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ABSTRACT

Though foundation models are powerful, they are large and require substantial
memory and computation resources for serving. To tackle this issue, many pruning
methods have been proposed to reduce the model size, thereby achieving memory
and computational efficiency. These methods either identify and retrain the impor-
tant weights or adjust the unpruned weights to compensate for the removed weights.
In this paper, we propose a novel approach called input compensation (IC) to boost
the performance of pruned models, i.e., adjust the input to compensate for the
removed weights. We learn a compensation pool to construct input-dependent com-
pensation to reduce the error caused by pruning. Different from existing pruning
methods, which are designed in the parameter space, the proposed IC is designed
in the input space. Hence, IC is complementary to existing methods and can be
integrated with them. Extensive experiments on various tasks, including image
classification, language modeling, and image generation, demonstrate that IC is
effective in improving the performance of pruned models.

1 INTRODUCTION

Foundation models (Baevski et al., 2020; Radford et al., 2021; Touvron et al., 2023b; Podell et al.,
2024) have achieved great success in a variety of domains such as computer vision, natural language
processing, and speech recognition. As the availability of data and computational resources expands,
these models have scaled in both size and performance (Touvron et al., 2023a;b; Meta, 2024).
However, the substantial number of parameters in these models require extensive computational
resources for serving, posing a significant challenge to deploy them on resource-constraint devices
such as smartphones and laptops. To reduce the costs, numerous model compression techniques have
been proposed to reduce the model size, e.g., distillation (Polino et al., 2018; Wang et al., 2019; Liang
et al., 2023), quantization (Lin et al., 2024; Dettmers et al., 2022; Shao et al., 2024; Xiao et al., 2023),
and pruning (Han et al., 2015; Frantar & Alistarh, 2023; Zhang et al., 2024; Sun et al., 2024). As
quantization needs specialized hardware supports and distillation requires extensive retraining, we
focus on pruning, which is a simple and representative technique.

Pruning reduces the model size by removing individual weights or rows/columns according to their
importance scores. A pruned model can achieve promising performance with fewer parameters,
resulting in a noticeable reduction in memory and computational demands. A simple but effective
pruning method is Magnitude Pruning (Han et al., 2015) which removes weights according to
their magnitudes. The underlying assumption is that weights with smaller values contribute less
to the overall performance. However, this assumption does not always hold and many advanced
methods (Sun et al., 2024; Frantar & Alistarh, 2023; Zhang et al., 2024) have been proposed recently.

Current state-of-the-art pruning methods (Frantar & Alistarh, 2023; Das et al., 2023; Zhang et al.,
2024; Sun et al., 2024; Dong et al., 2024; An et al., 2024) focus on the parameter space to enhance
pruning efficacy and can be roughly categorized into two groups: (i) designing an effective score to
measure the importance of weight and (ii) adjusting the remaining unpruned weights to reduce the
error caused by the pruned weights. For example, Wanda (Sun et al., 2024) designs an importance
score to incorporate input activations with weight magnitude to take outlier features into consideration,
instead of only weight magnitudes in Magnitude Pruning; SparseGPT (Frantar & Alistarh, 2023)
proposes to adjust the unpruned weights by minimizing a reconstruction loss using the Optimal Brain
Surgeon framework (Hassibi et al., 1993; Singh & Alistarh, 2020; Frantar et al., 2021). The pruned
model can be formulated as F(X;W ⊙ M + ∆w), where F is the model, X is the input, W is
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the weight matrix, M is the weight mask determined by the importance score, ⊙ is element-wise
multiplication, and ∆w (called weight compensation) is an update matrix for the unpruned weights.

In this paper, we propose a novel method called input compensation (IC) for enhancing pruned
models by adjusting the input to compensate for the removed weights. Specifically, the output of the
pruned model is determined by F(X+∆x;Ŵ), where ∆x is an input compensation for adjusting
the original input and Ŵ is a sparse weight matrix corresponding to the pruned model. We learn a
compensation pool consists of multiple candidate compensations from calibration data and ∆x is a
weighted combination of the candidate compensations via the attention mechanism (Vaswani et al.,
2017).

Different from existing pruning methods, the proposed IC is designed in the input space. Hence, IC
is complementary to existing methods that operate in the parameter space and can be integrated with
them to boost their performance. Extensive experiments on computer vision and natural language
processing show that IC brings a large improvement to existing pruning methods.

Our contributions are summarized as follows: (i) We propose IC which is a novel direction to
enhance pruned models; (ii) IC is designed in the input space and, thus, is orthogonal to existing
pruning methods designed in the parameter space. Hence, IC can be combined with existing pruning
methods; (iii) Experimental results on various tasks demonstrate that IC is beneficial to existing
pruning methods.

2 RELATED WORK

Foundation Models are large pre-trained models designed to serve as base models for various
downstream tasks. These models are typically trained on a large amount of data and contain
massive of parameters. Notable examples include Large Language Models (LLMs) like LLaMA
series (Touvron et al., 2023a;b; Meta, 2024), which have promising performance in natural language
processing tasks such as text generation (Li et al., 2024; Zhang et al., 2023), understanding (Guo
et al., 2024; Fan & Hunter, 2023), and reasoning (Wei et al., 2022; Yu et al., 2024). In the realm
of computer vision (CV), models like CLIP (Contrastive Language-Image Pretraining) (Radford
et al., 2021) use multimodal learning to bridge textual and visual information, enhancing various
CV tasks such as image classification (Radford et al., 2021), image captioning and visual question
answering (Li et al., 2022; 2023a). Additionally, diffusion models like DDPM (Ho et al., 2020),
Stable Diffusion (Rombach et al., 2022), and SDXL (Podell et al., 2024) have revolutionized image
generation by employing a process of gradually transforming noise into images, showing the diverse
applications of foundation models in creative applications.

