Under review as a conference paper at ICLR 2026

MULTI-LCB: EXTENDING LIVECODEBENCH TO
MULTIPLE PROGRAMMING LANGUAGES

Anonymous authors
Paper under double-blind review

ABSTRACT

LiveCodeBench (LCB) has recently become a widely adopted benchmark for eval-
uating large language models (LLMs) on code-generation tasks. By curating com-
petitive programming problems, constantly adding fresh problems to the set, and
filtering them by release dates, LCB provides contamination-aware evaluation and
offers a holistic view of coding capability. However, LCB remains restricted to
Python, leaving open the question of whether LLMs can generalize across the
diverse programming languages required in real-world software engineering.

We introduce Multi-LCB, a benchmark for evaluating LLMs across twelve pro-
gramming languages, including Python. Multi-LCB transforms Python tasks from
the LCB dataset into equivalent tasks in other languages while preserving LCB’s
contamination controls and evaluation protocol. Because it is fully compatible
with the original LCB format, Multi-LCB will automatically track future LCB
updates, enabling systematic assessment of cross-language code generation com-
petence and requiring models to sustain performance well beyond Python.

We evaluated 24 LLMs for instruction and reasoning on Multi-LCB, uncover-
ing evidence of Python overfitting, language-specific contamination, and sub-
stantial disparities in multilingual performance. Our results establish Multi-LCB
as a rigorous new benchmark for multi-programming-language code evaluation,
directly addressing LCB’s primary limitation and exposing critical gaps in cur-
rent LLM capabilities. All prompts, source code and experimental configura-
tions are publicly available at https://anonymous.4open.science/r/
Multi-LiveCodeBench-C627/.

1 INTRODUCTION

Large language models (LLMs) have recently demonstrated impressive capabilities in code-related
tasks (Ridnik et al., 2024; Lozhkov et al., 2024; Roziere et al., 2023; Li et al., 2022; Nijkamp et al.,
2022), powering applications such as Al-assisted programming, automated debugging, and code
translation. To measure these abilities, benchmarks such as HumanEval (Chen et al., 2021), MBPP
(Austin et al., 2021), and APPS (Hendrycks et al., 2021) have been widely adopted. However, these
datasets suffer from well-documented limitations, including contamination from training corpora,
narrow task scope, and weak correlation with human judgment. LiveCodeBench (LCB) (Jain et al.,
2024) addresses these shortcomings by continuously curating competitive-programming problems,
filtering them by release date, and enabling contamination-aware, continuously updatable evalua-
tion. As a result, LCB has quickly become a standard benchmark for evaluating LLMs on code-
generation tasks (Google DeepMind, 2025; DeepSeek, 2025).

Despite these strengths, LCB (Jain et al., 2024) evaluates only Python. While convenient, this
limitation overlooks a central reality of software engineering: developers routinely work across
diverse programming languages, each with its own syntax, semantics, and idiomatic practices. An
LLM capable of solving problems exclusively in Python may perform poorly when C++ is required
for systems programming, Java for enterprise software, or JavaScript for web development. Current
evaluations therefore leave open a critical question: can LLMs generalize coding competence across
multiple programming languages, or are they overfitted to Python?

In this work, we introduce Multi-LCB, an extension of LCB (Jain et al., 2024) to twelve program-
ming languages while preserving its contamination controls and evaluation protocol. Multi-LCB

https://anonymous.4open.science/r/Multi-LiveCodeBench-C627/
https://anonymous.4open.science/r/Multi-LiveCodeBench-C627/

Under review as a conference paper at ICLR 2026

replicates every LCB task across all supported languages, enabling direct comparison of model per-
formance on identical problems in different programming languages and updating automatically as
LCB evolves. We evaluate 24 reasoning- and instruction-oriented LLMs on Multi-LCB and uncover
key findings:

1. Python is not always a reliable proxy for individual non-Python languages. Our results re-
veal substantial and practically meaningful performance gaps across languages. In several
cases, models that are stronger on Python do not retain their advantage in other languages.

2. Python overfitting. Models that perform strongly in Python often degrade sharply in other
languages.

3. Language-specific contamination. Evidence of data leakage varies by programming lan-
guage, reflecting uneven distribution in pretraining corpora.

4. Substantial multi-programming-language disparities. Models show large performance
gaps across languages, with weaker results in statically typed or less prevalent languages.

Our main contributions are:

1. We extend LCB (Jain et al., 2024) to 12 programming languages without task loss, enabling
direct comparison of LLLM abilities to solve identical problems across different languages.

2. We provide a comprehensive evaluation of 24 instruction- and reasoning-oriented LLMs
across these languages, revealing systematic multi programming languages performance
gaps and evidence of language-specific contamination.

3. We publicly release all prompts, source code and experimental configurations at https:
//anonymous.4open.science/r/Multi-LiveCodeBench-C627/ to facili-
tate reproducibility and future research.

These results establish Multi-LCB as a rigorous benchmark for multi-programming-language code
evaluation, directly addressing LCB’s Python-only limitation and providing a foundation for devel-
oping more robust, programming language agnostic coding models.

2 RELATED WORK

Single-language code benchmarks. Early code-generation benchmarks evaluate functional cor-
rectness almost exclusively in Python. HumanEval (Chen et al., 2021) contains 164 hand-written
problems, each defined by a natural language prompt, a fixed function signature, and hidden unit
tests; tasks are short, single-function programs created specifically for evaluation rather than drawn
from programming contests. MBPP (Mostly Basic Programming Problems) (Austin et al., 2021)
likewise offers small Python exercises aimed at introductory programming and interview practice.
Subsequent datasets expanded scale and difficulty: APPS (Hendrycks et al., 2021) aggregates com-
petition and interview style problems with hidden test suites, CodeContests (Li et al., 2022) compiles
algorithmic contest tasks with official judge input/output data, and CodeXGLUE (Lu et al., 2021)
provides a broad suite of generation, translation, and retrieval tasks. Despite their influence, these
resources are static snapshots, lack release date filtering to prevent training set contamination and
are therefore largely saturated, remain heavily Python centric, and do not enforce a unified STD-
IN/STDOUT protocol.

Multi-programming-language benchmarks. Several datasets extend code generation evaluation
beyond Python. MBXP (Athiwaratkun et al., 2022) translates functional-format Python problems
(e.g., HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021)) by rewriting function signatures
and regenerating unit tests for each language. Even a simple Python assertion like:

assert binomial_coeff (5, 2) == 10

must be expanded into multi-line Java test code. This translation must be repeated separately for
every language and is sensitive to syntax and runtime differences. Concurrent work MultiPL-E (Cas-
sano et al., 2023) similarly performs translation of HumanEval and MBPP (including their unit tests)
into 19 programming languages. HumanEval-XL (Peng et al., 2024) similarly expands HumanEval

https://anonymous.4open.science/r/Multi-LiveCodeBench-C627/
https://anonymous.4open.science/r/Multi-LiveCodeBench-C627/

Under review as a conference paper at ICLR 2026

Prompts LLM

Natural language description
pn et
YOUR CODE HERE

Code generation:
STDIN/STDOUT

o

Test cases examples

Problem sample:

Question AtCoder, Codeforces Problems Tests l .

