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ABSTRACT

We propose retrieval augmentation (RA) as an enhancement to federated learning
(FL) that can improve privacy protection and ensure regulatory compliance. FL,
primarily designed for data privacy preservation, faces challenges with conven-
tional parametric models which are susceptible to privacy breaches and potentially
non-compliant with regulations such as data erasure mandates. RA can help to
address these issues by integrating a retrieval-based method during the inference
phase, achieving “perfect secrecy” by limiting server access to private documents
and reducing barriers to compliance. This study conducts a thorough evaluation of
RA’s efficacy within the FL paradigm, positioning it as a preferable alternative to
traditional parametric models within analogous memory constraints. We charac-
terize potential applications that may benefit from RA in FL, showing in particular
that it is well-suited for knowledge-intensive, few-shot environments—offering
scalable inference-time operations, source attribution, and the ability to dynami-
cally update and unlearn knowledge for compliance. We present a new modeling
framework, named Raffle, to investigate RA for FL applications with labeled and
unlabeled data. Implementing Raffle in homogeneous settings for few-shot ques-
tion answering, we explore the influence on client participation dynamics and the
importance of passage index composition for effective generalization.

1 INTRODUCTION

Modern federated learning (FL) systems are designed to prioritize privacy, aiming to align closely
with regulatory standards while maintaining performance (McMahan et al., 2016). FL incorporates
concepts of data minimization and anonymization to ensure only essential data is aggregated for spe-
cific computations. In these systems, parametric models are preferred for their efficiency in trans-
mitting necessary updates rather than the entirety of raw data. However, despite their widespread
adoption, FL systems using parametric models face notable challenges. Although frameworks that
communicate parametric models/model updates reduce data exposure, they are are prone to pri-
vacy breaches through membership inference (Shokri et al., 2016), model inversion (Jia & Gong,
2018), and attribute inference attacks (Fredrikson et al., 2015). Operating under stringent data gov-
ernance frameworks like GDPR, FL must adapt to requirements such as the ‘obligation of data
erasure’, which mandates the selective deletion of data upon user request, which is a complex task
for parametric models (Ginart et al., 2019; Li et al., 2021; Bourtoule et al., 2021). Additionally,
knowledge-intensive tasks like question answering often require massive parametric models which
are expensive to host and unstable to finetune in low-data regimes, a scenario common in FL settings
(Dodge et al., 2020; Mosbach et al., 2021).

To mitigate these privacy issues, there has been increasing research interest in using public datasets
to augment learning on private data (Wang et al., 2023). A potential benefit of using public data is
that, with enough public data, clients can avoid sharing private information entirely—using a model
trained on public data and then augmenting it locally with private data. Retrieval Augmentation (RA)
(Lewis et al., 2020) exemplifies this strategy by merging parametric and non-parametric memory
systems to address the limitations of parametric models in FL. By leveraging public datasets for
training and utilizing information retrieval and augmentation with private datasets at inference, RA
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Figure 1: Raffle trains a parametric language model on client public datasets that contain non-sensitive infor-
mation, which is then communicated via FL. At test time, a nonparametric index is used that can include private
high-risk data. Dashed lines indicate inference time, and solid lines indicate training time.

not only enhances privacy but also ensures dynamic compliance. It can provide perfect secrecy
by not revealing any additional information about private documents beyond the retrieved portions,
thus offering strong protection against privacy attacks like membership inference. RA’s capability
to control information flow at inference time aligns well with GDPR requirements like selective
data erasure and user access modifications. Additionally, RA excels in knowledge-intensive tasks
with significantly fewer parameters, leading to efficient communication and superior performance,
especially in low-data scenarios prevalent in FL (Izacard et al., 2022).

In this work, building upon RA research (Min et al., 2023; Wutschitz et al., 2023) for privacy in local
language modeling, we propose Raffle, a framework for privacy and RA in FL (see Figure 1). Raffle
allows clients to contribute both their supervised training sets and unsupervised passage data, and
we apply it to few-shot open-domain question answering (QA). In open-domain QA, the retriever
must first identify relevant passages from a broad corpus, and then construct answers from these
passages, a method exemplified in hospital cross-silo QA systems governed by stringent privacy
regulations. We elaborate on the various design choices and distribution assumptions in Raffle,
and experiment on the homogeneous client distribution setting. Our results first establish that RA
significantly outperforms traditional parametric client models on few-shot QA. Furthermore, we
explore the impact of passage index composition beyond mere scaling, as previously examined,
introducing a new dimension to FL. Our analysis reveals that the inclusion of relevant passages at
training time improves generalization, whereas the incorporation of hard negatives can impair it.
These insights prompt a reevaluation of traditional client participation incentives in FL, suggesting
new directions for future research. Our contributions include:

