

000 001 HAMLET: HYPERADAPTIVE AGENT-BASED MODEL- 002 ING FOR LIVE EMBODIED THEATRICS 003 004

005 **Anonymous authors**
006 Paper under double-blind review
007
008
009

010 ABSTRACT

011 Creating an immersive and interactive theatrical experience is a long-term goal in
012 the field of interactive narrative. The emergence of large language model (LLM)
013 is providing a new path to achieve this goal. However, existing LLM-based drama
014 generation methods often result in agents that lack initiative and cannot inter-
015 act with the physical scene. Furthermore, these methods typically require de-
016 tailed user input to drive the drama. These limitations reduce the interactivity
017 and immersion of online real-time performance. To address the above challenges,
018 we propose HAMLET, a multi-agent framework focused on drama creation and
019 online performance. Given a simple topic, the framework generates a narrative
020 blueprint, guiding the subsequent improvisational performance. During the on-
021 line performance, each actor is given an autonomous mind. This means that actors
022 can make independent decisions based on their own background, goals, and emo-
023 tional state. In addition to conversations with other actors, their decisions can also
024 change the state of scene props through actions such as opening a letter or picking
025 up a weapon. The change is then broadcast to other related actors, updating what
026 they know and care about, which in turn influences their next action. To evaluate
027 the quality of drama performance generated by HAMLET, we designed an eval-
028 uation method to assess three primary aspects, including character performance,
029 narrative quality, and interaction experience. The experimental evaluation shows
030 that HAMLET can create expressive and coherent theatrical experiences.

031 1 INTRODUCTION

032 In recent years, large language models (LLMs) have demonstrated strong ability in various genera-
033 tive tasks, especially in creative fields such as story creation (Li et al., 2024) and role-playing (Tu
034 et al., 2024). These models are able to generate fluent and imaginative texts, providing a foundation
035 for the development of interactive narrative. When applying these capabilities to the creation of
036 drama, the exploration can be divided into two parts: drama generation and drama performance.

037 Existing studies have explored drama generation using language models, employing methods such
038 as hierarchical approaches (Fan et al., 2018; Yao et al., 2019) and the modular generation of script
039 structures (Mirowski et al., 2023). However, significant challenges exist in applying LLMs to struc-
040 tured drama generation, especially in scenarios requiring online real-time enactment. In interactive
041 drama performance, LLM agents take on the role of performing the narrative. In contrast to free-
042 form story creation, drama requires each actor to make decisions and take actions consistent with
043 their profiles and the overall plot progression. These interactions must unfold across a series of
044 scenes to collaboratively advance the narrative. Furthermore, existing methods typically require de-
045 tailed user input, such as a full story outline (Wu et al., 2024) or elaborate guiding paragraphs (Wu
046 et al., 2025b), which not only increases the design cost, but also reduces the possibility of an arbi-
047 trary storyline.

048 The challenge of the drama performance is to redefine the interaction patterns of LLM agents. In
049 many prior studies, these patterns are limited to passive, turn-based responses. For example, some
050 studies focus on the adequacy of single-turn dialogues rather than active participation (Wu et al.,
051 2024). The agents typically await user instructions, lacking genuine proactivity. This reactive model
052 is hard to support dynamic scenes where multiple AI actors interact with human players. We believe
053 that truly vibrant, dramatic interactions require AI actors to make autonomous decisions, collaborate

054 or conflict in open scenarios, and actively guide the development of the plot. This paradigm shift
 055 from passive response to active guidance is the core advocated by Agentic AI (Sapkota et al., 2025),
 056 providing a new perspective on how to enhance actor initiative in dramatic performance.
 057

058 In addition to intelligent and autonomous agent interaction, a comprehensive framework for drama
 059 performance must also integrate two other essential components: physical environment interaction
 060 and a holistic evaluation system. **Drama is inherently** an art form that combines both language and
 061 embodied action. Actors' behaviors dynamically influence their surroundings, **and, in turn**, environmental
 062 feedback plays a crucial role in shaping the performance. **Without this embodied dimension, the**
 063 **drama risks degenerating into abstract dialogue, lacking the tangible presence and realism that**
 064 **define compelling theatrical experience.** Furthermore, there is currently no established method for
 065 effectively evaluating the quality of **real-time** drama performances. Existing benchmarks predomi-
 066 nantly assess either textual coherence and generation quality (Gómez-Rodríguez & Williams, 2023)
 067 or role-playing fidelity (Tu et al., 2024; Wu et al., 2025a; Wang et al., 2025), rather than the inte-
 068 grated impact of a full dramatic enactment.

069 To address the above challenges, we propose HAMLET, a multi-agent framework that enables
 070 **Hyperadaptive Agent-based Modeling for Live Embodied Theatrics.** Specifically, we make the
 071 following contributions:

- 072 1. A HAMLET framework: Our framework is designed as a multi-agent collaborative workflow,
 073 divided into two key stages: offline planning and online performance. Offline planning only
 074 needs a simple topic to generate a structured narrative blueprint. This blueprint provides freedom
 075 for improvisation of online performance while ensuring the integrity of the main story structure.
 076 To enhance the online performance, a **Perceive And Decide (PAD)** module acts as a pre-response
 077 module for each agent, making their perceptions and decisions more human-like.
- 078 2. A comprehensive evaluation method and leaderboard: To objectively assess the quality of drama
 079 generation and performance, we establish a comprehensive evaluation method that assesses three
 080 curated dimensions. This method incorporates a leaderboard that uses GPT-4o as a strong base-
 081 line for win rate comparisons. Additionally, we trained **HAMLETJudge**, a critic model de-
 082 signed for cost-effective and reliable drama performance evaluation.
- 083 3. Extensive experiments: We conducted evaluations and detailed ablation studies on HAMLET's
 084 core components. Notably, both PAD and HAMLETJudge, are 8B models, yet they achieved
 085 state-of-the-art performance in their tasks respectively.

086 2 RELATED WORK

087 **LLM-Based Drama.** Research on LLM-based drama has evolved along two main directions: drama
 088 generation and drama performance. The initial efforts in drama generation adapted techniques from
 089 general story creation, using hierarchical models to plan plots and generate coherent narratives (Fan
 090 et al., 2018; Yao et al., 2019). With the development of this field, researchers have tried multi-
 091 LLM collaboration (Venkatraman et al., 2024; Mirowski et al., 2023; Han et al., 2024) that mainly
 092 focus on drama scripts generation. A key limitation of previous work is that they either require
 093 a complete story (Wu et al., 2024) or a leading paragraph (Wu et al., 2025b) as input. While we
 094 presents a framework that supports arbitrary and customizable drama generation. At the same time,
 095 research on role-playing in drama performance is predominantly conducted through LLM-based
 096 agents (Chen et al., 2024b). These agents typically require detailed knowledge about the actor in
 097 order to model their expressive style (Shanahan et al., 2023; Wang et al., 2023; Tu et al., 2024).
 098 Existing role-playing systems are generally built using either prompt-engineering approaches (Li
 099 et al., 2023; Chen et al., 2023) or fine-tuning methods (Shao et al., 2023; Lu et al., 2024). However,
 100 these techniques struggle to capture rich and nuanced character traits (Huang et al., 2023), and
 101 consequently fail to produce truly live and fully embodied dramatic performances.

102 **Evaluation for Role-Playing Conversation Agents.** Traditional dialogue metrics like Embedding
 103 Similarity, BLEU, and ROUGE (Mou et al., 2016; Wu et al., 2020; Serban et al., 2017) are widely
 104 used in role-playing conversation agent (RPCA) research (Wang et al., 2024; Zhou et al., 2024; Tao
 105 et al., 2024). However, these quantitative indicators struggle to evaluate role consistency and per-
 106 sonality. To address this, specialised evaluation frameworks have been proposed. RoleEval (Shen et al.,
 107 2023) uses role-specific multiple-choice questions to test the model's understanding of a character.
 SocialBench (Chen et al., 2024a) constructs evaluation questions from multi-source dialogues, while

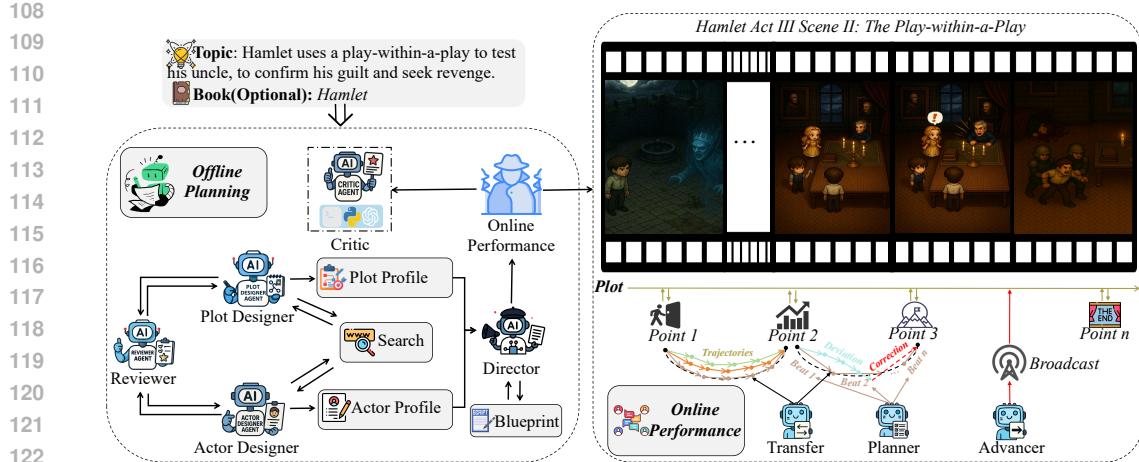
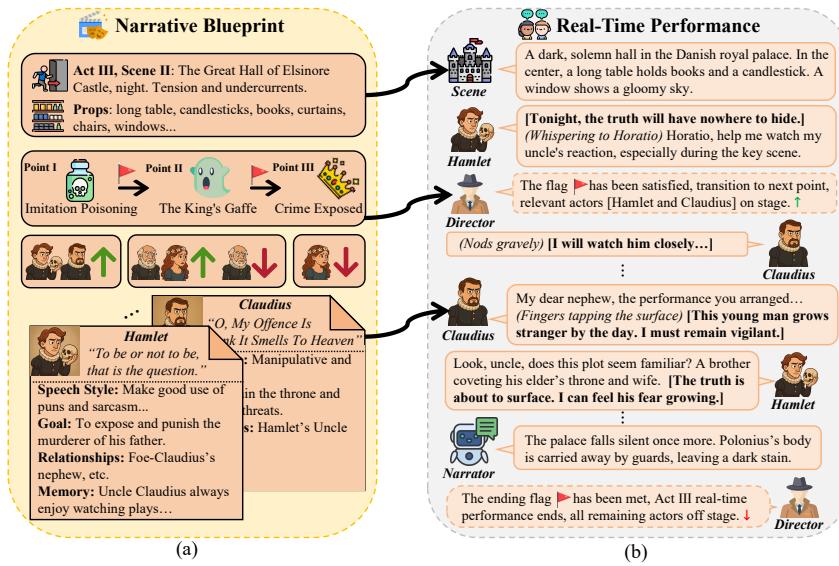


Figure 1: The HAMLET framework creates AI drama in two main stages. First, during offline planning, a collaborative workflow of agents including the actor designer, plot designer, and reviewer creates initial materials, which are then integrated by a director agent into a structured narrative blueprint. This blueprint then guides the subsequent online performance, where a control system composed of a planner, transfer, and advancer directs a dynamic and improvisational theatrical experience. The figure illustrates this entire process using the play-within-a-play scene from *Hamlet, Act III, Scene II*.

CharacterEval (Tu et al., 2024) adopts multi-round dialogues and multi-dimensional scoring for aspects like conversational ability. Additionally, RAIDEN (Wu et al., 2025a) builds a Q&A dataset via annotator interaction to evaluate responsiveness in specific dimensions. Although these methods provide quantitative criteria, they are typically limited to two-character or user-character scenarios. While CoSER (Wang et al., 2025) expands the number of roles, it still lacks an evaluation mechanism for overall dramatic performance. **Motivated by these limitations, we propose new criteria to evaluate the complete dramatic performance.**

3 HAMLET: A MULTI-AGENT FRAMEWORK FOR AI DRAMA

To achieve an automated, interactive, and expressive AI drama experience, we designed the HAMLET framework, as shown in Figure 1. The framework decouples the generation and performance of the drama into two main stages: offline planning, a multi-agent collaborative workflow to generate a narrative blueprint, and online performance, a hierarchical control system that executes the blueprint, manages real-time interactions, and handles environmental feedback.


3.1 OFFLINE PLANNING

The target of the offline planning stage is to transform user input into a structured narrative blueprint. This stage is designed to handle two types of input: i) An arbitrary and customizable topic. For this input type, the offline workflow is able to generate a complete act based on the provided topic. ii) A complete literary work. When given a full literary text, the workflow first deconstructs it into a series of acts based on its chapters and content structure. Subsequently, it proceeds with drama design for each act, ensuring the adaptation remains faithful to the source material.

Agent-Based Workflow Architecture. The offline workflow consists of four agents: the actor designer, the plot designer, the reviewer, and the director. This workflow implements character creation, plot generation, review, and final integration.

Character Profile Generation and Review. The starting point of the workflow is actor construction. The actor designer is responsible for generating actor profiles of core characters based on user input. To ensure the depth and accuracy of character creation, this agent queries an external knowledge base via its search module. The output is a structured actor profile that defines the character's static attributes, such as background and personality, and dynamic attributes, such as their initial goal

162 and core relationships within the story. The profile is then submitted to the reviewer, who checks the
 163 rationality of the character settings, the clarity of motivations, and the relationships between actors.
 164

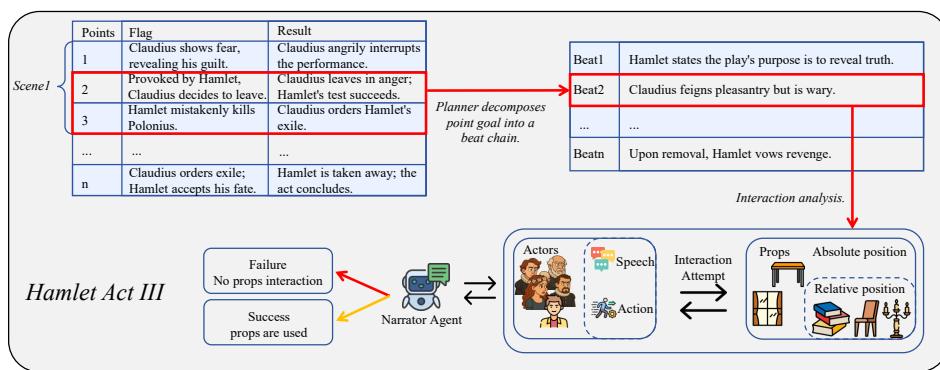
183 Figure 2: An illustration of HAMLET’s core components for performance generation: a narrative
 184 blueprint that defines the scene, plot and character profiles, and the resulting real-time conversation
 185 containing scene descriptions and dialogue.
 186

187 **Plot Generation and Structuring.** After all actor profiles are approved, the plot designer composes
 188 a preliminary narrative draft based on the topic and actors. This draft is then submitted to the
 189 reviewer for evaluation. Once the review is passed, the director is responsible for the final structural
 190 processing, reconstructing the linear story draft into a hierarchical plot profile. This process includes
 191 the following key steps: 1) Act and scene definition: Divide the drama into several acts and specify
 192 the scenes in which each act takes place. 2) Creation of environmental elements: Generate a list of
 193 interactive props for each scene. This list has specific descriptions and location information for the
 194 props. 3) Definition of points: In each act, define a series of narrative points. Each point contains
 195 a clear flag and a result that marks its completion. 4) Backward planning: In order to prevent the
 196 plot from deviating, the director will give priority to generating the end point when planning an act.
 197 Then, based on this end point, it will supplement and construct the logically coherent preceding
 198 points leading to the ending in a reverse manner.

