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Abstract

Inferring tissue morphology from gene expres-
sion remains widely unexplored. We present a
two-stage conditional generative framework that
leverages for the first time spatial transcriptomics
data from the Visium HD platform to demonstrate
this inference is feasible. Starting from near-
whole-transcriptome profiles, the model synthe-
sizes histology-like images that are plausible, as
validated by FID scores and expert review. Model
interpretation further reveals biologically mean-
ingful links between specific genes and morpho-
logical patterns.

Introduction
Spatial Transcriptomics (ST) is an innovative technology
that allows the capture of gene expression (GEX) profiles
within their natural tissue environment. Uncovering the
relationship between GEX and morphology is crucial for
tasks such as predicting the structural impact of gene pertur-
bations and detecting early morphological changes linked
to disease onset. Yet, it has received limited attention
in existing literature. Recent studies have attempted to
link gene expression with morphology using bulk RNA-
seq data (Carrillo-Perez et al., 2023; 2024), a strategy that
obscures intra-sample heterogeneity critical for spatial ar-
rangement insights. Alternative approaches infer cellular
morphology either from single-gene perturbations (Navidi
et al., 2024) or from narrowly focused gene panels (Wu &
Koelzer, 2024; Wu et al., 2023), limiting their scope. To
fill this gap, our study leverages recent advancements in
ST—specifically the 10x Visium HD platform—to model
this relationship across the entire transcriptome (Hahn et al.,
2025). Inspired by the effectiveness of generative models
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Figure 1. a) Data Processing strategy and b) two-phase modeling
framework

in text-to-image applications, we developed a two-stage
conditional generative framework that synthesises histolog-
ical images conditionally on GEX. Our model produces
plausible histology-like images, confirmed by competitive
FID scores and expert pathologist reviews. Interpretabil-
ity analyses further point to associations between certain
GEX patterns and distinct morphological traits, setting the
stage for future work to identify genes whose disruption
may contribute to disease or drug-induced toxicity. To
our knowledge, this is the first approach to integrate high-
resolution ST and conditional generative modelling to pre-
dict histological images. The code and data is available at
https://github.com/lohmannf/genes2morphology.

Method
In this work, we characterise the mapping from GEX pro-
files to tissue morphology as a one-to-many mapping and
model it using a two-phase conditional generative approach.
The workflow is depicted in Figure 1b.
Phase 1: Contrastive Representation Learning. In the
first step, we align tissue morphology and GEX by mapping
them into a common representation space. The goal of this
phase is dimensionality reduction of the GEX profiles to
avoid overfitting in the second phase. While selecting highly
variable genes (HVGs) or spatially variable genes (SVGs)
is common practice, they have to be determined across all
training and testing samples to be meaningful, limiting gen-
eralizability to new unseen samples. To mitigate this issue,
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we instead take a contrastive approach to dimensionality
reduction. Inspired by prior work (Xie et al., 2023; Min
et al., 2024; Lee et al., 2024), we train a bimodal contrastive
model composed of an image encoder and a GEX encoder
that integrates the two modalities into a shared latent space.
The GEX encoder is a Multi-Layer Perceptron (MLP) with a
projection head, while the image encoder combines the fixed
pathology foundation model UNI (Chen et al., 2024) with a
trainable projection head. The representations of matching
data pairs are aligned using the CLIP loss (Radford et al.,
2021).
Phase 2: Conditional Generation. In the second phase, the
learned GEX representations are used to condition an image
generative model. This phase is agnostic to the specific con-
ditional generative architecture. We illustrate this flexibility
by applying it to two major types of generative models: Gen-
erative Adversarial Networks (GANs) and diffusion models.
For GANs, we adapt the StyleGAN-T architecture (Sauer
et al., 2023) as StyleGAN-G, while for diffusion models,
we use Stable Diffusion (SD) (Rombach et al., 2022). Both
models are conditioned on the GEX embeddings obtained
with the fixed GEX encoder pretrained in the first phase. The
StyleGAN-T architecture is modified so that the discrimina-
tor incorporates a feature extractor trained on histological
images instead of ImageNet (Dosovitskiy et al., 2020; Filiot
et al., 2024), and it is trained from scratch. Similarly to
StyleGAN-T, to ensure alignment between the GEX condi-
tion and the generated image, the spherical distance between
the GEX embedding and the generated image embedding
obtained with the pretrained image encoder is used as an
additional guidance loss term. On the other hand, due to
computational costs, the SD model was fine-tuned (U-Net
part) on histological image data while conditioning on the
GEX embeddings following the approach of Navidi et al.
(2024). To mirror the usage of CLIP guidance in the GAN-
based approach and improve prompt alignment, we employ
classifier-free guidance (Ho & Salismans, 2022) with differ-
ent strengths w at inference time. Training details for both
models are described in Appendix A.

