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ABSTRACT

Prior work has largely treated future event prediction as a static task, failing to
consider how forecasts and the confidence in them should evolve as new evidence
emerges. To address this gap, we introduce EVOLVECAST, a framework for
evaluating whether large language models appropriately revise their predictions in
response to new information. In particular, EVOLVECAST assesses whether LLMs
adjust their forecasts when presented with information released after their training
cutoff. We use human forecasters as a comparative reference to analyze prediction
shifts and confidence calibration under updated contexts. While LLMs demonstrate
some responsiveness to new information, their updates are often inconsistent
or overly conservative. We further find that neither verbalized nor logits-based
confidence estimates consistently outperform the other, and both remain far from
the human reference standard. Across settings, models tend to express conservative
bias, underscoring the need for more robust approaches to belief updating.

1 INTRODUCTION

Large language models (LLMs) have achieved strong performance across a wide range of NLP tasks,
particularly those involving factual recall and reasoning over known information (Lin et al., 2022;
Guo et al., 2023) including temporal information (Ding et al., 2025). However, most evaluations
remain static and retrospective: they assess what models know about the world up to their training
cutoff. In contrast, real-world decision-making often requires reasoning about uncertain future events,
where outcomes are not yet known and relevant information evolves over time.

Forecasting plays a central role in domains such as policymaking, science, and technology. It requires
anticipating future developments based on incomplete or uncertain evidence, and adjusting those
beliefs as new signals arrive. Unlike fact retrieval tasks, forecasting is inherently temporal and
dynamic. For instance, given the question, “Will GPT-5 be released in 2025?”, an LLM might answer
“Yes” based on existing trends in AI development. However, without a way to incorporate emerging
information, such as announcements or delays, such forecasts remain static, and may quickly become
outdated or misleading. To illustrate the dynamic nature of forecasting, see the example in Figure 1.

Prior work has begun to explore the forecasting capabilities of LLMs (Jin et al., 2020; Zou et al.,
2022; Yuan et al., 2024a). These efforts typically frame forecasting as a static problem, where the
model produces a categorical answer based on its existing knowledge. Some studies incorporate
external information, including textual evidence such as news (Ye et al., 2024; Halawi et al., 2024),
but use this information to improve the model’s final prediction, not to evaluate how forecasts change
over time. More recently, forecasting has been reframed as a probabilistic task, where models are
expected to produce confidence scores in addition to predictions (Karger et al., 2024; Yuan et al.,
2025). In this setting, the goal is not just to answer the mentioned question with “Yes”, but to provide
a confidence level, e.g., 70%, that reflects the model’s uncertainty. These works though showed that
even when models make correct predictions, their confidence is often miscalibrated.

Yet even confidence-aware predictions remain static if models cannot revise their beliefs. In practice,
forecasters routinely update their views as new information becomes available. For example, if a
forecaster initially assigns a 55% chance to the release of GPT-5 in 2025, but later encounters a
credible report stating “Sam Altman has hinted at a major announcement next week,” they might
revise their estimate to 70%. A capable forecasting model should exhibit similar adaptive behavior,
not only producing reasonable confidence scores, but updating them in response to emerging signals.
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Model updating its forecast in the correct direction but wrong magnitude.
Question Model Reference

Q: Will GPT-5 be released
in 2025?

Initial forecast (t=0)
Prediction: Yes
Confidence: p0 = 55%

News update: “Sam Alt-
man hints at major 2025
release.”

Updated forecast (t=1)
Prediction: Yes
Confidence: pt = 60%
Direction: Up
Magnitude: +5%

Reference (before)
Prediction: Yes
h0 = 55%

Reference (after)
Prediction: Yes
ht = 70%
Direction: Up
Magnitude: +15%

Model under-reacts vs. reference: 15−5 = 10 pp shortfall

Figure 1: Illustrative example of belief updating in EVOLVECAST. A forecasting question asks: “Will
GPT-5 be released in 2025?”. Both the model and the human reference start at 55% confidence. After
a news update (“Sam Altman hints at major 2025 release”), the human reference revises upward to
70% (an increase of 15%), while the model increases only to 60% (an increase of 5%). The model
captures the correct direction of change but underestimates its magnitude, resulting in a 10% shortfall.

Evaluating belief dynamics provides insight into how well models reason under uncertainty and adapt
over time, which remains a blind spot in most LLM assessments.

This paper introduces EVOLVECAST, a framework for evaluating whether language models revise
their forecasts when presented with new information. Rather than focusing on static predictions, we
assess whether models adjust both their predicted outcome and associated confidence in response
to emerging evidence. To this end, we construct a benchmark of forecasting scenarios where
information relevant to the forecast becomes available after a model’s training cutoff. We evaluate
LLM predictions with and without access to this new information, and evaluate the resulting belief
changes against those made by human forecasters under similar conditions. In an additional setting,
we also provide the model with a time series of historical human forecasts up to the moment of the
news, allowing it to optionally leverage trends in human belief as a contextual reference without
treating it as ground truth. This enables a softer form of conditioning that mimics the information a
real-world forecaster might observe, without prescribing correct answers.

Our evaluation focuses on the direction and magnitude of prediction shifts and the calibration of
updated confidence scores as exampled in Figure 1. Our findings show that while language models can
adjust their forecasts in response to new information, their updates remain limited: belief revisions are
often conservative, confidence estimates vary by method without a clear advantage, and both fall short
of human reference forecasts. These challenges highlight fundamental difficulties in modeling belief
dynamics and underscore the need for evaluation frameworks that extend beyond static forecasting
accuracy. EVOLVECAST provides such a framework, offering a principled setting for analyzing how
models adapt their predictions as the world evolves.