• We advocate for RA in FL as an attractive alternative to standard parametric FL approaches within
the same memory budget. This approach is especially effective for knowledge-intensive and few-
shot applications, where it can achieve high utility and allow for inference-time scalability. RA
also enables the ability to update and unlearn knowledge for compliance purposes, and incorporates
built-in source attribution, all while ensuring perfect secrecy.
• We propose a modeling framework, Raffle, specifically designed to explore RA in FL across ap-
plications with both unlabeled and labeled data. This framework sheds light on various design
decisions, each presenting potential avenues for further research.
• Utilizing a specific implementation of Raffle using a homogeneous benchmark, we identify appli-
cations we expect to benefit most from RA, such as few-shot, knowledge-intensive question answer-
ing. We evaluate the efficacy of our approach, including the impact of passage index composition
and the dynamics of the federated incentive structure.

2 BACKGROUND & MOTIVATION

Retrieval Augmented Generation (RA) models (Lewis et al., 2020; Izacard et al., 2022) integrate
a memory module within parametric LMs, facilitating the retrieval and incorporation of external
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information to enhance the capabilities of the primary model. Our focus is on RA models where the
parametric memory consists of a pre-trained seq2seq transformer, and the non-parametric memory
comprises a dense vector index accessed via a pre-trained neural retriever. These components are
trained end-to-end within a probabilistic model.

The sequence level RA model pRA uses the retrieved document to generate the complete sequence.
It treats the retrieved document as a single latent variable z that is marginalized to get the seq2seq
probability p(y|x) via a top-K approximation. The top K documents are retrieved using the retriever
pη , and the reader pθ produces the output sequence probability for each document, which are then
marginalized,

pRA(y|x) ≈
∑

z∈top-k(p(z|x))

pη(z|x)pθ(y|z, x) =
∑

z∈top-k(p(z|x))

pη(z|x)
N∏
i=1

pθ(yi|z, x, y1:i−1)

2.1 HOW CAN RETRIEVAL AUGMENTATION HELP FEDERATED LEARNING?

FL allows multiple participants to collaboratively construct a shared model without the need to cen-
tralize sensitive data. By empowering individual devices or entities to train models locally and share
only model updates with a central aggregator, FL aims to use the ideas of data minimization and
anonymization to prioritize privacy and align closely with regulatory standards while maintaining
performance (McMahan et al., 2016).

Privacy. FL systems communicating model updates are vulnerable to privacy attacks (Shokri
et al., 2016; Jia & Gong, 2018; Fredrikson et al., 2015; Chase et al., 2021; Carlini et al., 2018).
Strategies to enhance privacy in FL include introducing statistical noise (Dwork et al., 2006) and
utilizing public data to improve private training efficiency without compromising private informa-
tion (Gu et al., 2023; Liu et al., 2021; Pinto et al., 2023; Ganesh et al., 2023; Wang et al., 2023). Uti-
lizing public data can potentially eliminate the need for sharing private data by locally augmenting
a publicly trained model with private information at inference. This approach, exemplified by RA
ensures perfect secrecy by achieving user-level Differential Privacy with (ε = 0, δ = 0) (Tschantz
et al., 2017).

Figure 2: Information flow diagram: Public data D
with policy P pub used for training; N private datasets
Di with policies Pi, retrieved at test time.

Regulatory Compliance. Models must ensure
privacy and comply with data governance laws
like GDPR (EU, 2014), which mandates selective
or complete data deletion based on governance
policies. Traditional parametric models face chal-
lenges in implementing access control and adapt-
ing to dynamic access modifications, where user
rights change over time. These challenges hinder
scalability in environments with expanding user
bases, as they often require frequent retraining or
managing multiple models. RA offers a solution
by enabling explicit access control policies dur-
ing inference to generate compliant responses for
multiple users (See Figure 2). This is achieved
by pre-training the base retriever and reader on
a permissive, low-risk public dataset D. Private
datasets (denoted as N datasets Di, each gov-
erned by a compliance policy Pi) are queried only during inference. This approach allows the model
to surface information exclusively within the user’s authorized scope, generating a P -compliant re-
sponse O based on k retrieved samples for a given query Q.

