
Published in Transactions on Machine Learning Research (02/2023)

Mixed effects in machine learning – A flexible mixedML
framework to add random effects to supervised machine
learning regression

Pascal Kilian pascal.kilian@uni-tuebingen.de
Methods Center
University of Tübingen

Sangbeak Ye sangbeak.ye@uni-tuebingen.de
Methods Center
University of Tübingen

Augustin Kelava augustin.kelava@uni-tuebingen.de
Methods Center
University of Tübingen

Reviewed on OpenReview: https: // openreview. net/ forum? id= MKZyHtmfwH& layout= 2& sort= date-desc

Abstract

Clustered data can frequently be found not only in social and behavioral sciences (e.g.,
multiple measurements of individuals) but also in typical machine learning problems (e.g.,
weather forecast in different cities, house prices in different regions). This implies dependen-
cies for observations within one cluster, leading to violations of independent and identically
distributed assumptions, biased estimates, and false inference. A typical approach to ad-
dress this issue is to include random effects instead of fixed effects. We introduce the general
mixed effects machine learning framework (mixedML), which includes random effects in su-
pervised regression machine learning models, and present different estimation procedures.
A segmentation of the problem allows to include random effects as an additional correction
to the standard machine learning regression problem. Thus, the framework can be applied
on top of the machine learning task, without the need to change the model or architecture,
which distinguishes mixedML from other models in this field. With a simulation study and
empirical data sets, we show that the framework produces comparable estimates to typ-
ical mixed effects frameworks in the linear case and increases the prediction quality and
the gained information of the standard machine learning models in both the linear and
non-linear case. Furthermore, the presented estimation procedures significantly decrease es-
timation time. Compared to other approaches in this area, the framework does not restrict
the choice of machine learning algorithms and still includes random effects.

1 Introduction

Clustered data, for example, students in schools, house prices in neighborhoods or patients in hospitals are
typical situations in the social and behavioral sciences, economics, and medicine (see Snijders & Bosker,
2011). It can be expected that observations within the same cluster share similarities that don’t exist
between observations in different clusters. If these similarities between the observations (or individuals) are
not taken into account, a serious violation of the independent and identically distributed (i.i.d.) assumption
has to be expected, leading to biased estimates, false inferences, etc. Throughout this paper, we use the
example of predicting a student’s test score. After including information on the student level (level 1),
like age or cognitive ability, the prediction residuals can be seen as a result of unobserved information

1

https://openreview.net/forum?id=MKZyHtmfwH&layout=2&sort=date-desc

Published in Transactions on Machine Learning Research (02/2023)

about the students. These residuals are assumed to be i.i.d., but within-school (cluster) similarities violate
the independence assumption. The within-school dependency can be described by school-level (level 2)
information like average cognitive abilities. On this level, unobserved information (like class sizes) might
also influence prediction results.

In order to account for the dependencies of clustered data, one way is to introduce fixed effects (e.g., dummy
variables/one-hot encoding, which describe the membership to a data cluster beyond the available cluster
information). However, this leads to a rapid increase in the number of parameters and to a loss of degrees
of freedom. In the past, another way to account for the dependencies has been to include random effects.
In this scenario, for each cluster, a random draw from a parametric distribution (i.e., normal distribution)
is conducted, which represents the cluster effect in the measurement. In other words, each observed value
is decomposed into a part which is shared by all observational units for the same cluster and another part
that represents the deviation of an observational unit from the cluster (mean). The random effects approach
implies that only those parameters are estimated which belong to the parametric distribution (e.g., one mean
and one distributional parameter for the normal distribution). As a result, the loss of degrees of freedom is
limited. In the school example, this means on level 2, we use the observed school information (e.g. average
cognitive abilities) as fixed effects that influence the students’ test score prediction. The effect of this school
information is the same for all students (dependent on the average cognitive abilities of their respective
schools). But for each school, a random draw from a parametric distribution (as a realization of a random
variable) describes the deviation of the expected school influence on the prediction (accounting, for example,
for different class sizes / student-teacher ratios that are not observed but are expected to influence test
scores). In this sense, it is also helpful to think about the specific set of schools, included in the data, as a
random subset of all possible schools.

In this paper, we will describe how random effects can be included in the more general setting of machine
learning algorithms. In contrast to self-contained models, we present a framework that can take existing
models (without random effects) and extend them (by fine-tuning) by random effects. We will also discuss
and introduce different estimation procedures for the variance components of this framework. In the next
sections, we introduce the significant related work in this area and describe the contribution of our framework
to the existing literature. In section 2 we introduce mixed effects models and the notation for the paper.
In section 3 we describe the proposed framework followed by the estimation in section 4. Following the
properties of a real data set, we use simulated data for evaluation in section 5 and apply the framework on
real data in section 6.

Related work The idea of adding random effects to prediction algorithms is, in principle, known. However,
previous research mostly focused on tree-based methods for the (non-linear) prediction of the fixed effects
part of the problem. Fokkema et al. (2018) presented the (generalized) linear mixed effects model trees
(GLMM tree). Similar results can be found as (generalized) mixed effects regression trees or random forests
in Hajjem et al. (2011; 2014; 2017) or Sela & Simonoff (2012). Also, Nestler & Humberg (2021) proposed
a cross-sectional regression tree and added regularization (LASSO) and more random components. Most of
these approaches are based on an Expectation-Maximization (EM) procedure, where standard mixed model
frameworks are incorporated (from here on referred to as out-of-the-box - OOB implementation). This
approach is widely known as the Random Effect - Expectation-Maximization (RE-EM) tree from (Sela &
Simonoff, 2012). Some frameworks (e.g. Hajjem et al., 2017; Xiong et al., 2019) did not use OOB functions,
but rely on Maximum Likelihood Estimation (MLE)-based RE-EM. In the framework Mixed effect machine
learning (MeML, Ngufor et al., 2019) a more general approach is suggested, where (in theory) the choice
of the machine learning model for the fixed effect prediction is free, and, for the random effects, a GLMM
model is used. While they pointed out that, in theory, all kinds of machine learning models can be used,
the implementation and application still is restricted to tree-based models (with an indicator variable) and
OOB frameworks for the random part. The same ideas can be found in Xiong et al. (2019). Here, a deep
learning architecture (from the field of computer vision) was applied to receive representations of images. For
those representations, an EM algorithm is used to estimate the mixed effects model. Mandel et al. (2022)
developed a model which substitutes the linear predictor in GLMMs with a feed-forward neural network
and therefore bears the highest resemblance to the mixed effects machine learning (mixedML) framework
described here. Using simulated data and a data set to predict depression and anxiety levels of schizophrenia

2

Published in Transactions on Machine Learning Research (02/2023)

they showed the advantages of their model. We refer to this paper for a very thorough derivation of a model
that combines machine learning and mixed-effect modeling. While we absolutely recommend the recent
research results for application and as a presentation of different models in this area, we show with this
paper that random effects can be considered on the basis of a broad range of existing models, even after they
have been trained. In this sense, this framework is a generalization of the above results that includes most
of the introduced methods. Therefore, in this paper, we do not aim to introduce a new model that competes
with the mentioned research. Instead, we unify the methods in one framework and add new estimation
methods within the framework as well as provide more flexibility for the choice of the ml approach.

Contributions Our framework differs from the mentioned literature in the flexibility of the machine
learning regression procedure. This is because we are not presenting a model that combines a specific
machine learning algorithm with random effects, but rather a framework that uses a placeholder for the
model that is used for the fixed effects part. Further, our framework merges and complements various
estimation methods presented previously.

Therefore, our contribution to the literature is three-fold. First, we combine different approaches into one
framework. Here, we refer to the estimation procedures. In general, and also in our framework, these
are based on the introduced RE-EM idea (which was applied as RE-EM trees to tree-based models). As
presented, both MLE (similar to Hajjem et al., 2014; Xiong et al., 2019) and OOB methods were introduced
within this approach. Besides these methods, our framework also provides a Restricted Maximum Likelihood
estimation (REML) which is a common approach to estimating variance and covariance components in mixed
effects models. In a simulation study, those estimations procedures are compared, especially with respect to
computing time which decreases significantly for the MLE/REML procedures compared to OOB.

Second, our framework provides great flexibility in the estimation of the fixed effects. The framework can
directly be applied to a wide range of supervised regression machine or deep learning models and thus
increasing their predictive power (Sela & Simonoff, 2012). A very important aspect here is how the models
are trained within each EM iteration. The models only need to be adjusted with respect to a slightly changed
target variable in each iteration (comparable to transfer learning). This means that a trained model only
needs to be fine-tuned in each iteration, which is a considerable time-saving when using model-dependent
convergence criteria. From this, another enormous advantage of the framework can be derived. While the
framework allows to train a model from scratch, an already specified and trained model can be used and
adjusted under consideration of random effects for the reason described above.