2 RELATED WORK

A growing body of research has investigated the forecasting capabilities of language models, though
most efforts emphasize event prediction rather than belief dynamics or confidence calibration. Open-
Forecast (Wang et al., 2025) introduces a large-scale benchmark for open-ended multi-step forecasting,
but focuses primarily on model accuracy rather than the calibration of confidence estimates. Fore-
castBench (Karger et al., 2024) frames forecasting as a probabilistic task with evolving predictions
over time, but does not explicitly examine how models adjust their beliefs in light of new information.
Time-R1 (Liu et al., 2025) presents a reinforcement learning framework to endow smaller LLMs
with temporal understanding and future event generation capabilities, showing strong performance on
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forecasting tasks beyond training cutoff. While our focus also involves forecasting under temporal
uncertainty, unlike previous we evaluate belief revisions as new signals emerge. Beyond forecasting,
several benchmarks target reasoning and plausibility assessment. COPA (Roemmele et al., 2011) and
HellaSwag (Zellers et al., 2019) evaluate causal and commonsense reasoning via multiple-choice
inference tasks. PRobELM (Yuan et al., 2024b) examines models’ ability to rank outcomes by
plausibility, drawing on general world knowledge. While these evaluations probe important reasoning
capabilities, they do not test how models reason under uncertainty or update beliefs over time.

3 EVOLVECAST: DYNAMIC FORECASTING EVALUATION FORMALIZATION

3.1 TASK DEFINITION

We formalize EVOLVECAST as a dynamic forecasting task, where the goal is to evaluate whether a
language model revises its predictions and confidence in response to new information in a manner
comparable to a reference standard. Let q denote a forecasting question about a future event (e.g.,
“Will GPT-5 be released in 2025?”). At time t, new information xt (e.g., a news headline or update)
becomes available, and we measure how the model’s belief changes when conditioned on it. For
binary questions (Y = {Yes,No}), the model’s belief at time t reduces to a scalar confidence
pt = Pt(Yes | xt) ∈ [0, 1], and the belief update is defined as ∆p = pt − p0.

3.2 EVALUATION CRITERIA

We evaluate the quality of model belief updates by comparing the change in model confidence,
∆p = pt − p0, to the corresponding reference shift ∆h = ht − h0, on three complementary aspects:

Directional Agreement. We use Mean Directional Accuracy (MDA) to assess whether the model
and reference forecasts tend to update their beliefs in the same direction across examples. For a set of
N instances, MDA is defined as:

MDA =
1

N

N∑
i=1

1
[
sign(∆̃(i)

p ) = sign(∆̃(i)
h )

]
,

where ∆pi and ∆hi are the model and reference forecast deltas for the i-th instance. We apply a
minimal change threshold ϵ to avoid counting negligible shifts as meaningful updates. Specifically,
we treat both ∆pi and ∆hi as zero when |∆| < ϵ, and consider the signs to match in such cases.
Let ∆̃p denote the thresholded version of ∆p, where ∆̃p = 0 if |∆p| < ϵ, and similarly for ∆h.
Precision, Recall, and F1 (micro-averaged) are also computed binary target by treating “directional
match” as the positive class (i.e., TP: signs match; FP: signs match when the reference does not; FN:
signs do not match when the reference does). In practice, this means micro-averaged recall is always
equal to the MDA, since both reduce to the proportion of correctly classified instances; in addition,
this reduces each update to one of three labels: Up (∆ > ϵ), Down (∆ < −ϵ), or Still (|∆| < ϵ);
and we evaluate whether the model’s label matches the reference.

Magnitude Alignment. We measure how closely the magnitude of the model’s belief update
matches that of reference forecasters. We report two complementary metrics: Mean Squared Error
(MSE) and Symmetric Mean Squared Percentage Error (SMSPE). The MSE is defined as:

MSE =
1

N

N∑
i=1

(∆pi −∆hi)
2,

To evaluate relative alignment, we define the symmetric percentage change in belief as:

δ(i)p =
p
(i)
t − p

(i)
0

(p
(i)
t + p

(i)
0 )/2

, δ
(i)
h =

h
(i)
t − h

(i)
0

(h
(i)
t + h

(i)
0 )/2

,

where p
(i)
0 and p

(i)
t are the model’s confidence before and after seeing new information (similarly for

the reference forecasts), similar to MAPE (De Myttenaere et al., 2016). The SMSPE is given by:

SMSPE =
1

N

N∑
i=1

(
δ(i)p − δ

(i)
h

)2

.
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Confidence Calibration. To assess whether models produce well-calibrated confidence estimates,
we compute the Brier Score (Brier, 1950). This allows us to evaluate whether the model’s confidence
aligns with reference before and after new information is introduced. The Brier score between model
prediction p and reference forecast h is defined as: Brier(p, h) = (p− h)2. We report the change in
calibration directly as the average difference in squared errors before and after conditioning on new
information:

∆Brier =
1

N

N∑
i=1

[
(p

(i)
t − h

(i)
t )2 − (p

(i)
0 − h

(i)
0 )2

]
.

A negative ∆Brier indicates improved calibration after observing new information (since lower Brier
is better), while a positive value suggests degradation.