Utility. Parametric FL faces a well-documented challenge: fine-tuning on limited private data
leads to model instability, particularly in knowledge-intensive tasks requiring large parameter counts
(Dodge et al., 2020; Mosbach et al., 2021). RA models excel in such tasks with significantly fewer
parameters, demonstrating efficient few-shot generalization and matching the performance of larger
models with up to 50x fewer parameters (Izacard et al., 2022). This translates to improved perfor-
mance and data efficiency in FL, facilitating personalization to unique client data profiles (Salemi
et al., 2023). Furthermore, RA models provide precise document source attribution during inference.
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Algorithm 1 Raffle: Retrieval Augmented Federated Learning

Require: Shared pretraining data Dshared, Public dataset per client {Dpublic,i}Mi=1, Private
dataset {Dprivate,ij}N,M

i=1,j=1 with policy {Pj}Nj=1, Query Q, Retrieval number k
Ensure: Pj-compliant response O

Pretraining:
Pretrain retriever and reader on Dshared to learn a generalized representation.
Federated (or Local) Learning (Client-Specific Public Data Training):
for each client i with public dataset Dpublic,i do

Perform federated (or local) finetuning to train parametric models on Dpublic,i
end for
Inference (Test Time) with Private Data:
for each client i based on policy Pj do

Identify user’s authorized datasets {Dprivate,ij} based on Pj .
Retrieve top k samples {Sl}kl=1 from {Dpublic,i} ∪ {Dprivate,ij} relevant to Q.
Generate response O by integrating information from {Sl}kl=1 into reader
Ensure O is Pj-compliant by filtering information based on access controls.

end for
return O

3 RAFFLE: RETRIEVAL AUGMENTED FEDERATED LEARNING

Raffle is a specific implementation of RA in FL (see Algorithm 1). It follows the text-to-text frame-
work (Raffel et al., 2020), where the system receives an input text query and generates a text output.
For instance, in question answering, the query corresponds to the question, and the model generates
the answer. Raffle comprises a retriever and a reader. For QA, the model first retrieves the top-k
relevant documents from a large corpus of text passages using the retriever, then feeds them, along
with the query, to the reader, which in turn generates the output. Both the retriever and the reader
are based on pre-trained transformers.
Retriever: Raffle employs the Contriever (Izacard et al., 2021), a dual-encoder model where the
query and documents are independently embedded by a transformer encoder (Karpukhin et al.,
2020). Average pooling is applied to the outputs of the last layer to obtain one vector representation.
A similarity score between the query and each document is calculated by computing the dot product
between their corresponding embeddings.
Reader: For the reader, Raffle utilizes the Fusion-in-Decoder modification (Izacard & Grave, 2020)
of T5 models, processing each document independently in the encoder. The query is concatenated
with each document, and cross-attention is performed over the encoder outputs corresponding to the
different documents.

Raffle is pre-trained using a Perplexity Distillation loss (Izacard et al., 2022) for the retriever and a
masked language modeling loss for the joint retriever and language model. It is pre-trained on 350
million passages from the 2021 Wikipedia dump and a subset of the 2020 Common Crawl dump
(Thurner et al., 2018).

3.1 RAFFLE HOMOGENEOUS BENCHMARK

We evaluate Raffle on supervised fine-tuning (SFT) of RA models within an FL setting and propose
a benchmark for question answering (QA) that incorporates both supervised QA pairs and unsuper-
vised text passages. SFT is essential to enhance the few-shot generalization capabilities for smaller
models used in FL. The benchmark is designed around distinct data modalities essential for task-
specific fine-tuning: Question Space (X), consisting of natural language queries; Passage Corpus
(Z), a collection of text passages forming the knowledge base; and Answer Space (Y ), contain-
ing potential answers derived from Z. The data-generating process, denoted as DXY Z , involves
sampling passages Z ∼ DZ and identifying corresponding question-answer pairs (x, y), where
x ∼ DX|Z and y ∼ DY |X,Z .
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To address privacy concerns in RA modeling, we incorporate two data compliance poli-
cies per client: Public, permissive, and non-restrictive, and Private, which is restric-
tive. The data (X), (Y ), and (Z) are partitioned into public and private seg-
ments. The Homogeneous benchmark, is based on web queries with public and
private segments that are disjoint yet identically distributed as DXY Z across clients.

Figure 3: The four splits in the benchmark.