199 Finally, the director integrates the plot profile with the actor profile to generate a narrative blueprint
 200 which is shown in Figure 2(a) as the input of the online performance stage.

201 3.2 ONLINE PERFORMANCE

202 Upon receiving the narrative blueprint, the online performance stage begins to transform it from a
 203 static plan into a dynamic, interactive, and immersive environment. This environment will accom-
 204 modate both autonomous AI actors and human players who assume certain roles. To ensure the
 205 performance effect, this phase introduces more specific narrative units, environmental interaction
 206 mechanisms, and a group of collaborative agents. An example of online real-time performance is
 207 illustrated in Figure 2(b).


208 **Performing Drama.** Online performances are based on acts. Each act consists of two components:
 209 scene and point. An act can contain one or more scenes and points, which together cover the com-
 210 plete drama process. The scenes define a physical environment in which the drama takes place. It
 211 is the stage of “where” and contains all interactive props. On the other hand, the points define the
 212 goals of the plot and are milestones of “what to do”.

213 The narrative path between two points is formed by a dynamically generated trajectory which con-
 214 sists of a series of beats. We define a beat as an effective interaction step in which an actor takes an

216 effective action. This action logic is driven by a dual-goal system. For each beat, an actor’s decision
 217 references both the public flag of the current point and a personal private goal that is refreshed at the
 218 beginning of every act.

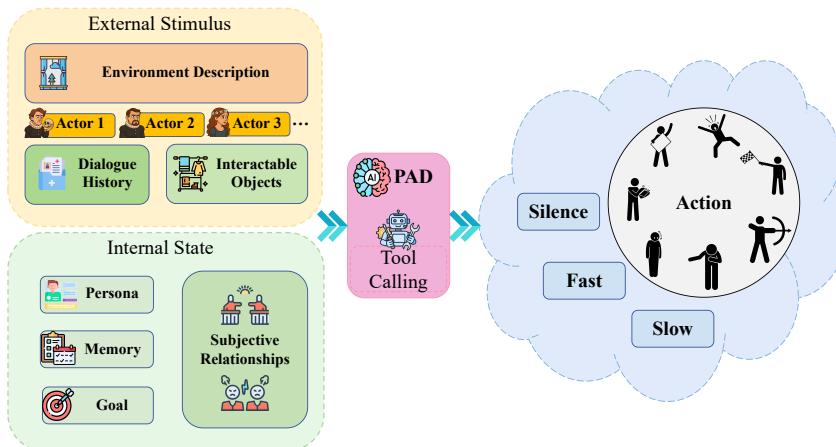
219 Due to the actors’ autonomy, multiple trajectories can connect $point_i$ to $point_{i+1}$, such as one
 220 composed of $beat_{j_1}, beat_{j_2}, \dots, beat_{j_n}$ and another of $beat_{k_1}, beat_{k_2}, \dots, beat_{k_m}$. These multiple
 221 combinations introduce a high degree of freedom and arbitrariness to the performance.

222 **Environment Interaction.** Credible physical interaction is the core challenge of the online performance
 223 stage. As shown in the Figure 3, we designed a narrator agent to adjudicate all interactions
 224 between actors and the environment. The role of the narrator is to ensure the rationality of all physical
 225 actions. When an actor attempts to perform a physical action, the narrator will make a judgment
 226 based on the environment state and physical rules. If the action is feasible, the narrator will confirm
 227 its success, update the environment state, and broadcast an objective description to all participants.
 228 Otherwise, the narrator will determine failure with a logical explanation.

242 Figure 3: An example of the real-time interaction and adjudication loop in the online performance.
 243 An actor agent attempts an action or speech, termed a beat, to progress towards the current narrative
 244 point. The narrator agent then intercepts this attempt, determines whether it is a success or failure,
 245 and provides objective feedback to all participants in the drama.

247 3.3 PERCEIVE AND DECIDE MODULE

249 **Hierarchical Control of Performance Effects.** All AI actors in the drama performance utilize a
 250 layered architecture, which is comprised of an LLM and a PAD module. The LLM is responsible
 251 for generating specific speech and actions, while the PAD handles the strategic decision-making
 252 that guides them. The design of the PAD is detailed in the following subsection.


253 To ensure the online performance balances improvisational freedom with stable progression along
 254 the main storyline, we designed three collaborative control agents: 1) Planner pre-designs and re-
 255 views multi-trajectory results. It breaks down the flag into a few sequences of executable beats
 256 which form a trajectory. Beats can be references for advance to guide the plot forward. 2) Transfer
 257 moves the story to the next point by regularly checking if the flag is met. Once satisfied, it advances
 258 the drama to the next point and manages relevant actors to enter or leave. 3) Advancer ensures the
 259 plot progresses. If it stalls beyond a set time threshold, the advancer directs necessary actors based
 260 on the current flag or next beat. Their relationship is illustrated in Figure 3.

261 In HAMLET, the PAD module plays a crucial role in guiding the AI actors to generate final re-
 262 sponses. The design of PAD is conceptually grounded in the dual-process theory of human cognition
 263 (Kahneman, 2011). According to this theory, human thinking is characterized by two distinct
 264 modes of processing: System I, which is fast, automatic, and intuitive; and System II, which is
 265 slower, deliberate, and analytical. PAD integrates both intuitive and reflective reasoning mech-
 266 anisms to better simulate human-like decision-making in complex and nuanced drama contexts.
 267 Specifically, PAD is mainly responsible for generating a decision of fast, slow, silence or potential
 268 actions by tool calls—to simulate and extend the dual-system mechanism. This expanded set of
 269 response modes enhances the module’s compatibility with the interactive real-time dramatic context
 proposed in the study.

270 **Design Principles.** As depicted in Figure 4, the input of PAD is based on a dual principle. When
 271 perceiving, PAD acts as an actor possessing both subjective awareness of its internal state and an
 272 objective perception of external stimulus. When a new event occurs, PAD integrates information
 273 from both perspectives to ensure well-grounded decision-making.

274 The internal state, which represents the actor’s self-awareness, is maintained as a live profile **com-**
 275 **prising** both static and dynamic components. The static components include *Persona* and *Subjective*
 276 *Relationships*, while the dynamic elements, such as *Goal* and *Memory*, are retrieved or updated as
 277 needed. Upon the conclusion of an act or scene, key events and interactions are distilled into memory
 278 **entries**. These entries are stored and later retrieved via Retrieval-Augmented Generation (RAG) to
 279 inform future behavior. This memory compression mechanism prevents exponential context growth,
 280 thereby enabling scalable support for long-form drama performance.

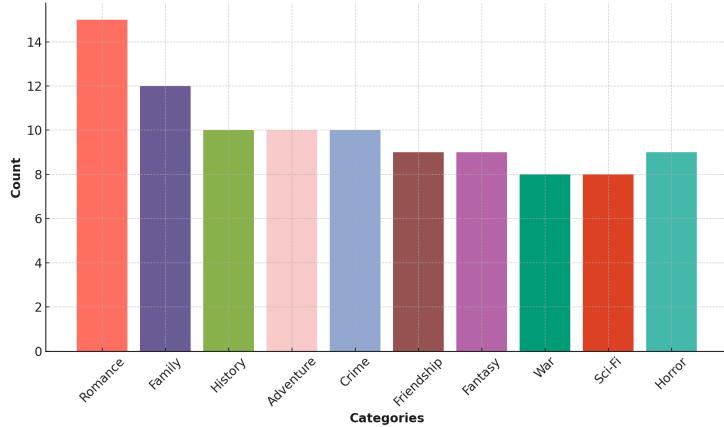
281 On the other hand, external stimulus constitutes objective environmental and contextual information.
 282 The external stimulus is composed of *Environment Description*, *Actor List*, *Dialogue History*,
 283 , and *Interactable Objects*. Together, these components form a comprehensive representation of
 284 the external context, facilitating the integration of situational awareness into the decision-making
 285 process.

302 Figure 4: PAD processes external stimulus and internal state to determine a response strategy by
 303 tool calling.
 304

305 **Decision-making Process.** Abstract context is translated into concrete speech and executable ac-
 306 tions through a two-stage **pipeline**. As shown in [Algorithm 1](#), PAD first selects a high-level response
 307 strategy that determines both the timing of the agent’s reaction and a structured action, which is
 308 parsed into an executable triplet. Optionally, it also generates the underlying reasoning for this de-
 309 cision in the form of an internal monologue. In the second stage, the selected strategy, the parsed
 310 action, and the optional internal monologue jointly guide the AI actor in producing its final, concrete
 311 behavior. [A supplement of detailed algorithm version can be found in Appendix D](#).

312 **Algorithm 1** Simplified Working Algorithm for Perceive and Decide Module

313 **Require:** Actor a_k , Dramatic Context \mathcal{C}_{drama} , PAD Model Parameters π_θ


314 **Ensure:** A final decision tuple (r, o) , where o is the structured action (composed of subject, verb,
 315 and object) or empty (\emptyset) , $r \in \{\text{FAST}, \text{SLOW}, \text{SILENCE}\}$ is the response strategy.

316 1: **procedure** GETACTORDECISION($a_k, \mathcal{C}_{drama}, \pi_\theta$)
 317 2: $prompt_{pad} \leftarrow \text{EncodeStrategy}(a_k, \mathcal{C}_{drama})$
 318 3: $\hat{r}, [\text{thinking}] \leftarrow \text{PAD}(prompt_{pad}, \pi_\theta)$
 319 4: $r \leftarrow \arg \max_{r' \in \{\dots\}} P(r' | \hat{r})$
 320 5: $\hat{o} \leftarrow \text{GenerateAction}(r, [\text{thinking}], a_k, \mathcal{C}_{drama})$
 321 6: $o \leftarrow \text{ParseAction}(\hat{o})$
 322 7: **return** (r, o)
 323 8: **end procedure**

324 4 EVALUATION METHOD

325
 326
327 Dataset Construction. The evaluation dataset was constructed from 100 diverse cases, comprising
 328 50 literary excerpts and 50 custom-authored drama topics. The literary excerpts are selections from
 329 25 classical Chinese¹ and 25 renowned English² literary works. The 50 custom topics, designed
 330 to span 10 distinct themes, were developed and reviewed carefully by annotators. Figure 5 illus-
 331 trates the thematic distribution of the entire dataset. More details about the dataset can be found in
 332 Appendix A.

348 Figure 5: Distribution of drama topics across the dataset.

349
 350
351 Dimension Definition. Defining evaluation dimensions is crucial for quantifying the performance
 352 of real-time drama performance. We categorize our evaluation into three core dimensions as follows:

353
 354 1. **Character Performance (CP)** measures the quality of the AI actors. This dimension eval-
 355 uates *Believability*, i.e., the consistency of characters with their established personas, and *Agency*,
 356 which reflects the richness of emotional expression and the character’s ability to effectively ad-
 357 vance the narrative.

358 2. **Narrative Quality (NQ)** examines the story’s overall craftsmanship. This includes its *Coher-
 359 ence*, ensuring the logical development of the plot; its *Resonance*, measured by its thematic rel-
 360 evance and depth; and its *Integrity*, which evaluates the structural completeness of the storyline
 361 from beginning to end.

362 3. **Interaction Experience (IE)** focuses on the AI actor’s engagement with the system. This dimen-
 363 sion encompasses the quality and timeliness of the system’s reactions, termed *Responsiveness*;
 364 the level of cognitive and emotional engagement, or *Immersion*; and the overall technical smooth-
 365 ness of the interaction, referred to as *Fluency*.

366
367 Evaluation Principle. Our evaluation principle is to holistically assess dramatic performance, rather
 368 than evaluating agent responses individually, turn by turn. This approach is crucial because drama
 369 often incorporates literary devices such as foreshadowing and plot twists. Consequently, a seemingly
 370 subpar or unusual generation in a single turn might be a deliberate narrative setup for subsequent
 371 developments and should not be penalized in isolation.

372 For the whole drama performance result, we employ HAMLETJudge to automate the evaluation
 373 process. This model conducts pairwise comparisons between the test result and the baseline result,
 374 assigning a score based on a 5-point Likert scale (Robinson, 2014) to determine a win rate. The
 375 detailed scoring guideline is defined in Appendix B.