4 EVOLVECAST DATASET CONSTRUCTION

EVOLVECAST is constructed from Metaculus (www.metaculus.com; see examples in Ap-
pendix C), an online forecasting platform where users submit probability estimates to questions
spanning domains such as politics, economics, health, and technology. Metaculus aggregates these
into a community prediction that is continuously updated until shortly before resolution. Each
question is associated with predefined resolution criteria, and the platform enforces strict guidelines to
ensure that forecasts are consistent with them and human-generated and consistent with those criteria.
Metaculus also has a strong empirical track record: over the past five years, community predictions
on resolved binary questions have shown close alignment to observed outcomes, with roughly half of
observed frequencies lying within the 90% credible interval around the ideal calibration line.1 This
calibration performance provides confidence that the platform’s aggregated predictions are reliable.

We apply several filtering steps to ensure data quality. First, we discard questions that Metaculus
marks as ambiguous or that are resolved in ways that make forecasting infeasible. For example,
when the outcome falls outside the prediction range or when resolution criteria are modified after
submission. Second, we only include questions with at least 100 individual forecasts to maintain
statistical reliability in the aggregated reference prediction. Finally, we restrict the dataset to binary
(Yes/No) questions. The resulting dataset consists of 1,613 question–news pairs with timestamp.

4.1 REFERENCE FORECASTS AND CONFIDENCE EXTRACTION

In our setting, ground-truth confidence values are not directly observable. We therefore follow prior
work that uses human forecast distributions as a proxy for uncertainty (Plank, 2022; Baan et al., 2024;
Yuan et al., 2025). The intuition is that aggregated human forecasts, even when forecasters disagree,
provide informative signals of uncertainty: disagreement itself reflects the inherent ambiguity and
difficulty of the task, similar to how disagreement among annotators is leveraged in natural language
tasks with multiple plausible interpretations. This approach has several advantages. First, it captures
the fact that some forecasting questions are inherently uncertain, so variance across forecasters
represents a genuine property of the task rather than annotation noise. Second, aggregation over many
individuals smooths out idiosyncratic biases while preserving collective uncertainty, yielding a stable
yet informative signal. Third, these distributions are updated dynamically as new evidence appears,
making them particularly well suited for evaluating belief revision.

For Boolean questions, where the community assigns probability P to the correct outcome, we
compute a normalized confidence score as h = σ

(
lnP−ln 0.5

ln 2

)
. This transformation ensures that

confidence is scaled relative to a chance-level (50%) baseline. While aggregated forecasts are
sometimes incorrect, they nonetheless represent the best available reasoning given the information at
the time, and thus serve as a practical and informative reference point for evaluating model confidence.

4.2 NEWS RETRIEVAL AND ALIGNMENT

In addition to questions and forecasts, EVOLVECAST pairs each instance with a contemporaneous
news update. The key challenge is to determine when new information becomes available that could
plausibly shift forecasts. We detect these moments by monitoring the comment streams associated

1https://www.metaculus.com/questions/track-record

4

www.metaculus.com
https://www.metaculus.com/questions/track-record


216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

with each Metaculus question: whenever a new comment is posted, we treat this as a candidate signal
that new evidence has emerged. To reduce noise, we filter out bot-generated or automated comments
as well as very short entries (fewer than 20 characters). Once a candidate timestamp is identified,
we search for relevant news articles within a one-week window preceding the comment to account
for possible delays between publication of external information and the time at which it is reflected
in forecaster discussion. News articles are retrieved via the Google Search API, using the original
question as the query, and for each candidate timestamp we collect up to 100 related articles.

To select the most relevant update, we compute semantic similarity between the comment text and
each retrieved article using sentence embeddings (Reimers & Gurevych, 2019). Articles are then
ranked by similarity score, and by default we retain the top-ranked article, storing both its title
and headline as the associated news update. This procedure ensures that each question–forecast
pair is aligned with a news item that is both temporally plausible and semantically linked to the
corresponding forecaster discussion. Because a single question may be associated with multiple
updates over time, the dataset may contain repeated questions paired with different news events. In
total, this process yields 1,613 aligned question–news pairs across domains.

5 EXPERIMENTAL SETUP

5.1 MODELS

We evaluate three openly available reasoning models from the DeepSeek-R1 series (Guo et al.,
2025): DeepSeek-R1-Distill-Qwen-1.5B, DeepSeek-R1-Distill-Qwen-7B, and
DeepSeek-R1-Distill-LLaMA-8B, together with their published base counterparts from the
same backbones (Qwen 2.5 (Bai et al., 2025) and Llama 3.1 (Dubey et al., 2024) families, as indicated
in the official model cards).2 This choice serves two purposes. First, it provides coverage across
both Qwen and Llama backbones and multiple parameter scales (1.5B/7B/8B), enabling us to probe
how scale and architecture relate to belief-updating behavior. Second and critically, it allows us to
isolate the effect of reasoning-style post-training (e.g., distillation/RL procedures specific to R1)
by comparing each R1 model against a matched base model. Including unrelated weaker models
would introduce confounds (different tokenizers, pretraining corpora, and objectives) that obscure the
contribution of reasoning post-training and inflate variance without strengthening causal claims about
update dynamics. All models are evaluated with identical prompts and decoding settings.

5.2 INFERENCE PROCEDURE

For each question, we run two conditions with identical instructions: (i) a question-only condition (no
external update) and (ii) a question+news condition where we augment the prompt with a retrieved
news snippet aligned to the question (Sec. 4). Full details are provided in Appendix D.