Data. We conducted experiments on six formalin-fixed
paraffin-embedded (FFPE) healthy mouse kidney samples,
profiled using two spatial transcriptomics platforms: Vi-
sium HD (one sample) and standard Visium (five samples).
Visium HD offers much higher spatial resolution, captur-
ing gene expression in 2µm bins, compared to the 55µm
spots of standard Visium. To leverage the high resolution
of Visium HD samples, we aggregated adjacent 2µm bins
into ∼ 300, 000 “pseudo-spots” by summing gene expres-
sion profiles over 27× 27 2µm bins with a stride of 5 bins.
We retained 18,248 genes common to both platforms and
normalised and log-transformed gene expression profiles
per sample. To obtain GEX-morphology data pairs, the
corresponding tissue morphology to each (pseudo-)spot is

extracted from the Macenko stain-normalised (Macenko
et al., 2009) WSI as a 55µm× 55µm patch at the (pseudo-
)spot’s spatial location. We resize patches to 128 × 128
pixels to ensure uniform absolute resolution. The prepro-
cessing workflow is illustrated in Figure 1a. Given the need
for a large training dataset, Visium HD data were used for
model training, while standard Visium samples served as
test data. Additional details on datasets and preprocessing
are provided in Appendix B.

Results
We performed various experiments to quantitatively and
qualitatively evaluate the plausibility of the generated im-
ages. We also analyse the interpretability of the gene ex-
pression encoder and its relation to the biological relevance
of the generated morphologies.

Table 1. FID and KID on 36528 generated images

MODEL FID ↓ KID ↓
STYLEGAN-G 18.41 0.0127(0.0015)
SD (w = 1) 84.28 0.0666(0.0035)
SD (w = 3) 78.99 0.0784(0.0043)
SD (w = 7) 84.69 0.0925(0.0045)

Image Plausibility. Figure 2 shows histological patches
generated using multiple noise vectors (columns) and gene
expression inputs (rows). The GEX profiles corresponding
to real patches (shown in the leftmost column) are used as
input. The generated images accurately capture the tissue
morphology of their corresponding reference images and
can be visually compared to real tissue patches shown in
Appendix C. Notably, the generated images more closely
resemble the training data in hue and overall quality (Ap-
pendix C, top row), as the model does not explicitly account
for experimental variations such as tissue preparation. To
quantitatively measure the quality of generated images, Ta-
ble 1 reports Fréchet Inception Distance (FID) (Heusel et al.,
2017) and Kernel Inception Distance (KID) (Bińkowski
et al., 2018) for both the GAN- and diffusion-based models.
Since predicting tissue morphology from GEX using ST
platforms such as Visium has not been previously addressed,
there are no directly comparable methods. Therefore, we
compare our results to the most closely related approaches.
In this setting, StyleGAN-G achieves substantially better
FID scores than prior GAN-based methods (e.g., RNA-
GAN, FID = 83.89 (Carrillo-Perez et al., 2023)), while the
diffusion-based model performs comparably to related diffu-
sion methods (MorphoDiff, FID ≥ 78 (Navidi et al., 2024)).
We attribute the relatively lower performance of SD-models
in this setting to the limited generalizability of pretrained
diffusion models to histopathology data, as noted in prior
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Figure 2. 128 × 128px images generated from different gene expression prompts with StyleGAN-G and Stable Diffusion (w = 3).
Corresponding reference image shown in the leftmost column. Columns correspond to the same random noise vector.

Table 2. Average expert classification performance on 50 images

ACCURACY ↑ PRECISION ↑ RECALL ↑
0.486(0.095) 0.492(0.096) 0.488(0.111)

work (Müller-Franzes et al., 2023). Due to the substantial
training requirements of dedicated diffusion models and the
limited availability of data, we selected the StyleGAN-G
architecture for subsequent experiments. However, as more
ST datasets become available, diffusion models specifically
tailored to histopathology may outperform the GAN-based
approach. To further assess the morphological plausibility
of the generated images, we conducted an expert validation
study with a panel of 10 veterinary pathologists. We pre-
sented each expert with a morphologically diverse, balanced
dataset of 50 real and generated images and asked to clas-
sify them. The average classification performance across
the dataset is shown in Table 2. The expert panel achieved
a near-random accuracy of 0.486 on the entire dataset, con-
firming that the images generated with StyleGAN-G are
highly realistic. In Appendix D, we compare the distri-
butions of real and synthetic images in the learned image
embedding space of the contrastive model as an additional
evaluation of generated image quality.