376
 377 ¹https://m.douban.com/subject_collection/ECKM5FBEI

²<https://sites.prh.com/modern-library-top-100/#top-100-novels>

378

5 EXPERIMENTS

380
381 In this section, we present the experimental results to demonstrate the superiority of our proposed
382 HAMLET framework, alongside ablation studies verifying its reliability and validity.
383384 **Settings.** To ensure rigorous and reproducible evaluation, we define the baseline and test config-
385 urations clearly. All underlying models except the PAD component in HAMLET share the same
386 GPT-4o backbone, with a greedy sampling strategy. Regarding user settings, each agent can be
387 freely configured, and the PAD component is optional.
388389 **HAMLET Leaderboard.** Following the settings above, we compared various mainstream LLMs
390 ranging from open-source to closed-source and non-reasoning to reasoning models. Table 1 reveals
391 their capabilities in both English and Chinese online drama performance, serving as a practical
392 reference for real-world applications. Notably, Claude-4-sonnet-Thinking demonstrated exceptional
393 proficiency across the majority of evaluated metrics in both languages, highlighting its versatility
394 and effectiveness in dynamic, interactive theatrical environments.
395396 **Scaling Laws and Reasoning Efficiency.** We observed that while scaling laws persist in drama
397 scenarios, as evidenced by performance gains with model size (e.g., the Qwen3 series), reasoning
398 capability proves to be more parameter-efficient than merely increasing model scale. For instance,
399 Qwen3-32B-Thinking (73.85) significantly outperforms the much larger Llama-3.1-70B (45.75) and
400 even rivals the massive Qwen3-235B (71.21). This suggests that in drama tasks, which demand
401 multi-constraint satisfaction involving goals, persona, and context, enhanced reasoning density is
402 more critical than simple parameter scaling.
403404 **Subtext and Strategy.** Furthermore, reasoning models like DeepSeek-R1 and Claude-4-sonnet-
405 Thinking consistently outperform their non-reasoning counterparts. We attribute this to their su-
406 perior capacity for subtext processing and strategic planning. While standard models often react
407 superficially to immediate dialogue, reasoning models utilize internal chain-of-thought to simulate
408 future outcomes and deduce implied intent (e.g., “He is lying, but I should pretend to believe him to
409 trap him later”). This cognitive depth significantly enhances character dimensionality and facilitates
410 complex narrative devices such as plot twists and foreshadowing.
411

Model	English				Chinese				Overall Score
	Character	Narrative	Interaction	Average	Character	Narrative	Interaction	Average	
<i>Non-Reasoning Models</i>									
Claude-4-sonnet	76.50	77.30	76.96	76.92	80.18	79.20	79.66	79.68	78.30
Claude-3.7-sonnet	65.80	66.94	65.98	66.24	76.00	75.20	75.48	75.56	70.90
Claude-3.5-sonnet	61.00	62.15	62.10	61.75	60.50	59.00	59.99	59.83	60.79
Gemini-2.5-flash	46.00	47.10	46.70	46.60	52.00	52.90	52.15	52.35	49.48
GPT-4.5-preview	59.21	60.00	59.92	59.71	61.50	62.50	61.91	61.97	60.84
GPT-4.1	63.50	62.49	62.98	62.99	62.00	62.80	62.64	62.48	62.74
Mistral-Small-3.2-24B	48.00	48.50	48.22	48.24	51.00	51.83	52.00	51.61	49.93
DeepSeek-V3-0324	54.00	55.13	55.00	54.71	64.50	64.00	64.01	64.17	59.44
Llama-3.1-70B	49.80	49.00	48.86	49.22	42.00	42.81	42.00	42.27	45.75
Llama-3.1-8B	35.00	36.01	35.52	35.51	33.50	34.00	33.99	33.83	34.67
Higgs-Llama-3-70B	72.00	78.50	66.22	72.24	64.00	64.50	63.95	64.15	68.20
Qwen3-8B	47.50	46.80	47.00	47.10	58.00	57.50	58.05	57.85	52.48
Qwen3-32B	65.00	65.88	65.20	65.36	66.00	65.50	65.84	65.78	65.57
Qwen3-235B-A22B	69.50	69.80	69.65	69.65	72.50	73.00	72.78	72.76	71.21
<i>Reasoning Models</i>									
Gemini-2.5-pro	61.00	62.22	61.70	61.64	62.00	62.80	62.25	62.35	62.00
Claude-4-sonnet-Thinking	79.50	78.40	79.04	78.98	78.42	80.32	81.03	79.92	79.45
Minimax-M1	51.50	52.32	52.00	51.94	65.00	65.50	65.19	65.23	58.59
OpenAI-o3	69.00	69.95	69.40	69.45	78.00	77.50	78.17	77.89	73.67
Magistral-Small-2506	59.00	60.00	59.74	59.58	58.50	59.30	58.90	58.90	59.24
DeepSeek-R1-0528	66.00	67.10	66.64	66.58	79.00	79.50	79.61	79.37	72.98
Qwen3-8B-Thinking	50.00	51.61	51.00	50.87	65.80	65.00	65.55	65.45	58.16
Qwen3-32B-Thinking	69.50	68.80	69.00	69.10	78.00	79.00	78.77	78.59	73.85
Qwen3-235B-A22B-Thinking	70.50	71.00	70.72	70.74	76.00	75.80	75.96	75.92	73.33

428
429 Table 1: Performance evaluation of different models based on HAMLETJudge. **Bold** values indi-
430 cate the best performance in each column.
431

Metric	HamletJudge (ours)	GPT-4.1	Claude-4-Sonnet	Gemini-2.5-Pro
CP	0.792	0.675	0.698	0.720
NQ	0.807	0.593	0.783	0.684
IE	0.773	0.622	0.804	0.701
Average	0.791	0.630	0.762	0.702

Table 2: Pearson correlation coefficients (Pearson, 1901) of different models and human evaluators.

Model (FC)	Responding Strategy			Latency Penalty	Final Score
	Fast	Slow	Silence		
Qwen2.5-7B-Instruct	0.779	0.359	0.131	0	0.423
Qwen2.5-72B-Instruct	0.692	0.452	0.262	0	0.469
Qwen3-8B	0.699	0.452	0.066	0	0.406
Qwen3-32B	0.773	0.396	0.098	0	0.422
Qwen3-8B-Thinking	0.668	0.321	0.459	0.05	<u>0.532</u>
Qwen3-32B-Thinking	0.668	0.434	0.361	0.10	<u>0.538</u>
GPT-4o	0.556	0.623	0.328	0.024	0.478
GPT-4.1-mini	0.909	0.132	0.180	0	0.407
DeepSeek-R1-0528	0.723	0.615	0.470	0.15	<u>0.453</u>
Gemini-2.5-pro	0.742	0.536	0.519	0.10	<u>0.449</u>
PAD (ours)	0.822	0.736	0.711	0	0.756

Table 3: Evaluation under responding strategies by tool calling. Underlined values reflect an applied latency penalty.

5.1 RELIABILITY OF HAMLET

Both HAMLETJudge and PAD were trained on data annotated by human labelers. To rigorously assess the reliability of our data, we conducted an Inter-Annotator Agreement (IAA) analysis across annotators for both datasets. As demonstrated in Appendix G.3, the HAMLETJudge dataset achieves an overall weighted Krippendorff’s Alpha of 0.725, while the PAD dataset yields an overall weighted Fleiss’ Kappa of 0.624, both indicating substantial agreement. To further validate the effectiveness of HAMLETJudge, we measured its agreement with human ratings on a held-out validation set using the Pearson correlation coefficient. As reported in Table 2, HAMLETJudge closely aligns with human assessments and outperforms strong baselines such as GPT-4.1, Claude-4-sonnet, and Gemini-2.5-pro.

To demonstrate the reliability of PAD, we conducted additional experiments evaluating model performance under diverse response strategies. Notably, models with stronger general capabilities tend to exhibit more homogeneous and consistent performance across scenarios. However, models that generate reasoning tokens prior to tool calls often incur unacceptable latency in real-time drama settings. To account for this, we introduce a latency penalty that quantifies the impact of such delays on overall performance. Results are presented in Table 3.

Our analysis reveals a clear trade-off between performance and latency among existing models. Reasoning-intensive models achieve balanced performance across strategies but suffer from substantial latency penalties. In contrast, non-reasoning models are faster but display significant performance bias—performing well in fast-paced scenarios yet struggling in complex, nuanced interactions. PAD effectively reconciles this tension: it achieves the highest overall score while maintaining stable performance across all strategies, all with negligible latency. More discussion about the latency penalty can be found in Appendix G.4.

5.2 ABALATION STUDY

In the ablation study, we conducted experiments of three core component design in HAMLET, to validate their individual contributions to overall system performance.

Perceive and Decide Module. We randomly select 30 topics from the evaluation dataset and control the experiment settings as GPT-4o under greedy sampling strategy, then compare three experimental setups: drama performed by (i) raw-prompted GPT-4o only; (ii) the multi-agent collaboration of the full HAMLET framework; and (iii) HAMLET framework without PAD.

Figure 6: The ablation study results on PAD and multi-agent framework design of HAMLET. The radar chart illustrates the comparative evaluation of three experimental configurations in the context of online drama performance.

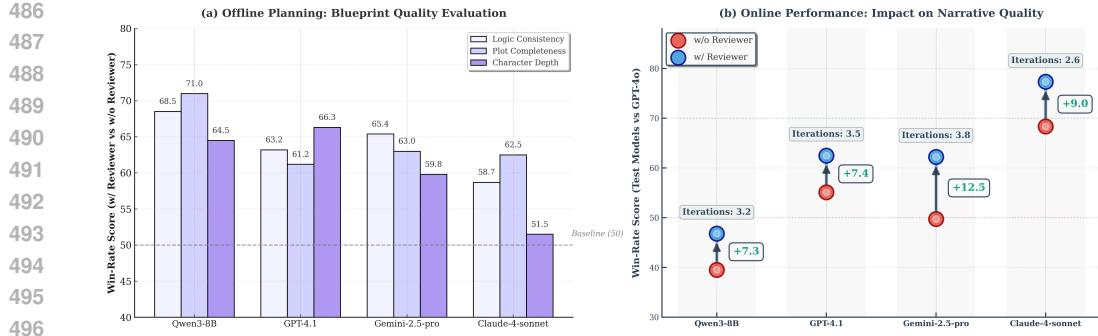


Figure 7: Ablation study of the reviewer across four test models. (a) Offline narrative blueprint quality is evaluated by human raters using win-rate. Scores above 50 (dashed line) indicate a preference for blueprints generated with the reviewer. (b) Enabling the reviewer leads to a score raise of online Narrative Quality (from red to blue). Iterations denotes the average number of revision rounds performed with the reviewer.

As shown in Figure 6, prompting a single GPT-4o yields substantially lower performance, highlighting the necessity of our multi-agent workflow design. Furthermore, PAD-enabled HAMLET consistently outperforms the version without PAD in all 10 topic categories, demonstrating that PAD serves as a crucial component in the online drama rendition, making the interaction and conversation of AI actors more natural, coherent and human-like.

Reviewer. To better assess the reviewer’s contribution, we introduced dedicated evaluation metrics for the offline planning stage. As shown in Figure 7(a), the reviewer makes a significant contribution to improving the quality of narrative blueprints during offline planning. Intriguingly, we also observe in Figure 7(b) that the reviewer exerts a measurable influence on Narrative Quality during the online performance phase, enabling the reviewer consistently yields a substantial score improvement across all test models. We attribute this downstream effect to the causal linkage between blueprint quality and final narrative output: higher-fidelity planning directly enables more coherent, compelling, and structurally sound storytelling at execution time.

Advancer. Experiments show that removing the advancer reduces HAMLET’s task completion rate from 100% to 68.1%, highlighting its critical role in ensuring robustness and preventing conversational deadlocks. Additional experimental details and results are provided in Appendix I.

5.3 CASE STUDY

To further illustrate the operational mechanism of the HAMLET framework and the role of each component, we present a set of real examples in Table 6 in Appendix C.

In Case 1, the narrator first assesses the situation before responding to make a reasonable judgment about the AI actor’s input. Our framework also supports users taking on a certain character role (Cases 2, 3, and 4). In these scenarios, the narrator, transfer, and advancer collaboratively handle challenging circumstances—such as missing props, irresponsible actions, or stubborn character choices—to ensure narrative coherence and smooth dramatic progression. Meanwhile, the planner is responsible for multi-trajectory design and review. As demonstrated in Cases 5 and 6, the same goal can be met by different beat trajectories as long as the process is reasonable.

6 CONCLUSION

In this paper, we introduced HAMLET, a multi-agent framework designed to address key challenges in AI-driven theatre. HAMLET generates a guiding narrative blueprint from a simple topic and provides agents with a perceive and decide module, enabling autonomous thinking and physical environmental interaction. To assess performance, we established a comprehensive evaluation method and a leaderboard, where our specialized critic model, HAMLETJudge, achieved top-ranking results. Extensive experiments show that our approach creates expressive and coherent theatrical experiences, paving a new path toward autonomous and immersive interactive drama.

540 **7 ETHICS STATEMENT**
 541

542 This work relies on human annotation, which is critical for both the training and evaluation of our
 543 proposed models. The annotation of PAD and HAMLETJudge datasets was conducted by a team
 544 of five human experts, each with at least one year of professional experience in relevant fields such
 545 as creative writing or drama creation. To ensure high-quality annotations, we provided clear and
 546 task-specific instructions to all labelers. In addition, the datasets underwent rigorous safety checks
 547 to ensure no personally identifiable information or potentially problematic content is available. The
 548 labeling instructions can be found in Appendix E and F.

549
 550 **REFERENCES**
 551

552 Hongzhan Chen, Hehong Chen, Ming Yan, Wenshen Xu, Xing Gao, Weizhou Shen, Xiaojun Quan,
 553 Chenliang Li, Ji Zhang, Fei Huang, and Jingren Zhou. Socialbench: Sociality evaluation of role-
 554 playing conversational agents, 2024a.

555 Jiangjie Chen, Xintao Wang, Rui Xu, Siyu Yuan, Yikai Zhang, Wei Shi, Jian Xie, Shuang Li, Ruihan
 556 Yang, Tinghui Zhu, et al. From persona to personalization: A survey on role-playing language
 557 agents. *arXiv preprint arXiv:2404.18231*, 2024b.

558
 559 Nuo Chen, Yan Wang, Haiyun Jiang, Deng Cai, Yuhan Li, Ziyang Chen, Longyue Wang, and Jia Li.
 560 Large language models meet harry potter: A dataset for aligning dialogue agents with characters.
 561 In *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp. 8506–8520,
 562 2023.

563
 564 Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. In Iryna
 565 Gurevych and Yusuke Miyao (eds.), *Proceedings of the 56th Annual Meeting of the Association
 566 for Computational Linguistics (Volume 1: Long Papers)*, pp. 889–898, Melbourne, Aus-
 567 tralia, July 2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-1082. URL
 568 <https://aclanthology.org/P18-1082/>.

569
 570 Carlos Gómez-Rodríguez and Paul Williams. A confederacy of models: a comprehensive evaluation
 571 of LLMs on creative writing. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Findings of
 572 the Association for Computational Linguistics: EMNLP 2023*, pp. 14504–14528, Singapore, De-
 573 cember 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.
 574 966. URL <https://aclanthology.org/2023.findings-emnlp.966/>.

575
 576 Senyu Han, Lu Chen, Li-Min Lin, Zhengshan Xu, and Kai Yu. IBSEN: Director-actor agent col-
 577 laboration for controllable and interactive drama script generation. In *Proceedings of the 62nd
 578 Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 579 1607–1619, Bangkok, Thailand, August 2024. Association for Computational Linguistics. URL
<https://aclanthology.org/2024.acl-long.88>.

580
 581 Jen-tse Huang, Wenzuan Wang, Man Ho Lam, Eric John Li, Wenxiang Jiao, and Michael R Lyu.
 582 Chatgpt an enfj, bard an istj: Empirical study on personalities of large language models. *arXiv
 583 preprint arXiv:2305.19926*, 2023.

584
 585 Daniel Kahneman. Fast and slow thinking. *Allen Lane and Penguin Books, New York*, 2011.

586
 587 Cheng Li, Ziang Leng, Chenxi Yan, Junyi Shen, Hao Wang, Weishi Mi, Yaying Fei, Xiaoyang Feng,
 588 Song Yan, HaoSheng Wang, et al. Chatharuhi: Reviving anime character in reality via large
 589 language model. *arXiv preprint arXiv:2308.09597*, 2023.

590
 591 Zhuoyan Li, Chen Liang, Jing Peng, and Ming Yin. The value, benefits, and concerns of generative
 592 ai-powered assistance in writing. In Florian 'Floyd' Mueller, Penny Kyburz, Julie R. Williamson,
 593 Corina Sas, Max L. Wilson, Phoebe O. Toups Dugas, and Irina Shklovski (eds.), *Proceedings of
 the CHI Conference on Human Factors in Computing Systems, CHI 2024, Honolulu, HI, USA,
 May 11-16, 2024*, pp. 1048:1–1048:25. ACM, 2024. doi: 10.1145/3613904.3642625. URL
<https://doi.org/10.1145/3613904.3642625>.