Third, we use the simulation and real data to access the benefits of the framework in the sense of model
specification. Here we show that for prediction quality, it is not necessary to specify non-linearities like
interactions in the model (the traditional way in psychometrics) as long as the machine learning procedure
is capable of modeling the non-linear relationship.

Through the above points, we complement the existing methods. Specified as special cases, the framework can
also serve as a summary of the mentioned research (e.g. tree-based methods can still be used as specification).
Taken together, these enhancements will enable researchers to investigate a possible prediction improvement
in the mixed model domain (under consideration of different implemented estimation procedures) after
having completed the analysis in the machine learning domain, using all the time and work previously
invested (hyperparameter tuning, training of the model, ...). In that sense, the framework can be applied
on top of existing models and analyses. With this, the advantages of the usage of mixed effects become
available to a broad range of machine learning research.

2 Mixed effects regression models

2.1 Linear Mixed Effects (LME) Model

Using the notation of Laird & Ware (1982) or Demidenko (1987), the traditional mixed effects regression
model can be described as follows:

yj = Xjβ + Zjνj + ϵj , j ∈ [1, ..., J], (1)

3

Published in Transactions on Machine Learning Research (02/2023)

where yj is the (nj × 1) vector of observed dependent variables (vector of test scores of the nj students in
school j, from the introductory example) for each cluster j (nj is the sample size within a cluster j), Xj

is the (nj × p) matrix of p observed variables of nj observational units, β is the (p × 1) dimensional vector
of unknown regression coefficients (parameters), Zj is a (nj × pr) design matrix, νj is a (pr × 1) vector of
unobserved random variables (random effects) with νj∼N (0pr

, Σ), and ϵj is the (nj × 1) vector of normally
distributed residual variables with ϵj ∼ N (0nj

, σ2
ϵ Inj

).

Note that in Xj , we collect the level 1 and level 2 covariates as columns (observed student (level 1) and
school (level 2) information). In other words, the first p1 columns describe the observed covariates of the
nj observational units from cluster j, and the remaining p2 columns describe the observed covariates which
give information on the cluster j (being constant for the nj observational units form cluster j). pr is the
number of observed covariates for which random effects are included. Without loss of generality and for the
ease of notion, we will assume that the covariates are ordered, so that the first pr covariates are assumed to
have cluster-dependent (random) effects.

Furthermore, we use the notation ŷj = Xjβ̂ + Zjûj for expected values and define for an individual
observation i of the cluster j:

ŷij = ŷfixed
ij + zijûj , (2)

with the respective row zij = (1, x̃ij) in the design matrix Zj , consisting of a bias/intercept term (= 1) for
the random intercept and the feature vector x̃ij = xij [1 : pr]. The estimated random effects (i.e., realizations
of the latent/random variables) are û = (û′

1, ..., û′
J)′ with ûj = (û0, ..., ûprand

)′ for cluster j. Then yj is
conditionally normal distributed

yj ∼ N (yfixed
j , Vj), (3)

Vj = ZjΣZ ′
j + σ2

ϵ Inj
. (4)

In matrix notation we can write (over all J clusters): y = Xβ +Zν +ϵ with ν = (ν′
1, ..., ν′

J)′ and the design
block matrix

Z =

Z1 ... 0
...
0 ... ZJ

 . (5)

Variance and covariance components in LMEs are typically estimated by the EM algorithm, based on either
MLE or REML. As elaborated in Raudenbush & Bryk (2002), MLE estimates are asymptotically consistent
and efficient. However, for small sample sizes on level 2 (i.e., number of clusters; which is not the case in
our paper), MLE estimates of the variances and covariances of the random effects will be underestimated.
In order to avoid this issue, REML estimates can be obtained which give unbiased estimates and take into
account the unreliability of the fixed effects. Again, we would like to emphasize that this is an issue for small
sample sizes given in social and behavioral sciences (e.g., with a number of clusters < 30). As a result of
this, in practical situations estimation of the random effects variances and covariances relies on REML, and
estimation of fixed effects relies on MLE in so-called multilevel modeling.

2.2 Non-linear mixed effects models

As a generalization of the linear mixed effects model, the non-linear mixed effects model specifies the fixed
effects term as a non-linear function of the population parameter β as follows:

yj = fβ(Xj) + Zjνj + ϵj , j ∈ [1, ..., J]. (6)

As a consequence, we have a closed-form analytic expression for the marginal mean and covariance terms of
the model, E[yj] = f̂β(Xj) (following the conventional notation of non-linear regression model).

Due to these properties, this model is referred to as non-linear marginal models Demidenko (1987) or as
population-averaged models (Liang & Zeger (1986); Zeger & Liang (1986)), because the marginal function
of the response variable is expressed as a function of population-level covariates. This specification differs
from the fully non-linear mixed effects model in that the random effects are not included in the non-linear

4

Published in Transactions on Machine Learning Research (02/2023)

kernel, wherein this model is also called the partially non-linear mixed effects model (Davidian & Giltinan
(1995)). In non-linear mixed effects models, estimation of the models relies on the marginal distribution of
the response variable. However, as we assume an explicit expression of the distribution of the mean and
covariance structure of the response variable, there is no need for integration.

The model for the dependent variable then takes a conditional form, yj |(Xj , Zj , νj) = fβ(Xj) + Zjνj + ϵj .
Without loss of generality, we assume that ϵj and νj are normally distributed. The non-linear mixed effects
model can be written as the following:

yj ∼ N (fβ(Xj), ZjΣZ ′
j + σ2

ϵ Inj
), (7)

and fβ(Xj) = yfixed
j as before.

3 Mixed effects models for machine learning

While the fixed effects approach can be implemented straightforwardly using one-hot encoded variables for
the cluster membership, it is not obvious how to implement the random effects. In the next section, we
introduce the framework mixedML to implement the random effects.

3.1 Mixed effects approach - mixedML

If the data contains features on both the observation level (level 1) X1 ∈ RN×p1 and the cluster level (level
2) X2 ∈ RJ×p2 we include the level 2 features with fixed effects in the level 1 prediction. For that we
combine the matrices to obtain X = [X1, X̃2] with X̃2 ∈ RN×p2 , where row i of X̃2 is row j of X2 for all i
in cluster j. Note that this does not correspond directly to a mixed model with level two covariates since the
level 2 covariates only determine the cluster deviations from the overall intercept, instead of influencing the
cluster-specific slopes. In our model, the cluster-specific slopes are only determined by the centered random
effect. From here on X is seen as a feature matrix that might contain level 2 features, which are constant
across observations within the same cluster.

Instead of estimating a linear relationship between X and y via Xβ for the fixed effects, we use a potentially
non-linear function f(X) to model this relationship via y = f(X) + Zν + ϵ and then add the linear random
effects with the same assumptions as in section 2.

To parameterize the function f , we use a machine learning model, referred to as mlfixed(θ) and add the
random effects (cluster differences), which can be seen as a linear correction. This results in

y = mlfixed(θ)(X) + Zν + ϵ, (8)

or in the cluster specific notation (compare to (1)) ŷj = mlfixed(θ)(Xj) + Zjûj . For the estimation we split
y into a fixed and random part y = yfixed + yrand + ϵ where yfixed = y − Zu and yrand = efixed = y − yfixed,
with the cluster specific realizations u = (u′

1, ..., u′
J)′ of the random effects/latent variables ν.

Before we describe further details in the next section, we give a general idea, following related ideas for tree-
based models (e.g. Hajjem et al., 2011; 2014; Sela & Simonoff, 2012) and Hajjem et al. (2011); Xiong et al.
(2019). We train mlfixed(θ) by ignoring cluster effects (with the target y) to get a first estimate for yfixed (the
prediction ŷfixed of the model). With this we estimate û based on efixed. Then we update yfixed = y − Zû
using the current estimate û and re-train mlfixed(θ) with the updated target variable yfixed. This process
is iterated until some convergence criteria are met or the maximal number of iterations is reached. Since,
for every iteration, a (potentially complex) machine learning algorithm needs to be trained, the question of
training time arises. To provide some clarity here, in each iteration the model is re-used and fine-tuned to
an adjusted prediction task. In the first iteration, we train the model for a task (X, y). In the subsequent
iterations, we update the trained network of the last iteration and tune the parameters for the updated task
(X, yfixed) (comparable to transfer learning).