Model Compression. Though foundation models are powerful, their massive of parameters usually
require extensive computational and memory resources. Many recent efforts have been devoted to
reducing the cost via model compression (Frantar & Alistarh, 2022; Xu et al., 2024; Wang et al.,
2024). The most popular methods for model compression are pruning, quantization, and distillation.
Pruning (Han et al., 2015; Zhang et al., 2024; Sun et al., 2024; Dong et al., 2024; Das et al., 2023;
An et al., 2024; Frantar & Alistarh, 2023) discards parts of the model that are less important or
redundant. Quantization (Lin et al., 2024; Dettmers et al., 2022; Shao et al., 2024; Xiao et al., 2023;
Yao et al., 2022; Kim et al., 2024) is a technique to reduce the computational complexity and memory
footprint of a neural network by converting the model’s parameters (weights and activations) from
higher-precision representations (such as 32-bit floating-point) to lower-precision ones (such as 8-bit
integers). The primary goal of quantization and pruning is to make the model more compressed
without significantly sacrificing its performance. Distillation (Polino et al., 2018; Wang et al., 2019;
Liang et al., 2023) trains a smaller and more efficient model to replicate the behavior of a larger
and more complex model, thereby retaining much of its performance while significantly reducing
computational resources. Quantization demands specialized hardware (e.g., NVIDIA TensorRT1)
that supports lower precision arithmetic, while distillation requires an expensive training phase to
transfer knowledge from a large teacher model to a small student model. In this paper, we focus on
pruning, which is a simple and widely used method.

1https://github.com/NVIDIA/TensorRT
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Pruning aims to remove less important weights without significant performance degradation. Several
important metrics have been designed recently. The simplest one is based on the parameter magnitude,
i.e., Magnitude Pruning (Han et al., 2015). Wanda (Sun et al., 2024) further incorporates weight
magnitude with their input activations to consider outlier features when calculating importance
scores, while RIA (Zhang et al., 2024) uses relative importance as a pruning metric. Taylor prun-
ing (Molchanov et al., 2022) designs a score based on the weight multiplied by its gradient, while
Diff-Pruning (Fang et al., 2023) further uses Taylor expansion over pruned timesteps to identify
and discard unimportant parameters. In addition to designing importance scores to find less useful
parameters, one can update the unpruned weights to compensate for the error caused by the pruned
weights. For example, SparseGPT (Frantar & Alistarh, 2023) and OBC (Frantar & Alistarh, 2022)
propose to update the unpruned weights by minimizing a reconstruction loss by the Optimal Brain
Surgeon framework (Hassibi et al., 1993; Singh & Alistarh, 2020; Frantar et al., 2021). Different
from SparseGPT and OBC, we propose input compensation by adjusting the inputs to reduce the
error caused by pruning.

Prompting (Radford et al., 2019; Brown et al., 2020; Liu et al., 2022; Ding et al., 2022) is a popular
method used in transformer-based models which inserts additional tokens that instruct the model
to generate a specific kind of response. These tokens can be either discrete tokens (e.g., “The topic
is” for topic classification (Zhang et al., 2022a; Hou et al., 2022; Jiang et al., 2023), “Let’s think
step by step” for reasoning tasks (Kojima et al., 2022)) or learnable continuous vectors (e.g., prompt
tuning (Lester et al., 2021; Liu et al., 2021; Zhang et al., 2022b) or prefix learning (Li & Liang, 2021;
Liu et al., 2023)). Unlike prompting that inserts extra tokens into the inputs, our input compensation
edits the inputs directly. Furthermore, compensations are input-dependent, while prompts are usually
input-independent (Ding et al., 2022; Lester et al., 2021; Liu et al., 2021; Zhang et al., 2022b; Bahng
et al., 2022).

In control systems, the idea of input compensation (Kuo & Golnaraghi, 1995; Franklin et al., 2002)
is practically used to adjust the control signal to reduce the influence of disturbance. The goal is to
adjust the input such that the overall system achieves desired behavior, such as better stability, faster
response, or improved accuracy. For example, in feedforward compensation (Campos & Lewis, 1999;
Krstic, 2009), if a disturbance is known ahead of time (e.g., wind gusts affecting an airplane), this
information can be incorporated into the control signal so that the system compensates for it before it
affects the output. In model pruning, the pruned weights can be viewed as disturbances and we use
input compensation to enhance pruned models.

3 PRELIMINARY ON MODEL PRUNING

Let W ∈ Rdi×do be a weight matrix of a model F and S be a scoring matrix whose Si,j measures
the importance of Wi,j . To prune p% parameters of W, we determine a threshold β satisfies
#{Si,j :|Si,j |<β}

#{Si,j} = p%. Using the threshold, we construct a binary weight mask M whose Mi,j = 1

if |Si,j | ≥ β else 0 and prune the model as W ⊙ M. To improve the performance of the pruned
model, one can adjust the unpruned weights to compensate for the removed weights. Generally, the
pruned model can be formulated as:

F(X;W ⊙M+∆w), (1)

where ∆w (called weight compensation) is an update matrix for the unpruned weights. Various
pruning methods have been proposed to design an effective scoring metric or learn an effective weight
compensation ∆w, e.g., Han et al. (2015); Zhang et al. (2024); Sun et al. (2024); Dong et al. (2024);
Das et al. (2023); An et al. (2024) for the former, and Frantar & Alistarh (2023; 2022) for the latter.
We briefly review three representative pruning methods.