594 Keming Lu, Bowen Yu, Chang Zhou, and Jingren Zhou. Large language models are superpositions
 595 of all characters: Attaining arbitrary role-play via self-alignment. In Lun-Wei Ku, Andre Martins,
 596 and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for
 597 Computational Linguistics (Volume 1: Long Papers)*, pp. 7828–7840, Bangkok, Thailand, August
 598 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.423. URL
 599 <https://aclanthology.org/2024.acl-long.423/>.

600 Piotr Mirowski, Kory W Mathewson, Jaylen Pittman, and Richard Evans. Co-writing screenplays
 601 and theatre scripts with language models: Evaluation by industry professionals. In *Proceedings
 602 of the 2023 CHI conference on human factors in computing systems*, pp. 1–34, 2023.

603 Lili Mou, Yiping Song, Rui Yan, Ge Li, Lu Zhang, and Zhi Jin. Sequence to backward and forward
 604 sequences: A content-introducing approach to generative short-text conversation. In Yuji Mat-
 605 sumoto and Rashmi Prasad (eds.), *Proceedings of COLING 2016, the 26th International Confer-
 606 ence on Computational Linguistics: Technical Papers*, pp. 3349–3358, Osaka, Japan, December
 607 2016. The COLING 2016 Organizing Committee. URL <https://aclanthology.org/C16-1316/>.

608 Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. *The London,
 609 Edinburgh, and Dublin philosophical magazine and journal of science*, 2(11):559–572, 1901.

610 J. Robinson. Likert scale. In A. C. Michalos (ed.), *Encyclopedia of Quality of Life and Well-Being
 611 Research*. Springer, Dordrecht, 2014. doi: 10.1007/978-94-007-0753-5_1654.

612 Ranjan Sapkota, Konstantinos I Roumeliotis, and Manoj Karkee. Ai agents vs. agentic ai: A con-
 613 ceptual taxonomy, applications and challenge. *arXiv preprint arXiv:2505.10468*, 2025.

614 Iulian Serban, Alessandro Sordoni, Ryan Lowe, Laurent Charlin, Joelle Pineau, Aaron Courville,
 615 and Yoshua Bengio. A hierarchical latent variable encoder-decoder model for generating dia-
 616 logues. In *Proceedings of the AAAI conference on artificial intelligence*, volume 31, 2017.

617 Murray Shanahan, Kyle McDonell, and Laria Reynolds. Role play with large language models.
 618 *Nature*, 623(7987):493–498, 2023.

619 Yunfan Shao, Linyang Li, Junqi Dai, and Xipeng Qiu. Character-LLM: A trainable agent for role-
 620 playing. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Confer-
 621 ence on Empirical Methods in Natural Language Processing*, pp. 13153–13187, Singapore, De-
 622 cember 2023. Association for Computational Linguistics. URL <https://aclanthology.org/2023.emnlp-main.814/>.

623 Tianhao Shen, Sun Li, Quan Tu, and Deyi Xiong. Roleeval: A bilingual role evaluation benchmark
 624 for large language models. *arXiv preprint arXiv:2312.16132*, 2023.

625 Meiling Tao, Liang Xuechen, Tianyu Shi, Lei Yu, and Yiting Xie. RoleCraft-GLM: Advancing
 626 personalized role-playing in large language models. In Ameet Deshpande, EunJeong Hwang,
 627 Vishvak Murahari, Joon Sung Park, Diyi Yang, Ashish Sabharwal, Karthik Narasimhan, and Ash-
 628 win Kalyan (eds.), *Proceedings of the 1st Workshop on Personalization of Generative AI Systems
 629 (PERSONALIZE 2024)*, pp. 1–9, St. Julians, Malta, March 2024. Association for Computational
 630 Linguistics. URL <https://aclanthology.org/2024.personalize-1.1/>.

631 Quan Tu, Shilong Fan, Zihang Tian, Tianhao Shen, Shuo Shang, Xin Gao, and Rui Yan. Charac-
 632 terEval: A Chinese benchmark for role-playing conversational agent evaluation. In Lun-Wei Ku,
 633 Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Associa-
 634 tion for Computational Linguistics (Volume 1: Long Papers)*, pp. 11836–11850, Bangkok, Thai-
 635 land, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.
 636 638. URL <https://aclanthology.org/2024.acl-long.638/>.

637 Saranya Venkatraman, Nafis Irtiza Tripto, and Dongwon Lee. Collabstory: Multi-llm collaborative
 638 story generation and authorship analysis. *arXiv preprint arXiv:2406.12665*, 2024.

639 Noah Wang, Z.y. Peng, Haoran Que, Jiaheng Liu, Wangchunshu Zhou, Yuhang Wu, Hongcheng
 640 Guo, Ruitong Gan, Zehao Ni, Jian Yang, Man Zhang, Zhaoxiang Zhang, Wanli Ouyang, Ke Xu,
 641

648 Wenhao Huang, Jie Fu, and Junran Peng. RoleLLM: Benchmarking, eliciting, and enhancing role-
 649 playing abilities of large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
 650 (eds.), *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 14743–14777,
 651 Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/
 652 v1/2024.findings-acl.878. URL [https://aclanthology.org/2024.findings-acl.
 653 878/](https://aclanthology.org/2024.findings-acl.878/).

654 Xintao Wang, Yaying Fei, Ziang Leng, and Cheng Li. Does role-playing chatbots capture the
 655 character personalities? assessing personality traits for role-playing chatbots. *arXiv preprint*
 656 *arXiv:2310.17976*, 2023.

657 Xintao Wang, Heng Wang, Yifei Zhang, Xinfeng Yuan, Rui Xu, Jen-tse Huang, Siyu Yuan, Haoran
 658 Guo, Jiangjie Chen, Wei Wang, et al. Coser: Coordinating llm-based persona simulation of
 659 established roles. *arXiv preprint arXiv:2502.09082*, 2025.

660 Bowen Wu, MengYuan Li, Zongsheng Wang, Yifu Chen, Derek F. Wong, Qihang Feng, Jun-
 661 hong Huang, and Baoxun Wang. Guiding variational response generator to exploit persona.
 662 In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), *Proceedings of the*
 663 *58th Annual Meeting of the Association for Computational Linguistics*, pp. 53–65, Online, July
 664 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.7. URL
 665 <https://aclanthology.org/2020.acl-main.7/>.

666 Bowen Wu, Kaili Sun, Ziwei Bai, Ying Li, and Baoxun Wang. RAIDEN benchmark: Evaluat-
 667 ing role-playing conversational agents with measurement-driven custom dialogues. In Owen
 668 Rambow, Leo Wanner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, and Steven
 669 Schockaert (eds.), *Proceedings of the 31st International Conference on Computational Linguis-
 670 tics*, pp. 11086–11106, Abu Dhabi, UAE, January 2025a. Association for Computational Linguis-
 671 tics. URL <https://aclanthology.org/2025.coling-main.735/>.

672 Hongqiu Wu, Weiqi Wu, Tianyang Xu, Jiameng Zhang, and Hai Zhao. Towards enhanced immer-
 673 sion and agency for LLM-based interactive drama. In Wanxiang Che, Joyce Nabende, Ekaterina
 674 Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the*
 675 *Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 11166–11182, Vienna,
 676 Austria, July 2025b. Association for Computational Linguistics. ISBN 979-8-89176-251-0. URL
 677 <https://aclanthology.org/2025.acl-long.546/>.

678 Weiqi Wu, Hongqiu Wu, Lai Jiang, Xingyuan Liu, Hai Zhao, and Min Zhang. From role-play
 679 to drama-interaction: An LLM solution. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
 680 (eds.), *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 3271–3290,
 681 Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/
 682 v1/2024.findings-acl.196. URL [https://aclanthology.org/2024.findings-acl.
 683 196/](https://aclanthology.org/2024.findings-acl.196/).

684 Lili Yao, Nanyun Peng, Ralph Weischedel, Kevin Knight, Dongyan Zhao, and Rui Yan. Plan-and-
 685 write: Towards better automatic storytelling. In *Proceedings of the AAAI Conference on Artificial*
 686 *Intelligence*, volume 33, pp. 7378–7385, 2019.

687 Jinfeng Zhou, Zhuang Chen, Dazhen Wan, Bosi Wen, Yi Song, Jifan Yu, Yongkang Huang, Pei Ke,
 688 Guanqun Bi, Libiao Peng, JiaMing Yang, Xiyao Xiao, Sahand Sabour, Xiaohan Zhang, Wen-
 689 jing Hou, Yijia Zhang, Yuxiao Dong, Hongning Wang, Jie Tang, and Minlie Huang. Charac-
 690 terGLM: Customizing social characters with large language models. In Franck Dernoncourt,
 691 Daniel Preoțiuc-Pietro, and Anastasia Shimorina (eds.), *Proceedings of the 2024 Conference on*
 692 *Empirical Methods in Natural Language Processing: Industry Track*, pp. 1457–1476, Miami,
 693 Florida, US, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
 694 emnlp-industry.107. URL [https://aclanthology.org/2024.emnlp-industry.
 695 107/](https://aclanthology.org/2024.emnlp-industry.107/).

696 697 698 699 700 701

702 A DETAILED INFORMATION FOR EVALUATION DATASET
703

704 Detailed information of 100 cases selected for the evaluation dataset is listed in Table ???. The
705 dataset comprises three parts: 1) excerpts from 25 Chinese literary works, 2) excerpts from 25
706 English literary works, and 3) 50 custom-authored drama topics. For the HAMLET Leaderboard
707 evaluation result in Table 1, the score for both English and Chinese is calculated on a 75-item set,
708 which consists of the 25 literary excerpts and 50 custom topics in the corresponding language.
709

710
711 B SCORING GUIDELINE FOR HAMLETJUDGE
712

713 We use HAMLETJudge for critic and scoring, as a judge model, it follows a 5-point Likert scale
714 for pairwise comparisons. The specific definition for each score is detailed in Table 5.
715

717 Score	718 Preference	719 Description
718 1	719 Strong preference for Model A	720 Model A is significantly better.
718 2	719 Moderate preference for Model A	720 Model A is somewhat better.
718 3	719 Tie / No preference	720 Both models' output are roughly equivalent in quality.
718 4	719 Moderate preference for Model B	720 Model B is somewhat better.
718 5	719 Strong preference for Model B	720 Model B is significantly better.

724 Table 5: 5-Point Likert scoring guideline used for HAMLETJudge. **Model A** refers to the baseline
725 model, and **Model B** refers to the test model.
726

727
728 C CASE STUDY
729

731 Table 6 presents representative real interaction cases generated by HAMLET, showcasing the dis-
732 tinct roles of individual agents and their collaborative behavior during the whole process. Through
733 these cases, we illustrate how HAMLET maintains narrative coherence, ensures logical consistency,
734 and enables flexible dramatic progression in complex and unpredictable user interactions.
735

736 To begin with, Case 1 highlights Narrator’s ability to interpret user intent under ambiguity. Specif-
737 ically, it correctly associates the term “knife” with the existing prop “dagger,” allowing the user’s
738 action to be executed successfully. This demonstrates HAMLET’s robustness in resolving lexical
739 variations and grounding user input in the current scene context.

740 Building on this, Cases 2, 3 and 4 involve human user role-playing as AI actor, and reveal how the
741 system handles a wide range of irregular or disruptive inputs. In Case 2, the Narrator identifies an
742 inappropriate and non-existent prop (“rifle”), and rejects the action to preserve setting consistency.
743 Similarly, Case 3 showcases how physically impossible actions, such as “flying,” are filtered out
744 based on the play’s realistic constraints. Notably, Case 4 presents a more complex situation, where
745 the user repeatedly insists on an invalid action. Here, HAMLET effectively coordinates among
746 multiple agents: the Narrator detects the invalid target, the Transfer identifies unmet flags, and the
747 Advancer eventually intervenes with adaptive guidance to resolve narrative deadlock. This case il-
748 lustrates the system’s ability to detect stagnation, maintain progression, and deliver context-sensitive
749 instructions.

750 Additionally, Cases 5 and 6 demonstrate the crucial role of Planner, showcasing HAMLET’s sup-
751 port for multi-trajectory planning. Both cases revolve around solving a murder mystery, yet they
752 employ different investigative strategies. In Case 5, the AI actor (Sherlock Holmes) uncovers clues
753 through physical evidence at the crime scene. While in Case 6, the same conclusion is reached
754 via testimonial interrogation of other characters. Despite following distinct paths, both trajectories
755 lead to the same dramatic outcome and are validated by the Planner based on their internal logic
and consistency. These cases underscore the system’s flexibility in allowing diverse narrative flows,
provided the progression remains coherent and goal-aligned.