5

Published in Transactions on Machine Learning Research (02/2023)

4 Estimation

To get an estimate for yfixed we learn the parameters θ̂ of mlfixed(θ) (e.g. by SGD methods) and predict
ŷfixed = mlfixed(θ̂)(X). If u is known, common supervised machine learning regression methods can be
trained and applied to predict yfixed, including the special case of u = 0 (and thus yfixed = y) where random
effects are ignored (typical case). Since the random part of the model (and therefore u) is unknown, we
need to find estimates û to use in (3.1) to define the machine learning task. But to get an estimate for the
random part of the model, we need the estimate ŷfixed for (3.1). This motivates an alternating, iterative
process like the EM-algorithm where estimates of the current fixed or random parameters are used for the
respective updates (see e.g. Sela & Simonoff, 2012; Hajjem et al., 2014; Xiong et al., 2019).

4.1 EM

Following common techniques for the EM-algorithm (Lindstrom & Bates, 1988; Wu & Zhang, 2006; Laird
& Ware, 1982) (similar as in Hajjem et al. (2011)), we can use the EM algorithm as an estimator for the
variance components σ and Σ (for both, MLE and REML). MLE and REML estimates can be obtained by
using the respective projections PjMLE = V −1

j and PjREML = V −1
j − V −1

j Xj(XT V −1X)−1XT
j V −1

j (see
e.g. Lindstrom & Bates, 1988), where Vj is defined as in (4). Given the estimates σ

(t−1)
ϵ , Σ(t−1) and û

(t−1)
j

from the last iteration (t − 1), we can (re)train ml(t)
fixed(Xj) using the target yfixed

j = yj − Zjû
(t−1)
j and

calculate b̂
(t)
j , r

(t)
j and V

(t−1)
j (evaluated at Σ(t−1)) as

V
(t−1)

j = ZjΣ(t−1)ZT
j + σ2I,

û
(t)
j = Σ(t−1)ZT

j V
(t−1)−1

j

(
yj − ml(t)

fixed(Xj)
)

,

r
(t)
j = yj − ml(t)

fixed(Xj) − Zjû
(t)
j .

The new estimates σ
(t+1)
ϵMLE/REML and Σ(t+1)

MLE/REML are calculated as

Σ(t)
MLE/REML = 1

J

J∑
j=1

[
û

(t)
j û

(t)T
j +

[
Σ(t−1) − Σ(t−1)ZT

j P
(t−1)
jMLE/REMLZjΣ(t−1)

]]
,

(
σ

(t)
ϵMLE/REML

)2
= 1

N

J∑
j=1

[
r

(t)T
j r

(t)
j + σ2(t−1)

ϵ trace
(

I − σ2(t−1)
ϵ P

(t−1)
jMLE/REML

)]
.

Note that instead of inverting Vj , ∀j = 1, . . . , J we can invert Σ and use V −1
j = I −Zj

(
ZT

j Zj + Σ−1)−1
ZT

j

where
(
ZT

j Zj + Σ−1)
is usually smaller (number of random effects squared) than Vj (nj × nj).

Convergence is monitored by the generalized log-likelihood (GLL)

GLL(θ, bj |yj) =
J∑

j=1

[
rT

j (σ2
ϵ I)rj + uT

j Σ−1uj + log |Σ| + log |σ2
ϵ I|

]
. (9)

We implemented this approach and presented the algorithm in Table 1. Note that the separated estimation
of random effects and fixed effects in each iteration t gives great flexibility for both parts. For the fixed
effects, we can implement any supervised regression machine learning algorithm that learns to predict yfixed

and produces the estimate/prediction ŷfixed. For the random effects, we can also use standard LME methods
(e.g. MixedLM() from the statsmodels module (Seabold & Perktold, 2010) in python, or lmer() from lme4
(Bates et al., 2015) package in R) where the dependent/target variable is defined as yrand(t) = y − ŷfixed(t)

in iteration t. As mentioned before, we refer to this implementation as OOB (see Appendix A for the
algorithm).

6

Published in Transactions on Machine Learning Research (02/2023)

Table 1: Implementation of the MLE/REML based EM estimation.

Algorithm
t = 0 Initialize ûj(0) = 0, ∀j = 1, ..., J , yfixed

(0) = y, Σ̂ν(0) = I, σ̂2
ϵ(0) = 1 and train mlfixed(θ)(X) =

yfixed
(0) → ŷfixed

(0)
t − 1 → t for all j

V t−1
j = ZjΣ(t−1)ZT

j + σ2I

û
(t)
j = Σ(t−1)ZT

j V
(t−1)−1

j

(
yj − ml(t)

fixed(Xj)
)

r
(t)
j = yj − ml(t)

fixed(Xj) − Zj û
(t)
j

MLE: PjMLE = V −1
j

REML: PjREML = V −1
j − V −1

j Xj(XT V −1X)−1XT
j V −1

j

Σ(t)
MLE/REML = 1

J

∑J

j=1

[
û

(t)
j û

(t)T
j +

[
Σ(t−1) − Σ(t−1)ZT

j P
(t−1)
jMLE/REMLZjΣ(t−1)

]]
(

σ
(t)
ϵMLE/REML

)2
= 1

N

∑J

j=1

[
r

(t)T
j r

(t)
j + σ

2(t−1)
ϵ trace

(
I − σ

2(t−1)
ϵ P

(t−1)
jMLE/REML

)]
yfixed

(t) = y − Zû(t)
train mlfixed(θ)(X) = yfixed

(t) → ŷfixed
(t)

Note that both algorithms include an isolated and complete training (using convergence criteria) of the
machine learning procedure (ignoring random effects) in the first part of the first iteration. This provides
great flexibility in the choice of the machine learning procedure and the respective training process. Within
the optimization, the machine learning model can be learned from scratch, but the process can also be
started with pre-trained models, which leads to early stops according to convergence criteria. In this case,
the existing pre-trained model will be fine-tuned to consider random effects. In every subsequent iteration,
parameters will be updated according to updated expectations of the random effect. We will refer to those
three estimation methods as MLE, REML, and OOB.

4.2 Prediction

The problem of predicting an unseen data point can be divided into two tasks. In the first task, we want to
predict the outcome yi′j of a new observation i′ in the cluster j, and the cluster is known from the training
data (j ∈ [1, ..., J]). We call this task within sample prediction. In the second task, we predict a new outcome
where we have information about the cluster (the level 2 features), but the cluster itself might not be one of
the clusters considered during training. We refer to this task as out of sample prediction. The predictions
are set to

yout
i′j = ŷfixed

i′j = mlfixed(θ)(Xi′j), (10)
ywithin

i′j = ŷi′j = mlfixed(θ)(Xi′j) + Zûj , (11)

where Z is specified as above and ûj is the realisation of νj for the known cluster j. Note that we use the
very simple approach of using the information of random effects if it is present. Random effects could also
be predicted for unknown clusters as in Xiong et al. (2019). For simplicity of the framework introduction,
we have refrained from including this in the paper to focus on model comparisons with and without the
consideration of random effects. In the test score example, the within sample prediction is the test score
prediction of a student in a school that was included in the training data. Here we know the schools’
realization of the random effects following the population (of possible schools) distribution and we can use
this information. In the out of sample prediction we only know the observed information of the student’s
school and thus can only use the common fixed effects.

5 Simulation studies

To evaluate and compare the models, we conducted a simulation study. The simulated data sets follow the
properties of a real data set from social sciences. We give the relevant settings in this section. Further details

7

Published in Transactions on Machine Learning Research (02/2023)

can be found in Appendix B. For sample sizes we used J = 200 with nj sampled between 22 and 25 (giving
N = 5707). The dimension of the feature space is p1 = 10, p2 = 3, and includes random effects for all level
1 predictors (pr = p1+intercept/bias).

For the covariance matrix Σν of the pr + 1 random effects (level 2 latent variables) we assume σνm,νn = 0 for
n ̸= m and set σ2

νm
= 1, ∀m ∈ [0, 1, ..., pr]). By setting the variance of the random effects to one, we identify

the latent variable vector.

Cluster specific realizations uj of the latent variables are sampled as uj ∼ N (0, Σν) for j = 1, ..., J .

For the residuals we assume Σϵ = σϵI with σϵ = 3.5, and sample ϵ ∼ N (0, Σϵ) (ϵ ∈ RN)

We set the intercept/bias β0 = 5 and all other parameters to 1 and obtain β1 ∈ Rp1 (level 1 parame-
ters/weights), β2 ∈ Rp2 (level 2 parameters/weights). With the chosen values, together with σϵ, we achieve
an overall explained variances of y of around 0.77 (linear) and 0.82 (non-linear), which would already be
considered as high but plausible (at least for repeated measures) in the social sciences.