- Natural language
question description
- Test cases examples

‘ \ Question

LeetCode Problems Tests Converter

e E—
[1,2,31, —
[4,5,61]

AN J

Tests

Tests

IS

23 Pass@1

56

Figure 1: Multi-LCB overview. Top: LCB natural-language problem descriptions are wrapped
into prompts specifying the target programming language and passed to the LLM for STDIN/STD
OUT code generation. AtCoder and Codeforces problem tests are passed directly to the execution
stage. Bottom: LeetCode problem tests are transformed through a dedicated test converter to pro-
duce equivalent STDIN/STDOUT inputs. The generated code is compiled or executed in the target
programming language and evaluated using Pass@]1.

to additional languages and provides a standardized execution harness while preserving the func-
tional, unit-test format. Multi-LCB avoids this by keeping only the natural-language description and
converting hidden tests into a language-agnostic STDIN/STDOUT format, for example:

Input:

52

Output:

10

Other projects broaden language coverage in different ways. Ag-LiveCodeBench-X (Boruch-
Gruszecki et al., 2025) reuses a subset of LiveCodeBench tasks already in STDIN/STDOUT format
and adds rarer targets such as Lua, R, Julia, OCaml, and Fortran. xCodeEval (Khan et al., 2023)
likewise provides a unified multilingual execution framework and resembles our approach, but it
draws exclusively from Codeforces problems and is not continuously updated. McEval (Chai et al.,
2024) and BigCodeBench (Zhuo et al., 2024) once offered broad language coverage, but both are
static and evaluate different task sets per language, hindering direct cross language comparison.

Contamination-aware evaluation. LiveCodeBench (LCB) (Jain et al., 2024) introduced release
date filtering and continuous collection of Python problems from three major competitive program-
ming platforms: LeetCode, AtCoder, and Codeforces (see Appendix D.1 for task statistics). By
harvesting new tasks and filtering them by post-training release dates, LCB enables live, contam-
ination aware evaluation of LLMs and has become a de-facto standard for robust single language
(Python) code assessment (Comanici et al., 2025; Yang et al., 2025; Liu et al., 2024). A related
effort, EvoCodeBench (Li et al., 2024), followed a similar evolving design but was not actively
maintained and remained limited to Python. Multi-LCB builds directly on this foundation. It reuses
the entire LCB (Jain et al., 2024) task pool and inherits its contamination controls.

3 BENCHMARK DESIGN

This section describes the approach, used to construct the Multi-LCB benchmark. Figure 1 illustrates
the full pipeline. Please note, that although Multi-LCB is built on LCB, the same approach can be
applied to any dataset with a comparable structure.

Data Source. Earlier versions of LCB supported several evaluation scenarios beyond code gener-
ation: self-repair, code execution, and test output prediction. But the latest releases (v5-v6) focus
exclusively on code generation, the most widely benchmarked capability of modern LLMs. In this
setting, a model receives a natural language problem statement with sample input/output pairs and
must synthesize a program that passes all hidden test cases.

Under review as a conference paper at ICLR 2026

To construct Multi-LCB, we load the desired version of the LCB code generation dataset from Hug-
ging Face, retrieving Python problems and their metadata. We convert every release of LCB code
generation dataset without modification, preserving all tasks from three competitive-programming
platforms: LeetCode, AtCoder, and Codeforces. Each task includes a natural language description,
input/output examples, and contest release date for contamination-aware filtering. Test conversion
is applied only to LeetCode’s functional format tasks to ensure unified STDIN/STDOUT evaluation.
Details about platforms and temporal distribution appear in the Appendix D.1.

Conversion of functional format. LCB supports two native task formats: STDIN/STDOUT (as
in AtCoder and Codeforces), where a program reads from standard input and writes to standard
output, and Functional (as in LeetCode), where a specific function is implemented and invoked by
the evaluation system. Directly extending the functional format to a multi-programming language
benchmark is challenging. Each LeetCode task provides Python starter code tightly coupled to its
own testing harness. Producing equivalent starter code and call signatures for many target languages
would require custom templates for every language, leading to an unsustainable and error-prone
process. To overcome this limitation, we designed an automatic conversion pipeline that rewrites
every Functional task into a unified STDIN/STDOUT format. This pipeline consists of two compo-
nents: (1) prompt adaptation that reformats problem statements and examples for model input, and
(2) test conversion that transforms all test cases for automated evaluation.

The pipeline first parses examples from the problem statement and reformats them into STDIN/STD-
OUT format for inclusion in model prompts. (see Appendix C.1). Separately, it converts all test
cases (both public and hidden) from the original format to enable unified automated evaluation. This
unification allows a single evaluation harness to handle both the original STDIN/STDOUT prob-
lems and the adapted functional tasks across all supported languages. Since the original benchmark
is based on Python, tasks involving Python-specific behavior could theoretically appear. However,
tasks on LeetCode, AtCoder, and Codeforces are authored by human experts and are intentionally
designed to avoid language-specific ambiguities, as these platforms support many programming
languages. Consequently, Multi-LCB requires no language-specific rewriting, and the tasks remain
inherently language-agnostic. Moreover, in our manual inspection of approximately 500 tasks, we
did not find any cases in which language-dependent features introduced inconsistencies. Note that
tasks unsuitable for strict input/output grading, such as those admitting multiple valid answers or
requiring explicit data structure construction, are already excluded in the official LCB dataset that
we load, so Multi-LCB inherits this filtering without any additional intervention. The remaining
tasks are grouped by I/O structure: Scalar: inputs and outputs are single, scalar values (e.g. inte-
gers, floats, booleans, or simple strings); One-Dimensional: involve one-dimensional arrays (lists)
as input or output; Two-Dimensional: include exactly one two-dimensional array (matrix or jagged
array) in the I/O. As a result, all functional tasks, including their examples and hidden tests, are con-
sistently converted to STDIN/STDOUT format: lists are space-separated, and for 2D arrays the first
line specifies the number of rows, followed by row-wise space-separated values. This conversion
applies to both the examples shown to the models and all test cases used for evaluation.

Code generation. We adopt a zero-shot prompting strategy that follows the original LiveCodeBench
protocol. For each task, the benchmark constructs a prompt with three components:

1. a system message instructs the model to act as an expert programmer in the target
language (e.g., * ‘You are an expert Python programmer...’’);

2. a user message provides the complete natural language problem statement with ex-
plicit STDIN/STDOUT specifications and input/output sample cases already provided in
the original problem descriptions;

3. acode-block placeholder indicates where the solution must be written:

nmmnn

python
YOUR CODE HERE

nmmnn

Answer: (use the provided format with backticks)

The code-block header is set to the target language (e.g., cpp, java, python) to ensure
correct syntax highlighting and parsing.

Under review as a conference paper at ICLR 2026

Models are required to output only the complete program source that reads from the standard input
and writes to the standard output. High-level zero-shot template prompts for both native AtCoder
and CodeForces tasks and adapted LeetCode problems are included in the Appendix C for reference.

Automatic Testing and Evaluation. Correctness is assessed against a hidden suite of official test
cases provided by the original contests. A program is marked correct only if it passes all tests
without runtime errors or timeouts. For quantitative comparison we report Pass@]1, the fraction of
tasks for which the model’s first generated solution passes every public and hidden test.

Together, these stages create a fully automated pipeline: a model receives a problem prompt, emits
a candidate solution, the code is securely compiled and executed, and the output is graded against
hidden tests — all without human intervention. This process preserves LCB’s rigorous contamination
controls while enabling direct, language-agnostic evaluation of code generation across the diverse
set of languages supported by Multi-LCB. Note, that the same set of tasks is used across evaluations
on different programming languages, hence task difference does not hinder the comparison of the
multi-language model capabilities.