Magnitude Pruning (Han et al., 2015) is the simplest technique whose score matrix is defined as
Si,j = |Wi,j |, i.e., removing the weights whose magnitudes are below a predefined threshold. In
practice, magnitude pruning is performed in a layer-wise manner: for each layer, a layer-dependent
threshold is determined based on the local distribution of weights. Though Magnitude pruning has
stood out as a strong baseline for pruning models (Blalock et al., 2020), it has a major limitation:
it ignores the importance of input activation, which plays an equally importance role as weight
magnitudes in determining the output of linear layers (e.g., fully connected layers, attention layers).

3
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Figure 1: Input compensation for pruned models.

Wanda (Sun et al., 2024) addresses this limitation by incorporating both weights and inputs into
defining the weight importance. Specifically, let X ∈ RN×di (where N is the sequence length) be
the input activation of a calibration sample. Consider a linear layer Y = XW, Wanda defines the
importance of Wi,j as Si,j = |Wi,j | · ∥X:,i∥2.

SparseGPT (Frantar & Alistarh, 2023) introduces a more sophisticated pruning approach by incre-
mentally pruning each column of W, followed by adjusting the remaining weights to compensate
for those that have been pruned by the Optimal Brain Surgeon framework (Hassibi et al., 1993;
Singh & Alistarh, 2020; Frantar et al., 2021). The score matrix is determined by Si,j =

|Wi,j |2
[H−1]i,i

and
H = X⊤X+ λI (λ is a small positive constant) is the Hessian matrix of the reconstruction loss.

4 METHODOLOGY

4.1 INPUT COMPENSATION (IC)

Different from existing pruning methods, which primarily focus on learning a good scoring metric S
or weight compensation ∆w in the parameter space, we propose a novel direction to enhance model
pruning by adjusting the input to compensate for the removed weights. Formally, let Ŵ be a pruned
model. Our objective is to determine an input compensation ∆x for the input such that its output
approximates that of the dense model, i.e.,

F(X+∆x;Ŵ) ≈ F(X;W). (2)

The compensation ∆x depends on the input X. Obviously, learning ∆x from scratch for each sample
is inefficient. To deal with this issue, we begin by developing a learning framework for IC within
the context of a simple linear layer and subsequently extend this approach to more complex, general
models.

Linear Layer. Recent studies (Yu et al., 2017; Li et al., 2023b; Ding et al., 2023) have shown
that the weight matrix W of neural networks can be approximated by a combination of a sparse
matrix S ∈ Rdi×do (assume rank(S) = do) and a low-rank matrix AB⊤ (where A ∈ Rdi×r and
B ∈ Rdo×r, r is the rank). Hence, for a linear layer, the output is approximated as

Y = XW ≈ X(S+AB⊤) = XS+XAB⊤(S⊤S)−1S⊤︸ ︷︷ ︸
≡B̂

S =

X+XAB̂⊤︸ ︷︷ ︸
i.e., ∆x

S. (3)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Let ai and b̂i be the ith column of A and B̂, respectively. The ith row of ∆x is computed as∑r
j=1(x

⊤
i aj)b̂j , which is similar to the attention mechanism (Vaswani et al., 2017): {xi} are the

query, {aj} are the keys, and {b̂j} are the values.

General Models. Building on insights from the linear layer, we propose a general IC framework
based on the attention mechanism (Vaswani et al., 2017). Figure 1 provides an overview of the IC
framework, which contains a frozen encoder E(·) and a learnable compensation pool (K,V) (where
K ∈ Rde×r and V ∈ Rr×di). The encoder, which can either be a sub-module of the pruned model
or an identity function, maps X into an embedding Qx = E(X) ∈ RN×de , while the compensation
pool consists of r candidate compensations. The input compensation is then constructed as:

∆x = softmax

(
QxK√

de

)
V. (4)

The input is adjusted by adding ∆x, and the compensation pool is optimized by minimizing the
following supervised loss:

min
K,V

∑
(X,Y)∈D

ℓ(F(X+∆x;Ŵ),Y), (5)

where ℓ(·, ·) is the supervised loss function. In cases where labels for X are unavailable, we can learn
the pool by minimizing the reconstruction loss:

min
K,V

∑
(X,·)∈D

∥F(X+∆x;Ŵ)−F(X;W)∥2. (6)

4.2 APPLICATION IN LLMS

For NLP tasks, inputs are sequences of discrete tokens, making direct modification of inputs infeasible.
To deal with this issue, we propose adjusting the input embeddings. Figure 7 in Appendix B provides
an illustration of IC for LLMs. Let Hx ∈ RN×de be the embeddings extracted by the input
embedding layer of the pruned LLM. Similar to Eq.(4), we construct the input compensation for
LLMs as ∆x = softmax

(
HxK√

de

)
V. The input embeddings are then adjusted as H+∆x and we

learn the compensation pool by minimizing the reconstruction loss of the last hidden states:

min
K,V

∑
(X,·)∈D

∥F(Hx +∆x;Ŵ)−F(Hx;W)∥2. (7)

5 EXPERIMENTS

5.1 EXPERIMENTS ON IMAGE CLASSIFICATION

Datasets. We conduct image classification experiments on ten datasets: CIFAR100 (Krizhevsky &
Hinton, 2009), Flowers (Nilsback & Zisserman, 2008), Food (Bossard et al., 2014), EuroSAT (Hel-
ber et al., 2019), SUN (Xiao et al., 2016), DTD (Cimpoi et al., 2014), UCF (Soomro et al.,
2012), SVHN (Netzer et al., 2011), OxfordPets (Jawahar et al., 2012) (denoted by Pets), and
RESISC45 (Cheng et al., 2017) (denoted by RESISC). A summary of the datasets is in Table 9 of
Appendix A.