To show the downward compatibility of the framework, we simulate the linear case by ylin = β0+Xβ+Zu+ϵ.
To show the benefit of more complex relationships, we simulate the non-linear data set by including quadratic
terms of the first five level 1 features and define Xq = (x2

11, ..., x2
15) and βq ∈ R5 sampled as the other

coefficients. This gives
ynlin = β0 + Xβ + Xqβq + Zu + ϵ. (12)

5.1 Evaluation and comparison metrics

In the analysis, we always specify and train the machine learning algorithm first and report the results (ml).
As a fixed effects comparison, we specify the same model but include the one-hot encoded cluster-membership
as predictor (hot). We then use the respective ml model within the mixedML framework and train it with
all introduced estimation methods (MLE, REML and OOB). Following this procedure from here on, we only
introduce the ml method on which the other models are based on.

In the evaluation and comparison of the framework, we focus on two aspects. First, we compare models with
regard to parameter estimation and estimation time. Second, we compare the prediction qualities for new
in-sample observations (within - the cluster of the observations is known from the training data) and out-
of-sample observations (out - all information is given, but it is unknown if the cluster is one of the training
clusters). For the prediction quality, we use the root-mean-squared-error (RMSE). Again, in the test score
example, an in-sample observation (within) refers to a student who goes to a school that is known from
training (and thus the respective estimated mean deviation can be used). In an out-of-sample observation,
the student’s school is one of all possible schools, and apart from the common fixed effects we have no further
information. The differences in the according RMSE values are according to whether or not this information
can be used. Note that the ml and hot models don’t include the random effects. This means the within and
out scores are the same for the ml model (a within-sample observation does not provide further information).
For the hot there is no real out score because only known clusters are represented in the encoding.

5.2 Models and procedure

In this paper, the focus is to compare approaches regarding the consideration of random effects. In order
to perform the comparisons on reasonable machine learning models, hyperparameters for those models are
tuned separately (for details, see Appendix C). The same models (with the found specifications) then are
used as pure machine learning models (ml) and within the mixedML framework.

In the linear case, we specify the ml model to be a linear regressor and use a linear feed-forward neural
network (NNlin - no hidden layer) and compare it to a traditional LME model (statsmodels), specified the
same way. Note that NNlin is an unusual and not very efficient way to implement linear regression, but we
decided to use a neural network for the simplest (linear) case to examine a model from a model class which
can be extended to general cases without further ado (only by changing the architecture). We compare
the fixed effects/weights of the problem, the variance components, the prediction quality, and the different
estimation times for the algorithms.

8

Published in Transactions on Machine Learning Research (02/2023)

In the non-linear case, we first estimate two LME models. The first model uses only the original (linear)
features (LMElin), the second (non-linear1) LME knows about the simulated quadratic terms and they are
included as input (LMEnlin). The latter will serve as a baseline (in the ground truth sense) for flexible
machine learning predictors. Here only the original features are used and the question at hand is if the non-
linear relationship can be modeled. The flexible ml models in the non-linear case are a 3-layer feed-forward
neural network (NNnlin - with 5 and 3 hidden units) and a Support Vector Regressor (SVR with a radial
basis function kernel).

The model specifications are shown in Table 2.

Table 2: The different models considered for the evaluations.

LMElin Linear Mixed Effects model with Xβ
LMEnlin Linear Mixed Effects model where the specified non-linear terms are included in X

(we know the exact (simulated) non-linear relationship, see (12))
We use MixedLM() from statsmodels with the conjugate gradient optimizer

ml:
NNlin 0-hidden-layer neural network with linear output activation as the linear regression

special case with Adam optimizer (lr = 0.01).
NNnlin 2-layer neural network with 5 and 3 hidden units (4 and 4 units for the hot). We

specified ReLU activation for the hidden units and a linear output activation and used
tensorflow-keras for the implementation with Adam optimizer (lr = 0.01) and mean-
squared-error loss.

SVR Support Vector Regressor implemented in sklearn (for hyperparameters see Ap-
pendix C)

pure mlEst mixedML implementation of the EM algorithm (Est: MLE or REML) or the out-of-
the-box approach (Est: OOB, from statsmodels) with ml as the mlfixed(θ) model.

In order to obtain measures of the stability of the parameter estimates, we performed a 50−fold cross-
validation for all models, that means in every fold we estimate the model on a training set of a random
98%-2% split and evaluate it on the respective test set. We repeat this procedure 50 times so that every
observation is exactly once in the test set, then means and standard deviations are reported. Run times
for single folds are reported with the results (2,8 GHz Quad-Core Intel Core i7). For neural networks, we
implemented the convergence criteria of loss differences < 0.1 for 8 consecutive epochs. As mentioned earlier,
for the EM algorithm, we use the same procedure based on the GLL (9) for all models.

5.3 Results

See Table 3 for the results of the linear problem. The estimated parameters and variances of the models are in
line with the traditional model (LME), indicating an unbiased parameter estimation. In terms of prediction
quality, all models and estimation methods show similar results on the training and test data where a
significant increase in prediction quality can be noted when the information about the cluster membership
is used (within) compared to observation from unknown clusters. In the pure machine learning models (ml),
the cluster membership cannot be used, so there is no within score comparison. The out scores are in line
with the pure machine learning prediction results. The fixed effects machine learning approach (hot) should
be compared to the train- and test- within scores, since the cluster membership is used as a fixed effects.
For both scores, we can see a decrease in the prediction quality of the hot model compared to the other
models. Even compared to the pure machine learning models (ml), the one-hot encoded cluster membership
only leads to a little increase in quality. While parameter estimates and prediction qualities seem to be
equivalent for the three estimation methods, the estimation time (for one fold) differs dramatically, with
the biggest mean difference between the out-of-the-box (OOB) estimation and the MLE/REML procedures
(∆t = 233.62s (MLE) and ∆t = 228.87s (REML)). Note that the estimation times for our implemented
MLE/REML estimations are also faster than the traditional LME estimation time.

The non-linear results are reported in Table 4. All parameter estimates are stable, but two main differences
can be seen. When the linear traditional model (LMElin) is compared to the traditional model where

1We refer to this model as non-linear to distinguish it from the linear LME and because the non-linear terms are considered
as features. Using those features, the estimated relationship, and the model itself is nevertheless linear.

9

Published in Transactions on Machine Learning Research (02/2023)

Table 3: Results for the linear problem (data).

sim LMElin NNOOB
lin NNMLE

lin NNREML
lin NNml

lin NNhot
lin

Fixed effects
bias 5.00 4.89 (0.01) 4.89 (0.03) 4.88 (0.05) 4.89 (0.04) . .
x1,1 1.00 0.97 (0.01) 0.98 (0.03) 0.99 (0.05) 0.97 (0.04) . .
x1,2 1.00 0.99 (0.01) 1.00 (0.04) 1.00 (0.06) 1.00 (0.05) . .
x1,3 1.00 0.98 (0.01) 0.98 (0.03) 0.98 (0.05) 0.98 (0.05) . .
x1,4 1.00 0.96 (0.01) 0.96 (0.03) 0.96 (0.05) 0.96 (0.05) . .
x1,5 1.00 1.03 (0.01) 1.04 (0.03) 1.03 (0.06) 1.03 (0.06) . .
x1,6 1.00 0.88 (0.01) 0.87 (0.03) 0.88 (0.05) 0.88 (0.06) . .
x1,7 1.00 0.89 (0.01) 0.89 (0.03) 0.88 (0.04) 0.90 (0.04) . .
x1,8 1.00 1.01 (0.01) 1.01 (0.03) 1.01 (0.05) 1.01 (0.04) . .
x1,9 1.00 0.96 (0.01) 0.97 (0.03) 0.95 (0.05) 0.94 (0.05) . .
x1,10 1.00 1.06 (0.01) 1.06 (0.03) 1.07 (0.05) 1.07 (0.05) . .
x2,1 1.00 0.85 (0.01) 0.85 (0.04) 0.84 (0.04) 0.86 (0.05) . .
x2,2 1.00 1.10 (0.01) 1.10 (0.03) 1.09 (0.04) 1.10 (0.04) . .
x2,3 1.00 1.02 (0.01) 1.02 (0.03) 1.02 (0.04) 1.02 (0.04) . .