3.1 LANGUAGE SET AND MOTIVATION

This study evaluates multilingual code generation across major programming languages: C++, C#,
Python, Java, Rust, Go, TypeScript, JavaScript, Ruby, PHP, Kotlin and Scala. The selection balances
three criteria: (1) popularity based on Github, StackOverFlow, RedMonk and TIOBE rankings, (2)
stable infrastructure support through package managers like Conda for reproducible execution, and
(3) paradigmatic diversity across compilation strategies, type systems, and memory management
models. For detailed programming language rankings across multiple sources, as well as the runtime
characteristics information, please see Appendix E.

4 EXPERIMENT SETUP

Here we describe the experimental configuration used to evaluate LLMs on the Multi-LCB bench-
mark.

Models We evaluate a diverse set of 24 publicly available large language models (LLMs) span-
ning from 7B to 685B parameters and covering both general-purpose and code-specialized do-
mains. The pool includes instruction-tuned and reasoning-augmented variants from the Qwen3,
DeepSeek, OlympicCoder, OpenReasoning, and OpenCoder families, among others. Representative
examples include Gpt-o0ss-120B* (Medium), Qwen3-235B-A22B-Thinking-2507%,
DeepSeek-R1-0528* and OpenReasoning-Nemotron—-32B*. We intentionally selected
models to capture a wide variety of training paradigms (pure code pretraining, mixed-domain train-
ing, instruction tuning, reasoning-enhanced fine-tuning). Appendix F.1 lists all checkpoints with
their estimated training cut-off dates.

Hardware and Environment. All experiments were run on a cluster of 16 NVIDIA H100 80 GB
GPUs with CUDA 12.3 and Python 3.11 inside Conda environments. Each programming language is
executed inside an isolated sandbox container that bundles its corresponding compiler or interpreter
(e.g., GCC 13 for C++, Rust 1.79, OpenJDK 21, .NET 8, CPython 3.11, Node.js 20). The sandbox
enforces strict resource limits: 6 s wall-time per test case, 4 GB memory, and no external network
access. This ensures deterministic, secure, and language-agnostic execution.

Inference Protocol. Following the original LiveCodeBench protocol, we adopt a zero-shot prompt-
ing strategy. For each problem, we generate a model-specific number of tokens (set according to its
configuration) using nucleus sampling with temperature = 0.2 and top-p = 0.95, applying a triple-
backtick stop sequence to capture the complete code block. Models are served with vVLLM (Kwon
et al., 2023) or SGLang (Zheng et al., 2024) for efficient batched decoding.

Evaluation Metric We report Pass@1 (%) averaged on 10 runs as the primary metric, which mea-
sures the fraction of problems solved correctly by the first generated solution. A solution is marked
correct only if it compiles/interprets successfully and passes all hidden official test cases without
runtime errors or timeouts.

Under review as a conference paper at ICLR 2026

Table 1: Performance results on Multi-LCB for the tasks from February 2025 till May 2025. Scores
represent the Pass@1 (%) metric averaged on 10 runs. Higher is better, bold is best, italic is the
second best. Temperature t=0.2 (* - reasoning mode)

Model Python C++ Java Go JS TS C# Rust Ruby PHP Kotlin Scala Avg

Gpt-0ss-120B* (Medium) 71121 723+19 704430 69930 705+19 703 +38 573+27 70525 702420 66 +25 TLOx25 541+30 67.8+s9
Qwen3-235B-A22B-Thk-2507* 740 =37 758+24 73920 56720 67.0+35 62.5+29 665+22 477x28 494132 69.0+37 67.7+30 57.6+30 64.0+04
DeepSeek-R1-0528* 66320 680+16 678+18 550x30 64.6+28 58935 61.6x28 63.1x23 62415 61.6+22 66028 62322 63.1+3s
Gpt-0ss-20B* (Medium) 63.6 25 657 +40 62727 59.9=:34 61934 618+23 524x25 619x23 61.7+21 605+25 624x220 431x20 59861
Qwen3-30B-A3B-Thk-2507* 64026 65.7+40 624132 441x19 519143 465+23 565138 51.7x40 4201126 588120 50.6+27 43.6x28 532+s83
Gpt-0ss-120B* (Low) 56.0£31 554428 56820 S51.8+22 559120 556419 45723 56.0+17 53.0+28 534423 55.8+28 42242 530 46
Qwen3-235B-A22B* 589 +28 583 +27 55042 487 +35 50.0+28 488 +31 S51.0x40 407 £37 46.6+26 48438 475+39 33.6+34 48970
Qwen3-32B* 57.6+40 55334 56045 42126 49.6+26 49338 49.01xa1 400 x41 5201 +27 50.0+31 464 +£27 35.6+34 48.6+67
Qwen3-30B-A3B* 550£36 515432 506+26 369x1s 499+40 482449 43928 384129 46831 480x30 443x37 322227 455%67
Gpt-0ss-20B* (Low) 46230 47924 46318 42614 451 x20 42719 412x21 42017 44T x16 45816 46323 292=x27 433 x40
Qwen3-14B* 535453 472+a1 472128 324+39 45030 460+s52 433128 315+27 453150 455129 392131 324130 424170
Qwen3-235B-A22B-Instr-2507 438 +28 427 +24 455+24 35014 264413 195427 441+18 39510 415414 424420 41020 28119 375 is4
Qwen3-8B* 463 £59 397 +s50 36.7+s55 25844 36.5+49 388+4s 363+43 20541 395458 360+22 24033 27.0x27 339+77
Qwen3-Coder-30B-A3B-Instr 36.6+25 3l.1+20 35328 258=%22 284+15 28014 34723 34323 347+22 318=x13 357x23 202+18 314 x4y
Qwen3-30B-A3B-Instr-2507 389+25 356+22 372x20 224x19 208+18 18217 365+11 32127 34722 348x19 359x19 257=x1s 3llx72
Qwen2.5-Coder-32B-Instr 27508 269+07 30509 239x07 6312 288+06 28513 247 x06 24608 27306 26608 24506 25.0zx62
Seed-Coder-8B-Instr 22108 23407 260x1s 221x15s 233123 23.1x16 27.0x0s 21814 21609 204+13 234+14 21.8:10 23.0x19
OpenRsn-Nmt-32B* 644 £36 442452 40830 11.5+42 108169 105453 299+3s 2815 183434 158432 173+35 60x13 227 +185
DeepSeek-R1-Distill-Qwen-32B* 39.4 +735 222446 33265 11.9x28 162+39 11.6+34 293143 202+46 40.1+59 129426 205+47 70x14 220+112
Devstral-Small-2505* 23210 226+09 228+07 16022 227 +10 247 +14 241x14 19912 199120 208+13 21.2+10 172+14 213 +27
Qwen2.5-Coder-14B-Instr 220£06 213+03 239x0s 192x06 226x08 175x08 23305 167 x06 227 x0s 227x06 18.1x04 204x0s 20924
OpenCodeRsn-Nmt-1.1-32B* 56.0 124 37380 33.1x42 9926 8.2 37 49+20 25534 Llzos 23431 193+a3 12332 70x22 198 161
DeepSeek-R1-Distill-Qwen-14B* 41.8 +55 163 +18 249+27 10821 102+34 11.5+30 292140 3714 345142 38+1s8 11.5+36 3313 168+
Deepseek-Coder-33B-Instr 172 07 162405 185+0s 124 :05 85+17 74125 17107 2606 152407 165+07 160+05 12.2x10 133 149

5 EXPERIMENTS AND RESULTS

We evaluate a suite of frontier large language models on Multi-LCB, spanning 12 programming
languages and reporting Pass@1 averaged on 10 runs as the primary metric (Table 1). This section
presents a detailed analysis of model performance on latest Dataset v6 (Feb 2025 — May 2025)
(Section 5.1), compares findings with single-language LiveCodeBench (LCB) results (Section 5.2),
and investigates contamination signals (Section 5.3). For additional performance results at various
sampling temperatures, Pass@5 and Pass@ 10 metrics and other dataset releases (July 2024-May
2025 and the full 1,055-task benchmark) see appendix F.

