-tuning process:

• Regularization against DP Noise: Adding noise is a known regularization tech-
nique (Bishop, 1995; Noh et al., 2017). Injecting noise specifically into the summarized,
less critical token representation might act as targeted input regularization. This could
potentially improve the model’s robustness against the gradient perturbations inherent in the
DP mechanism.

• Encouraging Focus on Critical Tokens: By introducing stochasticity primarily to the
fused context token, the model might be implicitly encouraged during fine-tuning to rely
more heavily on the stable, un-noised dominant tokens (Vd, vcls). This could help preserve
utility related to salient image features.

• Connection to Learning with Noise Priors: Although mechanically different, this strategy
shares a conceptual link with methods improving DP training by incorporating knowledge
from noisy processes Tang et al. (2023a).Our direct noise injection might serve a similar
purpose by preconditioning the model with input stochasticity, potentially enhancing its
resilience to the noise required for the DP guarantee in Mechanism 2.

• Conceptual Input-Level Obfuscation: While not contributing to the formal DP guarantee,
manipulating the representation of less critical tokens with heuristic noise offers a degree of
data obfuscation at the input level. This might provide some practical hardening against
certain inference attacks targeting those specific, less informative image regions.
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It is crucial to emphasize that the noise added in Mechanism 24.1 (σ2
fuse) is heuristic. It is not

calibrated according to DP principles and serves as a hyperparameter tuned for its potential benefits
to utility and robustness.

F MOTIVATION FOR MECHANISM 2 GRADIENT-UPDATE PRUNING

The post-noise adaptive update mechanism described in Section 4.2 is motivated by the goal of
enhancing model utility under the constraints imposed by DP-SGD noise. Standard DP-SGD applies
the noisy gradient g̃ (Eq. (9)) uniformly to all trainable parameters θtrain. However, the added noise can
significantly perturb or even dominate the true gradient signal, especially for parameter blocks where
the original gradient magnitude was small or when operating under strict privacy budgets (requiring
large σ). Applying updates based on such noise-dominated gradients might hinder convergence or
lead to suboptimal performance.

Our strategy addresses this by analyzing the noisy gradient g̃ after the privacy-preserving noise has
been added. By partitioning g̃ into logical blocks g̃j and examining their L2 norms Nj = ∥g̃j∥2,
we attempt to identify blocks where the signal likely outweighs the noise. The assumption is
that a relatively large norm Nj suggests that the original aggregated gradient component ¯̂gj was
sufficiently strong to persist despite the noise addition, thus indicating a more reliable update direction.
Conversely, a small norm Nj might indicate that the true signal was weak or was largely cancelled by
the random noise vector.

The gating mechanism (Eq. (10)) leverages this analysis. By generating a mask M that selectively
allows updates only for blocks with high noisy-gradient norms (i.e., where Mj = 1), we filter out
potentially detrimental updates arising from low-signal or noise-dominated gradient components.
The final masked update (Eq. (11)) focuses the optimization process on parameter blocks associated
with stronger, potentially more informative, noisy gradient signals. This aims to improve the effective
signal-to-noise ratio of the updates applied to the model, potentially leading to better convergence,
improved utility, and a more favorable privacy-utility trade-off for the given privacy budget (ϵ, δ).

G BASELINE DETAILS

This section provides detailed descriptions, algorithms, and hyperparameter configurations for the
baseline methods used in our comparative experiments.

G.1 DP-SGD BASELINE

We implement the standard Differentially Private Stochastic Gradient Descent (DP-SGD) algo-
rithm Abadi et al. (2016), formally defined in 3.1.1. This method involves computing per-sample
gradients, clipping their L2 norms, averaging the clipped gradients, and adding calibrated Gaussian
noise before updating the model parameters. It serves as the primary benchmark for differentially
private optimization in deep learning. The hyperparameter configuration used for DP-SGD is detailed
in Table 6.

G.2 DPZO BASELINE

DPZO (Differentially Private Zeroth-Order Optimization) Tang et al. (2024) is a gradient-free DP
optimization method. It approximates the gradient direction using finite differences based on random
perturbations and privatizes only a scalar value representing the estimated directional derivative (loss
difference). This avoids the memory overhead associated with storing per-sample gradients, but often
requires significantly more iterations for convergence compared to DP-SGD. Algorithm 3 outlines the
core mechanism adapted from Tang et al. (2024). The specific configuration used in our experiments
is presented in Table 7.
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Table 6: Hyperparameter Configuration for DP-SGD Baseline.