Variance components
Var(bias) 1.00 1.06 (0.02) 1.06 (0.02) 1.04 (0.02) 1.07 (0.03) . .
Var(x1) 1.00 0.78 (0.02) 0.78 (0.02) 0.78 (0.02) 0.79 (0.02) . .
Var(x2) 1.00 1.05 (0.02) 1.05 (0.02) 1.05 (0.02) 1.06 (0.02) . .
Var(x3) 1.00 0.89 (0.02) 0.89 (0.02) 0.89 (0.02) 0.90 (0.02) . .
Var(x4) 1.00 1.08 (0.03) 1.08 (0.03) 1.07 (0.03) 1.08 (0.03) . .
Var(x5) 1.00 0.90 (0.03) 0.90 (0.03) 0.93 (0.02) 0.94 (0.02) . .
Var(x6) 1.00 1.04 (0.03) 1.04 (0.03) 1.06 (0.03) 1.07 (0.03) . .
Var(x7) 1.00 0.84 (0.02) 0.84 (0.02) 0.84 (0.02) 0.84 (0.03) . .
Var(x8) 1.00 0.84 (0.03) 0.84 (0.03) 0.86 (0.03) 0.87 (0.02) . .
Var(x9) 1.00 1.20 (0.03) 1.20 (0.03) 1.21 (0.03) 1.22 (0.03) . .
Var(x10) 1.00 1.24 (0.03) 1.24 (0.03) 1.23 (0.03) 1.25 (0.03) . .
Cov (mean) 0.00 0.01 (0.00) 0.01 (0.02) 0.01 (0.02) 0.01 (0.02) . .
σϵ 3.50 3.51 (0.01) 3.51 (0.20) 3.50 (0.19) 3.50 (0.20) . .

Prediction
RMSEwithin (test) . 4.04 (0.18) 4.04 (0.18) 4.04 (0.19) 4.04 (0.18) 4.80 (0.28) 4.78 (0.24)
RMSEout (test) . 4.80 (0.28) 4.80 (0.28) 4.80 (0.28) 4.80 (0.28) 4.80 (0.28) .

time (s) . 43.10 (3.85) 266.81 (18.34) 33.19 (2.28) 37.94 (3.59) . .

Notes: x1/2,p: coefficients (β̂) for the respective features of level 1/2, var(.): estimated variances of the (p1 + 1) random effects, σϵ

residual standard deviation, train/test sets according to 50-fold cross-validation (means and standard deviation), root mean squared
error (RMSE) subscripts: within: with the corrections of the random effect realizations known for that cluster, out: ignoring the
cluster (out of sample), ml only the pure ml model, hot the pure ml model with one-hot cluster-membership, time: estimation time
for one fold in seconds.

interactions are included (LMEnlin), we can see that the estimated variance components fit the simulated
parameters (see Table 3) better for LMEnlin, easiest to see for the σϵ estimates, where the linear model
overestimates the parameter. Interestingly, the non-linear neural network (NNnlin) seems to be equally
unable to capture the non-linearity as LMElin. Here the NNOOB

nlin estimates are in line with LMElin (note
that the estimation method within each EM iteration is the same here). The estimates of the same model
but with the MLE/REML estimation indicate only a slightly better fit. For the SVR model, the parameter
estimates are in line with the baseline model LMEnlin, again with very few advantages for MLE/REML.

Those findings are also reflected in the prediction quality. Again it can be seen, that the neural network is on
the level of the linear LME. The SVR prediction results can be compared with the baseline model (ground
truth). Note that in the baseline LMEnlin, all simulated non-linearities (interactions) are specified, whereas
the SVR model only uses the original features as input and then models the non-linearity. At least in the
sense of prediction, a precise model specification is thus not necessary. For the estimation times, we can see
again, that our MLE/REML estimation is significantly faster than the out-of-the-box implementation.

10

Published in Transactions on Machine Learning Research (02/2023)

Ta
bl

e
4:

R
es

ul
ts

fo
r

th
e

no
n-

lin
ea

r
pr

ob
le

m
(d

at
a)

.

LM
E

li
n

LM
E

nl
in

N
N

O
O

B
nl

in
N

N
M

L
E

nl
in

N
N

R
E

M
L

nl
in

SV
R

O
O

B
SV

R
M

L
E

SV
R

R
E

M
L

V
ar

(x
0
)

0.
62

(0
.0

3)
0.

87
(0

.0
2)

0.
62

(0
.0

3)
0.

71
(0

.0
6)

0.
74

(0
.0

9)
0.

67
(0

.0
3)

0.
75

(0
.0

4)
0.

78
(0

.0
4)

V
ar

(x
1
)

1.
43

(0
.0

4)
1.

09
(0

.0
3)

1.
43

(0
.0

4)
1.

45
(0

.0
5)

1.
46

(0
.0

7)
1.

21
(0

.0
3)

1.
22

(0
.0

4)
1.

23
(0

.0
4)

V
ar

(x
2
)

1.
47

(0
.0

4)
1.

07
(0

.0
3)

1.
47

(0
.0

4)
1.

47
(0

.0
4)

1.
48

(0
.0

4)
1.

23
(0

.0
3)

1.
24

(0
.0

3)
1.

25
(0

.0
3)

V
ar

(x
3
)

0.
57

(0
.0

4)
0.

59
(0

.0
2)

0.
57

(0
.0

4)
0.

71
(0

.0
3)

0.
72

(0
.0

4)
0.

57
(0

.0
3)

0.
65

(0
.0

2)
0.

65
(0

.0
2)

V
ar

(x
4
)

1.
26

(0
.0

4)
0.

94
(0

.0
3)

1.
26

(0
.0

4)
1.

34
(0

.0
4)

1.
35

(0
.0

4)
1.

19
(0

.0
3)

1.
25

(0
.0

3)
1.

26
(0

.0
3)

V
ar

(x
5
)

1.
14

(0
.0

4)
1.

01
(0

.0
3)

1.
14

(0
.0

4)
1.

19
(0

.0
4)

1.
20

(0
.0

5)
1.

11
(0

.0
3)

1.
14

(0
.0

3)
1.

15
(0

.0
3)

V
ar

(x
6
)

0.
79

(0
.0

4)
0.

79
(0

.0
3)

0.
79

(0
.0

4)
0.

86
(0

.0
4)

0.
87

(0
.0

4)
0.

77
(0

.0
4)

0.
82

(0
.0

3)
0.

83
(0

.0
3)

V
ar

(x
7
)

1.
01

(0
.0

4)
1.

03
(0

.0
3)

1.
01

(0
.0

4)
1.

05
(0

.0
4)

1.
06

(0
.0

4)
1.

03
(0

.0
3)

1.
09

(0
.0

4)
1.

10
(0

.0
4)

V
ar

(x
8
)

0.
93

(0
.0

4)
0.

85
(0

.0
3)

0.
93

(0
.0

4)
1.

05
(0

.0
4)

1.
06

(0
.0

4)
1.

01
(0

.0
3)

1.
08

(0
.0

3)
1.

10
(0

.0
3)

V
ar

(x
9
)

0.
86

(0
.0

4)
0.

87
(0

.0
3)

0.
86

(0
.0

4)
1.

00
(0

.0
4)

1.
01

(0
.0

4)
0.

95
(0

.0
3)

1.
05

(0
.0

3)
1.

06
(0

.0
3)

V
ar

(x
10

)
1.

11
(0

.0
4)

0.
96

(0
.0

3)
1.

11
(0

.0
4)

1.
18

(0
.0

4)
1.

19
(0

.0
5)

1.
04

(0
.0

4)
1.

08
(0

.0
4)

1.
09

(0
.0

4)
C

ov
(m

ea
n)

-0
.0

1
(0

.0
0)

-0
.0

0
(0

.0
0)

-0
.0

1
(0

.0
3)

-0
.0

0
(0

.0
3)

-0
.0

0
(0

.0
3)

-0
.0

1
(0

.0
2)

-0
.0

1
(0

.0
2)

-0
.0

1
(0

.0
2)

σ
ϵ

4.
68

(0
.0

1)
3.

56
(0

.0
1)

4.
68

(0
.2

9)
4.

65
(0

.3
2)

4.
65

(0
.3

2)
4.

10
(0

.2
7)

4.
08

(0
.2

6)
4.

08
(0

.2
6)

ti
m

e
(s

)
48

.4
5

(3
.8

5)
46

.1
1

(5
.6

1)
28

7.
74

(2
0.

38
)

42
.4

7
(2

.9
2)

44
.3

4
(2

.9
0)

25
6.