5.1 EXPERIMENTS RESULTS ON MULTI-LCB

We study performance variations in models released more recently. Particularly, we evaluate 24
recent large language models on Multi-LCB, restricting tasks to those released after 2025-02-01 to
ensure live, post-cutoff evaluation and minimize any risk of training-data leakage. Model approxi-
mate cutoff dates are listed in Appendix F.1 Table 4.

Table 1 summarizes Pass@1 averaged on
10 runs with temperature ¢ = 0.2 perfor-
mance across twelve programming languages
on Dataset v6 (Feb 2025 — May 2025), while
Figure 2 highlights the results for the 10 best-
performing models.

Our results reveal substantial and

practically meaningful performance
gaps across languages. For example,
Gpt-o0ss-120B* (Medium) outper-

forms Qwen3-235B-A22B-Thk-2507*
on Go, Javascript, Typescript, Rust, Ruby and
Kotlin, and DeepSeek-R1-0528* outper-
forms Qwen3-235B-A22B-Thk-2507*

JavaScript

Kotlin
on Rust, Ruby and Scala, despite e Gotoss 1208+ (rciom)* ov:67.5% — Gposs 1208 Low) (v 5315
* Quen3-235B-A22B-Thinking-2507 * (avg: 64.0%) Quen3-2358-A228 * (avg: 48.9%)
Qwe n3-235B-A22B-Thk-2507 be‘ —e— DeepSeek-R1-0528 * (avg: 63.1%) —e— Qwen3-32B * (avg: 48.6%)
. . . —e— Gpt-0s5-208* (Medium) * (avg: 59.8%) Qwen3-30B-A3B * (avg: 45.5%)
mng COHSIStently Stronger on Python This —e— Quen3-30B-A3B-Thinking-2507 * (avg: 53.2%) ~ —s— Gpt-0ss-20B* (Low) * (avg: 43.3%)

is precisely why strong Python ability is not
always a reliable proxy for true cross-lingual Figure 2: Top-10 models by Pass@1
code generation competence and evaluation
must consider performance in the target
languages rather than relying on Python alone.

Under review as a conference paper at ICLR 2026

Figure 3 plots per-model Pass@1 averaged on o
10 runs with sampling temperature ¢ = 0.2

scores on Python against the cross program- 70
ming language average on Dataset v6 (Feb - et R0
2025 — May 2025). o -

O3 30843 G oss 1200 Low

Almost every point lies above the z = y
diagonal, demonstrating a consistent bias
toward Python. Models without ex-
plicit multi programming languages train-
ing, such as OpenRsn-Nmt-32B* and

b quens-148

Quen3.68
GptLoss-208-Low
O quen3-235b-22-nstr-2507

Pass@1 on Python (%)

OpenCodeRsn—-Nmt—-1.1-32B*, show the *
starkest gap, exceeding 60% on Python while
remaining below 30% across other languages.)

Even the largest reasoning-augmented mod-

els, including Qwen3-235B-Thk and ° B age Passl across all longuages (o0) 0
DeepSeek—R1, retain a measurable positive

bias toward Python, though the disparity is less ~ Figure 3: Scatter of Python vs. Average Pass@1
pronounced.

These results confirm that strong Python ability
is not necessarily a reliable proxy for true cross-
lingual code generation competence.

The most strongest models, Gpt—0ss—-120B* (Medium), Qwen3-235B-A22B-Thk-2507*
and DeepSeek-R1-0528* establish a strong yet far-from-saturated frontier, while the next tier of
high-performing models, such as Qwen3-30B-A3B-Thk-2507%, illustrates that only a handful
of reasoning-augmented variants can exceed the 50% mark. Most of the evaluated models remain
below 40%, underscoring the benchmark’s challenge of achieving robust multi programming lan-
guage code generation correctness.

Figure 4 plots Pass@]1 distribution across
12 languages on with sampling tempera-
ture t = 0.2 on Dataset v6 (Feb 2025 —
May 2025). Boxes show the interquar-
tile range with the horizontal line marking
the median and the red diamond indicat-
ing the mean. This reveals a clear diffi-
culty gradient. Python achieves the high-
est mean Pass@1 of 0.482, with Java and
C++ close behind at about 0.44. C#, Ruby,
PHP, Go, Rust, Kotlin and JavaScript/-
TypeScript form a middle tier with means .|

pass@1 Score

near 0.33-0.39, while Scala consistently A
. o)
trail at means below 0.29. These gaps per- Programming Language

sist across the top-performing models, re-
flecting structural challenges such as com-
pilation complexity, ownership semantics,
and smaller ecosystem resources.

Figure 4: Pass@1 distribution across 12 languages

We observe that Python consistently outperforms other languages on Multi-LCB. This suggests
that current LLMs are substantially more trained on Python code, especially for reasoning-mode
training, and that cross-language knowledge transfer remains only partial. We suppose that model
performance could be improved by increasing training coverage of non-Python programming lan-
guages.

5.2 COMPARISON WITH LIVECODEBENCH

To verify that our multilingual extensions preserve the fidelity of the original LiveCodeBench (LCB),
we compare Pass@1 scores on the Python subset of Multi-LCB against the official results reported

Under review as a conference paper at ICLR 2026

for LCB versions v4-v6. Table 2 reports original leaderboard results (ORIG) and our reproduced
scores (OUR), with A representing the absolute difference.

Table 2: Comparison of reasoning/code models on Python across benchmark versions (v4—v6).
Original leaderboard values (ORIG, %) are contrasted with our reproduced scores (OUR, %). Dif-
ference is computed as A = OUR — ORIG.