Parameter Value

Base Model LLAVA-7B Liu et al. (2023)
Fine-tuning Method LoRA Hu et al. (2022)
LoRA Rank (r) 128
LoRA Alpha (α) 256
Optimizer Adam Kingma & Ba (2014)
Learning Rate 2e-4
Batch Size 12
Epochs 1

DP Parameters
Clipping Norm (C) 1.0
Target δ ≈ 1/N (Inverse dataset size)
Target ϵ Values {1, 3, 8,∞}
Noise Multiplier (σ) Calculated via RDP Mironov (2017)

based on target (ϵ, δ), C, q, and total steps.

Table 7: Hyperparameter Configuration for DPZO Baseline.

Parameter Value

Base Model LLAVA-7B Liu et al. (2023)
Fine-tuning Method LoRA Hu et al. (2022)
LoRA Rank (r) 128
LoRA Alpha (α) 256
Learning Rate (η) 2e-4
Perturbation Scale (ϕ) 0.15
Batch Size 12
Epochs 1

DP Parameters
Clipping Norm (CZO) 1.0
Target δ ≈ 1/N
Target ϵ Values {1, 3, 8,∞}
Noise Multiplier (σZO) Calculated via RDP accountant based on target (ϵ, δ), CZO, q = m/N , T .

H DETAILED RESULTS ON MEDICAL DATASETS

This section provides the detailed performance results for the experiments on the PathVQA and
VQA-RAD datasets, as referenced in Section 5.1. All experiments used a batch size (BS) of 12.

Table 8: Detailed performance on PathVQA (BS=12). Higher is better for BLUE, EXT, F1. Best DP
results in bold.

ϵ
Ours (Dual-Priv) DPZO DP-SGD

BLUE EXT F1 BLUE EXT F1 BLUE EXT F1

1 0.7385 0.3840 0.3792 0.6534 0.0301 0.0592 0.7222 0.3732 0.3675
3 0.7263 0.3738 0.3701 0.6534 0.0301 0.0592 0.7257 0.3712 0.3653
8 0.7195 0.3763 0.3713 0.6534 0.0301 0.0592 0.7140 0.3683 0.3635
∞ 0.7430 0.3880 0.3841 0.6534 0.0301 0.0592 0.7182 0.3927 0.3879

I ADDITIONAL DETAILS ON MEMBERSHIP INFERENCE ATTACK

This section provides the additional details for the experiments with membership inference attack, as
referenced in Section 5.8. All experiments used a batch size(BS) of 12. We randomly sample 6,000
image-text pairs from the ROCOV2 dataset for evaluation and randomly sampled 3000 image-text
pairs as the member dataset for training. To fit the LLaVA-VQA formulation, we randomly use these
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Table 9: Detailed accuracy (%) on VQA-RAD (BS=12). Higher is better. Best DP result in bold.

ϵ Ours (Dual-Priv) DPZO DP-SGD

1 48.6 0.0 47.3
3 48.8 0.0 48.1
8 49.0 0.0 46.8
∞ 47.9 0.0 48.3

prompts:”Please describe the image in detail.”, ”What is shown in this medical image?”, ”Describe
the contents of this image.”, ”What does this image depict?”, ”Provide a detailed description of this
image.”, ”Please analyze this medical image.”, ”Describe the medical image in detail.”, ”Describe the
condition depicted in the image.”, ”Please provide a caption for this image.”

J LIMITATIONS

Our study demonstrates the effectiveness of Dual-Priv Pruning for DP fine-tuning MLLMs. While
our evaluations on a 7B MLLM are thorough, extending the assessment to MLLMs of substantially
different scales would provide a broader understanding of the approach’s scalability.

K BROADER IMPACTS

The development of Dual-Priv Pruning contributes to the critical area of privacy-preserving machine
learning, particularly for Multimodal Large Language Models (MLLMs). The primary societal
benefit lies in its potential to significantly enhance data privacy when fine-tuning MLLMs on sensitive
datasets. By integrating Differential Privacy (DP) with improved efficiency and utility, our work
can empower the responsible use of MLLMs in domains handling personal information, such as
healthcare or finance, thereby protecting individuals from data leakage. This advancement may
also lower barriers to adopting privacy-enhancing technologies, encouraging a broader shift towards
responsible AI practices and facilitating research on valuable sensitive datasets that might otherwise
remain underutilized due to privacy risks. Ultimately, robust privacy measures like those explored
can foster greater public trust in AI systems, which is vital for their ethical and successful integration
into society.