GEX Embedding Space. To assess the quality of the
learned embedding space, we applied sample-wise Leiden
clustering (Traag et al., 2019) on the GEX embedding space
(GEX data projected using the pretrained gene expression
encoder). For visualization, we combine all samples to-
gether and project them using UMAP (McInnes et al., 2018).
The hyperparameters of the clustering are chosen to ensure
the identification of key kidney regions within each sam-

ple, including the cortex (CX), outer stripe of the outer
medulla (OSOM), brown adipose tissue (BAT), inner stripe
of the outer medulla (ISOM), and inner medulla&papilla
(IM&P) (Kumaran & Hanukoglu, 2024). Figure 3a+b
presents the UMAP of the GEX embedding space. In Fig-
ure 3a, embeddings are color-coded by Leiden clustering
results, while Figure 3b displays colors corresponding to
sample origin. Figure 3d-h maps these clusters onto test
set images, demonstrating successful identification of key
kidney regions across all samples. The embedding space
exhibits two important properties. GEX embeddings from
different samples are well-integrated as demonstrated in
Figure 3b. Additionally, clusters representing identical tis-
sue regions from various samples consistently localize to
similar areas within the latent space, as shown in Figure 3a.
In contrast, in the UMAP space of the GEX data, a clear
separation between samples can be observed (Figure 3c).
To quantify the alignment in the embedding space, we per-
formed joint clustering across all test samples both in the
GEX embedding and GEX space and compared it to sample-
wise clustering and sample index using the Adjusted Rand
Index (ARI). A visualization of the joint clustering can be
found in Appendix E. The results show a strong alignment
with separately identified clusters (ARI = 0.79) and minimal
correlation with the sample index (ARI = 0.005) in the em-
bedding space. In contrast, the overlap between clustering
and sample index in GEX space is significant (ARI = 0.588),
indicating stronger batch effects.

Biological Relevance. Building on the observed alignment
between GEX embedding space clusters and kidney regions
(Figure 3), we aim to identify which genes primarily drive
the differences between clusters and therefore relate to the
underlying morphological distinctions. We employed the In-
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Figure 3. UMAP of the gene expression embedding space colored by (a) clusters found on each sample individually and (b) sample index.
(c) UMAP of the gene expression space of samples 1-5 colored by sample index. Tissue cuts with spots colored by clusters found in gene
expression embedding space for samples (d) 1, (e) 2, (f) 3, (g) 4, and (h) 5. Colors in (a) and (d)-(h) refer to the same clusters.

Table 3. Significantly enriched GO:CC terms in sample 4 with more than 4 leading genes.

TERM NES ↑ QUERY REFERENCE

LIPID DROPLET 1.710422 BAT IM&P
BASOLATERAL PLASMA MEMBRANE 1.702832 CX BAT
BASOLATERAL PLASMA MEMBRANE 1.660759 CX OSOM
ENDOPLASMATIC RETICULUM LUMEN 2.098712 IM&P OSOM
INTRACELLULAR ORGANELLE LUMEN 2.002516 IM&P OSOM
COLLAGEN-CONTAINING EXTRACELLULAR MATRIX 1.936724 IM&P OSOM

tegrated Gradients (IG) method (Sundararajan et al., 2017),
as implemented in Heimberg et al. (2024), to identify genes
that contribute most significantly to differences between
GEX embedding clusters. This method assigns an attribu-
tion score to each input feature (in this case, each gene) by
quantifying its importance along a continuous path between
two points in the embedding space. Therefore, we applied
IG to assess gene contributions between pairs of cluster-
averaged expression profiles as identified in Figure 3d-h.
This approach allowed us to determine which genes most
significantly drive the differences between clusters in the
gene expression embedding space. Our analysis involved the
following steps: 1) We averaged the GEX embedding across
all data points within each cluster. 2) For each pairwise
comparison of cluster-averaged embeddings, we identified
the 100 genes with the highest attribution scores. 3) We
interpreted the attribution scores as indicators of a gene’s
influence on differences between clusters, analogous to dif-
ferential gene expression analysis. We hypothesized that
genes with high attribution scores would be associated with
cellular components and structures that define kidney tissue
architecture. To test this hypothesis, we performed Gene
Set Enrichment Analysis (GSEA) Preranked (Subramanian
et al., 2005) on these top 100 genes ranked by attribution
score. We compared the most highly attributed genes to