Because the exact training cutoffs of these models are undisclosed, we restrict evaluation to questions
first posted strictly after October 2023. For each instance we use two explicit evaluation dates: T0 is
the question date (the prompt states “today is T0”), and T1 is the publication date of the associated
news update (the prompt states “today is T1” and includes the dated snippet), with T0 < T1. In both
conditions the prompt instructs the model to use only information available up to the stated date (e.g.,
“You do not have access to updates after T ”).

This dynamic anchoring serves two goals. First, it closely mirrors the real forecaster workflow:
form a view at T0, then revise at T1 when new evidence arrives, thereby avoiding hindsight effects.
Second, it minimizes leakage concerns and unknown-cutoff confounds: our primary metrics evaluate
the within-instance change ∆p = pt − p0 from T0 to T1. By comparing the same model on the
same question before vs. after dated evidence, we largely cancel effects of any static knowledge in
pretraining and directly test responsiveness to new information rather than recall of facts.

2We pair each R1-distilled model with the corresponding base instruction model from its backbone family
following the mapping described in the providers’ model cards.
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5.3 CONFIDENCE EXTRACTION

Following prior work on eliciting model self-assessments (Xiong et al., 2023), we evaluate model
confidence using two complementary approaches: its own uncertainty and underlying probabilities.

Black-box (verbalized) confidence. The model is instructed to provide a binary prediction (“Yes”
or “No”) and to assign a probability on a 1–10 scale with descriptive anchors (“1: extremely unlikely”
. . . “10: extremely likely”). We normalize this verbalized score to [0, 1] for evaluation. This setting
aligns with how human forecasters typically express uncertainty through explicit probability estimates,
facilitating direct comparison with the aggregated human reference.

White-box (logit-based) confidence. We also derive confidence estimates directly from the model’s
output probabilities. For a single generated answer y = (y1, . . . , yT ), we compute the mean token
probability p̂ = 1

T

∑T
t=1 P (yt | y<t, x), where P (yt | y<t, x) is the model’s predicted probability of

token yt given the context. This logit-based measure reflects the model’s internal certainty about its
produced sequence and provides a white-box perspective complementary to the verbalized estimates.

6 RESULTS

6.1 BLACK- VS. WHITE-BOX CONFIDENCE: NO CLEAR WINNER, BUT REASONING HELPS

Table 1 compares verbalized (black-box) and logit-based (white-box) confidence across reasoning-
tuned and base models. Overall, neither approach emerges as a clear winner: both exhibit low
directional agreement and poor calibration relative to human forecasters. Reasoning-tuned models
consistently outperform their base counterparts, particularly at larger scales (7B and 8B), yet
within each backbone the gap between black- and white-box methods remains small and incon-
sistent. Several factors likely contribute to the underperformance of both approaches. Verbalized
probabilities show slightly greater stability across settings, yet they remain imperfect: models often
default to conservative or generic values, which blunts the fidelity of their probability estimates.
Logit-based confidences, by contrast, draw more directly on internal activations but are highly sensi-
tive to prompt length, decoding hyperparameters, and normalization schemes, which can undermine
robustness. Neither approach therefore provides a consistently reliable signal, and small numerical
differences between them should be interpreted with caution.

Beyond the mechanics of confidence elicitation, forecasting itself poses distinctive challenges for
LLMs. The task demands not only access to broad domain knowledge but also the capacity to
integrate novel information and update beliefs in a calibrated fashion. Current models show limited
ability to perform these updates reliably, leading to systematic miscalibration even when directional
reasoning is sound. This pattern echoes prior findings (Karger et al., 2024), which likewise identified
forecasting as a setting that exposes fundamental weaknesses in both reasoning and calibration. To
better understand these dynamics, we narrow our subsequent ablations to a subset of settings that
more clearly isolate model behavior under controlled conditions. Even with this refinement, the
central result remains unchanged: LLMs are far from human-like in belief updating, regardless
of whether confidence is elicited in black-box or white-box form.

6.2 ABLATION: ACCUMULATED NEWS CONTEXT

Table 2 reports results when models are given access to the entire sequence of news updates from
T0 to T1 (Accumulated) rather than only the latest update (Single). This setting tests whether richer
temporal context improves belief updating. A single forecasting question can be associated with
multiple news items over time, and the accumulated condition passes all updates in chronological
order, while the single condition isolates only the most recent update.

To focus the analysis and other ablation studies, we report results using verbalized confidence only,
since in the main setting it showed broadly similar patterns to logit-based confidence but with slightly
more stable behavior. We also restrict attention to the DeepSeek R1 reasoning models, as the ablation
targets temporal context rather than differences between reasoning and base backbones.

6
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Table 1: Main results. Top: black-box (verbalized) confidence. Bottom: white-box (logit-based)
confidence. Columns are grouped as Directional agreement (MDA/Prec/Rec/F1), Magnitude error
(MSE/SMSPE), and Calibration change (∆Brier; negative is better).

Black-box (verbalized) confidence

Directional agreement Magnitude Cal.

Model MDA Prec Rec F1 MSE SMSPE ∆Brier

Qwen backbone
DS R1 Qwen-1.5B 0.2529 0.4413 0.2529 0.2559 0.0258 0.1033 0.0232
Qwen-2.5 1.5B 0.2372 0.4768 0.2372 0.2455 0.0262 0.1059 0.0238
DS R1 Qwen-7B 0.3534 0.4639 0.3534 0.3791 0.0232 0.0939 0.0210
Qwen-2.5 7B 0.2603 0.4361 0.2603 0.2654 0.0256 0.1015 0.0231

LLaMA backbone
DS R1 LLaMA-8B 0.3360 0.4710 0.3360 0.3607 0.0237 0.0947 0.0214
LLaMA-3.1 8B 0.2199 0.3003 0.2199 0.2063 0.0267 0.1067 0.0244

White-box (logit-based) confidence

Directional agreement Magnitude Cal.