Model Benchmark ORIG (%) OUR (%) A (%) Source
version (range)
Qwen3-235B-A22B-Thinking-2507 v6 [2502-2505] 74.1 74.0 -0.1 Hugging Face
DeepSeek R1 0528 v6 [2502-2505] 68.7 66.3 2.4 LCB leaderboard
Qwen3-30B-A3B-Thinking-2507 v6 [2502-2505] 66.0 64.0 2.0 Hugging Face
OpenReasoning-Nemotron-32B v6 [2502-2505] 65.6 64.4 -1.2 LCB leaderboard
OpenCodeReasoning-Nemotron-1.1-32B v6 [2502-2505] 61.4 56.0 -5.4 LCB leaderboard
Qwen3-30B-A3B* v6 [2502-2505] 57.4 55.0 24 Hugging Face
Qwen3-235B-A22B v6 [2502-2505] 55.7 58.9 32 LCB leaderboard
Qwen3-235B-A22B-Instruct-2507 v6 [2502-2505] 51.8 43.8 -8.0 Hugging Face
Qwen3-32B* v5 [2410-2502] 65.7 64.3 -1.4 Qwen3 Tech report
Qwen3-14B* v5 [2410-2502] 63.5 56.7 -6.8 Qwen3 Tech report
Qwen3-30B-A3B* v5 [2410-2502] 62.6 61.0 -1.6 Qwen3 Tech report
Qwen3-8B* v5 [2410-2502] 57.5 49.1 -8.6 Qwen3 Tech report
Seed-Coder-8B-Instruct v5 [2410-2502] 24.7 19.8 -4.9 Hugging Face
OpenCodeReasoning-Nemotron-1.1-32B v4—v5 [2408-2502] 69.9 65.3 -4.6 Hugging Face
OlympicCoder-32B v4-v5 [2408-2502] 54.5 523 =22 Hugging Face
OlympicCoder-7B v4-v5 [2408-2502] 40.7 35.6 =511 Hugging Face
Qwen2.5-Coder-32B-Instruct v4-v5 [2408-2502] 28.3 27.6 -0.7 Hugging Face

Overall, reproduction is strong: differences are typically within a few percentage points, with a mean
absolute deviation of only about 3%. For example, Qwen3-235B-A22B-Thinking-2507

achieves 74.0% Pass@1 in our evaluation versus 74.1% on the original v6 leaderboard (A = —0.1),
while DeepSeek-R1-0528 records 66.3% compared to 68.7% (A = —2.4). Even for mod-
els with larger gaps, such as Qwen3-235B-A22B-Ins-2507 (A = —8.0) or Qwen3-8Bx*

(A = —8.6), the rank ordering across models remains consistent.

These close alignments confirm that Multi-LCB’s multilingual transformations introduce no artifi-
cial difficulty for Python tasks. Performance differences instead reflect natural leaderboard variance
and underscore that the multilingual benchmark faithfully reproduces the single-language LCB set-
ting, ensuring that any additional challenges arise from genuine cross-language generalization rather
than implementation artifacts.

5.3 CONTAMINATION ON MULTI-LCB

A core design goal of Multi-LCB is

contamination-aware evaluation via Overall Monthly pass@1 Trends Across Top Models
release-date filtering. Nevertheless,
time-wise analysis reveals clear evidence
of residual contamination on older (pre-
cutoff) problems. Figure 5 shows monthly
Pass@1 trends for the top-10 models aver-
aged across all programming languages :
scores are systematically higher on earlier
months and exhibit step-like drops when
the evaluation window crosses model
cutoffs, followed by sustained lower per-
formance on post—cutoff problems. Our
main comparisons in Section 5 restrict e —

evaluation to tasks released on or after — G o — o
2025-02-01, ensuring live, post-cutoff

measurement. Under this setting, perfor- Figure 5: Monthly Pass@]1 trends averaged across all
mance drops to a level that better reflects programming languages for top-10 models.

true generalization, whereas inflated

scores on older windows are explained by

pretraining exposure rather than genuine zero-contamination generalization.

https://huggingface.co/Qwen/Qwen3-235B-A22B-Thinking-2507
https://livecodebench.github.io/leaderboard.html
https://huggingface.co/Qwen/Qwen3-30B-A3B-Thinking-2507
https://livecodebench.github.io/leaderboard.html
https://livecodebench.github.io/leaderboard.html
https://huggingface.co/Qwen/Qwen3-30B-A3B-Thinking-2507
https://livecodebench.github.io/leaderboard.html
https://https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507
https://arxiv.org/pdf/2505.09388
https://arxiv.org/pdf/2505.09388
https://arxiv.org/pdf/2505.09388
https://arxiv.org/pdf/2505.09388
https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Instruct
https://huggingface.co/nvidia/OpenCodeReasoning-Nemotron-1.1-32B
https://huggingface.co/open-r1/OlympicCoder-32B
https://huggingface.co/open-r1/OlympicCoder-32B
https://huggingface.co/open-r1/OlympicCoder-32B

Under review as a conference paper at ICLR 2026

6 LIMITATIONS AND THREATS TO VALIDITY

Language Coverage and Selection. Multi-LCB covers 12 programming languages but does not
include some important languages such as Swift, Haskell, R, and others. The language selection
is based on popularity rankings in 2025, which may not reflect specialized domains or emerging
languages. Additionally, some languages have various dialects and versions that are not accounted
for in our evaluation framework.

Task Complexity and Domain. While the selected programming languages span different domains
(systems programming, web development, data science), the tasks themselves remain rooted in com-
petitive programming. Although algorithmic problem-solving has indirect relevance to industrial
coding capabilities, Multi-LCB does not directly assess real-world software engineering scenarios
such as API integration, debugging legacy code, or collaborative development workflows.

Evaluation Protocol Constraints. The strict STDIN/STDOUT format may introduce performance
degradation not only due to algorithmic reasoning limitations but also due to syntax unfamiliarity,
difficulty parsing input formats, or failure to follow output specifications. Models may fail tasks due
to format compliance issues rather than core problem-solving deficits, potentially confounding our
assessment of true multilingual coding competence.

Model Selection Bias. Our evaluation focuses exclusively on publicly available models, excluding
proprietary systems that may represent the current state-of-the-art. This limitation means our results
reflect only a subset of available models and may not accurately represent the real-world leaderboard
of multilingual code generation capabilities.

Construct Validity. The automatic conversion from functional format to STDIN/STDOUT may
alter task complexity differently across programming languages. Some languages may be more
naturally suited for certain problem types, potentially creating unequal evaluation conditions that
affect cross-language comparisons.

Internal Validity. Despite date-based filtering, hidden forms of contamination may persist through
similar problem patterns or solution templates present in training data. Additionally, models may
exhibit temporal bias based on varying exposure to different programming languages during their
training periods.

7 FUTURE WORK

Multi-LCB’s modular design enables straightforward language expansion. We plan to add Swift,
Haskell, R, and Julia by defining their compilation commands and runtime environments. We
will evaluate proprietary models (GPT-4, Claude, Gemini) to establish comprehensive multilin-
gual leaderboards reflecting current state-of-the-art performance. The STDIN/STDOUT framework
directly supports LCB-Pro (Zheng et al., 2025) and other benchmarks requiring format conver-
sion, enabling broader contamination-aware multilingual evaluation without additional infrastruc-
ture changes.

8 CONCLUSIONS

We introduced Multi-LCB, a contamination aware benchmark for evaluating large language mod-
els on multilingual code generation. Multi-LCB provides an extensible framework spanning twelve
programming languages and continuously updates with newly released problems. The conversion
methodology extends beyond LCB to other Python benchmarks (e. g. LCB Pro (Zheng et al., 2025)),
offering a general approach for multilingual code evaluation. By inheriting LiveCodeBench’s live
evaluation protocol and unified STDIN/STDOUT execution, it enables rigorous, cross programming
language assessment and mitigates data contamination that affects static benchmarks. Our experi-
ments expose programming language specific contamination, evidence of Python overfitting, and
significant performance gaps across programming languages. We hope Multi-LCB will serve as a
durable resource for advancing the evaluation of code-oriented LLMs and guiding future research in
multilingual program synthesis.