For training via empirical risk minimization, pub-
lic and private segments are further divided into
training and testing sets, as depicted in Figure
3. Organizing data into four splits (A, B, C, D)
per client, corresponding to quadrants in Figure 3,
ensures unique training and testing examples for
each split, along with the corresponding ground
truth reference passages for each QA pair. The
remaining passages are distributed proportionally
across splits, and can be used to study the impact
of passage composition.
Threat model: We consider an FL setting with
semi-honest adversaries where clients hold both public and private data. Public data (quadrant A)
is used for training the model’s parameters, while private data (quadrant D) is accessed only during
inference. We view each client as a data silo containing data pertaining to multiple users. Privacy
may be considered either at the example-level (e.g., protecting individual patient records) or the silo-
level (e.g., preventing information sharing between hospitals). Public and private passage indices
are merged during testing (Zpub ∪ Zpri), with datasets indexed per client.

4 EXPERIMENTS AND RESULTS

4.1 DATASETS, METRICS, AND, HYPERPARAMETERS

Few shot Q/A data We construct our datasets from the NaturalQuestions dataset (Kwiatkowski
et al., 2019). Each client contains 64 train Q/A pairs, and we split the dev set (8752 pairs) and test
set (3600 pairs) evenly among the 8 clients.
Passage data We use the Wikipedia 32M passages wiki-dec2018 used in Izacard et al. (2022), split
into public and private passages for specific experiments, and exact maximum inner product search
to retrieve documents.
Metrics We employ two widely recognized metrics in QA systems: Exact Match and F1 Score. In
both local and FL settings, we report the average of these metrics for the dev or test set across all
clients. In the multitask setting, we use macro-averaging. For the local setting, we average the best
scores achieved by each client. In the FL setting, we report the metrics from the round that yields
the highest average Exact Match score.
Training Both the parametric and RA models use similar hyperparameters, employing AdamW
with a batch size 64 and an lr of 4 × 10−5 with cosine decay. The local models are trained for
1000 steps, while the FL models are trained for 10 rounds with 64 steps/round. For Raffle few-
shot finetuning we also train the query encoder of the retriever and retrieve 40 nearest neighbors
passages from the index for every question. The local models are evaluated every 100 steps, while
the federated models are evaluated every round. We use FedAvg (McMahan et al., 2016) at the
server and train on 8 clients. Full training details can be found in the Appendix.

4.2 FEW-SHOT LEARNING

In Table 1, we compare the few-shot performance (64-shot) of Raffle against parametric models
without a private/public split. We consider models of about the same size (about 220M parameters).
Raffle retrieves relevant documents from the entire Wikipedia index using a dense retriever. We
additionally compare against t5-lm-adapt-base (Raffel et al., 2020), which was more stable to fine-
tuning than t5-base, and flan-t5-base (Chung et al., 2022), a strong instruction tuned model, both of
which are closed-book. The evaluation is structured across three training configurations: Centralized
(combining datasets from all clients for unified model training and evaluation), Local (training and
evaluating models on individual client datasets), and Federated (where models are locally trained,
aggregated after each round, and assessed on local test sets).
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Model name Centralized Local Federated

Exact match F1 Exact match F1 Exact match F1

t5-base 2.361 5.892 1.694 4.631 2.639 6.599
flan-t5-base 3.250 7.478 3.361 7.487 3.917 8.497
Raffle 32.556 41.071 28.639 36.178 31.639 39.900

Table 1: Few-shot performance of retrieval-augmented Raffle and parametric models t5 and flan-t5. Raffle
consistently outperforms parametric models. FL yields more substantial improvements for Raffle than for
parametric models.

Overall, we find that Raffle consistently outperforms parametric-only baselines across training con-
figurations. In knowledge-intensive Q/A tasks, parametric models typically need significantly more
parameters to achieve comparable results (Lewis et al., 2020). Notably, flan-t5 exhibits only a
marginal improvement over t5-base. Furthermore, we find that when using the entire Wikipedia
index, there is an advantage to FL over local training alone, particularly when the number of labeled
Q/A pairs per client is limited. This advantage is anticipated to be more pronounced under greater
data scarcity. The performance of the FL baseline closely matches that of the Centralized baseline, a
trend previously noted in scenarios with homogeneous client data. Performance metrics on the dev
set are available in Appendix A.5.