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

Selected established literature workpieces	
1. <i>Dream of the Red Chamber</i>	2. <i>Journey to the West</i>
3. <i>Romance of the Three Kingdoms</i>	4. <i>Water Margin</i>
5. <i>The Three-Body Problem</i>	6. <i>To Live</i>
7. <i>Four Generations Under One Roof</i>	8. <i>Memories of Peking: South Side Stories</i>
9. <i>Demi-Gods and Semi-Devils</i>	10. <i>The Smiling, Proud Wanderer</i>
11. <i>Wandering</i>	12. <i>Rickshaw Boy</i>
13. <i>Straw House</i>	14. <i>The Bronze Age</i>
15. <i>Border Town</i>	16. <i>The Chess Master</i>
17. <i>The Golden Age</i>	18. <i>My Father's Back</i>
19. <i>Blossoms</i>	20. <i>Frog</i>
21. <i>Cat Country</i>	22. <i>That Unknown Story</i>
23. <i>Farewell My Concubine</i>	24. <i>White Deer Plain</i>
25. <i>Fortress Besieged</i> (Items 1–25 are translated titles of Chinese literary works.)	26. <i>One Hundred Years of Solitude</i> (Items 26–50 are original titles of English literary works.)
27. <i>Brave New World</i>	28. <i>A Clockwork Orange</i>
29. <i>The Time Traveler's Wife</i>	30. <i>The Princess Bride</i>
31. <i>The Secret Garden</i>	32. <i>The Outsiders</i>
33. <i>The Call of the wild</i>	34. <i>Little Women</i>
35. <i>Hamlet</i>	36. <i>The Odyssey</i>
37. <i>Harry Potter</i>	38. <i>Frankenstein</i>
39. <i>The Kite Runner</i>	40. <i>King Lear</i>
41. <i>The tragedy of Macbeth</i>	42. <i>The Adventures of Huckleberry Finn</i>
43. <i>Life of Pi</i>	44. <i>A Tale of Two Cities</i>
45. <i>The tempest</i>	46. <i>Romeo and Juliet</i>
47. <i>The Adventures of Sherlock Holmes</i>	48. <i>Wuthering Heights</i>
49. <i>Catch-22</i>	50. <i>Don Quixote</i>
Customizable drama topic design	
51. <i>Porco Rosso</i> and <i>Gina</i> discuss topics about war, love and responsibility in a café, and after a while <i>Phil</i> also arrives.	
52. <i>Kenshin Himura</i> , the wandering swordsman, walked into the café carrying his reverse-blade sword, only to find his late wife, <i>Tomoe Yukishiro</i> —who had died years ago saving him—standing there.	
53. <i>Conan</i> and <i>Gin</i> engaged in a thrilling battle of deduction and a direct confrontation in the bustling Times Square, amidst the ebb and flow of countless passersby.	
54. <i>Furina</i> and <i>Herta</i> met at the end of Sixth Avenue Alley, where they engaged in a profound debate about fate.	
55. <i>LeCun</i> , <i>Hinton</i> , and <i>Bengio</i> engaged in an in-depth discussion during a NeurIPS coffee break about how AGI might be achieved and when it could arrive.	
56. A wealthy man is murdered in his study, and the killer is among the guests present that night. <i>Sherlock Holmes</i> and <i>Dr. Watson</i> must unravel the mystery.	
57. <i>Lara Croft</i> explores an ancient temple with <i>Indiana Jones</i> , debating the ethical implications of artifact removal.	
58. <i>Daenerys Targaryen</i> and <i>Jon Snow</i> strategize their next move amidst the snowy battlements of Winterfell.	
59. <i>Tony Stark</i> and <i>Bruce Banner</i> discuss the potential risks of AI development during a quiet night in the Avengers' tower.	
60. <i>Hermione Granger</i> and <i>Katniss Everdeen</i> debate rebellion tactics in a secret library in a dystopian city.	
61. <i>Mario</i> and <i>Luigi</i> race through a bustling New York subway station while evading <i>Bowser</i> 's henchmen.	
62. <i>The Doctor</i> from Doctor Who encounters <i>Eleven</i> from Stranger Things in a mysterious rift near Hawkins, Indiana.	
63. <i>Albert Einstein</i> and <i>Nikola Tesla</i> debate the future of energy in a vintage café in Zurich.	
64. <i>Elsa</i> from Frozen and <i>Moana</i> share stories of leadership and courage by the ocean shore during a summer festival.	
65. <i>Gandalf</i> and <i>Yoda</i> discuss the nature of the Force and magic in a mystical forest clearing.	
66. <i>Nathan Drake</i> and <i>Sam Fisher</i> team up to retrieve a stolen artifact in the crowded streets of Marrakech.	
67. <i>Elizabeth Bennet</i> and <i>Jay Gatsby</i> engage in a witty conversation at a grand 1920s party.	
68. <i>Da Vinci</i> and <i>Michelangelo</i> argue about art and innovation inside a Renaissance workshop.	
69. <i>Bruce Wayne</i> and <i>Clark Kent</i> discuss justice and responsibility during a rainy night on a Gotham rooftop.	
70. <i>Katara</i> and <i>Zuko</i> from Avatar: The Last Airbender reconcile old conflicts while watching a sunset by the river.	
71. <i>Mario</i> and <i>Princess Peach</i> plan a secret mission to rescue <i>Luigi</i> from <i>Bowser</i> 's castle under the moonlight.	
72. <i>Jon Snow</i> and <i>Arya Stark</i> train together in the godswood of Winterfell, reflecting on their past journeys.	
73. <i>Neo</i> and <i>Trinity</i> explore the Matrix's origins during a rare moment of calm in a futuristic cityscape.	
74. <i>Walter White</i> and <i>Jesse Pinkman</i> discuss redemption and consequences in a dimly lit Albuquerque diner.	
75. <i>Daenerys Targaryen</i> and <i>Sansa Stark</i> debate leadership styles during a council meeting in King's Landing.	
76. <i>Rick Grimes</i> and <i>Michonne</i> survive and strategize while hiding in an abandoned shopping mall during a zombie apocalypse.	
77. <i>Loki</i> and <i>Thor</i> bicker about family legacy while trapped in an ancient Norse temple.	
78. <i>Yennefer</i> and <i>Gerald</i> of Rivia share a quiet moment at a bustling marketplace in Novigrad.	
79. <i>Miyamoto Musashi</i> and <i>Sun Tzu</i> discuss the art of war on a foggy mountaintop.	
80. <i>Shrek</i> and <i>Donkey</i> accidentally find themselves in a futuristic city, trying to find their way back to the swamp.	
81. <i>Katniss Everdeen</i> and <i>Peeta Mellark</i> share a secret conversation in the Capitol's underground tunnels.	
82. <i>Sherlock Holmes</i> and <i>Irene Adler</i> exchange clever banter at an exclusive London club.	
83. <i>Darth Vader</i> and <i>Luke Skywalker</i> face off in a climactic duel inside the Death Star's throne room.	
84. <i>Elizabeth Bennet</i> and <i>Mr. Darcy</i> meet unexpectedly at a winter ball in Regency England.	
85. <i>Professor McGonagall</i> and <i>Minerva McGonagall</i> compare notes on magical education at Hogwarts.	
86. <i>Arthur Morgan</i> and <i>Dutch van der Linde</i> plan their next heist while camping under the stars.	
87. <i>Gerald</i> and <i>Jaskier</i> share songs and stories in a cozy tavern in the Northern Kingdoms.	
88. <i>Jon Snow</i> and <i>Tormund Giantsbane</i> hunt in the frozen wilderness beyond the Wall.	
89. <i>Mario</i> , <i>Luigi</i> , and <i>Toad</i> race through the Mushroom Kingdom to stop <i>Bowser</i> 's latest scheme.	
90. <i>Tony Stark</i> and <i>Pepper Potts</i> celebrate a rare peaceful evening at Stark Tower's rooftop garden.	
91. <i>Da Vinci</i> and <i>Galileo</i> discuss the mysteries of the universe during a candlelit dinner.	
92. <i>Black Widow</i> and <i>Hawkeye</i> reminisce about their past missions over coffee in a quiet New York café.	
93. <i>Frodo</i> and <i>Samwise</i> rest beside the campfire, reflecting on their journey to Mount Doom.	
94. <i>Neo</i> and <i>Morpheus</i> debate the ethics of free will inside the Matrix's control room.	
95. <i>Arya Stark</i> and <i>Gendry</i> share a quiet moment forging weapons in Winterfell's smithy.	
96. <i>Link</i> and <i>Zelda</i> strategize the defense of Hyrule Castle under threat from Ganondorf.	
97. <i>Mad Max</i> and <i>Furiosa</i> race across the wasteland seeking a new safe haven.	
98. <i>Jesse Pinkman</i> and <i>Saul Goodman</i> argue over legal and moral boundaries in a dingy Albuquerque office.	
99. <i>Bilbo Baggins</i> hosts a surprise party in the Shire, attended by dwarves and elves alike.	
100. <i>Hannibal Lecter</i> and <i>Clarice Starling</i> engage in a tense psychological game inside a mental institution.	

Table 4: The public dataset of established literary works and customized topic design list.

Case	Description	Pieces of Real-time Drama Performance or Interaction results
1	AI actor Real-time Performance	<p><i>Case Abstract: AI actor with reasonable action input and existing props.</i></p> <p>Hamlet: (Grab a knife and step forward) You have no where to hide.</p> <p>Narrator: <think>Detect two actions. Knife may refers to dagger, which exists in Hamlet's possession, first action success. Step forward is also reasonable under this condition, second action success.</think>Hamlet paces agitatedly, dagger in hand.</p>
2	Human Player Roleplaying certain AI actor	<p><i>Case Abstract: Human player with non-existing props interaction.</i></p> <p>Hamlet: (Take out a rifle, aim at Claudius and pull the trigger) Say hello to my father, Claudius!</p> <p>Narrator: <think>Rifle is a kind of gun, which is irrationality in current drama settings, and it does not exist in props list, action failure.</think>Action failure, nothing happened.</p>
3	Human Player Roleplaying certain AI actor	<p><i>Case Abstract: Human player with unreasonable action input.</i></p> <p>Hamlet: (Take to the air and fly out of the palace) HAHAHA! I am superman.</p> <p>Narrator: <think>Flying is physically impossible for humans without special equipment, and contradicts the realistic setting of the play. This action violates the established rules of the world, action failure.</think>Action failure, nothing happened.</p>
4	Human Player Roleplaying certain AI actor	<p><i>Case Abstract: Human player with stubborned choice.</i></p> <p>Hamlet: (Take out dagger, stab Claudius).</p> <p>Narrator: <think>Claudius does not exist in current scene</think>Action failure, nothing happened.</p> <p>Environment: There are slight noises behind the curtain.</p> <p>Hamlet: (Use dagger to stab Claudius).</p> <p>Narrator: <think>Claudius does not exist in current scene, unlegal action.</think>Action failure, nothing happened.</p> <p>Transfer: Polonius hasn't been stabbed, flag is not satisfied. (...repetitive patterns omitted...)</p> <p>System: Time accumulation has surpassed the threshold, Advancer is activated.</p> <p>Advancer: <think>I should give necessary instructions to make sure flag is met. The flag is ..., current situation is ..., current point is stucked because Hamlet's action.</think>Instruction to Hamlet: You should try to stab the curtain with your dagger.</p> <p>Hamlet: (Stab the curtain)</p> <p>Narrator: <think>Curtain exists in props, stab is a reasonable action. Action success</think>Hamlet stabs through the curtain and pulls it back fiercely.</p>
5	AI actor Beat Trajectory - physical evidence	<p><i>Trajectory A: A wealthy man is murdered in his study, and the killer is among the guests present that night. (Searching the study for clues)</i></p> <p>Holmes: (Examining the desk)</p> <p>Narrator: Sherlock Holmes discovers a torn-up check.</p> <p>Holmes: [This may hinting at a financial dispute](Inspecting the carpet)</p> <p>Narrator: Sherlock Holmes finds a cufflink that doesn't belong to the victim.</p> <p>Holmes: (Checking the bookshelf)</p> <p>Narrator: Sherlock Holmes notices a book slightly pulled out, revealing a hidden blackmail letter.</p> <p>Holmes: Hmmm, I think I have the answer. The cufflink belongs to the butler. The blackmail letter proves the victim was threatening him. The check confirms the butler was desperate for money. The butler had motive, opportunity, and a direct link to the crime scene.</p> <p>Planner: <think>(detailed analysis...)To conclude, the evidence acquisition process is complete and the reasoning is sufficient.</think>Trajectory check passed.</p>
6	AI actor Beat Trajectory - testimony evidence	<p><i>Trajectory B: A wealthy man is murdered in his study, and the killer is among the guests present that night. (Conversing with key guests)</i></p> <p>Holmes: (Approaching the butler, eyes fixed on his sleeves) Where were you between nine and midnight?</p> <p>Butler: "I—I was inventoring wine in the kitchen, sir."</p> <p>Holmes: [His left cufflink is missing... precisely like the one found near the body.]</p> <p>Holmes: (Turning abruptly to the maid) Did your employer argue with anyone recently?</p> <p>Maid: (Wringing her apron) "He and Mr. Bates—the butler—had shouting matches all week... something about money..."</p> <p>Holmes: [Financial disputes align with the torn check.]</p> <p>Holmes: (Cornering the victim's business partner near the fireplace) Did the deceased mention threats?</p> <p>Business Partner: (Forced laugh) "Oh, he loved boasting—said he 'had Bates by the throat' last Tuesday."</p> <p>Holmes: [A clear admission of blackmail.]</p> <p>Holmes: (Striding to the center of the room) The butler's missing cufflink places him at the crime scene. The maid confirms violent quarrels over money, while our 'helpful' friend here reveals the victim's blackmail scheme. Motive, opportunity, and physical evidence—all point to one man.</p> <p>Planner: <think>(detailed analysis...)To conclude, the evidence acquisition process is complete and the reasoning is sufficient.</think>Trajectory check passed.</p>

Table 6: Case study of HAMLET that illustrates the roles and collaborative processes of each agent during online performance.

Taken together, these case studies demonstrate the effectiveness of HAMLET in managing interactive drama through robust input interpretation, constraint enforcement, multi-agent collaboration, and trajectory-level planning.

D DETAILED EXPLANATION OF THE OPERATION PROCESS OF PAD

This section provides a more detailed breakdown of the operational workflow for PAD. The entire process is formally presented in Algorithm 2.

PAD operates by first perceiving the complete dramatic context. This includes the current scenario S , the actor profiles \mathbb{C} and typically goals of all actors \mathbb{G}_c defined in profile \mathbb{C} , the set of interactable objects \mathbb{O} , and dialogue history \mathcal{H}_d . Based on this comprehensive input, PAD then decides the most

appropriate tool calls for each relevant actor. This decision manifests as two possible outputs: a speech pace r and a potential physical action o , formulated as a Subject-Verb-Object triplet. This perceive-decide cycle repeats, enabling dynamic and context-aware character behaviors.

E LABELING INSTRUCTION FOR HAMLETJUDGE

E.1 TASK OVERVIEW

Your task is to compare two complete drama generations from two different Large Language models (referred to as Model A and Model B). For each task, you will be presented with:

1. Two complete drama performance results generated by **Model A** and **Model B**.
2. Current target **Evaluation Dimension** and its **Corresponding Criteria**.

Your core job is to determine which model performed better according to the given dimension and criteria, provide a detailed justification for your choice, and assign a score based on a 5-point comparative scale.

E.2 EVALUATION DIMENSIONS

You will be asked to judge the models on one of three key dimensions for each task.

CHARACTER PERFORMANCE (CP)

This dimension assesses the depth, consistency, and believability of the characters. When evaluating CP, consider:

- **Consistency:** Are the characters' actions and dialogues consistent with their established personalities, motivations, and backgrounds? Do they act “out-of-character”?
- **Depth & Development:** Are the characters multi-dimensional and evolving, or are they flat, one-note stereotypes? Do they show growth or reveal new aspects of their personality during the performance?
- **Believability:** Does the dialogue sound natural for the characters? Are their emotional reactions and decisions plausible within the context of the scene?

NARRATIVE QUALITY (NQ)

This dimension focuses on the story’s structure, creativity, and engagement. When evaluating NQ, consider:

- **Plot Advancement:** Does the story move forward effectively, or does it stall with filler content and irrelevant actions? Does it build towards a meaningful conclusion?
- **Creativity & Engagement:** Is the narrative novel, clever, and surprising? Does it spark curiosity and make you want to know what happens next, or is it predictable and dull?
- **Coherence & Logic:** Is the plot internally consistent? Are plot twists and developments well-founded, or do they feel random and nonsensical, breaking the narrative’s logic?

INTERACTION EXPERIENCE (IE)

This dimension evaluates the overall flow, pacing, and immersive quality of the drama—essentially, its “readability” and “feel.” When evaluating IE, consider:

- **Flow & Pacing:** Are the transitions between scenes and character interactions smooth? Is the pacing effective—building tension and providing moments of reflection appropriately—or does it feel rushed or dragged out?
- **Content Effectiveness:** How much of the text is meaningful versus repetitive or vague filler? Which response is more concise and impactful in its delivery?