Implementation Details. We adopt CLIP ViT-B/32 and ViT-B/16 (Radford et al., 2021) as the base
models, whose pruned image encoder is used as the encoder of IC. We initialize the K and V by the
standard normal distribution and train the compensation pool for 30 epochs using the SGD optimizer
with a learning rate of 40 and momentum of 0.9. The mini-batch size is 128. Following (Bahng et al.,
2022), vi is learnable padding pixels on all sides, where the padding size is set to 30. The rank r is
chosen as 32 and a sensitivity analysis is provided in Section 6. We evaluate two types of sparsity:
unstructured sparsity and structured 4:8 sparisty (Mishra et al., 2021), i.e., at most 4 out of every 8
contiguous weights to be non-zero.

Baselines. The proposed IC can be integrated into any existing pruning methods. To verify its
effectiveness, we consider three pruning methods: (i) Magnitude Pruning (Han et al., 2015) which

5
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Table 1: Testing accuracy on image classification tasks using CLIP ViT-B/32.
Sparsity CIFAR100 Flowers Food EuroSAT SUN UCF SVHN Pets DTD RESISC Avg

Dense 0% 88.3 97.8 89.1 98.8 73.9 86.4 97.1 92.0 74.4 96.0 89.4

Magnitude 50% 33.9 26.1 34.2 45.6 30.8 35.4 45.3 38.7 27.9 55.4 37.3
Magnitude + IC 50% 73.0 62.9 72.4 96.5 48.9 63.1 94.4 69.2 44.1 87.1 71.2

Wanda 50% 75.0 56.4 74.1 95.2 50.8 59.7 91.8 57.6 43.4 84.4 68.9
Wanda + IC 50% 80.1 76.4 80.4 97.9 54.7 69.1 96.1 77.5 49.8 91.6 77.4

SparseGPT 50% 83.3 69.1 81.6 97.9 58.0 68.5 93.7 59.4 48.2 89.8 74.9
SparseGPT + IC 50% 82.9 76.2 83.1 98.2 57.2 71.0 96.7 79.7 53.8 92.9 79.2

Magnitude 4:8 49.0 25.9 36.5 45.1 32.8 37.8 60.8 45.3 27.1 60.2 42.1
Magnitude + IC 4:8 72.9 62.4 72.1 96.5 48.2 62.9 94.3 68.3 44.8 87.4 71.0

Wanda 4:8 60.9 30.5 59.2 83.1 37.2 43.2 74.4 47.0 30.9 68.7 53.5
Wanda + IC 4:8 76.9 71.4 77.3 97.2 50.2 64.2 95.2 75.3 51.1 89.5 74.8

SparseGPT 4:8 80.2 55.7 79.6 96.6 52.3 61.4 85.8 58.5 42.3 86.6 69.9
SparseGPT + IC 4:8 81.8 72.6 81.6 98.1 51.7 65.8 96.6 78.1 49.1 92.2 76.8

Table 2: Testing accuracy on image classification tasks using CLIP ViT-B/16.
Sparsity CIFAR100 Flowers Food EuroSAT SUN UCF SVHN Pets DTD RESISC Avg

Dense 0% 90.1 98.7 91.9 98.8 75.1 87.8 97.7 93.8 76.1 96.7 90.7

Magnitude 50% 76.9 56.5 78.3 90.7 51.2 65.6 95.3 62.9 42.8 82.1 70.2
Magnitude + IC 50% 82.9 86.7 84.7 97.6 60.1 75.1 97.1 82.5 61.1 92.8 82.1

Wanda 50% 84.1 78.1 85.5 97.6 59.5 68.9 96.9 72.7 51.8 91.2 78.6
Wanda + IC 50% 86.2 82.8 87.8 98.4 63.8 75.5 97.6 83.6 63.5 94.7 83.4

SparseGPT 50% 87.2 80.2 88.1 98.0 63.8 73.8 97.0 75.6 56.4 93.7 81.4
SparseGPT + IC 50% 86.1 86.0 87.9 98.4 64.4 76.2 97.6 85.2 66.4 95.0 84.3

Magnitude 4:8 75.8 52.0 75.4 89.6 50.0 61.4 77.4 68.8 41.4 79.1 67.1
Magnitude + IC 4:8 81.5 84.2 83.2 97.5 57.6 72.5 96.9 81.6 54.4 91.9 80.1

Wanda 4:8 78.6 63.2 81.4 96.0 50.6 61.3 78.2 69.5 42.8 87.7 70.9
Wanda + IC 4:8 84.7 82.1 86.8 98.4 60.6 74.5 97.4 82.0 61.3 94.3 82.2

SparseGPT 4:8 85.1 74.0 87.0 95.6 60.4 69.8 72.6 78.2 50.5 93.7 76.7
SparseGPT + IC 4:8 84.7 84.9 87.1 98.3 60.9 74.9 97.5 83.6 62.2 94.4 82.9

discards weights based on their magnitudes; (ii) Wanda (Sun et al., 2024) designs a scoring metric
as the weight magnitudes multiplied by the corresponding input activations on a per-output basis;
(iii) SparseGPT (Frantar & Alistarh, 2023) which adjusts the unpruned weights by solving a layer-wise
reconstruction problem using a second-order optimizer. SparseGPT is a weight compensation method,
while Magnitude and Wanda design a scoring metric for pruning without updating weights. For all
methods, the base models are fully finetuned on the training set of all tasks before pruning.