Gene Ontology Cellular Component (GO:CC) terms (Ash-
burner et al., 2000), as this ontology describes structural
components rather than biological or molecular functions.
We report enriched terms at a significance level of 2%. Ta-
ble 3 illustrates the results for test sample 4, showing the
normalized enrichment score (NES) of all significantly en-
riched GO:CC terms with at least 4 leading genes. This
representation highlights the most relevant structural com-
ponents associated with the highly attributed genes in this
sample. The results for the remaining samples are provided
in Appendix F.2. Inspection of the top enriched terms (see
Appendix F.1) shows that they align with prominent anatom-
ical features of their respective query regions, indicating that
the model relies on structurally relevant genes to discrimi-
nate morphological patterns across different tissue regions.

Conclusion
We introduce, to the best of our knowledge, the first ap-
proach to synthesise histology images directly from high-
resolution GEX data. Experiments on five kidney samples
demonstrate that our model learns biologically meaningful
gene expression representations, generates histologically
accurate tissue morphologies across diverse renal struc-
tures, and produces images that achieve competitive FID
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scores and expert pathologists find indistinguishable from
real tissue. Although our proof-of-concept work relies on
only six sections of healthy mouse kidney—hence on a
single tissue type and species—it nonetheless shows that
histological images can be synthesized directly from GEX
data, opening new avenues for systematic exploration of
gene–morphology links. As larger and more diverse ST
datasets emerge, this approach could evolve into a powerful
tool for pinpointing molecular drivers of early disease and
for in silico simulations of the structural consequences of
gene perturbations.
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A. Training Details
A.1. Contrastive Image-Gene Encoder

The contrastive image-gene encoder is pretrained on a subset of 10000 image-gene spot pairs drawn uniformly at random
from the VisiumHD training sample. We train for a total of 4200 iterations at a learning rate of 5e − 6 on a NVIDIA
A100-SXM4 80GB GPU. A batch size of N = 128 and a dropout rate of p = 0.8 is used. Validation of model convergence
is performed on sample 1.

A.2. StyleGAN-G

StyleGAN-G is trained on all available data pairs from the VisiumHD sample at a learning rate of 2e − 3. Training is
conducted in 2 progressive growing steps on 2 NVIDIA A100-SXM4 80GB GPUs. First, we train at 64×64 resolution for
16,000 iterations. For subsequent training at 128× 128, we keep all layers up to 64×64 resolution fixed and train for 50,000
iterations. We use a total batch size of 128 and a per-GPU batch size of 8. The guidance strength was set to λ = 0.2. In
preliminary experiments, training of StyleGAN-G did not converge when jointly optimizing a non-pretrained GEX encoder,
instead of using the fixed GEX encoder from Phase 1, highlighting the importance of learning a principled GEX embedding.

A.3. Stable Diffusion

The Stable Diffusion Pipeline was fine-tuned for 55 epochs on a NVIDIA A100-SXM4 80GB GPU, keeping all components
except the U-Net frozen. We use the HuggingFace implementation of SD and fine-tune at a batch size of 32 and a learning
rate of 1e− 5. To enable classifier-free guidance, the GEX embedding prompt is set to the embedding of the vector of all
zeroes with probability puncond = 0.1. We use the definition of classifier-free guidance reported in Saharia et al. (2022),
where w = 1 corresponds to using no guidance.

B. Data Details
The Visium HD processed training sample and the standard Visium processed sample 1 were sourced from 10XGenomics
(2024; 2021) and represent the coronal section of a kidney. The remaining standard Visium processed samples 2-5 originate
from a proprietary dataset and represent the transverse section of a kidney. Samples 1-5 yield 3124, 1490, 1670, 1421, and
1427 data pairs respectively. In Visium HD data, the location of the center 2µm bin is used as the spatial location of the
pseudo-spot. The stain normalisation is applied to each WSI individually before extracting image patches.
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C. Real Image Data

Figure C.1. Representative example patches from the training data (top row) and samples 1-5 (bottom)

D. Image Embedding Space
Figure D.1 displays a UMAP of the image embedding space generated using our CLIP model on both synthetic and real
images (see also Table 1). It demonstrates that synthetic and real images are well mixed and thus further strengthens the
claim that the generated images accurately reflect the true data distribution.