Model MDA Prec Rec F1 MSE SMSPE ∆Brier

Qwen backbone
DS R1 Qwen-1.5B 0.2461 0.4740 0.2461 0.2325 0.0260 0.1050 0.0236
Qwen-2.5 1.5B 0.2298 0.4505 0.2298 0.2360 0.0266 0.1065 0.0241
DS R1 Qwen-7B 0.3440 0.4422 0.3440 0.3650 0.0237 0.0951 0.0217
Qwen-2.5 7B 0.2545 0.4228 0.2545 0.2592 0.0259 0.1022 0.0234

LLaMA backbone
DS R1 LLaMA-8B 0.3271 0.4595 0.3271 0.3510 0.0242 0.0960 0.0219
LLaMA-3.1 8B 0.2144 0.2925 0.2144 0.2018 0.0273 0.1082 0.0249

Interestingly, the results in Table 2 show no consistent improvement from providing accumulated
news; in several cases, directional agreement metrics even decline relative to the single-update
condition. While the smallest model (Qwen-1.5B) shows minor gains in some metrics under the
accumulated setting, these do not generalize: both Qwen-7B and LLaMA-8B degrade when given
the full sequence of updates. One possible explanation is that language models struggle to weigh
multiple temporally ordered snippets, often overemphasizing earlier or less relevant updates rather
than the most recent signal. Unlike human forecasters, who can prioritize and discount information
dynamically, models may treat all updates with similar salience, leading to diluted or inconsistent
belief adjustments. Another factor is prompt length: longer contexts may increase the chance of
distraction or generic reasoning, reducing the precision of updates. Together, these results suggest
that simply concatenating news updates does not guarantee better adaptation, and highlights
the challenge of teaching models to integrate evolving evidence effectively.

The confusion matrices in Fig. 2 provide a complementary perspective. Under the Single condition,
all three models already show systematic confusion between “Up” and “Down,” with relatively few
accurate “Still” predictions. In the Accumulated condition, this imbalance becomes more pronounced:
across Qwen-7B and LLaMA-8B, the proportion of “Still” cases misclassified as movement (either
“Up” or “Down”) increases noticeably. This suggests that when exposed to multiple temporally
ordered snippets, models develop a bias toward interpreting evidence as directional even when the
reference forecasters remained stable. In other words, rather than integrating signals over time,
the models appear to accumulate noise, amplifying small fluctuations into spurious updates.
The heatmaps therefore reinforce the quantitative results in Table 2: accumulated news does not
improve consistency with the human reference and in some cases drives models further away from
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Table 2: Ablation on news context. Models are evaluated with either only the most recent update (S
= Single) or the full sequence of updates from T0 to T1 (A = Accumulated). Metrics are grouped as
in Table 1. Results for magnitude error and calibration change will be added once available.

Directional agreement Magnitude error Calibration

Model MDA Prec Rec F1 MSE SMSPE ∆Brier

DS R1 Qwen-1.5B (S) 0.2529 0.4413 0.2529 0.2559 0.0258 0.1033 0.0232
DS R1 Qwen-1.5B (A) 0.2554 0.4564 0.2554 0.2512 0.0262 0.1052 0.0237

DS R1 Qwen-7B (S) 0.3534 0.4639 0.3534 0.3791 0.0232 0.0939 0.0210
DS R1 Qwen-7B (A) 0.3236 0.4565 0.3236 0.3473 0.0251 0.1024 0.0228

DS R1 LLaMA-8B (S) 0.3360 0.4710 0.3360 0.3607 0.0242 0.0960 0.0219
DS R1 LLaMA-8B (A) 0.3013 0.4687 0.3013 0.3196 0.0268 0.1083 0.0247

Figure 2: Normalized confusion matrices for DeepSeek R1 models under Single (S) and Accumulated
(A) news updates. Columns correspond to models; rows correspond to evidence settings. Values are
column-normalized, showing Pr(pred | true) in %.

(a) DS R1 Qwen-1.5B (S) (b) DS R1 Qwen-7B (S) (c) DS R1 LLaMA-8B (S)

(d) DS R1 Qwen-1.5B (A) (e) DS R1 Qwen-7B (A) (f) DS R1 LLaMA-8B (A)

calibrated, conservative updating. See Appendix E.1 for delta heatmaps (A−S) that visualize how
confusion mass shifts when moving from Single to Accumulated context.

6.3 ABLATION: DIRECTIONAL QA PROMPTING

In this ablation, instead of eliciting probabilities before and after a news update and then computing
their difference, we directly prompt the model to predict whether the news should make the forecast
go “Up,” “Down,” or remain “Still.” This reduces the task to a single classification run rather than
two probability-estimation runs, and removes dependence on the quality of numeric calibration.
Prompt templates are provided in Appendix F. The motivation for this setting is twofold. First,
subtraction of two noisy probability estimates is fragile: even when the direction of change is clear,
imperfect calibration or over/under-confidence can obscure it. Second, this format mirrors how human
forecasters often reason qualitatively, e.g., “this headline makes outcome X more likely,” without
attaching precise numbers. Direct directional prompting therefore probes whether LLMs can at least
capture the sign of belief updates, independent of their ability to express calibrated probabilities.