Figure 2: An input image (left) and its
compensation (right).

Results. Tables 1 and 2 show the testing accuracy on ten
image classification tasks using CLIP ViT-B/32 and ViT-
B/16, respectively. As can be seen, IC consistently brings
large improvements to existing pruning methods in both
unstructured (sparsity=50%) and structured (sparsity=4:8)
cases. Specifically, compared with Magnitude, Magnitude
+ IC achieves improvements of 28% and 12% on ViT-
B/32 and ViT-B/16, respectively; Compared with Wanda,
Wanda + IC has improvements of about 5%; Compared
with SparseGPT, SparseGPT + IC performs better by an improvement of 4% on ViT-B/32. The
large improvements contributed by IC verify that the learned compensation pool is effective in
constructing input compensation for the pruned models. Moreover, SparseGPT + IC consistently
performs the best, demonstrating that combining both weight compensation and input compensation
is more desirable. We can also observe that unstructured pruning (sparsity=50%) achieves higher
accuracy than structured pruning (sparsity=4:8), which is aligned with findings in previous works (Sun
et al., 2024; Frantar & Alistarh, 2023; Zhang et al., 2024). Figure 2 shows an input image and its
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Table 3: WikiText validation perplexity of pruned LLaMA family of models.

Sparsity LLaMA-1 (7B) LLaMA-2 (7B) LLaMA-3.1 (8B)

Dense 0% 5.68 5.12 5.84

Magnitude 70% 48431.68 52457.06 3483566.50
Magnitude + IC 70% 19677.83 8585.07 33193.79

Wanda 70% 85.02 74.42 99.72
Wanda + IC 70% 56.47 67.04 80.12

SparseGPT 70% 26.79 24.65 38.80
SparseGPT + IC 70% 17.68 18.25 27.48

compensation constructed by SparseGPT + IC when using CLIP-ViT-B/32. The compensation pool
is shared across all ten tasks; thus, the additional parameters are very small (only 2.3M).

5.2 EXPERIMENTS ON NATURAL LANGUAGE PROCESSING

Models and Datasets. We evaluate IC on the LLaMA model family, i.e., LLaMA-1 (Touvron
et al., 2023a), LLaMA-2 (Touvron et al., 2023b), and LLaMA-3.1 (Meta, 2024). Following (Sun
et al., 2024; Frantar & Alistarh, 2023), 128 sequences sampled from the first shard of the C4
dataset (Raffel et al., 2020) are used as training data. We evaluate the pruned models on two types of
tasks: (i) language modeling task which evaluates the perplexity on the held-out validation data of
WikiText-2 (Merity et al., 2016); and (ii) seven zero-shot tasks include BoolQ (Clark et al., 2019),
RTE (Wang, 2018), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC-
easy/challenging (Clark et al., 2018), and OpenbookQA (Mihaylov et al., 2018)) from the EleutherAI
LM Harness package (Gao et al., 2024).

Implementation Details. We randomly initialize K and V by a normal distribution with zero mean
and standard deviation 0.01, where the rank r is set to 32. We train K and V using the AdamW
optimizer (Loshchilov & Hutter, 2019) with a learning rate of 0.001 and a linear warmup scheduler
over 20 epochs. The mini-batch size is set to 1, with a gradient accumulation of 2. The input
embedding layer is used as the encoder of IC. As LLMs contain billions of parameters, to make
pruned models more compressed, we follow Yin et al. (2024) and focus on the unstructured sparsity
of 70% case.

Results on Language Modelling Task. Table 3 shows the WikiText validation perplexity. As can be
seen, IC consistently brings a significant improvement to existing pruning methods, verifying the
effectiveness of compensating inputs for pruned LLMs. For example, SparseGPT + IC achieves a
perplexity improvement of 6.0 over SparseGPT on all three LLaMA family of models, while Wanda
+ IC outperforms Wanda by a large margin of 7.0 on all three LLMs. Although Magnitude performs
much worse, Magnitude + IC still effectively reduces the perplexity by over 60%.

Results on Zero-shot Tasks. Table 4 shows the testing accuracy of seven zero-shot tasks on
the LLaMA family of models. As can be seen, IC consistently brings a noticeable improvement
(averaged over all tasks) to all existing pruning methods. For example, Wanda + IC outperforms
Wanda on LLaMA-3.1-8B, LLaMA-2-7B, and LLaMA-1-7B by margins of 1.09%, 1.73%, and 0.4%,
respectively, indicating that the learned compensation pool can be effectively used to construct input
compensation for pruned models without any weight update. Moreover, SparseGPT + IC consistently
achieves the highest accuracy for all models, showing that learning ∆x and ∆w are complementary
and thus can be combined together for boosting performance.