However, it is important to consider the broader context. While DP offers strong mathematical privacy
guarantees, these are contingent upon correct implementation and careful parameter selection, and
they address specific threats related to individual data contributions rather than all conceivable privacy
concerns. A nuanced understanding is crucial to avoid a false sense of absolute security. The inherent
trade-off between privacy protection and model utility, though mitigated by our approach, persists; in
certain high-stakes applications, even minor performance degradation due to DP noise could have
notable implications if not carefully weighed. Furthermore, the expertise required to effectively
implement and tune DP mechanisms remains a consideration for broader accessibility. While our
method focuses on the privacy of training data, the underlying MLLM technology itself, regardless
of how it’s fine-tuned, could still be subject to misuse if its outputs are leveraged for unintended or
harmful purposes.

Our research is a step towards more responsible AI development. We believe continued efforts in
the community are essential to further refine the balance between privacy and utility, enhance the
usability of DP tools, and promote comprehensive education on both the capabilities and limitations
of such privacy-enhancing technologies. Addressing fairness and bias within DP-trained models also
remains an important ongoing pursuit. This work is presented as foundational research to advance
privacy in MLLM fine-tuning, with the anticipation that its net impact will be positive by enabling
more secure and trustworthy AI applications.
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L ALGORITHM FOR BASELINES AND DUAL-PRIV PRUNING

Algorithm 1 provides the detailed step-by-step procedure for the Stage 2 DP fine-tuning process
described in Section 4.2 of the main paper. While Algorithm 2 outlines the standard DP-SGD baseline,
and Algorithm 3 details the DPZO baseline.

Algorithm 1 Dual-Priv Pruning: Mechanism 2 (DP Fine-tuning with Gradient-Update Pruning)

Require: Initial trainable parameters θtrain0 , dataset D = {(V ′
i, Ti)}Ni=1 (with pre-processed visual

inputs V ′
i), learning rate schedule ηt, gradient clipping norm C, noise multiplier σ (derived from

target ϵ, δ), batch size m, total training steps T , number of logical parameter blocks J in θtrain,
top-K percentage PK .

1: for t = 1, . . . , T do
2: Sample minibatch ξt = {(V ′

k, Tk)}mk=1 ⊂ D of size m.
3: Initialize list of per-sample gradients Glist = [].
4: for each sample (V ′

k, Tk) ∈ ξt do
5: Compute gradient gk ← ∇θtraint−1

L(θtraint−1
; (V ′

k, Tk)).
6: Clip gradient: ĝk ← gk/max(1, ∥gk∥2/C).
7: Append ĝk to Glist.
8: end for
9: Aggregate clipped gradients: ¯̂g ← 1

m

∑
ĝk∈Glist

ĝk.

10: Add Gaussian noise: g̃ ← ¯̂g +N
(
0, σ2C2

m2 Idtrain

)
.

11: Partition g̃ into J components {g̃1, . . . , g̃J} corresponding to logical parameter blocks.
12: Compute L2 norms for each block: Nj ← ∥g̃j∥2 for j = 1, . . . , J .
13: Initialize mask M as a zero tensor with the same block structure as θtrain.
14: Let Kcount ← ⌈(PK/100) · J⌉.
15: Let Stop indices be the set of indices of the Kcount blocks with the largest norms Nj .
16: for each block index j ∈ Stop indices do
17: Set corresponding part of mask Mj ← 1 (vector/matrix of ones for block j).
18: end for
19: Update parameters: θtraint ← θtraint−1 − ηt · (M ⊙ g̃).
20: end for
21: return θtrainT .

Algorithm 2 Differentially Private Stochastic Gradient Descent (DP-SGD, adapted from Abadi et al.
(2016))

Require: Initial model parameters θ0, dataset D = {(Ii, Ti)}Ni=1 (or generic xi), learning rate ηt,
clipping norm C, noise multiplier σ, batch size m, total steps T .