Under review as a conference paper at ICLR 2026

REFERENCES

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, Yuchen Tian, Ming Tan,
Wasi Uddin Ahmad, Shigi Wang, Qing Sun, Mingyue Shang, et al. Multi-lingual evaluation of
code generation models. arXiv preprint arXiv:2210.14868, 2022.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Aleksander Boruch-Gruszecki, Yangtian Zi, Zixuan Wu, Tejas Oberoi, Carolyn Jane Anderson, Joy-
deep Biswas, and Arjun Guha. Agnostics: Learning to code in any programming language via
reinforcement with a universal learning environment. arXiv preprint arXiv:2508.04865, 2025.

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, et al. Multipl-
e: A scalable and polyglot approach to benchmarking neural code generation. /EEE Transactions
on Software Engineering, 49(7):3675-3691, 2023.

Linzheng Chai, Shukai Liu, Jian Yang, Yuwei Yin, Ke Jin, Jiaheng Liu, Tao Sun, Ge Zhang,
Changyu Ren, Hongcheng Guo, et al. Mceval: Massively multilingual code evaluation. arXiv
preprint arXiv:2406.07436, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

DeepSeek. Deepseek-r1-0528 release, May 2025. URL https://api-docs.deepseek.
com/news/news250528. DeepSeek News release.

Google DeepMind. Gemini 2.5: Our most intelligent ai model, March
2025. URL https://blog.google/technology/google—deepmind/
gemini-model-thinking-updates—-march-2025. Google DeepMind Blogpost.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Mohammad Abdullah Matin Khan, M Saiful Bari, Xuan Long Do, Weishi Wang, Md Rizwan
Parvez, and Shafiq Joty. xcodeeval: A large scale multilingual multitask benchmark for code
understanding, generation, translation and retrieval. arXiv preprint arXiv:2303.03004, 2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th symposium on operating systems princi-
ples, pp. 611-626, 2023.

Jia Li, Ge Li, Xuanming Zhang, Yihong Dong, and Zhi Jin. Evocodebench: An evolving code gen-
eration benchmark aligned with real-world code repositories. arXiv preprint arXiv:2404.00599,
2024.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092-1097, 2022.

10

https://api-docs.deepseek.com/news/news250528
https://api-docs.deepseek.com/news/news250528
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025

Under review as a conference paper at ICLR 2026

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173, 2024.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. Codexglue: A machine learning benchmark
dataset for code understanding and generation. arXiv preprint arXiv:2102.04664, 2021.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. arXiv preprint arXiv:2203.13474, 2022.

Qiwei Peng, Yekun Chai, and Xuhong Li. Humaneval-xl: A multilingual code generation bench-
mark for cross-lingual natural language generalization. arXiv preprint arXiv:2402.16694, 2024.

Tal Ridnik, Dedy Kredo, and Itamar Friedman. Code generation with alphacodium: From prompt
engineering to flow engineering. arXiv preprint arXiv:2401.08500, 2024.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Lianmin Zheng, Liangsheng Yin, Zhigiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi
Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of

structured language model programs. Advances in neural information processing systems, 37:
62557-62583, 2024.

Zihan Zheng, Zerui Cheng, Zeyu Shen, Shang Zhou, Kaiyuan Liu, Hansen He, Dongruixuan Li,
Stanley Wei, Hangyi Hao, Jianzhu Yao, et al. Livecodebench pro: How do olympiad medalists
judge llms in competitive programming? arXiv preprint arXiv:2506.11928, 2025.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari,
Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Bench-
marking code generation with diverse function calls and complex instructions. arXiv preprint
arXiv:2406.15877, 2024.

11

Under review as a conference paper at ICLR 2026

Appendix

CONTENTS

A Legal Compliance and License

B UI of Multi-LCB

C Prompt Examples
C.1 AtCoder/CodeForces Example (native STDIN/STDOUT)
C.2 LeetCode Example (adapted into STDIN/STDOUT)

D Tasks Distribution
D.1 Task Distribution by Difficulty and Platform
D.2 Task Distribution by I/O Data Dimensionality (LeetCode Functional Format)

E Programming language rankings and runtime characteristics

F Experiments
F1 Modelsoverview e e
F2 Performance on the Multi-LCB (Feb-May 2025 Subset) Across Sampling Tempera-

TUTES . & v o o o e e e e e e e e e e e e e e e

F.3 Performance on the Multi-LCB (Jul 2024-May 2025 Subset)
F4 Performance on the Complete Multi-LCB Benchmark

G Computation time

H Languages and Compiler Versions

I Platform Analysis

J Difficulty Analysis

K Temporal Analysis

L. Languages errors type

12

13

13

13
14
14

15
15
16

17

18
18

18
21
21

22

22

23

26

29

31

Under review as a conference paper at ICLR 2026

A LEGAL COMPLIANCE AND LICENSE

The Multi-LCB benchmark contains no personally identifiable information, offensive content, or
proprietary code. It is derived entirely from the publicly released LiveCodeBench (LCB) dataset,
which itself sources only publicly accessible contest problems, reference solutions, and test cases
from LeetCode, AtCoder, and Codeforces. Our redistribution and multi programming language
transformation of LCB fall under Fair Use (§107, U.S. Copyright Act): the benchmark is provided
solely for non-commercial academic research, reproduces only the material necessary for evaluation,
and does not diminish the market value of the original platforms or LCB. Multi-LCB is strictly an
evaluation resource, no models are trained on these tasks, and is released under a CC BY-NC 4.0
license to ensure non-commercial use.

B UI orF MULTI-LCB

Figure 6 presents the web interface of Multi-L.CB, displaying a subset of tasks released between
January 2024 and December 2024. A time-range scroller at the top allows users to interactively
select different time windows to filter tasks and monitor model performance on newly released prob-
lems. This interactive design highlights the live and continuously updated nature of the benchmark,
enabling researchers to track progress as fresh contest tasks are incorporated.

MULTI-LCB
]

Multi Live Code Bench

e @D G

07/05‘/2023 04/09'/2023 02/01./2024 01/05‘/2024 29/08‘/2024 27/3/2024 06/04‘/2025
Position Model pass@1[avg] ¢ pass@1[python] pass@1[javascript] ¢ pass@1[typescript]
1 %:a?n:fs%ﬁif 74.70% 84.94% 80.11% 73.05%
2 22’;;?;3?5 B- 66.60% 76.77% 66.17% 61.34%
. Quens- :_02%'0“;’_2;‘ 65.96% 79.74% 61.15% 57.06%
4 Qwen3-32B_cot 64.75% 74.72% 64.13% 64.31%
5 Qwen3-30B-A3B_cot 60.86% 73.61% 61.15% 61.71%

Figure 6: Multi-LCB web interface showing tasks released between January 2024 to Decem-
ber 2024, with an interactive time-range scroller for filtering and visualization.

C PROMPT EXAMPLES

This appendix shows example prompts from Multi-LCB. We distinguish the original problem text
as it appears on the source platform and the additional instructions that we add in order to unify
everything into the STDIN/STDOUT format. Original parts are placed in blue boxes, while added
parts are placed in red boxes.

13

Under review as a conference paper at ICLR 2026

C.1 ATCODER/CODEFORCES EXAMPLE (NATIVE STDIN/STDOUT)

Original

Question: Find the number of positive integers not greater than N that have exactly 9
positive divisors.