4.3 EFFECT OF PASSAGE INDEX

Index Public Index Private Index

REL Relevant + 80% Wiki (Shared) Relevant + 2.5% Wiki (Unique)
IRR 80% Wiki (Shared) Relevant + 2.5% Wiki (Unique)
REL-1 7 clients: 80% Wiki (Shared);

1 client: All Relevant + 80% Wiki
Relevant + 2.5% Wiki (Unique)

SPLIT Relevant + 10% Wiki (Unique) Relevant + 2.5% Wiki (Unique)

Table 2: Raffle client index options. Each index, consists of relevant passages for train or dev Q/A and a % of
the rest of Wikipedia. The indexes can be unique to each client or shared across multiple clients.

To investigate the impact of passage composition on few-shot QA performance, we use the task
formulation outlined in Section 4.2 and create four custom splits as detailed in Table 2, featuring
disjoint public and private passages. Our focus is to understand how the presence of relevant and
irrelevant passages, associated with the public train set, affects test set performance. Each index, as-
signed to every client, consists of train or dev Q/A nearest neighbor passages and a proportion of the
rest of Wikipedia. The indexes can either be unique to each client or shared across multiple clients.
We employed the BM25 algorithm on concatenated Q/A pairs to retrieve the most relevant nearest
neighbor passages and verified that the top 5 neighbors contained the answer to the question. Should
a public and private passage index contain identical passages during construction, we eliminate the
duplicate from the public index. The composition of private passages remains constant across all
four settings. The REL index serves as a baseline federated index. In IRR, all relevant passages
from REL, of the train set, are excluded. REL-1 is a variant of IRR, where one client possesses all
relevant train passages from every client. In SPLIT, the REL index is distributed across eight clients,
each holding relevant passages specific to its train set.

In Table 3, we compare the performance of three Raffle baselines across various index options. Raf-
fle Local is the averaged local model performance trained without federation, Raffle Local Merged
uses the merged public and private passage index for training, Raffle Fed is trained using FL. We
find that FL consistently improves performance in few-shot settings compared to local baselines.
Merging private and public passages locally results in minimal improvement, as adding irrelevant
passages during training predominantly increases noise. The performance of IRR, which excludes
all relevant passages, significantly declines relative to REL which indicates that relevant passages
corresponding to the train Q/A dataset are critical for the model’s learning and generalization ca-
pabilities. In the REL-1 configuration, where one client holds all relevant passages, there is only a
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Index Raffle Local Raffle Local Merged Raffle Fed

Exact Match F1 Score Exact Match F1 Score Exact Match F1 Score

REL 29.627 39.985 30.222 40.128 34.826 46.357
IRR 23.069 32.014 23.891 32.114 30.085 40.175
REL-1 24.802 33.634 24.394 32.376 31.627 41.224
SPLIT 33.355 43.344 33.021 42.779 39.145 49.570

Table 3: Average client dev performance with the four index options on Raffle Local, Raffle Local Merged, and
Raffle Federated. Federation improves performance across index options. The presence of relevant passages in
REL boosts performance over IRR. Using SPLIT index performs better than a federated REL index.

marginal improvement over IRR. This is because the improvement occurs through a longer infor-
mation channel: relevant passages retrieved by client 8 improve generalization in client 8, which is
then communicated to other clients through FL. Employing a direct channel for relevant passages,
as seen in the federated REL index, substantially improves performance in comparison. Finally,
SPLIT, with a higher ratio of relevant to hard negative passages, markedly improves performance.
This suggests that ensuring the presence of relevant passages and pruning hard-negative passages
can further enhance performance (Cuconasu et al., 2024).

Note on Incentives: The observed trends with passage composition alter the incentives for client
participation in FL. Traditionally in FL, particularly in homogeneous settings, clients are motivated
to participate to maximize shared train Q/A data. However, sharing passages modifies these incen-
tives. A client possessing all relevant passages for their train set would find participation counterpro-
ductive, as it would introduce hard negatives into their index. Conversely, if a client has few relevant
passages, participating in a federated index offers significant benefits. However, beyond a certain
index size, marginal returns may be observed, contingent on the composition of hard negatives and
irrelevant passages in the shared index. Generally, participation would depend on the number of
relevant local public passages, the ratio of relevant to irrelevant local public passages, the volume
of local training data, and the composition of the federated index. Future research should explore
techniques to refine client passage indexes for increased relevance and performance and address
performance poisoning through adversarial passage injection (Zhong et al., 2023).