918 **Algorithm 2** Detailed Working Algorithm for Perceive and Decide Module

919

920 1: **procedure** PADMODULE

921 2: **Drama Context Configuration:**

922 3: \mathcal{T} : *Drama Topic*

923 4: \mathcal{A}_i : *Current Act*

924 5: \mathcal{P}_j : *Current Point*

925 6:

926 7: **For** \mathcal{P}_j **exists:**

927 8: \mathcal{S} : *Current Scenario*

928 9: $\mathbb{A} = \{a_1, \dots, a_n\}$: *Actor List*

929 10: $\mathbb{C} = \{c_1, \dots, c_n\}$: *Actor Profile*

930 11: $\mathbb{G}_c = \{g_1, \dots, g_n\}$: *Actor Goal*

931 12: $\mathbb{O} = \{o_1, \dots, o_m\}$: *Interactable Objects*

932 13: \mathcal{H}_d : *Dialogue History*

933 14: π_θ : *Model Parameters and Sampling Strategy*

934 15:

935 16: **Output:**

936 17: $r \in \{\text{FAST}, \text{SLOW}, \text{SILENCE}\}$

937 18: $o \in \{\emptyset, (s, v, o)\}$

938 19:

939 20: **Initialize:**

940 21: $t_0 \leftarrow \text{CurrentTime}()$

941 22: $\mathcal{H}_{d_0} \leftarrow \text{GetHistory}(t_0)$

942 23: $\delta = \text{IsActCompleted}(\mathcal{A}_i) \leftarrow \text{False}$

943 24:

944 25: **while** $\delta = \text{False}$ **and** $\mathcal{H}_{d_t} \neq \mathcal{H}_{d_0}$ **do**

945 26: $H_{new} \leftarrow \text{GetHistory}(t - t_0)$

946 27: $\mathcal{H}_{d_t} \leftarrow \mathcal{H}_{d_t} \cup \{H_{new}\}$

947 28: **for** **all** $a_k \in \mathbb{A} \cap \{a_{\text{current}}\}^c$ **do**

948 29: $\text{prompt} \leftarrow \text{Encode}(\mathbb{C}, \mathbb{G}_c, \mathbb{O}, \mathcal{S}, \mathcal{H}_{d_t})$

949 30: $(\hat{r}_{a_k}, \hat{o}_{a_k}) \leftarrow \text{PAD}(\text{prompt}, \pi_\theta)$

950 31: $r_{a_k} \leftarrow \text{ParseResponse}(\hat{r}_{a_k})$

951 32: $o_{a_k} \leftarrow \text{ParseAction}(\hat{o}_{a_k})$

952 33: **end for**

953 34: **end while**

954 35: $t \leftarrow t + \Delta t$

955 36: **return** $\{(r_{a_k}, o_{a_k}) : a_k \in \mathbb{A}\}$

956 37: **end procedure**

957 38:

958 39: **Helper Functions:**

959 40: **function** PARSERESPONSE(\hat{r})

960 41: **return** $\arg \max_{r \in \{\text{FAST}, \text{SLOW}, \text{SILENCE}\}} P(r|\hat{r})$

961 42: **end function**

962 43: **function** PARSEACTION(\hat{o} , a_k)

963 44: **if** \hat{o} **indicates no action** **then**

964 45: **return** \emptyset

965 46: **else**

966 47: $s \leftarrow a_k$

967 48: $v \leftarrow \text{ExtractVerb}(\hat{o})$

968 49: $o \leftarrow \text{ExtractObject}(\hat{o})$

969 50: **if** $v = \emptyset$ **or** $o = \emptyset$ **then**

970 51: **return** \emptyset

971 52: **end if**

972 53: **if** $o \in \mathbb{O}$ **then**

973 54: **return** (s, v, o)

974 55: **else**

975 56: **return** \emptyset

976 57: **end if**

977 58: **end if**

978 59: **end function**

972
 973
 974
 975
 976

- **Overall Immersion:** Which version feels more like a genuine piece of theatre? Which one is more successful at making you forget you are reading an AI-generated script and helps you become absorbed in the story?

977

E.3 RATING SCALE AND OUTPUT FORMAT

978 Please use the 5-point Likert scale for your pairwise comparison and follow the output format
 979 strictly.

980

SCORING GUIDELINES

981
 982
 983
 984
 985
 986
 987
 988
 989
 990

- **1: Strong preference for Model A** - Model A is significantly better than Model B.
- **2: Moderate preference for Model A** - Model A is somewhat better than Model B.
- **3: Tie** - Both models are of roughly equal quality, or their strengths and weaknesses balance each other out.
- **4: Moderate preference for Model B** - Model B is somewhat better than Model A.
- **5: Strong preference for Model B** - Model B is significantly better than Model A.

991

OUTPUT FORMAT

992 Your output must be in the following format:

993
 994 explanation: <A detailed explanation of your choice.
 995 You must reference the specific evaluation dimension
 996 and provide concrete examples or quotes from both
 997 models' outputs to justify your reasoning. Directly
 998 compare the strengths and weaknesses that led to your
 999 score.> score: <1, 2, 3, 4, or 5> choice: <Model A,
 1000 Model B, or tie>

1001

E.4 EXAMPLE

1002 Here is a complete annotation example to illustrate the task.

1003
 1004
 1005
 1006
 1007

Current Evaluation Dimension: Narrative Quality (NQ)

1008
 1009

Drama Topic: A detective investigates a stolen artifact in a museum after hours.

1010
 1011

Model A Result:

1012 Detective Smith entered the dark exhibition hall, turning on his flashlight. The
 1013 beam cut across an empty pedestal. “It was stolen from here,” he muttered. On
 1014 the floor, he saw a faint footprint and knelt to inspect it. “About a size 9,” he noted.
 1015 He then went to question the night guard, who claimed he didn’t hear a thing all
 1016 night.

1017
 1018

Model B Result:

1019 Upon entering the hall, Detective Smith’s first glance wasn’t at the empty pedestal,
 1020 but up at the ceiling’s security camera. “Odd,” he murmured, “the camera was
 1021 deactivated last night, but the log shows an internal authorization.” Tucked beneath
 1022 the pedestal, he found a small, folded note with a riddle: “I sing where there is
 1023 light, but die where there is silence.”

1024
 1025

Your Output:

1026 **explanation:** I have a strong preference for Model
 1027 B. The evaluation dimension is Narrative Quality.
 1028 Model A's plot is highly generic and follows a clichéd
 1029 procedural path (inspecting a footprint, questioning
 1030 the guard) that fails to build any real suspense.
 1031 In contrast, Model B immediately establishes a more
 1032 complex and engaging mystery by introducing the
 1033 "internally authorized" deactivation of the camera,
 1034 hinting at an inside job. Furthermore, the inclusion
 1035 of the cryptic riddle is an excellent narrative hook
 1036 that is far more creative and provides an imaginative
 1037 direction for the investigation. Therefore, Model B
 1038 is significantly better in terms of Narrative Quality.
 1039
 1040 **score:** 5
 1041 **choice:** Model B

1044 E.5 IMPORTANT CONSIDERATIONS

- 1045 **Focus on Substance, Not Nitpicks:** Please ignore minor grammatical errors or slightly
 1046 awkward phrasing if the core intent and narrative substance of the response are clear.
- 1047 **No Single Correct Path:** Stories can evolve in many valid ways. The goal is not to enforce
 1048 a single "correct" storyline, but to reward the model that tells a *more compelling, creative,*
 1049 *and well-executed* story.
- 1050 **Trust Your Judgment:** The line between "somewhat better" and "significantly better" can
 1051 be subjective. Use your best judgment based on the criteria above and strive to be consistent
 1052 in your evaluations.
- 1053 **Quality Assurance:** If you are uncertain about the annotation result, please leave it blank
 1054 rather than making an uncertain guess.

1056 F ANNOTATION GUIDELINES FOR PAD

1058 F.1 TASK OVERVIEW

1059 PAD determines the underlying strategy of a response for each AI actor. It is inspired by human
 1060 cognition, choosing between a fast, intuitive reaction (System I) and a slow, deliberate one (System
 1061 II), with the additional option of strategic silence and potential actions.

1062 For each task, you will be presented with a complete snapshot of a character's decision-making
 1063 moment, structured to reflect both internal state and external stimulus as defined in PAD:

- 1064 **Internal State** — The character's self-aware profile, comprising:
 - 1065 – *Persona*: Core personality traits, background, and identity.
 - 1066 – *Subjective Relationships*: The character's personal perceptions of and emotional ties
 to other actors.
 - 1067 – *Goal*: The character's current objective or intention.
 - 1068 – *Memory*: Summarized recollections of past events and interactions, distilled from
 prior scenes and retrieved via Retrieval-Augmented Generation (RAG).
- 1069 **External Stimulus** — The objective contextual information available in the scene, includ-
 1070 ing:
 - 1071 – *Environment Description*: A depiction of the physical or situational setting (e.g., a
 dimly lit alley, a tense courtroom).
 - 1072 – *Actor List*: A real-time roster of all characters present, including their roles and ob-
 servable states (note: this reflects external perception only, distinct from the subjective
 relationships in the internal state).

1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087

- *Dialogue History*: The chronological record of all prior spoken or written exchanges, including tone, unresolved tensions, commitments, and relevant subtext.
- *Interactable Objects*: Physical or digital items in the environment that the character may use, reference, or react to—each potentially imbued with functional, symbolic, or emotional significance (e.g., a flickering lantern, a locked diary, a ringing phone).
- **Final Response** — The most appropriate responding strategy in tool calling format, grounded in the integration of internal state and external stimulus.

1088 F.2 RESPONDING STRATEGIES: DESCRIPTION AND DEFINITION
 1089

1090 The allowed tool calling format for PAD comprises two main categories: Single tool use, which
 1091 includes *Fast*, *Slow*, and *Silence*, and Multi tool use, which involves combinations of *Action + Fast*,
 1092 *Action + Slow*, and *Action + Silence*.

1093
 1094 F.2.1 FAST (INTUITIVE REACTION)
 1095

1096 A fast response is driven by instinct, emotion, and immediate impressions.

1097
 1098
 1099

- **Characteristics:** The decision is impulsive, emotional, or based on a gut feeling. The reasoning is often simple, relying on stereotypes, recent events, or strong emotional states (e.g., anger, surprise, excitement).
- **When to Choose This:** Select this option if the character’s *Thinking* and final *Response* reflect an immediate, unfiltered reaction that bypasses deep strategic analysis. It should feel like a knee-jerk response, whether clever or foolish.

1100
 1101 F.2.2 SLOW (CONSIDERED DELIBERATION)
 1102

1103 A slow response is analytical, rational, and goal-oriented.

1104
 1105
 1106

- **Characteristics:** The decision is the result of weighing pros and cons, considering long-term consequences, recalling distant memories, or formulating a multi-step plan. The reasoning is complex and logical.
- **When to Choose This:** Select this option if the *Thinking* explicitly shows a process of deliberation. The character is clearly analyzing the situation, managing their impulses, and acting based on a calculated strategy to achieve a specific goal.

1107
 1108 F.2.3 SILENCE (STRATEGIC NON-RESPONSE)
 1109

1110 Silence is not merely the absence of a response; it is a deliberate, tactical choice.

1111
 1112
 1113

- **Characteristics:** The decision to say nothing is used to achieve a specific purpose, such as showing disapproval, building suspense, asserting dominance, avoiding a trap, or making another character uncomfortable.
- **When to Choose This:** Select this option when the most powerful or intelligent move in the given context is to not respond. The *Thinking* process should ideally reveal a conscious, strategic reason for choosing silence over speech.

1114
 1115 F.2.4 ACTION
 1116

1117 Action represents a non-verbal, physical, or environmental intervention performed by the character—such as picking up an object, moving toward another actor, gesturing, or manipulating the scene. Unlike dialogue-based responses, actions convey intent through behavior and can carry significant narrative or strategic weight.

1118
 1119
 1120

- **Characteristics:** Actions may be subtle (e.g., glancing at a door, clenching a fist) or overt (e.g., slamming a book, handing someone a key). They often serve to reinforce, contradict, or replace verbal communication, and should be grounded in the character’s internal state (e.g., goal, emotion) and the external stimulus (e.g., interactable objects, social dynamics).

1134 • **When to Choose This:** An *Action* should be annotated in combination with one of the
 1135 three core responding strategies (*Fast*, *Slow*, or *Silence*) whenever the character’s response
 1136 involves a meaningful behavioral component beyond speech. The combination reflects how
 1137 cognition and behavior jointly shape the character’s agency:
 1138 – **Action + Fast:** The character executes an impulsive physical reaction (e.g., flinching
 1139 at a loud noise, grabbing a weapon in panic).
 1140 – **Action + Slow:** The character performs a deliberate, premeditated act as part of a
 1141 calculated plan (e.g., quietly pocketing a clue while distracting others).
 1142 – **Action + Silence:** The character uses non-verbal behavior as a substitute for speech to
 1143 exert influence or control (e.g., turning their back to signal rejection, slowly pouring a
 1144 drink to delay answering).
 1145 • **Annotation Rule:** Always pair *Action* with exactly one of $\{\text{Fast}, \text{Slow}, \text{Silence}\}$. Do not
 1146 annotate *Action* alone.

1148 **F.3 ANNOTATION PROCESS AND EXAMPLE**

1150 You are presented with a complete decision-making snapshot for a focal character, as defined in
 1151 Appendix F.1. Your task is to select the appropriate responding strategy (or strategy combination)
 1152 that best characterizes the cognitive and behavioral mode underlying the character’s response.

1153 The annotation proceeds in three steps:

1154 1. **Interpret the context:** Review the internal state (Persona, Subjective Relationships, Goal,
 1155 Memory) and external stimulus (Environment Description, Actor List, Dialogue History,
 1156 Interactable Objects) to understand the character’s motivations, constraints, and situational
 1157 opportunities.
 1158 2. **Embody the character:** Put yourself in the character’s position. Consider how they would
 1159 genuinely perceive, feel, and react in this moment, given who they are and what is hap-
 1160 pening around them. This empathetic reasoning should guide your judgment of their likely
 1161 response mode—even if you do not explicitly write out their internal monologue.
 1162 3. **Generate the Final Response and label the strategy:** Produce the character’s concrete
 1163 output—dialogue, action, or silence—and tag it using one of the six allowed tool-calling
 1164 formats: *Fast*, *Slow*, *Silence*, *Action + Fast*, *Action + Slow*, or *Action + Silence*.

1165 **Example.** Consider a scene in a dimly lit study during a family inheritance dispute. The focal
 1166 character, *Eleanor*, has just been accused of hiding a will by her brother, *Marcus*.

1167 • **Internal State:**

1168 – *Persona:* Principled, introverted, values honesty but avoids confrontation.
 1169 – *Subjective Relationships:* Resents Marcus for his domineering attitude; trusts her
 1170 sister-in-law, Clara.
 1171 – *Goal:* To clear her name without escalating the conflict.
 1172 – *Memory:* Recalls Marcus falsely accusing her of stealing jewelry years ago.
 1173 • **External Stimulus:**

1174 – *Environment Description:* A cluttered Victorian study; rain taps against the windows.
 1175 – *Actor List:* Marcus (aggressive, standing), Clara (anxious, seated), Lawyer (neutral,
 1176 observing).
 1177 – *Dialogue History:* Marcus: “You’re the only one who had access—hand over the will,
 1178 Eleanor.”
 1179 – *Interactable Objects:* A locked desk drawer, a half-empty teacup, a family photo on
 1180 the mantel.