8
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Table 3: Directional QA format results under the Single (S) and Accumulated Updates (A) settings.
Metrics cover only directional agreement since this setting directly elicits Up/Down/Still labels.

Model MDA Prec Rec F1

DS R1 Qwen-1.5B (S) 0.3521 0.4401 0.3521 0.3762
DS R1 Qwen-1.5B (A) 0.3620 0.4366 0.3620 0.3838

DS R1 Qwen-7B (S) 0.4675 0.4538 0.4675 0.4581
DS R1 Qwen-7B (A) 0.4314 0.4387 0.4314 0.4320

DS R1 LLaMA-8B (S) 0.4923 0.4621 0.4923 0.4714
DS R1 LLaMA-8B (A) 0.4389 0.4383 0.4389 0.4351

Table 3 reports directional agreement metrics under this setting. Compared to the probability-based
approach, the direct method yields markedly higher MDA and F1, especially for larger models. For
example, DS R1 LLaMA-8B achieves nearly 0.49 MDA with single updates, compared to only
0.34 under verbalized confidence (cf. Table 1). This indicates that models are substantially better at
reasoning about the qualitative direction of change than at producing well-calibrated probabilities.
Similar as before, accumulated news again does not improve performance: both RS R1 Qwen-7B and
RS R1 LLaMA-8B see declines in MDA and F1 when given the full sequence of updates. Together
with Sec. 6.2, this highlights that concatenating news does not help models integrate evidence and
may in fact dilute the signal. Overall, this ablation suggests that while LLMs struggle with precise
probability calibration, they are relatively more reliable at qualitative directional reasoning.

To further analyze model behavior, we inspect the confusion matrices of directional predictions
under both Single and Accumulated settings (Appendix E.2, Fig. 6). The patterns reveal distinct
biases across scales. In the Single setting, DS R1 Qwen-7B and DS R1 LLaMA-8B strongly favor
the “Still” label, indicating a conservative updating tendency, while DS R1 Qwen-1.5B behaves
more noisily, frequently predicting “Up” even when the true direction is “Down” or “Still.” When
moving to the Accumulated condition, the conservative bias in the larger models persists but is
accompanied by an increased tendency to predict “Up” (e.g., for DS R1 Qwen-7B, predictions of
“Up” rise from 221 to 278 on “True Still” cases). For DS R1 Qwen-1.5B, the confusion remains
scattered, though its excessive “Up” predictions on “True Still” instances decrease slightly. Overall,
this suggests a systematic pattern: smaller models tend to be noisy and overreact, while larger
models are conservative but can be nudged into spurious upward shifts when exposed to multiple
news updates. This aligns with the quantitative findings that accumulated context does not improve
directional agreement and can even reduce it by introducing spurious movement.

6.4 ADDITIONAL ABLATIONS

We briefly summarize two further ablations, with full results and visualizations in Appendix G:
1. Similarity-Sensitive Confidence implements a semantics-aware estimate (Kuhn et al., 2023) by
clustering multiple generations into groups of similar answers and aggregating their confidence. In
practice, since our task is binary, the clustering almost always reduces to two groups, limiting its
usefulness. While such methods may prove more valuable in open-ended generation settings, here
they do not offer additional insight over simpler probability estimates; 2. Human Forecast Reference
as Context augments prompts with an aggregate human forecast at the corresponding time, providing
the model with an explicit calibration anchor. However, we observe no measurable improvements,
suggesting that models are unable to effectively exploit even strong external reference signals.

7 CONCLUSION

We introduced EVOLVECAST, the first framework to assess how language models revise forecasts
when new evidence emerges. Across multiple models and extensive ablation studies, we find that
updates are often conservative or inconsistent, with neither verbalized nor logit-based confidence
clearly superior and both far from human references. These results underscore the challenge of belief
updating in current LLMs and the need for more robust approaches to handling evolving evidence.
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ETHICS STATEMENT

This work evaluates how large language models update their forecasts when exposed to new infor-
mation. Our experiments are conducted entirely on publicly available models and datasets. The
forecasting questions and human reference data are sourced from Metaculus, an open platform with
strict guidelines for question resolution and user conduct. The news snippets paired with questions
are retrieved from publicly accessible web sources, and only short excerpts (title and headline) are
included for research purposes. No private or sensitive data are used.

We recognize that forecasting research can have downstream societal implications. Forecasts produced
by models may influence decision making in domains such as politics, economics, or health. Our
goal is not to deploy automated forecasters, but to analyze their current limitations in belief updating
and calibration. By highlighting where models fall short relative to human references, we aim to
support the responsible use of AI in forecasting contexts and to discourage premature deployment
of uncalibrated systems. All results should therefore be interpreted as a diagnostic study of model
behavior, not as actionable forecasts.

REPRODUCIBILITY STATEMENT

We have taken several steps to make our study as reproducible as possible. We provide a number
of implementation details in the paper, including data construction steps, hyperparameter choices,
and prompt templates. We also release the full set of processed question–news pairs used in our
experiments, together with cleaned code, as supplementary material.