97
(5

.5
8)

82
.5

1
(1

.5
2)

86
.4

8
(2

.9
4)

N
ot

es
:

x
p
:

co
effi

ci
en

ts
(β̂

)
fo

r
th

e
re

sp
ec

ti
ve

fe
at

ur
es

,v
ar

(.
):

es
ti

m
at

ed
va

ri
an

ce
s

of
th

e
(p

1
+

1)
ra

nd
om

eff
ec

ts
σ̂

2 ν
,σ

ϵ
re

si
du

al
st

an
da

rd
de

vi
at

io
n,

tr
ai

n/
te

st
se

ts
ac

co
rd

in
g

to
50

-fo
ld

cr
os

s-
va

lid
at

io
n

(m
ea

ns
an

d
st

an
da

rd
de

vi
at

io
n)

,t
im

e:
es

ti
m

at
io

n
ti

m
e

fo
r

on
e

fo
ld

in
se

co
nd

s.

11

Published in Transactions on Machine Learning Research (02/2023)

Table 5: Prediction results for the non-linear problem (data).

RMSEwithin RMSEout RMSEtest
within RMSEtest

out

LME
.lin 4.25 (0.01) 5.72 (0.01) 5.39 (0.39) 5.72 (0.45)
.nlin 3.15 (0.01) 4.75 (0.01) 4.09 (0.26) 4.75 (0.33)
NNnlin
.OOB 4.27 (0.02) 5.74 (0.01) 5.42 (0.39) 5.74 (0.45)
.MLE 4.21 (0.01) 5.75 (0.04) 5.39 (0.39) 5.75 (0.48)
.REML 4.20 (0.01) 5.75 (0.04) 5.39 (0.39) 5.74 (0.47)
.ml 5.74 (0.02) 5.74 (0.02) 5.74 (0.45) 5.74 (0.45)
.hot 5.59 (0.03) . 5.76 (0.44) .
SVR
.OOB 3.68 (0.01) 5.22 (0.01) 4.75 (0.30) 5.22 (0.36)
.MLE 3.65 (0.01) 5.24 (0.01) 4.75 (0.30) 5.25 (0.37)
.REML 3.65 (0.01) 5.24 (0.01) 4.75 (0.30) 5.25 (0.37)
.ml 5.24 (0.01) 5.24 (0.01) 5.25 (0.37) 5.25 (0.37)
.hot 5.17 (0.01) . 5.23 (0.38) .

Notes: train/test sets according to 50-fold cross-validation (means and standard deviation), root mean squared error (RMSE)
subscripts: within: with the corrections of the random effect realizations known for that cluster, out: ignoring the cluster (out
of sample), ml only the pure ml model, hot the pure ml model with one-hot cluster-membership, time: estimation time for one
fold in seconds.

6 Empirical evaluation

In order to test the framework on real data, we use a data set introduced in the textbook Snijders & Bosker
(2011) (with further reference to e.g. Brandsma & Knuver, 1989; Knuver & Brandsma, 1993). The data
contains the result of a language test (target variable) of 3758 students grouped in 211 different classes/school
(one class per school). Further information on the student level (level 1) is available, where we use the
students’ IQ and their socioeconomic status (SES). On the school level, we use the school mean IQ (sIQ),
and the school mean SES (sSES). See also within- and between-group regression, for example, in Snijders
& Bosker (2011) for this particular example. We use the same data set with the same preprocessing as in
the textbook, meaning that IQ and SES are centered (before missings were removed, which leads to a small
shift in the centering), then the school means were calculated.

6.1 Models and procedure

Using this data, we model the relationship of the results of the language test dependent on the students’ IQ
and SES with the IQ and SES school means (sIQ and sSES) as level 2 variables. We use random slopes (IQ
and SES) and a random intercept. Additionally, we expect interactions between all of the variables. Note
that this is a non-linear relationship between the four single predictors and the target. If all interactions are
first calculated and then used as predictors, the relationship becomes linear

yij = β0 + β1IQij + β2SESij + β3sIQj + β4sSESj + β5(SESij × IQij) + β6(SESij × sIQj)
+ β7(SESij × sSESj) + β8(sIQj × sSESj) + β9(IQi,j × sIQj) + β10(IQj × sSESj) + Zjuj + ϵij .

For this linear relationship, where interactions are specified in the model, we use a single layer feed-forward
neural network as mlfixed(θ). For the non-linear approach, where interactions have not been specified in
advance, we use a Support Vector Regressor (SVR)

yij = mlfixed(θ)(IQij , SESij , sIQj, sSESj) + Zjvj + ϵij .

For both models, we apply the REML estimation. Note that the matrix Z is the same for both scenarios,
with

Zj =


1 IQ1j ses1j

1 IQ2j ses2j

...
1 IQnjj sesnjj

 . (13)

12

Published in Transactions on Machine Learning Research (02/2023)

Table 6: Results of a mixedML model with a single layer feed-forward neural network (linear) and all
interactions included as predictors.

book results Est. (sd)

fixed effects
int 41.63 (0.26) 41.67 (0.26)
SES 0.17 (0.012) 0.17 (0.02)
IQ 2,23 (0.06) 2.24 (0.06)
sSES -0.09 (0.04) -0.10 (0.06)
sIQ 0.82 (0.31) 0.92 (0.07)
SES x IQ -0.02 (0.01) -0.02 (0.01)
SES x sSES 0.00 (0.00) 0.00 (0.01)
SES x sIQ 0.02 (0.02) 0.03 (0.02)
sSES x sIQ -0.13 (0.04) -0.14 (0.07)
sSES x IQ 0.00 (0.01) 0.00 (0.02)
IQ x sIQ -0.8 (0.08) -0.06 (0.04)

variance components
Var(int) 8.34 (1.41) 9.31 (0.83)
Var(SES) 0.00 (0.00) 0.01 (0.00)
Var(IQ) 0.17 (0.07) 0.42 (0.05)
Cov(int, SES) 0.00 (0.00) -0.01 (0.03)
Cov(int, IQ) -0.94 (0.20) -0.91 (0.10)
Cov(SES, IQ) 0.00 -0.02 (0.01)
σϵ 6.11 (0.95) 6.07 (0.48)

Notes: SES: socioeconomic status, sSES/sIQ school means, × denotes interactions that were included as predictors. The
variance components refer to the variances and covariances of the random effects. The REML-EM algorithm was used for
estimation. σϵ residual standard deviation, book results in Table 5.3 inSnijders & Bosker (2011)

Table 7: Prediction results for the empirical data.

RMSEwithin RMSEout RMSEtest
within RMSEtest

out

NNlin 5.82 (0.03) 6.90 (0.12) 6.31 (0.53) 6.88 (0.58)
NNlin (ml) 6.84 (0.08) 6.84 (0.08) 6.88 (0.58) 6.88 (0.58)
NNlin (hot) 6.05 (0.04) . 6.38 (0.52) .
SVRREML 5.80 (0.01) 7.09 (0.03) 6.31 (0.54) 7.08 (0.69)
SVRREML (ml) 6.77 (0.01) 6.77 (0.01) 7.08 (0.69) 7.08 (0.69)
SVRREML (hot) 6.44 (0.01) . 6.55 (0.62) .

Notes: NNlin - interactions are specified, SVRREML - only original features, train/test sets according to 50-fold
cross-validation (means and standard deviation), root mean squared error (RMSE) subscripts: within: with the corrections of
the random effect realizations known for that cluster, out: ignoring the cluster (out of sample), ml only the pure ml model,
hot the pure ml model with one-hot cluster-membership

Again, hyperparameters of the pure machine learning models were tuned separately (Appendix C) and we
then perform 50−fold cross-validation to report means and standard deviations.

6.2 Empirical results

Parameter estimates for this model are shown in Table 6 compared to the results in Snijders & Bosker (2011)
(Table 5.3). From this comparison, we again conclude that our REML estimation method is in line with
traditional methods, even for real empirical data.

Since we don’t get the individual parameters (of the features and their interaction) in the SVR model, we
will use the predictive quality as the metric for comparison. The question here relates to whether a more
flexible machine learning model incorporates information into a prediction that would otherwise have to
be specified directly (e.g., as interactions). The prediction results are shown in Table 7. Here we can see
that the SVR can produce the same prediction results, even though the non-linearities (interactions) are
not specified. Note also, that the SVR here suffers from overfitting (when the train and test results are
compared), which should be avoided by hyperparameter tuning, which was not included in our analysis.