Input: N
Output: Print the answer.

Constraints: 1 < N < 4 x 102

Sample Input 1:
200
Sample Output 1:

Added

| w

Format:

Read the inputs from STDIN solve the problem and write the answer to STDOUT (do not
directly test on the sample inputs). Enclose your code within delimiters as follows. Ensure
that when the python program runs, it reads the inputs, runs the algorithm and writes output
to STDOUT.

mmon pyt hon

YOUR CODE HERE

wmww

Answer: (use the provided format with triple quotes)

C.2 LEETCODE EXAMPLE (ADAPTED INTO STDIN/STDOUT)

Original

Question: You are given an integer array enemyEnergies and an integer
currentEnergy... (original description)

Example 1:

Input: enemyEnergies = [3,2,2], currentEnergy = 2

Output: 3

Explanation:

Several operations lead to a maximum of 3 points (see original problem description).

Example 2:
Input: enemyEnergies = [2], currentEnergy = 10
Output: 5
Explanation:
Performing the first operation 5 times on enemy 0 yields the maximum number of points.
Constraints:
* 1 < enemyEnergies.length < 10°
¢ 1 < enemyEnergies[i] < 10°
* 0 < currentEnergy < 10°

14

Under review as a conference paper at ICLR 2026

Added

##4# Format:
Read the inputs from STDIN solve the problem and write the answer to STDOUT (do not
directly test on the sample inputs). Enclose your code within delimiters as follows. Ensure

that when the python program runs, it reads the inputs, runs the algorithm and writes output
to STDOUT.

For 2D arrays, the first line indicates the number of rows, followed by newline-separated
TOWS.

Sample Input 1:

322
2

Sample Output 1:
3

mmwn

python
YOUR CODE HERE

wmwwn

##4# Answer: (use the provided format with triple quotes)

For non-Python settings, only the header of the code block is replaced (e.g., """ cpp, """
java). The rest of the prompt structure remains identical.

D TASKS DISTRIBUTION

D.1 TASK DISTRIBUTION BY DIFFICULTY AND PLATFORM

LiveCodeBench (LCB) continuously aggregates competitive programming problems in Python from
three major platforms: LeetCode, AtCoder, and Codeforces. Figure 7 shows the monthly distri-
bution of tasks by difficulty, and Figure 8 presents the monthly distribution by source platform. To-
gether, these figures highlight the steady inflow of new problems and the live, contamination-aware
nature of LCB, and, by extension Multi-LCB.

LiveCodeBench: Monthly Task Distribution

80{ Wm Easy Total Tasks: 1055 Post-Feb 2025:
Medium Easy: 322 (30.5%) E:31 M:39 Hi61
= Hard Medium: 383 (36.3%)

n=68

-
=)

n=66

o
3

n=57

o
3

N
S

Number of Tasks
3

w
S

n=51[n=51 /774
n=12

n=53
o n=49
n=
n=45
n=44 n=44 n_“ |

n= 39

. 0% ol

n=36 ! 35 n=36 27'/ =37 p=. 35 *
n=34 2 ™

SR N SR IR SR LN M L IR S I A P VSR T R i

éf’ AU Al A A A A SO o

O S U S S S S S S S O S
Month

Figure 7: Monthly distribution of Tasks by Difficulty.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
81
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

LiveCodeBench: Monthly Platform Distribution

mmm LeetCode Total Tasks: 1055 ng-::sl;slﬂm

e Codeforces LeetCode: 444 (42.1%) Rt R ory W

== AtCoder Codeforces: 9 (0.9%) i A
AtCoder: 602 (57.1%)

@
3

n=68

Number of Tasks
8 g 3 3

~
S

10

NN

o & ® > D
0 0 O Y Y ¥ o
[S S S S S

Figure 8: Monthly distribution of LCB tasks by platform.

Each platform hosts frequent contests whose tasks provide a natural language description of a prob-
lem, example input/output pairs, and hidden tests, ensuring that solutions must be fully correct to
receive credit. Because every contest attracts thousands of participants and receives official editorial
review, the problems are inherently vetted for clarity and correctness. Across the full lifetime of the
dataset, the platform composition is as follows:

Codeforces: Competitive-programming problems known for a wide range of difficulty and algorith-
mic focus, almost exclusively in STDIN/STDOUT format.

LeetCode: Interview oriented challenges emphasizing data structures and algorithms, originally in
a Functional format.

AtCoder: Algorithmically rich competitive programming problems, typically using
STDIN/STDOUT input/output.

D.2 TASK DISTRIBUTION BY I/O DATA DIMENSIONALITY (LEETCODE FUNCTIONAL
FORMAT)

LiveCodeBench: Monthly Task Type Distribution (LeetCode)

mem Scalar Total LeetCode Tasks: 444 P:;:;F:kl; 2025:

= One-Dimensional Scalar: 136 (30.6%) 19 tasks |

307w Two-Dimensional One-Dimensional: 243 (54.7%) $:16.1D:23:2D:10
Two-Dimensional: 65 (14.6%)

n=26

25

N
S

Number of Tasks
-
G

-
)

Figure 9: Monthly task distribution by I/O data dimensionality (LeetCode Functional format).

Figure 9 presents the temporal distribution of LeetCode tasks grouped by the I/O data dimensionality
of their Functional format. The plot highlights how problems with different input/output structures,

16

Under review as a conference paper at ICLR 2026

such as scalar values, one-dimensional arrays, and two-dimensional arrays, have entered the bench-
mark over time, illustrating the variety of functional tasks inherited from LeetCode within the LCB

dataset.

E PROGRAMMING LANGUAGE RANKINGS AND RUNTIME CHARACTERISTICS

This study evaluates multilingual code generation across major programming languages selected
for their 2025 popularity and broad industrial relevance. Programming language rankings across

multiple sources presented in Table 3.

Table 3: Programming language rankings across multiple sources (dates in footnotes)

Language TIOBE' GitHub? Stack Overflow’ RedMonk*
Python 1(26.98%) 1 4(57%) 2
C++ 2 (9.80%) 5 9 (23%) 7
Java 4 (8.76%) 2 7 (29%) 3
C# 5 (4.87%) 10 8 (27%) 5
JavaScript 6 (3.36%) 4 1 (66%) 1
TypeScript 37 (0.28%) 6 6 (43%) 6
Go 7 (2.04%) 3 13 (~2%) 12
Rust 18 (1.01%) 13 14 (~2%) 19
Ruby 23 (0.76%) 8 18 (~1.5%) 9
PHP 14 (1.28%) 7 12(~15%) 4
Kotlin 20 (0.90%) 15 15 (~3%) 14
Scala 34 (0.41%) 14 29 (~1%) 14

These languages span a wide range of paradigms and runtime characteristics, capturing the diversity

of real-world software development:

* Compilation model:

— Compiled/JIT — C++, Rust, Go, Java, C#, Scala, Kotlin

— Interpreted — Python, Ruby, PHP

— Transpiled — TypeScript — JavaScript

* Type system:

— Static — C++, Rust, Go, Java, C#, Scala, Kotlin, TypeScript
— Dynamic — Python, JavaScript, Ruby, PHP

* Memory management:

— RAIl/manual — C++
— Ownership/borrowing — Rust

— Garbage collection — Java, C#, Go, Scala, Kotlin, PHP, Ruby, JavaScript/TypeScript

* Runtime platforms:

— Native — C++, Rust, Go

— JVM — Java, Scala, Kotlin
NET CLR — C#

* Domain ecosystems:

— Systems/performance — C++, Rust, Go

Interpreters/VMs — Python, Ruby, PHP
JavaScript engines — JavaScript, TypeScript

— Enterprise/JVM and .NET — Java, C#, Scala, Kotlin
— Web/backend and scripting — JavaScript, TypeScript, PHP, Ruby

— Data/AI glue — Python

17

Under review as a conference paper at ICLR 2026

F EXPERIMENTS

F.1 MODELS OVERVIEW

We provide details for all models included in our study in Table 4.