One limitation is that our news retrieval step relies on the Google Search API. Because search results
may vary over time and are influenced by ranking algorithms, exact replication of the retrieval stage
cannot be guaranteed. Despite this, we make available the aligned data used in our experiments
so that downstream evaluation can be reproduced. We believe these materials, combined with the
methodological details provided in the text, give future researchers the necessary resources to replicate
and extend our work.
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A LIMITATIONS

Our study is limited in scope in several ways. We focus on binary forecasting questions, which
provides clarity for evaluation but does not cover all types of forecasting tasks. We also evaluate a
small set of openly available reasoning models, so results should not be overgeneralized. Finally, be-
cause the data construction relies on public APIs and human discussion timestamps, exact replication
of forecaster information exposure is not possible. These constraints are inherent to working with
real-world forecasting data, and we have aimed to minimize their impact in this paper.

B THE USE OF LARGE LANGUAGE MODELS

Large language models were used in the preparation of this paper as writing assistants. Specifically,
they were employed to refine phrasing, improve clarity, and suggest alternative structures for sections
and subsections. Models were also used to draft prompt templates in an iterative process, which were
then carefully reviewed, tested, and adjusted by the authors.

C EXAMPLE METACULUS QUESTIONS

To illustrate how human forecasts evolve over time, consider a question:

Q1: Will the US Senate weaken or eliminate the filibuster before January 3, 2029?

For Q1, Figure 3 shows how community forecasts changed over time, while Figure 4 presents the
histogram of the final forecast distribution.

Figure 3: Community prediction trend for a Metaculus question on the US Senate filibuster issue.

Figure 4: Histogram of final community forecasts.

D EXPERIMENTAL DETAILS

D.1 IMPLEMENTATION DETAILS

Decoding parameters. All models are evaluated with identical sampling hyperparameters:
temperature = 0.6 and top p = 0.95. We set the maximum output length to max tokens
= 1024 for verbalized (black-box) confidence runs, and max tokens = 2048 for logit-based (white-
box) runs.
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Evaluation thresholds. Directional agreement metrics (Sec. 3.2) use a minimal change threshold
ϵ. For verbalized confidence we set ϵ=0, treating even small probability movements as valid shifts.
For logit-based confidence we set ϵ=0.05 to reduce noise from minor fluctuations in token-level
probabilities.

Implementation. All experiments are run with identical random seeds to ensure consistency across
model conditions. In cases where models fail to produce valid JSON outputs, we assign the lowest
possible score for that instance. A detailed list of hyperparameters and scripts used for inference are
included in the supplementary code release.

D.2 PROMPT TEMPLATES

We used standardized prompt templates across all models to ensure comparability. Each template
contains three blocks: a <question> field with the forecasting question, a <metadata> field
with the evaluation date and optional news update, and a <task> field describing the required output
format. Prompts also include a <think> tag to encourage reasoning before producing the final
answer when necessary.

Verbalized confidence. The model is instructed to provide a probability estimate on a 1–10 scale
with descriptive anchors. We normalize the returned score to [0, 1] for evaluation. An example
template is:

<question>
${title}
</question>

<metadata>
- Today is ${start time}.
- You do not have access to updates after ${start time}.
- A recent news update: "${best news}"
</metadata>

<task>
You are an AI model predicting the likelihood of future
events, now incorporating recent news.
Your task is to estimate the probability of the following
event occurring, given the recent news update.

Provide your confidence score on a scale of 1 to 10, where:
1 - Extremely unlikely
2 - Very unlikely
3 - Unlikely
4 - Somewhat unlikely
5 - Neutral (50-50 chance)
6 - Somewhat likely
7 - Likely
8 - Very likely
9 - Extremely likely
10 - Almost certain

Return the confidence score in this format after thinking:
{ "confidence": X }
</task>
<think>

Logit-based confidence. The model is prompted to output a binary answer (“Yes”/“No”). Token-
level probabilities are then extracted directly from the output distribution. An example template
is:

<question>
${title}

14
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Figure 5: Delta confusion heatmaps (A−S) for DS R1 models. Each plot shows the difference
between column-normalized confusion matrices under Accumulated vs. Single updates, i.e., changes
in Pr(pred | true) (percentage points). Positive values indicate increased mass under Accumulated;
negative values indicate decreased mass.

(a) DS R1 Qwen-1.5B (A−S) (b) DS R1 Qwen-7B (A−S) (c) DS R1 LLaMA-8B (A−S)

</question>

<metadata>
- Today is ${start time}.
- You do not have access to updates after ${start time}.
- A recent news update: "${best news}"
</metadata>

<task>
You are an AI model predicting the likelihood of future
events, now incorporating recent news.
Your task is to answer if the following event will occur,
given the recent news update.
You must also provide an answer with your best guess.

Return the answer in this format after thinking:
{ "answer": "Yes" / "No" }
</task>
<think>

E ADDITIONAL VISUALIZATIONS

E.1 DELTA HEATMAPS: ACCUMULATED MINUS SINGLE

Figure 5 visualizes the difference between Accumulated and Single news contexts as delta heatmaps
(A−S). Blue cells indicate reduced probability mass in the accumulated condition, while red cells
indicate increased mass. Across models, the largest shifts occur in the “Still” column: accumulated
updates tend to reduce correct “Still” predictions and redistribute probability into “Up” or “Down.”
This pattern complements the quantitative results in Table 2 and the confusion matrices in Fig. 2,
confirming that accumulated context often introduces spurious directional movement rather than
improving alignment with the reference.