13

Published in Transactions on Machine Learning Research (02/2023)

7 Conclusion and discussion

With this paper, we aimed to, first, motivate to include random effects due to the chance of increased
predictive power and inference. To reach this goal, we combined existing approaches into a more general and
flexible framework, which does not limit the choice of machine learning procedures that can be used. Here,
every machine learning predictor can be specified outside of the framework and can then be used for the
fixed effects. The framework allows to specify machine learning model-specific convergence criteria, which is
highly recommended since the fine-tuning of the model in every EM iteration reaches the convergence fast.

The second goal was to include different estimation procedures, especially adding the REML estimation, and
compare parameter estimates and the predictive quality in a simulation study. The results show that in the
linear case, the framework is able to produce the same parameter estimates as in traditional LME models,
but decrease estimation time. Our MLE/REML estimations decrease the estimation time compared to the
often-used OOB implementation significantly and also decreases the time compared to the traditional LME
method. The lower estimation time of MLE/REML compared to OOB can only be explained by the applied
variance and covariance estimation, since for both methods the machine learning fixed effects estimation is
the same. Whereas in MLE/REML only the variance components are estimated, the OOB estimates a full
LME model. Here random effects and fixed effects are estimated, even though the fixed effect estimation was
already performed by the machine learning procedure and thus are zero in the remaining model. As a result,
the OOB fixed effects estimates are consequentially zero, but nevertheless, they had to be estimated, since
an empty (no fixed effects) model can not be specified. This might lead to a significant and unnecessary
increase in estimation time. In the non-linear case, the framework shows good prediction results even if
non-linearities like interactions are not specified. This is a big advantage since correct model specifications
are almost always impossible and the robustness of procedures is desirable. In our analyses, as expected,
there is little difference between the MLE and REML estimates. Nevertheless, we can and would generally
recommend the REML estimator as it is robust to the number of clusters, as described in section 2.1.

As the third goal, the performance should be evaluated not only on simulated data but also on a real data set.
Here the parameter estimates are in line with the traditional estimates, indicating an unbiased estimation.
Furthermore, the same prediction results of a model where interactions are specified can be achieved without
the need to overspecify a model or find the right interactions and non-linearities by hand, but by using a
flexible framework for the fixed effects.

7.1 Limitations and future work

Relevant open questions should be investigated in further, detailed simulation studies. This refers especially
to the area of sample size, both general sample size and different combinations regarding the number of clus-
ters and included observations. Open questions in this area refer to the efficiency of the estimation in regards
to the dependence of the data size, as well as a possible dependence (especially of the comparison models
like hot) on different cluster sizes (e.g. underrepresented clusters). In our studies, although no balanced
design was chosen, the cluster sizes are nevertheless in the same order of magnitude. The dependency on
sample size also becomes relevant in the combination of a large number of clusters, with a in general small
sample size. Here the fixed effects approach (here as hot) might suffer from a mismatch in parameters to
be estimated and available observations. Another point that should be investigated in these studies is the
convergence of the EM algorithm and to what extent this depends on different simulated scenarios.

Since the framework decreases estimation time, even when compared to the traditional models, it would be
interesting to investigate if this advantage further increases with increasing sample size. Then the mixedML
specification that intends to mimic a LME (NNlin) can be an alternative for the psychometric community
to estimate linear mixed effect models for big data sets. Further, the option of predicting the random
effects/correction for unobserved clusters as in Xiong et al. (2019) should be included in a general framework.
The next steps will be to implement the generalized mixed effects model allowing for link functions to non-
normal target distributions (see Ngufor et al., 2019). This will allow for different output activation functions,
thus including classification problems.

14

Published in Transactions on Machine Learning Research (02/2023)

Acknowledgments

This work was supported by the German Research Foundation (EXC 2064, project number 390727645) –
Cluster of Excellence “Machine Learning – New Perspectives for Science”.

References
Douglas M. Bates, Martin Mächler, Ben Bolker, and Steve Walker. Fitting Linear Mixed-Effects Models

Using lme4. Journal of Statistical Software, 67(1), 2015. ISSN 1548-7660. doi: 10.18637/jss.v067.i01.

H.P. Brandsma and J.W.M. Knuver. Effects of school and classroom characteristics on pupil progress in
language and arithmetic. International Journal of Educational Research, 13(7):777–788, 1 1989. ISSN
08830355. doi: 10.1016/0883-0355(89)90028-1.

Chih Chung Chang and Chih Jen Lin. LIBSVM: A Library for support vector machines. ACM Transactions
on Intelligent Systems and Technology, 2(3), 2011. ISSN 21576904. doi: 10.1145/1961189.1961199.

Jacob Cohen. Statistical Power Analysis for the Behavioral Sciences. Routledge, 5 2013. ISBN
9781134742707. doi: 10.4324/9780203771587.

Marie. Davidian and David M. Giltinan. Nonlinear models for repeated measurement data.
Chapman & Hall, 1995. ISBN 9780412983412. URL https://www.routledge.com/
Nonlinear-Models-for-Repeated-Measurement-Data/Davidian-Giltinan/p/book/9780412983412.

Eugene Demidenko. Mixed Models. Wiley Series in Probability and Statistics. John Wiley & Sons, Inc.,
Hoboken, NJ, USA, 1 1987. ISBN 9781118651537. doi: 10.1002/9781118651537. URL http://doi.wiley.
com/10.1002/9781118651537.

M. Fokkema, N. Smits, A. Zeileis, T. Hothorn, and H. Kelderman. Detecting treatment-subgroup interactions
in clustered data with generalized linear mixed-effects model trees. Behavior Research Methods, 50(5):
2016–2034, 10 2018. ISSN 1554-3528. doi: 10.3758/s13428-017-0971-x.

Ahlem Hajjem, François Bellavance, and Denis Larocque. Mixed effects regression trees for clustered data.
Statistics & Probability Letters, 81(4):451–459, 4 2011. ISSN 01677152. doi: 10.1016/j.spl.2010.12.003.
URL https://linkinghub.elsevier.com/retrieve/pii/S0167715210003433.

Ahlem Hajjem, François Bellavance, and Denis Larocque. Mixed-effects random forest for clustered
data. Journal of Statistical Computation and Simulation, 84(6):1313–1328, 6 2014. ISSN 0094-9655.
doi: 10.1080/00949655.2012.741599. URL http://www.tandfonline.com/doi/abs/10.1080/00949655.
2012.741599.

Ahlem Hajjem, Denis Larocque, and François Bellavance. Generalized mixed effects regression trees. Statis-
tics & Probability Letters, 126:114–118, 7 2017. ISSN 01677152. doi: 10.1016/j.spl.2017.02.033. URL
https://linkinghub.elsevier.com/retrieve/pii/S0167715217300895.

Anja W.M. Knuver and Hennie P. Brandsma. Cognitive and Affective Outcomes in School Effectiveness
Research. School Effectiveness and School Improvement, 4(3):189–204, 8 1993. ISSN 0924-3453. doi:
10.1080/0924345930040302.

Nan M. Laird and James H. Ware. Random-Effects Models for Longitudinal Data. Biometrics, 38(4):963, 12
1982. ISSN 0006341X. doi: 10.2307/2529876. URL https://www.jstor.org/stable/2529876?origin=
crossref.

Kung Yee Liang and Scott L. Zeger. Longitudinal data analysis using generalized linear models. Biometrika,
73(1):13–22, 4 1986. ISSN 0006-3444. doi: 10.1093/BIOMET/73.1.13. URL https://academic.oup.
com/biomet/article/73/1/13/246001.

15

https://www.routledge.com/Nonlinear-Models-for-Repeated-Measurement-Data/Davidian-Giltinan/p/book/9780412983412
https://www.routledge.com/Nonlinear-Models-for-Repeated-Measurement-Data/Davidian-Giltinan/p/book/9780412983412
http://doi.wiley.com/10.1002/9781118651537
http://doi.wiley.com/10.1002/9781118651537
https://linkinghub.elsevier.com/retrieve/pii/S0167715210003433
http://www.tandfonline.com/doi/abs/10.1080/00949655.2012.741599
http://www.tandfonline.com/doi/abs/10.1080/00949655.2012.741599
https://linkinghub.elsevier.com/retrieve/pii/S0167715217300895
https://www.jstor.org/stable/2529876?origin=crossref
https://www.jstor.org/stable/2529876?origin=crossref
https://academic.oup.com/biomet/article/73/1/13/246001
https://academic.oup.com/biomet/article/73/1/13/246001

Published in Transactions on Machine Learning Research (02/2023)

Mary J. Lindstrom and Douglas M. Bates. Newton—Raphson and EM Algorithms for Linear Mixed-Effects
Models for Repeated-Measures Data. Journal of the American Statistical Association, 83(404):1014–1022,
12 1988. ISSN 0162-1459. doi: 10.1080/01621459.1988.10478693. URL http://www.tandfonline.com/
doi/abs/10.1080/01621459.1988.10478693.