5.3 EXPERIMENTS ON IMAGE GENERATION

Experimental Setting. We evaluate IC on Denoising Diffusion Probability Models (DDPM) (Ho
et al., 2020). Following (Fang et al., 2023), the CIFAR-10 dataset (with the image size of 32 ×
32) (Krizhevsky & Hinton, 2009) and the off-the-shelf DDPM from (Ho et al., 2020) are used. K is
initialized with zero and V is initialized randomly by a normal distribution with a standard deviation
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Table 4: Testing accuracy of zero-shot tasks using LLaMA family of models.
Sparsity BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Avg

L
L

aM
A

-1
(7

B
)

Dense 0% 75.08 66.79 56.96 70.01 75.29 41.89 34.40 60.06

Magnitude 70% 38.29 52.71 25.62 51.14 26.64 19.71 11.60 32.24
Magnitude + IC 70% 55.99 52.35 25.33 48.38 25.93 21.93 15.00 34.99

Wanda 70% 57.16 54.87 28.73 50.91 32.15 18.86 13.80 36.64
Wanda + IC 70% 59.60 53.07 28.80 52.01 34.55 18.86 12.40 37.04

SparseGPT 70% 63.43 56.32 33.89 58.96 44.07 23.63 17.80 42.58
SparseGPT + IC 70% 66.06 54.87 37.47 60.06 48.40 25.51 18.20 44.37

L
L

aM
A

-2
(7

B
)

Dense 0% 77.71 62.82 57.16 69.14 76.30 43.43 31.40 59.71

Magnitude 70% 37.95 53.07 25.95 49.25 27.74 22.78 16.80 33.36
Magnitude + IC 70% 42.57 52.35 25.77 49.33 25.84 22.10 16.20 33.45

Wanda 70% 46.09 52.71 27.86 51.14 30.05 18.09 11.80 33.96
Wanda + IC 70% 58.01 52.71 27.91 50.28 29.80 19.54 11.60 35.69

SparseGPT 70% 65.75 53.07 33.47 57.06 43.73 22.35 17.40 41.83
SparseGPT + IC 70% 65.11 52.71 36.50 57.85 49.33 24.49 17.60 43.37

L
L

aM
A

-3
.1

(8
B

)

Dense 0% 82.08 68.95 60.01 73.56 81.48 51.28 33.20 64.37

Magnitude 70% 37.83 52.71 26.16 49.33 26.09 20.14 14.60 32.41
Magnitude + IC 70% 37.83 53.79 25.71 49.88 25.21 22.78 15.20 32.91

Wanda 70% 56.27 52.71 27.51 47.83 32.20 17.66 13.00 35.31
Wanda + IC 70% 61.74 52.71 27.75 49.25 33.25 17.92 12.20 36.40

SparseGPT 70% 67.71 52.71 33.60 56.20 43.14 21.08 16.40 41.55
SparseGPT + IC 70% 67.71 54.15 34.25 57.62 46.63 22.78 15.60 42.68

of 0.01, where the rank r is set to 128. We train K and V using the Adam optimizer (Kingma
& Ba, 2015) with a learning rate of 0.002 over 100K steps. The mini-batch size is set to 128.

Table 5: FID of pruned DDPMs on CIFAR-
10.

Sparsity FID

Dense 0% 4.19

Magnitude 30% 5.48
Magnitude + IC 30% 5.31

Taylor Pruning 30% 5.56
Taylor Pruning + IC 30% 5.21

Diff-Pruning 30% 5.29
Diff-Pruning + IC 30% 5.15

The identity function is used as the encoder of IC to
keep more original image information, which is crucial
for image generation. Following (Fang et al., 2023),
we focus on the sparsity of 30% case and compare IC
with three pruning methods: Magnitude Pruning (Han
et al., 2015), Taylor Pruning (Molchanov et al., 2022),
and Diff-Pruning (Fang et al., 2023).

Results. Table 5 shows the Frechet Inception Dis-
tance (FID) (Heusel et al., 2017). As can be seen,
IC consistently improves the existing pruning methods,
demonstrating the effectiveness of compensating inputs
for pruned LLMs. For instance, Taylor Pruning+IC
achieves an FID improvement of 0.35 compared to Tay-
lor Pruning. Similarly, Diff-Pruning+IC outperforms
Diff-Pruning by 0.14.

6 ANALYSIS

In this section, we conduct empirical analyses to investigate the key components of IC, including
rank r, sparsity, sparse retraining, and input-dependent compensation. We adopt the experimental
setting used in Section 5.1 with CLIP ViT-B/32.

Sensitivity of Rank. We conduct experiments to study the sensitivity of rank r to the performance of
Magnitude + IC, where r is chosen from {2, 4, 8, 16, 32, 64, 128}. Table 6 shows the testing accuracy
and number of parameters of (K,V) with different ranks. As can be seen, a very small rank (e.g.,
2) is not desirable. When the rank is small (≤ 16), increasing the rank leads to better performance
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Table 6: Testing accuracy of Magnitude + IC (sparsity=50%) with different ranks on image classifica-
tion tasks using CLIP ViT-B/32.

Rank #Params CIFAR100 Flowers Food EuroSAT SUN UCF SVHN Pets DTD RESISC Avg

2 0.14M 70.9 51.7 69.5 94.9 47.1 58.2 93.8 57.2 38.1 83.5 66.5
4 0.29M 73.5 56.6 71.6 95.8 47.9 60.3 94.2 61.9 40.6 85.7 68.8
8 0.58M 73.9 62.0 72.2 96.4 49.4 62.7 94.3 65.8 42.7 86.4 70.6

16 1.15M 73.5 62.0 72.9 96.9 49.6 63.8 94.4 69.8 44.0 87.2 71.4
32 2.30M 73.0 62.9 72.4 96.5 48.9 63.1 94.4 69.2 44.1 87.1 71.2
64 4.60M 73.1 64.3 73.1 96.8 50.8 64.4 94.4 65.5 42.4 87.9 71.3
128 9.20M 73.5 56.7 72.6 96.6 49.8 62.0 94.2 62.7 40.4 87.0 69.5

while the number of parameters is still negligible (≤ 1.15M). A very large rank (e.g., 128) contains
more parameters but does not contribute to better performance. In practice, we can choose the rank
∈ [16, 32].