1: for t = 1, . . . , T do
2: Sample minibatch ξt = {xk}mk=1 ⊂ D of size m.
3: Initialize list of per-sample gradients Glist = [].
4: for each sample xk ∈ ξt do
5: Compute gradient gk ← ∇θt−1

L(θt−1;xk).
6: Clip gradient: ĝk ← gk/max(1, ∥gk∥2/C).
7: Append ĝk to Glist.
8: end for
9: Aggregate clipped gradients: ¯̂g ← 1

m

∑
ĝk∈Glist

ĝk.

10: Add Gaussian noise: g̃ ← ¯̂g +N
(
0, σ2C2

m2 Id

)
.

11: Update parameters: θt ← θt−1 − ηt · g̃.
12: end for
13: return θT .
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Algorithm 3 DPZO Core Mechanism (Simplified, adapted from Tang et al. (2024))

Require: Model parameters θ, dataset D, learning rate η, perturbation scale ϕ, clipping threshold
CZO, noise scale σZO, batch size m, total steps T .

1: for t = 1, . . . , T do
2: Sample batch B ⊂ D.
3: Sample random direction zt ∼ N (0, Id).
4: Set θ+ ← θt−1 + ϕzt, θ− ← θt−1 − ϕzt.
5: Initialize loss differences list Ldiff = [].
6: for each sample (Ii, Ti) ∈ B do
7: Compute li = L(θ+; (Ii, Ti))− L(θ−; (Ii, Ti)).
8: Clip difference: l̂i ← max(−CZO,min(li, CZO)).
9: Append l̂i to Ldiff.

10: end for
11: Aggregate clipped differences: l̄← 1

|B|
∑

l̂i∈Ldiff
l̂i.

12: Add noise to privatize the average difference: s← l̄ +N (0, σ2
ZOC

2
ZO/|B|2).

13: Update parameters: θt ← θt−1 − η · s · zt/(2ϕ).
14: end for
15: return θT .

M WHY DUAL-PRIV PRUNING IMPROVES UTILITY

DP noise as implicit regularization. For over-parameterized pretrained models, the Gaussian noise
in DP-SGD can limit memorization and act as an effective regularizer, which explains occasional
non-monotonicity of utility w.r.t. ϵ at medium privacy levels (Liu et al., 2025b).

Gradient-update pruning improves signal-to-noise. After privatization in DP-SGD (Abadi et al.,
2016), we update only the top-K% parameter blocks ranked by noisy-gradient norm. This DP-
preserving post-processing reduces the effective update dimensionality from d to k≪d, aligning with
analyses of sparsified DP optimization where the noise term scales with

√
k rather than

√
d (Zhu &

Blaschko, 2023). Practically, this concentrates updates on LoRA-style modules that carry stronger
task signal, yielding larger gains for large pretrained models and tighter privacy budgets. Our method
is not superior to DP-SGD in all cases but is expected to show the most significant advantages under
the following conditions:

When the model is a large, high-dimensional, and parameter-redundant pre-trained model: MLLMs
are a typical example. Fine-tuning only requires updating a sparse subset of parameters. Applying
DP-SGD to all parameters is inefficient and adds noise to already well-learned weights. When the
privacy budget is strict (small ϵ): In this high-noise environment, the SNR of standard DP-SGD drops
sharply, and the advantages of our pruning method become more pronounced. Standard DP-SGD
may be a better or more robust choice in the following situations:

When training a model from scratch: Gradient signals are likely dense across the parameter space,
and pruning may discard useful information. When the model has a small number of parameters and
no redundancy: In this case, k close to d , the theoretical benefit from pruning is small, and it might
even harm performance by mistakenly pruning critical small gradient updates.

Visual token pruning concentrates supervision; fusion noise aligns robustness. Attention-
based pruning removes redundant visual tokens and shortens sequences, focusing gradients on
salient content. The small Gaussian fusion noise on compressed context tokens serves as input-level
stochastic regularization whose scale is aligned with the downstream DP noise, echoing results
showing that learning from noise-based priors can improve robustness under DP (Tang et al., 2023b).
Empirically this helps under DP, but it is not a general booster for non-private fine-tuning.

When to expect improvements. The benefits are most pronounced with large, overparameterized
pretrained models, moderate-to-tight privacy budgets, and vision-heavy inputs with redundancy.
Under extremely strict privacy, utility inevitably drops, yet the approach remains more robust than
plain DP-SGD and zeroth-order baselines in our experiments.
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Table 10: Performance under extremely strict privacy budgets (lower ϵ). Best per row is bold.