Francesca Mandel, Riddhi Pratim Ghosh, and Ian Barnett. Neural networks for clustered and longitudinal
data using mixed effects models. Biometrics, 2 2022. ISSN 0006-341X. doi: 10.1111/biom.13615. URL
https://onlinelibrary.wiley.com/doi/10.1111/biom.13615.

Steffen Nestler and Sarah Humberg. A Lasso and a Regression Tree Mixed-Effect Model with Random Effects
for the Level, the Residual Variance, and the Autocorrelation. Psychometrika, 8 2021. ISSN 0033-3123.
doi: 10.1007/s11336-021-09787-w. URL https://link.springer.com/10.1007/s11336-021-09787-w.

Che Ngufor, Holly Van Houten, Brian S. Caffo, Nilay D. Shah, and Rozalina G. McCoy. Mixed effect machine
learning: A framework for predicting longitudinal change in hemoglobin A1c. Journal of Biomedical
Informatics, 89:56–67, 1 2019. ISSN 15320464. doi: 10.1016/j.jbi.2018.09.001. URL https://linkinghub.
elsevier.com/retrieve/pii/S1532046418301758.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2011.

Stephen W Raudenbush and Anthony S Bryk. Hierarchical linear models: applications and data analysis
methods. SAGE Publications, 2nd edition, 2002.

Skipper Seabold and Josef Perktold. Statsmodels: econometric and statistical modeling with python. In 9th
Python in Science Conference, 2010.

Rebecca J. Sela and Jeffrey S. Simonoff. RE-EM trees: a data mining approach for longitudinal and clustered
data. Machine Learning, 86(2):169–207, 2 2012. ISSN 0885-6125. doi: 10.1007/s10994-011-5258-3. URL
http://link.springer.com/10.1007/s10994-011-5258-3.

Tom A. B. Snijders and Roel J Bosker. Multilevel Analysis: An Introduction to Basic and Advanced Multilevel
Modeling. Sage, London, 2nd edition, 2011. ISBN 9781446254332.

Hulin Wu and Jin-Ting Zhang. Nonparametric Regression Methods for Longitudinal Data Analysis. John
Wiley & Sons, Inc., Hoboken, NJ, USA, 3 2006. ISBN 9780470009673. doi: 10.1002/0470009675.

Yunyang Xiong, Hyunwoo J. Kim, and Vikas Singh. Mixed Effects Neural Networks (MeNets) With Appli-
cations to Gaze Estimation. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 7735–7744. IEEE, 6 2019. ISBN 978-1-7281-3293-8. doi: 10.1109/CVPR.2019.00793.

Scott L. Zeger and Kung-Yee Liang. Longitudinal Data Analysis for Discrete and Continuous Outcomes.
Biometrics, 42(1):121, 3 1986. ISSN 0006341X. doi: 10.2307/2531248.

16

http://www.tandfonline.com/doi/abs/10.1080/01621459.1988.10478693
http://www.tandfonline.com/doi/abs/10.1080/01621459.1988.10478693
https://onlinelibrary.wiley.com/doi/10.1111/biom.13615
https://link.springer.com/10.1007/s11336-021-09787-w
https://linkinghub.elsevier.com/retrieve/pii/S1532046418301758
https://linkinghub.elsevier.com/retrieve/pii/S1532046418301758
http://link.springer.com/10.1007/s10994-011-5258-3

Published in Transactions on Machine Learning Research (02/2023)

Appendix

A out-of-the-box implementation - Algorithm B

OOB Algorithm for the implementation with standard mixed model methods (out-of-the-box)

Algorithm: OOB implementation
t = 0 Initialize ûj(0) = 0, ∀j = 1, ..., J , yfixed

(0) = y

and train mlfixed(θ)(X) = yfixed
(0) → ŷfixed

(0) , set e(0) = y − ŷfixed
(0)

t = t + 1 specify the LME as
e(t−1) = Xβ + Zν

to be trained with a mixed model framework (out of the box)
→ û(t), Σ̂ν(t) and σ̂2

ϵ(t)
Update yfixed

(t) = y − Zû(t)

train mlfixed(θ)(X) = yfixed
(t) → θ̂(t) and ŷfixed

(t)
set e(t) = y − ŷfixed

(t)

B Simulation details

To evaluate and compare the models, we conducted a simulation study. We fix the number of clusters to J = 200,
the number of observations per cluster nj to a sampled value between 22 and 25, the number of level 1 predictors
(attributes, features) p1 = 10 and the number of level 2 predictors to p2 = 3. We include random effects for all level
1 predictors (pr = p1).

We simulate the level 1 feature vector for every observation i ∈ [1, ..., N] as a random draw from the p1-dimensional
multivariate normal distribution N (0, Σ1x) with

diag(Σ1x) = 1

and covariance values of 0.1 or 0.3 according to a random draw of the uniform distribution U0,1 (with threshold 0.5).
Note that these chosen covariance values correspond to typical low and medium effect sizes that are usually found in
the social and behavioral sciences (Cohen, 2013).

We repeat this process for the level 2 feature vectors with the according p2 dimensional covariance matrix Σ2x. Note
that level 2 features are equal for observations within the same cluster.

For the covariance matrix Σν of the pr + 1 random effects (pr slopes/weights plus random intercept/bias), we assume
σνm,νn = 0 for n ̸= m. For the then diagonal covariance matrix of the random effects, we assume the identity matrix
(setting σ2

νm
= 1, ∀m ∈ [0, 1, ..., pr]). By setting the variance of the random effects to one, we identify the latent

variable vector. To simulate the cluster specific realizations uj of the latent variables we draw samples uj ∼ N (0, Σν)
for j = 1, ..., J and define u = (ut

1, ..., ut
j)t.

For the residuals we assume Σϵ = σϵ1 with σϵ = 3.5, and sample ϵ ∼ N (0, Σϵ) (ϵ ∈ RN).

We set the intercept/bias β0 = 5 and all other parameters to 1 and obtain β1 ∈ Rp1 (level 1 parameters/weights),
β2 ∈ Rp2 (level 2 parameters/weights). With the chosen values, together with σϵ, we achieve an overall explained
variances of y of around 0.77 (linear) and .82 (non-linear).

Calculate the target y Putting it together, we obtain the linear case

ylin = β0 + Xβ + Zu + ϵ.

For the non-linear case, we include the quadratic terms of the first five level 1 features and define

Xq = (x2
11, ..., x2

15),

and βq ∈ R5 sampled as the other coefficients. This gives

ynlin = β0 + Xβ + Xqβq + Zu + ϵ.

17

Published in Transactions on Machine Learning Research (02/2023)

C Hyperparameter tuning

Before being used in the mixedML framework, the hyperparameters of the pure machine learning models are tuned
for the respective data sets. We performed an exhaustive grid search with a 3-fold cross-validation. For the linear
simulation data (NNlin), we only tune the learning rate. In the non-linear case (NNlin), we also tune the number of
hidden units in the two layers. For SVR we use the sklearn (Pedregosa et al., 2011) implementation which is based on
libsvm Chang & Lin (2011). We tune the kernel (linear or radial basis function (rbf)), the regularization parameter
C (inverse proportional to typical regularization parameters - range), and the rbf-kernel parameter gamma.

NNlin NNlin hot NNnlin NNnlin hot SVR SVR hot

Simulations
learning rate 0.01 0.01 0.01 0.01 - -
hidden layers - - 2 2 - -
units layer 1 - - 5 4 - -
units layer 2 - - 3 4 - -
kernel (linear/rbf) - - - - rbf rbf
C - - - - 38 38
gamma - - - - 0.001 0.001

Emprirical data
learning rate 0.01 0.01 - - - -
kernel (linear/rbf) - - - - rbf rbf
C - - - - 36 84
gamma - - - - 0.001 0.001

18

	Introduction
	Mixed effects regression models
	Linear Mixed Effects (LME) Model
	Non-linear mixed effects models

	Mixed effects models for machine learning
	Mixed effects approach - mixedML

	Estimation
	EM
	Prediction

	Simulation studies
	Evaluation and comparison metrics
	Models and procedure
	Results

	Empirical evaluation
	Models and procedure
	Empirical results

	Conclusion and discussion
	Limitations and future work

	out-of-the-box implementation - Algorithm B
	Simulation details
	Hyperparameter tuning