10% 20% 30% 40% 50% 60% 70% 80% 90%
sparsity
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Figure 3: Performance of Magnitude and Mag-
nitude + IC with different sparsities on image
classification tasks using CLIP ViT-B/32.

Sensitivity of Sparsity. We study the perfor-
mance of Magnitude + IC with different spar-
sities. Figure 3 shows the trend of testing ac-
curacy (averaged over ten tasks) w.r.t. sparsity
(the detailed results are shown in Table 7 of Ap-
pendix A). As can be seen, when the sparsity is
high (≥ 40%), Magnitude + IC significantly out-
performs Magnitude; When the sparsity is low
(≤ 20%), Magnitude + IC and Magnitude per-
form comparably. In practice, a high sparsity
is more desirable for pruning in order to reduce
the model size; Thus, IC is practically useful for
enhancing pruned models.

Sparse Retraining with IC. In Section 5.1, we combine IC with three pruning methods without
sparse retraining. Sparse retraining, i.e., retraining the sparse model following the pruning step, can
approach the performance of the dense model. We conduct experiments to investigate whether IC is
beneficial to pruning methods with sparse retraining. We retrain unpruned parameters of the pruned
model on the training data for 3 epochs using the AdamW optimizer with a learning rate of 0.000001
and weight decay of 0.01. Figure 4 shows the testing accuracy (averaged over ten tasks) of pruning
methods w/ or w/o IC when sparse retraining is applied (detailed results are in Table 8 of Appendix
A). As can be seen, IC consistently boosts existing pruning methods when sparse retraining is applied.
Moreover, sparse retraining achieves higher accuracy than those without retraining (Table 1).

Input-dependent vs. Input-independent Compensation. The design of our IC ensures the compen-
sation ∆x depends on the input. A variant of IC is learning a globally shared (i.e., input-independent)
compensation ∆ for all inputs. For example, Visual Prompting (VP) (Bahng et al., 2022) can be
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(a) Sparsity=50%.
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(b) Sparsity=4:8.

Figure 4: Testing accuracy (averaged over ten image classification tasks) using CLIP ViT-B/32 with
sparse retraining
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Magnitude Wanda SparseGPT
60

65

70

75

80

85

Av
er

ag
e 

Te
st

in
g 

ac
cu

ra
cy

64.6

69.8

73.2
71.2

77.4
79.2

input-independent
input-dependent

(a) Sparsity=50%.

Magnitude Wanda SparseGPT
60

65

70

75

80

85

Av
er

ag
e 

Te
st

in
g 

ac
cu

ra
cy

61.4
64.1

69.4
71.0

74.8
76.8

input-independent
input-dependent

(b) Sparsity=4:8.

Figure 5: Testing accuracy (averaged over ten image classification tasks) of IC and an input-
independent variant using CLIP ViT-B/32

used to learn the shared compensation. We conduct experiments to investigate the effectiveness
of our input-dependent mechanism. Figure 5 shows the testing accuracy (averaged over ten tasks).
As can be seen, IC performs much better than the input-independent variant, demonstrating that
input-dependent compensation is more effective in reducing the error caused by the pruned weights.

Visualization. In Section 5.1, we learn a compensation pool with r = 32 to construct input
compensations for ten image classification tasks, i.e., ∆x is a weighted combination of 32 candidate
vi’s. Next, we study whether different tasks lead to different preferences for vi’s. Figure 6 shows
the average attention weights between vi and testing samples belonging to different classes of three
tasks (Flowers, Food, CIFAR100) (other tasks are not shown due to limited space). As can be seen,
samples from the Flowers task prefer {v1, . . . ,v5}; samples from the Food task prefer {v6, . . . ,v10};
samples from the CIFAR100 task prefer {v11, . . . ,v17}.
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x

Figure 6: Distribution of attention weights on image classification tasks using CLIP ViT-B/32.

7 CONCLUSION

In this paper, we proposed input compensation (IC) for enhancing pruned models by adjusting the
inputs to compensate for the error caused by the pruned weights. A pool of multiple candidate
compensations is learned to construct input-dependent compensations by attention. IC is designed in
the input space while existing pruning methods are designed in the parameter space. Hence, IC can
be integrated into any existing pruning methods. Extensive experiments on NLP and CV verify that
IC brings large improvements to existing pruning methods.
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A ADDITIONAL EXPERIMENTAL RESULTS

Sensitivity of Sparsity. Table 7 shows the testing accuracy of Magnitude and Magnitude + IC with
different sparsities. We can see that Magnitude + IC significantly outperforms Magnitude when the
sparsity is high (≥ 40%). In practice, a high sparsity is more desirable for pruning to reduce the
model size. Hence, IC is practically useful for boosting the performance of pruned models.