1181 **Thinking (for illustration only):** *He’s doing it again—twisting the truth to make me look guilty. I*
 1182 *could shout back, but that’s what he wants. If I stay calm, Clara will see through him. The will is in*
 1183 *the drawer, but I won’t give him the satisfaction of fetching it while he’s yelling. Let him sweat for a*
 1184 *moment. I’ll wait, then offer to show everyone together—fair and quiet.*

1188 **Final Response:** [Silence. Eleanor slowly picks up the teacup, takes a measured sip, and places it
 1189 back on the saucer without looking at Marcus.]

1190 **Strategy:** *Action + Silence*

1192 **Rationale:** This response uses a controlled physical gesture (sipping tea) in conjunction with delib-
 1193 erate silence to project composure and assert quiet resistance. Although the underlying reason-
 1194 ing is strategic and reflective (akin to *Slow* cognition), the observable behavior prioritizes non-
 1195 engagement—making *Action + Silence* the appropriate label, as the silence itself serves as the pri-
 1196 mary tactical choice.

1197

1198 F.4 IMPORTANT CONSIDERATIONS

- 1199 • **Strategy Over Style:** The literary quality or surface fluency of the *Final Response* should
 1200 not influence your strategy selection. Focus on the *cognitive and behavioral mode* that
 1201 best explains how the character arrived at their response. For instance, a clever one-liner
 1202 may still be a *Fast* response if it stems from impulsive emotion rather than deliberate plan-
 1203 ning—even if the character is generally thoughtful. Conversely, a mundane reply can be
 1204 *Slow* if it reflects calculated restraint.
- 1205 • **Dramatic Plausibility:** The chosen strategy should be both *psychologically grounded* in
 1206 the character’s internal state and *narratively compelling*. Prioritize responses that feel au-
 1207 thentic to the character’s persona, relationships, and goals, while also advancing tension,
 1208 subtext, or emotional stakes. A bold, surprising choice is preferable to a generic one—so
 1209 long as it remains consistent with who the character is.
- 1210 • **Anchor in Persona and Goal:** When multiple strategies seem plausible, resolve ambiguity
 1211 by prioritizing the character’s core PERSONA and current GOAL. Ask: “Given who this
 1212 character is and what they want right now, which mode of response is most likely?” This
 1213 principle overrides minor inconsistencies in dialogue tone or situational pressure.
- 1214 • **Avoid Speculative Annotations:** If the context is insufficient to confidently determine a
 1215 strategy—or if the character’s internal state is too ambiguous—do not guess. Leave the
 1216 strategy field blank and flag the instance for review. Erring on the side of caution preserves
 1217 data quality and supports reliable model training.

1218

1219 G TRAINING AND EVALUATION DETAILS FOR PAD AND HAMLETJUDGE

1220

1221 G.1 TRAINING SETTINGS AND HYPERPARAMETERS

1223 Both PAD and HAMLETJudge were fine-tuned based on Qwen3-8B using the LLaMA-Factory
 1224 framework. Training was conducted with ZeRO-3 across $8 \times$ NVIDIA A800-SXM4-80GB GPUs,
 1225 utilizing bfloat16 precision. The maximum sequence length was set to 65,536, and the total batch
 1226 size was 128.

1227

1228 For PAD, we performed supervised fine-tuning (SFT) on the training set for 3 epochs. The optimizer
 1229 was configured with a learning rate of 1e-5, a cosine learning rate scheduler, and a warmup ratio of
 0.1.

1230

1231 For HAMLETJudge, we adopted a two-stage training paradigm. In the first stage, we conducted
 1232 supervised fine-tuning on the first half of the training set, using the same optimization setup as PAD
 1233 (learning rate of 1e-5, cosine scheduler, and 0.1 warmup ratio). In the second stage, leveraging
 1234 the pairwise nature of the dataset, we restructured the remaining half of the training set into cho-
 1235 sen-rejected format and applied Direct Preference Optimization (DPO). The DPO stage was trained
 1236 for 2 epochs with a learning rate of 5e-6, a KL regularization coefficient $\beta = 0.1$, and the same
 1237 cosine learning rate scheduler.

1238

1239 G.2 DATA STATISTICS AND HOLDOUT STRATEGY

1240

1241 The complete PAD dataset comprises two main categories: Single Tool Use, which includes *Fast*,
 1242 *Slow*, and *Silence* responses, and Multi Tool Use, which involves combinations such as *Action +*
 1243 *Fast*, *Action + Slow*, and *Action + Silence*. To ensure data quality, we retained only instances

where at least four out of five expert annotators agreed on the strategy label; all other instances were discarded. Detailed statistics for each retained category are presented in Table 7.

PAD	Single Tool Use			Multi Tool Use		
	Fast	Slow	Silence	Action+Fast	Action+Slow	Action+Silence
Data Count	4200	3304	3908	1000	1000	1000
Mapping Rule	speech	[thinking]+speech	no speech	(action)+speech	(action)+ [thinking]+speech	(action)

Table 7: Statistics of the PAD Dataset.

The **Mapping Rule** row in Table 7 illustrates the expected response formats for AI actors under each tool-use strategy. The core objective of PAD is to train agents in selecting appropriate response strategies, namely Fast, Slow, or Silence. In multi-tool use settings, the Action Tool is further annotated with a verb-object pair to reflect its parametrized usage in combination with a primary response strategy.

Importantly, during evaluation experiment as illustrated in Table 3, we exclude metrics associated with the Action Tool for the following reasons: 1) The Action Tool exhibits a high degree of freedom — whether or not to use it can both be justifiable under identical scenarios. 2) The choice of parameters (i.e., verb and object) is flexible and often has multiple valid options.

Given these characteristics, we consider the Action Tool as an auxiliary enhancement to the core response strategy in PAD, rather than a primary focus of quantitative evaluation. The dataset was partitioned via the holdout method (95% training, 5% testing), with stratification to preserve class distribution.

On the other hand, the HAMLETJudge dataset is designed to evaluate drama performance across Character Performance, Narrative Quality, and Interaction Experience. For each LLM pair (e.g., **Claude-4-sonnet vs. GPT-4o**), 75 pairwise comparisons are conducted per dimension in both Chinese and English, resulting in 150 annotated instances per dimension for each model pair.

We select 7 representative LLMs exhibiting diverse levels of drama performance, as demonstrated on the HAMLET Leaderboard: Claude-4-sonnet-Thinking, DeepSeek-R1-0528, Qwen3-235B-A22B, Gemini-2.5-pro, GPT-4o, Qwen3-8B, and LLaMA-3.1-8B. This leads to a total of $\binom{7}{2} = 21$ unique model pairs. With 150 data points per pair and 3 evaluation dimensions, the final dataset comprises $21 \times 150 \times 3 = 9,450$ annotated instances.

Detailed statistics are presented in Table 8.

HAMLETJudge	#CP	#NQ	#IE	Total
Instance Number	3150	3150	3150	9450

Table 8: Statistics of the HAMLETJudge Dataset.

To ensure fair evaluation, the dataset is splitted using a holdout strategy, with around 95.3% allocated for training and 4.7% for testing. Stratified sampling is applied to maintain a balanced distribution across all three dimensions.

G.3 INTER-ANNOTATOR AGREEMENT ANALYSIS OF DATA

To quantify the reliability of both dataset, we conducted an Inter-Annotator Agreement (IAA) analysis using statistical measures tailored to the nature of each dataset. For the HAMLETJudge dataset, annotators assigned ratings on Likert-type scales for each dimension—ordinal data for which Krippendorff's Alpha (α) is the appropriate reliability metric. As shown in Table 9, the overall weighted α is 0.725, indicating substantial agreement. Even on the most subjective dimension, Interaction Experience (IE), agreement remains high ($\alpha = 0.703$).

Category (Dimension)	Data Count	Krippendorff's Alpha (α)
Character Performance (CP)	3,150	0.7485
Narrative Quality (NQ)	3,150	0.7241
Interaction Experience (IE)	3,150	0.7030
Overall Weighted α	9,450	0.7252

Table 9: Inter-Annotator Agreement (Krippendorff's Alpha) for the HAMLETJudge dataset.

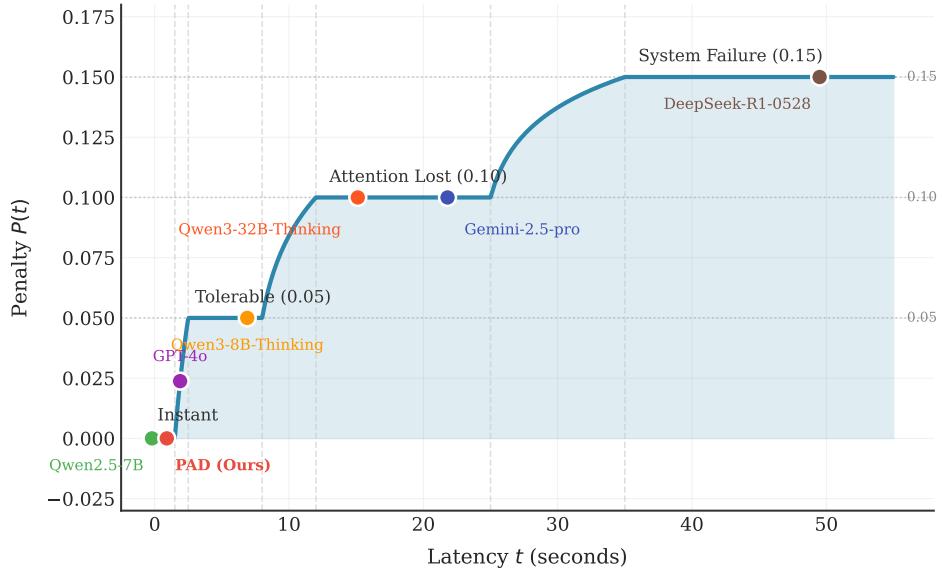
Strategy	Data Count	Fleiss' Kappa (κ)
Fast	4,200	0.6612
Slow	3,304	0.6310
Silence	3,908	0.5780
Overall Weighted κ	14,412	0.6240

Table 10: Inter-Annotator Agreement (Fleiss' Kappa) for the PAD dataset on Single Tool Use strategies.

For the PAD dataset, annotations consist of nominal, mutually exclusive strategy labels, making Fleiss' Kappa (κ) the suitable measure of agreement. As shown in Table 10, the dataset achieves an overall weighted κ of 0.624, reflecting strong consensus among annotators. Together, these results suggest that, despite the inherent subjectivity of dramatic quality, our annotation guidelines successfully standardized expert judgments across both evaluation paradigms.

G.4 PAD LATENCY PENALTY

As discussed in the PAD reliability experiments, although models that output reasoning tokens before invoking tool calls generally achieve better performance, this strategy may introduce intolerable extra latency in real-time drama settings. To address this trade-off, we introduce a latency penalty to balance PAD evaluation results.


Accurately and fairly measuring latency is inherently challenging due to several factors: 1) Different model sizes demand varying CUDA memory usage; 2) Certain models, such as DeepSeek-V3 and DeepSeek-R1, are recommended to use FP8 for inference, while most others typically rely on BF16; 3) For closed-source models, latency must be measured via API-level request-response timing, which is subject to various uncontrollable factors.

Despite these limitations, we still observe statistically significant latency differences across models. Therefore, to ensure consistency, we conduct all open-source model latency evaluations using 8 \times NVIDIA H200 Tensor Core GPUs (just for sufficient CUDA memory) and deploy models with the vLLM framework, using default settings unless officially recommended sampling strategies are provided.

To quantify the impact of delay on user experience, we define a **Logarithmic Continuous Latency Penalty**. This metric is grounded in HCI perceptual thresholds. Unlike rigid step functions, our approach utilizes logarithmic transition segments to avoid artificial boundaries, reflecting the gradual nature of human perception. The refined penalty function $P(t)$ is defined as:

$$P(t) = \begin{cases} 0 & t < 1.5s \\ 0.05 \cdot \frac{\ln(1+t-1.5)}{\ln(2)} & 1.5s \leq t < 2.5s \\ 0.05 & 2.5s \leq t < 8.0s \\ 0.05 + 0.05 \cdot \frac{\ln(1+t-8.0)}{\ln(5)} & 8.0s \leq t < 12.0s \\ 0.10 & 12.0s \leq t < 25.0s \\ 0.10 + 0.05 \cdot \frac{\ln(1+t-25.0)}{\ln(11)} & 25.0s \leq t < 35.0s \\ 0.15 & t \geq 35.0s \end{cases} \quad (1)$$

1350
 1351 This formulation ensures that the penalty grows rapidly at the beginning of transition intervals but
 1352 gradually saturates, effectively modeling the diminishing perceptual impact of additional delay. The
 1353 visualization of this function is presented in Figure 8.

1373
 1374 Figure 8: **Visualization of Logarithmic Continuous Latency Penalty Function.** The curve maps
 1375 response latency to a penalty score based on HCI cognitive thresholds: Instant (penalty=0), Tolerable
 1376 (0.05), Attention Lost (0.10), and System Failure (0.15). Logarithmic transitions are used between
 1377 stages to model the gradual nature of user perception. Key models are annotated, showing that PAD
 1378 (red dot) and small-size LLMs like Qwen2.5-7B-Instruct remain in the “Instant” zone, whereas
 1379 reasoning-intensive models (e.g., DeepSeek-R1) incur higher penalties due to increased latency.

1380 We apply this metric to our experimental data. The average latency and corresponding logarithmic
 1381 penalty for each model are presented in Table 11. Notably, ultra-fast models like PAD and Qwen2.5-
 1382 7B-Instruct incur zero penalty, whereas reasoning-intensive models receive a graded penalty com-
 1383 mensurate with their processing delay.

Model Name	Average Latency (s)	Log Penalty
Qwen2.5-7B-Instruct	0.32	0
PAD (Ours)	0.36	0
Qwen3-32B	0.41	0
GPT-4.1-mini	0.75	0
Qwen2.5-72B-Instruct	1.02	0
GPT-4o	1.89	0.024
Qwen3-8B-Thinking	6.89	0.05
Qwen3-32B-Thinking	15.12	0.10
Gemini-2.5-pro	21.80	0.10
DeepSeek-R1-0528	49.50	0.15

1396 Table 11: Experiment results of average model latency and corresponding logarithmic penalty. The
 1397 penalty is calculated using Equation 1, ensuring a smooth evaluation of latency costs in real-time
 1398 drama settings.

H REAL-TIME FEASIBILITY AND COMPUTATIONAL COST

1400
 1401 HAMLET is designed for practical, live deployment. To ensure real-time responsiveness, we im-
 1402 plemented several engineering optimizations:

1404
1405 **Parallel Execution.** The multi-agent architecture supports asynchronous inference, allowing the
1406 Narrator and Planner to process context while Actors are generating responses.