Dataset Metric ϵ Dual-Priv (Ours) DP-SGD DP-ZO

ScienceQA IMG
0.5 76.98 75.00 10.29
0.1 61.23 60.08 1.96

0.05 43.14 42.90 0.00

GQA ACC
0.5 39.20 38.81 0.00
0.1 38.28 37.90 0.00

0.05 37.79 36.70 0.00

TextVQA ACC
0.5 34.76 33.84 0.34
0.1 32.68 32.10 0.16

0.05 31.27 30.17 0.12

MME-RW ACC
0.5 42.68 28.04 0.78
0.1 28.50 25.79 0.67

0.05 24.65 24.14 0.04

N UTILITY BEHAVIOR UNDER TIGHT PRIVACY CONSTRAINTS

We further evaluate with very tight privacy budgets ϵ ∈ {0.5, 0.1, 0.05} (with δ ≈ 1/N and the same
backbone/LoRA/optimizer settings as in the main experiments). Results are summarized in Table 10.

Emergence of the expected privacy–utility trade-off. When the privacy budget becomes very
tight (ϵ ≤ 1), the classic trade-off appears consistently. For instance, on ScienceQA the IMG metric
decreases from 78.43 at ϵ=1 to 43.14 at ϵ=0.05, indicating that the regularization benefit of DP noise
at medium privacy levels is eventually outweighed as noise grows.

Robustness of the proposed method. Across ScienceQA, TextVQA, and MME-RealWorld, Dual-
Priv maintains clear advantages over DP-SGD and large margins over DP-ZO, which largely collapses
at low ϵ. On GQA, the gap to DP-SGD is small (DP-SGD is slightly higher at ϵ ∈ {0.1, 0.05}),
but performance remains comparable. We attribute the robustness to (i) concentrating supervision
via visual-token pruning and (ii) post-noise gradient-update pruning, which restricts updates to
signal-dominant blocks and reduces effective noise exposure.

O TEXT-AGNOSTIC VISUAL TOKEN PRUNING VIA [CLS]
ATTENTION

Motivation: quality over quantity. A growing body of work shows that many vision tokens in
VLMs are redundant or even harmful when their semantics are misaligned; improving which tokens
are kept matters more than keeping more tokens (Yang et al., 2024; Vasu et al., 2024; Shang et al.,
2024; Zhang et al., 2024b). This motivates a saliency signal that is (i) model-internal, (ii) stable
across prompts, and (iii) cheap to compute.

Why use [CLS] attention. In ViT-style encoders, the [CLS] token aggregates global evidence;
attention from [CLS] to patches highlights positions that contribute most to the image-level represen-
tation. Ranking tokens by averaged [CLS→patch] attention therefore targets the model’s own notion
of saliency and alleviates “feature misalignment,” where object evidence is pooled into proxy tokens
at non-intuitive locations (Yang et al., 2024). This aligns with attention-guided token reduction that
consistently improves utility in prior work (Vasu et al., 2024; Shang et al., 2024; Zhang et al., 2024b).

Why text-agnostic. Question-conditioned pruning can overfit to a single prompt and incurs extra
cross-modal passes. Our design computes [CLS]-based saliency once from the vision encoder and
reuses it for all instructions, making the pruning decision instruction-invariant (text-agnostic) and
lower-variance. Crucially, because it depends only on visual features, Mechanism 1 (§4.1) is pure
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pre-processing and does not consume privacy budget, while still shortening sequences before DP
optimization in Mechanism 2.

Retaining global context. To avoid over-pruning fine-grained/background cues, non-dominant
tokens are fused into a small set of context tokens with light Gaussian perturbation (§4.1). Ablations
show that retaining ∼40% tokens with fusion yields the best IMG while reducing compute (Fig. 3).

Takeaway. [CLS]-attention provides a prompt-invariant, compute-efficient, and privacy-friendly
saliency signal that matches how ViTs aggregate information, complements evidence that token
quality drives VLM utility (Yang et al., 2024; Vasu et al., 2024; Shang et al., 2024; Zhang et al.,
2024b), and integrates naturally with our DP fine-tuning pipeline.

P USE OF LARGE LANGUAGE MODELS (LLMS)

We used a large language model solely for language editing (grammar and fluency). It was not involved
in research ideation, experimental design, implementation, data analysis, or citation selection; all
technical content was authored and verified by the human authors.
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