Table 7: Performance of Magnitude and Magnitude + IC with different sparsities.
Sparsity IC CIFAR100 Flowers Food EuroSAT SUN UCF SVHN Pets DTD RESISC Avg

10% ✗ 88.2 97.7 89.1 98.8 73.6 86.0 97.1 91.6 74.6 96.0 89.3
10% ✓ 87.7 97.6 88.8 98.5 73.3 85.1 97.0 91.7 73.8 96.0 88.9

20% ✗ 87.5 96.5 88.4 98.6 72.9 84.1 96.9 90.4 72.8 95.4 88.3
20% ✓ 87.2 96.3 88.1 98.5 72.6 83.2 96.9 90.4 72.2 95.3 88.1

30% ✗ 84.8 88.8 84.2 97.6 68.6 79.2 96.5 88.3 67.7 94.1 85.0
30% ✓ 84.9 91.0 85.3 98.3 68.5 78.9 96.7 88.3 67.0 94.2 85.3

40% ✗ 71.1 57.0 70.0 93.5 54.6 65.8 93.8 73.2 49.7 87.7 71.6
40% ✓ 79.8 81.9 80.7 97.4 60.4 72.9 96.2 81.4 58.9 91.6 80.1

50% ✗ 33.9 26.1 34.2 45.6 30.8 35.4 45.3 38.7 27.9 55.4 37.3
50% ✓ 73.0 62.9 72.4 96.5 48.9 63.1 94.4 69.2 44.1 87.1 71.2

60% ✗ 5.6 5.2 4.3 4.3 5.5 4.7 9.1 9.0 10.0 10.2 6.8
60% ✓ 57.5 25.0 52.0 89.4 26.1 37.0 85.6 29.0 16.5 74.1 49.2

70% ✗ 1.7 2.7 2.0 13.0 0.8 2.1 7.5 2.9 2.8 3.3 3.9
70% ✓ 19.3 6.1 13.8 75.4 4.0 7.0 51.6 4.1 4.0 26.6 21.2

80% ✗ 1.0 1.0 0.8 13.0 0.3 1.4 6.5 2.8 1.7 2.4 3.1
80% ✓ 6.9 5.1 5.2 68.8 1.0 3.5 38.8 3.8 2.8 22.1 15.8

90% ✗ 1.1 0.5 1.0 6.9 0.2 0.7 6.4 2.6 2.1 2.1 2.4
90% ✓ 3.5 2.7 2.2 49.5 0.5 2.1 6.7 3.5 3.4 7.5 8.2

Sparse Retraining with IC. We conduct experiments to study the performance of IC when sparse
retraining is applied. Table 8 shows the testing accuracy on image classification tasks using CLIP
ViT-B/32. As shown, IC brings a significant improvement to existing pruning methods when sparse
retraining is used.

Table 8: Testing accuracy on image classification tasks using CLIP ViT-B/32 with sparse retraining.
Sparsity CIFAR100 Flowers Food EuroSAT SUN UCF SVHN Pets DTD RESISC Avg

Magnitude 50% 79.3 80.8 81.2 87.8 61.6 73.8 95.5 78.2 55.1 90.6 78.4
Magnitude + IC 50% 82.4 82.6 83.0 98.2 63.1 76.3 96.8 80.0 57.7 92.5 81.3

SparseGPT 50% 80.3 85.4 83.4 83.1 63.1 74.7 96.1 82.0 58.2 91.3 79.8
SparseGPT + IC 50% 84.5 88.3 86.0 98.4 65.7 77.5 96.8 83.3 61.5 93.9 83.6

Wanda 50% 81.2 84.8 83.5 88.1 62.8 73.8 96.0 81.8 59.3 92.0 80.3
Wanda + IC 50% 84.6 87.4 85.3 98.4 64.7 76.6 96.8 82.6 61.5 94.0 83.2

Magnitude 4:8 75.9 70.4 78.7 77.0 57.1 68.1 94.9 76.1 47.9 88.9 73.5
Magnitude + IC 4:8 81.1 76.7 81.2 97.8 59.5 72.0 96.5 78.0 51.8 91.6 78.6

SparseGPT 4:8 79.6 80.3 82.7 80.9 60.0 70.0 95.7 81.2 55.6 90.8 77.7
SparseGPT + IC 4:8 83.8 84.0 84.8 98.3 62.2 74.3 96.7 82.7 58.7 93.7 81.9

Wanda 4:8 78.9 76.9 81.4 80.3 58.0 68.7 95.6 78.6 54.6 90.2 76.3
Wanda + IC 4:8 83.6 81.4 83.3 98.0 60.5 71.9 96.7 80.0 57.3 92.8 80.6

Statistics of the image classification datasets are shown in Table 9.
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Table 9: Summary of ten image classification datasets.

Dataset Training Size Testing Size #Classes

CIFAR100 (Krizhevsky & Hinton, 2009) 50,000 10,000 100
Flowers (Nilsback & Zisserman, 2008) 4,093 2,463 102
Food (Bossard et al., 2014) 50,500 30,300 101
EuroSAT (Helber et al., 2019) 13,500 8,100 10
SUN (Xiao et al., 2016) 15,888 19,850 397
DTD (Cimpoi et al., 2014) 2,820 1,692 47
UCF (Soomro et al., 2012) 7,639 3,783 101
SVHN (Netzer et al., 2011) 73,257 26,032 10
Pets (Jawahar et al., 2012) 2,944 3,669 37
RESISC (Cheng et al., 2017) 18,900 6,300 45

B ILLUSTRATION OF IC FOR LLMS

Figure 7 shows the IC for LLMs, where the pruned input embedding layer is used as the encoder.
The compensation pool (K,V) is trained to construct input compensation ∆

(i)
x for each token’s

embedding H
(i)
x via attention.

   Frozen

   Tuned

Input
Embedding

Layer

Attention

...
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Pruned Model
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outputinput
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Figure 7: Input compensation for pruned LLMs.
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