E.2 ADDITIONAL VISUALIZATIONS FOR DIRECT DIRECTIONAL PROMPTING

The visualization complements Table 3 by highlighting systematic biases in how models allocate
their predictions. The smaller DS R1 1.5B model produces noisy outputs and often overpredicts
“Up,” even when the true label is “Down” or “Still.” By contrast, DS R1 7B and 8B show a strong
conservative bias toward “Still” in the Single setting, but under Accumulated context they shift toward
predicting “Up” more frequently. Together, these trends illustrate how accumulated evidence can
introduce spurious movements and reduce directional accuracy, especially in larger models.
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Figure 6: Normalized predicted distributions for the Directional QA setting. Bars show the distribu-
tion of predicted labels (Up = blue, Down = orange, Still = green) for each true label across DS R1
models under Single (S) and Accumulated (A) news conditions.

F DIRECT DIRECTIONAL PROMPTING TEMPLATE

For the direct directional prompting setting, models are asked to classify the impact of a news update
as “Up,” “Down,” or “Still.” This approach removes the need to compare before/after probabilities
and directly probes whether the model can identify the directional effect of new information. The
exact prompt is shown below:

<question>
${title}
</question>

<metadata>
- Today is ${start time}.
- You do not have access to updates after ${start time}.
- A recent news update: "${best news}"
</metadata>

<task>
You are an AI model analyzing how recent news impacts event
predictions.
Your task is to determine whether the confidence in this
event occurring should increase, decrease, or remain the
same after seeing the news.

Return the predicted trend in this format after thinking:

{ "trend": "Up" / "Down" / "Still" }
</task>
<think>

This minimal QA-style interface makes the task closer to classification benchmarks and avoids
dependence on numeric probability estimation, which often suffers from poor calibration.

G ADDITIONAL ABLATIONS

G.1 SIMILARITY-SENSITIVE CONFIDENCE

In this ablation, we implement a semantics-aware confidence estimation method inspired by clustering-
based approaches (Kuhn et al., 2023). The intuition is that if a model generates multiple plausible
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Table 4: Comparison of logits-based confidence with and without semantic clustering for DS R1
Qwen-1.5B. Metrics are directional agreement (MDA/Prec/Rec/F1).

Method MDA Prec Rec F1

Logits (S) 0.252 0.494 0.252 0.236
Logits (A) 0.259 0.491 0.259 0.236
Logits+Clust. (S) 0.247 0.442 0.247 0.239
Logits+Clust. (A) 0.259 0.471 0.259 0.260

answers, the distribution of these generations can provide a more robust uncertainty estimate than any
single output. Concretely, we sample N candidate outputs {y(1), . . . , y(N)} and group them into K
clusters based on cosine similarity of sentence embeddings (Reimers & Gurevych, 2019). Confidence
for cluster Ck is then defined as

p̂k =

∑
i:y(i)∈Ck

P (y(i) | x)∑K
j=1 P (Cj)

,

where P (y(i) | x) is the sequence-level probability of output y(i), computed as the average token
probability across the sequence. For binary questions (K = 2), we report p̂Yes as the final confidence
estimate.

In practice, this approach does not yield benefits in EVOLVECAST, since binary Yes/No questions
naturally collapse to two clusters. Thus, while clustering may offer richer signals in open-ended
generation tasks (e.g., free-form QA or summarization), in binary forecasting it effectively reduces to
re-labeling outputs without adding new information. Full quantitative results are shown in Table 4.

To further illustrate, Figs. 7 plots the confusion matrices for DS R1 Qwen-1.5B under both the baseline
logits method and the clustering variant. The matrices show that clustering does not meaningfully
shift the distribution of errors: the model still predicts “Still” excessively, and when it does move, the
confusion between “Up” and “Down” persists.

G.2 HUMAN FORECAST REFERENCE AS CONTEXT

We also test an ablation where the model is provided with the contemporaneous aggregate human
forecast as an additional context feature. Prompts are augmented with a line such as: “Human
forecast for this question on t is ht%.” This setting gives the model an explicit calibration anchor
that, in principle, should simplify the task by showing where expert forecasters stood at the time.

The motivation is twofold. First, it simulates a collaborative human–AI forecasting scenario, where
models can build on expert input rather than starting entirely from scratch. Second, it allows us to
probe whether models meaningfully reason about how new evidence shifts beliefs relative to the
anchor, or whether they simply mirror the human input.

Table 5 reports results under this setting for three DS R1 models using verbalized confidence (black-
box) and direct directional prompting. While direct prompting again achieves higher directional
agreement than verbalized probabilities, providing the human forecast reference itself does not yield
any measurable improvement. This is somewhat surprising, as human forecasters rely heavily on
such reference anchors; the lack of benefit here suggests that current models are unable to incorporate
even strong external signals into their belief updating in a meaningful way.
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Figure 7: Normalized confusion matrices for DS R1 Qwen-1.5B under logits-based confidence
and logits+clustering, for Single and Accumulated news. Values are column-normalized, showing
Pr(pred | true) (%). Clustering yields no qualitative change in error distribution.

Table 5: Results for human forecast reference as context, comparing verbalized confidence and
direct directional prompting under the Single Update setting. Direct prompting consistently out-
performs verbalized confidence, but including human forecasts as anchors produces no measurable
gains.

Model Method MDA Precision Recall F1

DS R1 Qwen-1.5B
Verbalized 0.279 0.487 0.279 0.284
Directional QA 0.350 0.441 0.350 0.376

DS R1 Qwen-7B
Verbalized 0.308 0.461 0.308 0.329
Directional QA 0.457 0.462 0.457 0.457

DS R1 LLaMA-8B
Verbalized 0.307 0.479 0.307 0.327
Directional QA 0.487 0.455 0.487 0.467
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