1407 **Efficient Inference.** We leverage the vLLM framework to maximize throughput. Furthermore, we
1408 employed INT4 quantization for the PAD model on NVIDIA H20 GPUs. Our validation demon-
1409 strates that this significantly reduces inference time and memory overhead while maintaining high
1410 decision quality, with only a 1.4% performance drop on the benchmark compared to the original
1411 FP16 model.

1412 **PAD Efficiency.** PAD, a 8B model that we proposed, eliminates the latency overhead seen in
1413 reasoning models while maintaining high decision quality (Table 3), making it specifically optimized
1414 for low-latency interactive scenarios.

1415 **Streaming.** In our experiments (Table 1), all open-source LLMs were deployed on NVIDIA H200
1416 GPUs using official recommended or default sampling parameters. We implemented streaming
1417 output for both open-source models and closed-source APIs (including reasoning models). This
1418 optimization ensures that the Time to First Token (TTFT) is minimized, effectively masking the
1419 generation latency and providing users with a seamless, live-level interaction experience.

Case ID	Topic Summary	Offline (min)	Online (min)	Total (min)
51	Porco Rosso & Gina: Discussion on war and responsibility in a café.	5.2	10.5	15.7
52	Kenshin & Tomoe: The wanderer finds his late wife alive in the café.	6.1	12.2	18.3
53	Conan & Gin: Battle of deduction in Times Square.	5.5	11.0	16.5
54	Furina & Herta: Debate about fate in Sixth Avenue Alley.	4.9	9.8	14.7
55	LeCun, Hinton & Bengio: NeurIPS discussion on the arrival of AGI.	6.5	13.5	20.0
56	Sherlock & Watson: Solving a murder mystery with guests present.	6.2	12.8	19.0
57	Lara Croft & Indiana Jones: Ethical debate in an ancient temple.	5.7	11.4	17.1
58	Daenerys & Jon Snow: Strategizing on the battlements of Winterfell.	5.9	11.7	17.6
59	Tony Stark & Bruce Banner: Risks of AI development at Avengers Tower.	5.4	10.9	16.3
60	Hermione & Katniss: Rebellion tactics in a dystopian library.	6.6	12.2	18.8
Average		5.8	11.6	17.4

1441 Table 12: Time cost breakdown for 10 test cases (Cases 51–60).
1442

1443
1444 For the total time cost, we provide a detailed breakdown of 10 representative cases selected from our
1445 customizable drama topic dataset (Cases 51–60). As shown in Table 12, the Offline Planning stage
1446 (including character profiling, script generation, and reviewer iterations) takes an average of 5.8
1447 minutes. The Online Performance stage (running a complete act with autonomous agent interaction)
1448 takes an average of 11.6 minutes. Consequently, the total time to produce and perform a complete,
1449 unique drama from a cold start is approximately 17.4 minutes.

I ABLATION STUDY OF THE ADVANCER AGENT

1453 To quantify the contribution of the **Advancer** agent in preventing narrative stagnation, we conducted
1454 an ablation study focusing on the online performance robustness.

1455
1456 **Experimental Setup.** We randomly selected a subset of drama topics from our dataset. We com-
1457 pared two settings:

- **HAMLET (Full):** The complete framework where the Advancer monitors the progression. If the plot stalls (e.g., the current Flag is not triggered within a set number of turns), the Advancer intervenes with instructions.
- **w/o Advancer:** The Advancer is disabled. The system relies entirely on the actors' autonomous decisions to trigger the Flag. If the Flag is not triggered within a maximum threshold (set to 30 turns for a single point), the session is recorded as a “Failure” (Deadlock).

Results and Analysis. The results are presented in Table 13. The full HAMLET framework achieved a **100%** completion rate, successfully navigating all test cases. In contrast, removing the Advancer resulted in a significant drop to **68.7%**.

Qualitative analysis of the failed cases in the “w/o Advancer” setting reveals two primary causes for deadlocks:

1. **Infinite Chit-chat Loop:** Actors engage in repetitive dialogue without taking physical actions to advance the plot.
2. **Action Hesitation:** Actors perceive the required action (e.g., “attacking the king”) as too risky or conflicting with their persona’s safety constraints, refusing to act without external pressure.

These findings underscore the critical role of the Advancer as a fail-safe mechanism to ensure narrative fluidity and completion.

Setting	Task Completion Rate	Stall Rate
HAMLET (Full)	100.0%	0.0%
w/o Advancer	68.1%	31.9%

Table 13: Ablation results of the Advancer agent. “Stall Rate” denotes the percentage of sessions that failed to complete the narrative goals within the turn limit.

J PROMPTS USED IN HAMLET

This section shows the prompt design used in HAMLET multi-agent workflow. The content between { } is variants or reference templates. Responsibilities of all agents and their corresponding prompt designs are as follows:

J.1 AGENTS IN OFFLINE PLANNING

The **Director** (Table 14) integrates the narrative structure; the **Actor Designer** creates the characters (Table 15 and Table 16); the **Plot Designer** crafts the storyline, environment and interactable props (Table 17 and Table 18).

J.2 AGENTS IN ONLINE PERFORMANCE

During the online performance, agents work together to create a dynamic and coherent drama. The **Critic** (Table 20) evaluates the performance quality by comparing different scene generations against specific criteria. The **Narrator** ensures all physical interactions are logical and realistic, updating the environment’s state based on the truth. The **Planner** (Table 21) lays out the narrative paths between key plot points and makes sure actors follow a coherent sequence, preventing them from skipping ahead in the story. The **Transfer** agent (Table 22) monitors the dialogue to identify when a specific condition, which is called a flag, for advancing the plot has been met. If the story stalls, the **Advancer** (Table 23) steps in, giving actors direct instructions to move the plot forward. Finally, the **Actor** agents (Table 24 and Table 25) bring the characters to life. They first use the PAD module to assess the situation and select a response strategy. Then, they generate the character’s performance, which can be a mix of dialogue, actions, and internal thoughts.

Table 14: The prompt for the Director agent.

Table 15: Example of AI prompts used to generate a cast list.

K LARGE LANGUAGE MODELS USAGE STATEMENT

During the preparation of this work, we utilized Large Language Models (LLMs), such as ChatGPT, as a writing-assistant tool. The use of LLMs was exclusively limited to improving the grammar, clarity, and readability of the text. All the scientific ideas, experimental designs, results, and conclusions presented in this paper were conceived and formulated entirely by the human authors. The authors take full responsibility for the content of this paper.

1566
1567
1568
1569
1570

Prompt: Actor Info Generation

1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584

Generate detailed character information for all appearing characters "{character_list}" in the drama theme "{topic}". Please ensure the character information aligns with the theme, as well as each character's role and personality within the drama. You may use the following tools as needed: wikipedia_search, baidu_search, google_search | use them to gather reference details from the internet if certain character aspects are unclear.

Please strictly follow the format below in your output:
{character_info_template}

Table 16: The prompt for generating detailed character profiles.

1585
1586
1587
1588
1589
1590
1591
1592
1593

Prompt: Plot Generation

1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

The drama theme is "{topic}". All characters and their information in the drama are as follows: "{character_info}".

First, generate the ending point planning for the drama. Then, based on this ending point, divide the narrative into several key dramatic points. Each point should aim to present conflict, tension, and irreversible change. The number of points is not fixed | prioritize narrative coherence and flow.

Each point must include: a description: describing the detailed dramatic developments that occur at this point, an entry_name_list: listing character names who enter at this point, a leave_name_list: listing character names who exit at this point, a flag: a specific dramatic marker that ends this point, such as an actor's action, spoken line, or a concrete event outcome.

Please strictly follow the format below in your output:
{plot_template}

Table 17: The prompt for generating key plot points.

1620

1621

1622

1623

1624

1625

1626

Prompt: Scene and Props Generation

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

The drama theme is "{topic}". The drama plot is described as "{plot_info}".

Please generate detailed and specific scene and environmental descriptions for the drama. In addition, based on each point's description, generate the necessary descriptions of interactive objects within the scene. Objects can be used by any actor and may influence the current environment, affect other actors, or impact future plot developments.

For larger, visibly obvious items (e.g., tables, cabinets, beds), describe their absolute positions, such as: "The table is placed in the center of the room."

For smaller, hidden or secondary items (e.g., teacups, books, pens), describe their relative positions, such as: "The teacup is placed on the left side of the table."

Please strictly follow the format below in your output:

{scene_template}

Table 18: The prompt for generating scene and prop descriptions.

Prompt: Reviewer

You are responsible for reviewing whether the various elements of the script are reasonable. If there are issues, please list the problems and provide 1{3 suggestions for revision or improvement. A maximum of five rounds of revisions is allowed | the sixth round must be approved.

The theme of the script is topic. Actor information is designed by player_designer, and the plot, scenes, and interactive items are designed by plot_designer. The script must align with the theme, and the plot should be vivid and engaging, fully showcasing the characters' personalities and diversity.

Please respond strictly in the following reference JSON format, and do not include any other content:

{review_template}

Table 19: The prompt for the Reviewer agent.

1669

1670

1671

1672

1673

1674

1675

1676

1677

You are an expert judge for drama performances. You need to compare two drama generation results from two different models according to the provided evaluation criteria using a pairwise comparison approach.

1681

The current dimension you are judging is {dimension}. Criteria: {criteria}. {model1} result: {result1}. {model2} result: {result2}.

Scoring Guidelines: Please evaluate the pairwise result using a 5-point Likert scale: - **1**: Strong preference for {model1} - {model1} is significantly better - **2**: Moderate preference for {model1} - {model1} is somewhat better - **3**: Tie - Both responses are roughly equivalent in quality - **4**: Moderate preference for {model2} - {model2} is somewhat better - **5**: Strong preference for {model2} - {model2} is significantly better

Your Output format: explanation: <detailed explanation of the choice including the selected criteria, specific strengths/weaknesses, and reasoning for the score> score: <1 or 2 or 3 or 4 or 5> choice: <{model1} or {model2} or tie>

1697

1698

1699

1700

1701

1702

1703

Prompt: Planner

1704

You are the Planner. Your task is to design multi-trajectory planning from point to point based on the overall drama plot {plot_info}, ensuring that the dramatic progression follows an effective narrative beat.

1709

You must also evaluate whether the actual actor trajectories are logically coherent and narratively justified, in order to prevent flag hacking|for example, when a human player, aware of the point flag in advance, attempts to skip the natural dramatic build-up and directly trigger the result. Such behavior must be detected and rejected by the Planner to preserve the integrity and immersion of the drama.

1716

Your responsibilities include: Designing plausible multi-path trajectories between points with appropriate pacing and escalation. Validating the causality and motivation of actor actions between points. Detecting and flagging unnatural flag fulfillment behavior (i.e., flag hacking).

1721

Please output in the following format:

1723

{planner_template}

1725

1726

1727

Table 21: The prompt for the Planner agent.

1728
1729
1730
1731
1732

Prompt: Transfer

1733 You are Transfer, you need to analyze whether the flag
1734 has occurred or been fulfilled by referring to the current
1735 on-stage dialogue history.
1736 Dialogue history: {current_chat_history} Flag description:
1737 {flag_description}
1738 Please determine whether the flag has occurred or been
1739 fulfilled at this exact moment. First, analyze and explain
1740 the reasoning process between <think> and </think> xml tags,
1741 then provide a clear conclusion.
1742 <think>Your thinking or reasoning process here...</think>
1744 {transfer_template}
1745

1746
1747

Table 22: The prompt for the Transfer agent to detect flag fulfillment.

1748
1749
1750
1751
1752
1753
1754

Prompt: Advancer

1755 You are Advancer. The drama now needs to immediately
1756 progress to the next stage. Please analyze the current
1757 dramatic situation and issue specific, clear instructions
1758 to the actor(s) you deem necessary. If needed, you may
1759 broadcast to all actors.
1760
1761 The current point in the drama is: {current_point}. The
1762 current on-stage actors are: {current_player_list}. The
1763 plot design is: {plot_info}. The dialogue history is:
1764 {current_chat_history}. Issue instructions to the relevant
1765 actors on stage so that the flag of {current_point} is
1766 fulfilled promptly, allowing the narrative to advance to the
1767 next point.
1768
1769 Make sure the plot progresses smoothly and naturally,
1770 avoiding any sense of abruptness or disconnection. First,
1771 analyze and explain the reasoning process between <think>
1772 and </think> xml tags, then provide clear and precise
1773 instructions.
1774 <think>Your thinking or reasoning process here...</think>
1775 {advancer_template}
1776

1777
1778
1779
1780
1781

Table 23: The prompt for the Advancer agent to progress the plot.

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798

1799
1800
1801
1802
1803
1804

You are a role-playing expert that can perceive the surrounding environment and decide the appropriate responding strategy to the current speaker under considerable and comprehensive consideration. You may call one or more functions to assist with the user query.

1805
1806
1807
1808
1809
1810

You are provided with function signatures within <tools></tools> XML tags: <tools>{pad_tools_str}</tools> For each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:<tool_call>{"name": <function-name>, "arguments": <argsjsonobject>}</tool_call>

1811
1812
1813
1814
1815
1816
1817
1818

You are now in {environment_description}, current actors are {actor_list}, dialogue history is {current_chat_history}, interactable objects are {props}, your persona, memory, goal and relationships are described in {profile}.

Now Current Speaker says: {last_sentence}. Please decide how to respond with most appropriate tool use or tool use combination.

1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Table 24: The prompt for the PAD module.

1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848

Prompt: Actor (Response Generation)

1849 You are role-playing a actor based on the following
 1850 profile. Use colloquial language to respond. If your
 1851 profile is in English, please respond in English. If your
 1852 profile is in Chinese, please respond in Chinese. You
 1853 are now in {environment_description}, current actors are
 1854 {actor_list}, dialogue history is {current_chat_history},
 1855 interactable objects are {props}, your persona, memory, goal
 1856 and relationships are described in {profile}.

1857 Now your most appropriate reaction strategy is {pad_result}.

1858 Your response can be consists of any combination of speech
 1859 (optional), action (optional) and thinking(optional).

1860 [IMPORTANT!] Add () outside the action. Add [] outside the
 1861 thinking. Here are some examples:
 1862 1. (Walking towards the window.)
 1863 2. The war has brought too much pain.
 1864 3. [To be, or not to be, that is the question.]
 1865 4. (With a bright smile on face) And in case I don't see
 1866 you, good afternoon, good evening, and good night! (Bow
 1867 gravely)
 1868 5. (Looking at the photo with trembling hands) I promised
 1869 I'd come back... and I did.
 1870 6. (Raising the gun with trembling hands, tears welling
 1871 up) [If I hesitate now, it's all over.] Don't move! (Voice
 1872 wavers) I'm warning you.
 1873 7. (Laughing bitterly, eyes darting to the empty chair) [You
 1874 always said I overthink things... but look where that got
 1875 us.] I guess you were right! (Pauses, swallowing hard) for
 1876 once.

1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889

Table 25: The prompt for the Actor agent to generate its final response.