Figure D.1. UMAP of CLIP image embedding space
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E. ARI Reference Clusters

(a) GEX Embedding (b) GEX

Figure E.1. Clusters found by clustering jointly across samples in (a) gene expression embedding space (b) gene expression space. Used
as reference to compute Adjusted Rand Index.

F. Gene Attributions
F.1. Interpretation of GO:CC Terms enriched in Sample 4

Table 3 shows an enrichment of the Lipid Droplet term in brown adipose tissue as compared to other renal regions, which
is expected given the high concentration of fat-storing adipocytes in this region. The embeddings of Basolateral Plasma
Membrane genes distinguish the cortex from both the OSOM and brown adipose tissue. This reflects the cortex’s abundance
of proximal and distal convoluted tubules, whose extensive basolateral membranes support active secretion and absorption
of solutes. In contrast, the OSOM has fewer of these tubule segments, while the brown adipose tissue is composed mainly of
adipocytes which do not directly participate in solute transport. Consequently, basolateral membrane–related genes are more
characteristic of the cortex’s morphology than those of the OSOM or brown adipose tissue.

Differences between the inner medulla/papilla and the OSOM emerge from terms linked to the extracellular matrix. The
inner medulla and papilla contain specialized connective tissue that maintains structural integrity under the high osmotic
pressure generated when urine is concentrated in the collecting ducts. In line with this function, renal interstitial cells
in these regions produce collagen and other extracellular matrix components, which rationalizes the enrichment of the
collagen-containing extracellular matrix term. Additionally, enrichment of genes associated with the endoplasmic reticulum
(ER) lumen and intracellular organelle lumen further differentiates the inner medulla/papilla from the OSOM, reflecting
higher levels of protein synthesis and post-translational modification. In particular, the collecting ducts—key structures
within the inner medulla and papilla—rely on these processes to carry out their specialized functions.

The derived attribution scores offer an opportunity to identify novel gene sets that drive these morphological differences,
providing a valuable direction for future research to pinpoint genes whose loss or alteration may contribute to disease or
drug-associated toxicity.
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F.2. Significant GO:CC Terms

Table F.1. Significantly enriched GO:CC terms in sample 2 with more than 4 leading genes

Term NES ↑ Query Cluster Reference Cluster

Intracellular Membrane-Bounded Organelle 1.852065 Inner Medulla & Papilla Cortex
Basolateral Plasma Membrane 1.631743 Inner Medulla & Papilla Brown Adipose Tissue
Basolateral Plasma Membrane 1.661647 Cortex OSOM
Endoplasmatic Reticulum Lumen 1.951187 Inner Medulla & Papilla OSOM
Intracellular Organelle Lumen 1.729963 Inner Medulla & Papilla OSOM

Table F.2. Significantly enriched GO:CC terms in sample 3 with more than 4 leading genes

Term NES ↑ Query Cluster Reference Cluster

Vesicle -1.853656 Brown Adipose Tissue OSOM
Intracellular Organelle Lumen 1.78486 Brown Adipose Tissue OSOM
Endoplasmatic Reticulum Lumen 1.703005 Inner Medulla & Papilla OSOM
Basolateral Plasma Membrane 1.918574 Inner Medulla & Papilla Cortex
Nucleus 1.852569 Inner Medulla & Papilla Cortex
Intracellular Membrane-Bounded Organelle 1.700012 Inner Medulla & Papilla Cortex
Basolateral Plasma Membrane 1.701396 Inner Medulla & Papilla Brown Adipose Tissue
Nucleus -1.687745 ISOM Inner Medulla & Papilla

Table F.3. Significantly enriched GO:CC terms in sample 5 with more than 4 leading genes

Term NES ↑ Query Cluster Reference Cluster

Endoplasmatic Reticulum Lumen 1.937943 Inner Medulla & Papilla OSOM
Intracellular Organelle Lumen 1.72107 Inner Medulla & Papilla OSOM
Basolateral Plasma Membrane 1.938538 Inner Medulla & Papilla Cortex
Nucleus -1.677389 ISOM Inner Medulla & Papilla
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