5 CONCLUSION AND FUTURE WORK

In this work, we propose RA as an effective alternative to parametric modeling in FL, particularly
for knowledge-intensive and few-shot scenarios—offering benefits like scalability, compliance, and
perfect secrecy. In future work, we would like to train and evaluate on additional federated retrieval
augmented generative tasks beyond QA and explore other directions such as understanding the effect
of data heterogeneity in public and private data; considering effective ways to train on private labeled
data; and studying architectural decisions such as whether maintaining separate retrievers for the
public and private passage index can further boost generalization.
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A APPENDIX

A.1 RELATED WORK

In-context learning (ICL) on locally hosted foundation models preserves data, task, and label pri-
vacy, and achieves perfect secrecy (Arora & Ré, 2022). ICL alone may not be sufficient for real-
world tasks that often involve document passages and labeled data for fine-tuning the model, where
participating in FL to share data could improve generalization. Hosting foundation models with
billions of parameters is resource-intensive; training them with few-shot data is often unstable, fine-
tuning them on passages can be prohibitively expensive, and editing or unlearning knowledge in
them remains an open problem. Recent RA models (Izacard et al., 2022) have been shown to out-
perform foundation models that are 50 times larger when access to an external passage corpus is
available.

Privacy preserving RA Silo-LM (Min et al., 2023) trains a parametric language model (LM) on
low-risk data and incorporates high-risk data only at inference through a nonparametric component.
They show that datastore size predictably reduces LM perplexity. Wutschitz et al. (2023) examines
privacy from an information flow control perspective, and compares a zero-shot baseline and a full-
finetuned baseline with an RA model for language modeling. They find that RA architectures when
applied at inference time, offer superior utility and scalability while achieving perfect secrecy. In
both works, the RA model is either local or a shared global model, which may not always be practi-
cal. Clients are less incentivized to share raw data, and using a shared model often implies hosting
larger parametric models, potentially sacrificing personalization, especially under data or task het-
erogeneity. In our work, clients control their participation, both in terms of training on public Q/A
data and passage data. Additionally, in our framework, clients train on supervised and unsupervised
data, unlike the sole use of unsupervised data in language modeling. Our experiments focus on the
QA task because a) LM perplexity does not always correlate with improved client task performance
(Wei et al., 2022), and b) scaling the datastore can hurt task performance.

A.2 TRAINING DETAILS

For question answering, we format the input using the following template:

question: {question text} answer: [MASK_0]

and train the model to generate the mask token followed by the answer:

[MASK_0] {answer}.

We generate answers using greedy decoding. For both training and testing, we retrieve 40 passages
and truncate the result of the concatenation between the query and the passages to 384 tokens.

All models are trained with bf16 precision. For few-shot local fine-tuning, we train Raffle for 1000
steps using 64 random samples from the train sets. The retriever is trained using query-side fine-
tuning. We use AdamW with a batch size of 64 and a learning rate of 4 × 10−5 with linear decay
for both the language model and the retriever. The local models use 20 iterations of warmup, while
there is no warmup in FL. The local models are trained for 1000 steps, while the FL models are
trained for 10 rounds with 64 steps/round. All models can be trained using 4 A6000 in under a day.
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A.3 PRETRAINING DATA

All models were trained on Common Crawl (Wenzek et al., 2019), which includes English
Wikipedia. However, the models do not perform well on NaturalQuestions without finetuning, as
the content and style of Wikipedia articles differ significantly from the types of queries found in the
Natural Questions dataset. Additionally, the training objectives and data used for pretraining do not
align perfectly with the requirements of answering natural questions.

A.4 SYSTEMS CONSIDERATIONS

Retrieval augmentation introduces additional memory requirements for hosting the query and docu-
ment encoders, and the passage index. These can be managed by offloading to the CPU. We utilize
exact MIPS search, but index compression techniques (e.g., Douze et al. (2024)) offer feasible al-
ternatives for cross-device FL. RA models might increase inference time; however, employing Fast
ANN methods, quantization, and pruning can effectively mitigate this, ensuring efficiency in com-
putationally constrained environments.

A.5 FEW SHOT LEARNING

In this section we include the dev set metrics for few-shot QA model performance.
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Model name Centralized Local Federated

Exact match F1 Exact match F1 Exact match F1

t5-base 1.862 4.986 1.302 3.814 2.057 5.343
flan-t5-base 3.142 7.069 2.959 6.852 3.736 7.956
Raffle 32.735 41.594 28.222 37.219 31.936 41.125

Table 4: Model Performance on Dev Set
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