Table 4: Overview of Large Language Models (* denotes reasoning mode)

Model Short Name Approximate Cutoff Date Link
openai/gpt-oss-120b Gpt-oss-120B* (Medium/Low) 08/05/2025 gpt-0ss
openai/gpt-0ss-20b Gpt-0ss-20B* (Medium/Low) 08/05/2025 gpt-0ss
Qwen/Qwen3-235B-A22B-Thinking-2507 Qwen3-235B-A22B-Thk* 10/31/2024 qwen
deepseek-ai/DeepSeek-R1-0528 DeepSeek-R1-0528* 11/29/2024 deepseek-ai
Qwen/Qwen3-30B-A3B-Instruct-2507 Qwen3-30b-A3b-Thk-2507* 10/31/2024 qwen
Qwen/Qwen3-32B Qwen3-32B* 10/31/2024 qwen
Qwen/Qwen3-235B-A22B Qwen3-235B-A22B* 10/31/2024 qwen
Qwen/Qwen3-30B-A3B Qwen3-30B-A3B* 10/31/2024 qwen
Qwen/Qwen3-14B Qwen3-14B* 10/31/2024 qwen
open-r1/OlympicCoder-32B OlympicCoder-32B* - open-rl
Qwen/Qwen3-235B-A22B-Instruct-2507 Qwen3-235b-A22b-Instr-2507 10/31/2024 qwen
Qwen/Qwen3-8B Qwen3-8B* 10/31/2024 qwen
Qwen/Qwen3-Coder-30B-A3B-Instruct Qwen3-Coder-30B-A3B-Instr - qwen
Qwen/Qwen3-30B-A3B-Instruct-2507 Qwen3-30B-A3B-Instr-2507 10/31/2024 qwen
open-r1/OlympicCoder-7B OlympicCoder-7B* - open-rl
Qwen/Qwen2.5-Coder-32B-Instruct Qwen2.5-Coder-32B-Instr 03/23/2024 qwen
nvidia/OpenCodeReasoning-Nemotron-1.1-32B OpenRsn-Nmt-32B* - nvidia
ByteDance-Seed/Seed-Coder-8B-Instruct Seed-Coder-8B-Instr - bytedance-seed
Qwen/Qwen2.5-Coder-14B-Instruct Qwen2.5-Coder-14B-Instr 03/23/2024 qwen
mistralai/Devstral-Small-2505 Devstral-Small-2505 11/22/2024 mistralai
nvidia/OpenReasoning-Nemotron-32B OpenRsn-Nmt-32B - nvidia
deepseek-ai/deepseek-coder-33b-instruct DeepSeek-Coder-33B-Instr 08/30/2023 deepseek-ai

F.2 PERFORMANCE ON THE MULTI-LCB (FEB-MAY 2025 SUBSET) ACROSS SAMPLING

TEMPERATURES

F.2.1
TEMPERATURES

PASS@1 AVERAGED OVER 10 RUNS PERFORMANCE AT VARIOUS SAMPLING

Table 5 report Pass @1 scores averaged over 10 runs at sampling temperature ¢ = 0.6. Each score in-
dicates the percentage of problems solved correctly on the first attempt, with higher values reflecting
better performance.

Table 5: Performance results at temperature ¢ = 0.6 Scores represent the Pass@1 (%) metric
averaged on 10 runs. Higher is better, bold is best, italic is the second best. (* - reasoning mode)

Model Python C++ Java JS TS C# Rust Ruby PHP Kotlin Scala Avg

Gpt-oss-120B* (Medium) 699 18 726 +21 70019 705 27 719 +20 598+29 7001 +24 69.6 131 673 +1s8 70228 541436 68.0 £ss
Qwen3-235B-A22B-Thk-2507* 740 225 753426 748129 68.6 +25 634+21 658+26 51.5+32 489+24 67525 686+28 592+28 637486
DeepSeek-R1-0528+ 68.4 +28 672423 649 +28 586 +46 621 +22 625+38 624+20 613+19 664+30 612+35 630441
Gpt-0ss-20B* (Medium) 65.5 £33 62.5+20 63.6 29 639420 502x235 61521 6l4+28 60.6x31 62.1+£26 424+33 59.6 £66
Qwen3-30B-A3B-Thk-2507* 66.0 £36 63.9 +29 534+19 506430 562x30 51.2+32 431435 57.0x36 522+33 405+24 53685
Gpt-0ss-120B* (Low) 56.6 +24 572430 548 21 546+23 464 x14 55823 53832 53425 54926 40832 533 +a9
Qwen3-235B-A22B* 58.6+31 56.1 +26 499 +20 46.6+25 S1.5+28 432+20 484 +1s 48930 47740 344+35 493167
Qwen3-32B* 562 +25 542+27 50.5+35 508432 Sllx24 390 x21 520+23 51918 452x26 38121 492465
Qwen3-30B-A3B* 535+34 51.0+34 50.1+18 499429 429x28 384+30 473+26 482220 439zx31 33717 460 +6s
Qwen3-14B* 499 +22 50.6 +32 48.1 £31 47.7+38 448 =15 320=x33 462x+20 44513 395xs53 312x27 437 x78
Gpt-0ss-20B* (Low) 475121 456 +24 435+18 441 +24 39929 43128 440+30 447227 450x16 325+41 431139
Qwen3-235B-A22B-Instr-2507 42.8 +27 455 +29 279 +30 218+18 43725 402+23 415120 42625 415+15 288132 38178
Qwen3-8B* 43.7 28 425+18 413 +25 418426 398x17 224120 425+32 387 x26 254128 295+25 373 i85
Qwen3-30B-A3B-Instr-2507 36.7 +15 37.1+25 214 +£13 202435 353 +25 318425 337414 353114 361419 264121 316469
Qwen3-Coder-30B-A3B-Instr 331 +18 355+31 28615 263+21 345x22 337x22 338+17 315x12 350x21 209+17 312+4s
DeepSeek-R 1-Distill-Qwen-32B* 258 £16 388429 204 £34 159419 342132 212422 43.0+23 138 %15 211424 87413 251 %125
Qwen2.5-Coder-32B-Instr 253 +24 27.6%27 81+19 25013 286+21 24223 235+21 25323 266+21 235+18 242+53
OpenRsn-Nmt-32B* 44.8 £47 413 17 122 +72 11.0+66 31.5x20 31+26 17.6+47 139220 172+20 T4dx19 231189
Seed-Coder-8B-Instr 229+17 24417 234+16 228+18 228x18 218+13 21.5x26 199220 235+19 21.5+07 22215
Qwen2.5-Coder-14B-Instr 21817 246+14 225+25 198+19 237=x23 17.6+13 224+17 21.0x27 223 +07 198=+23 213 +21
OpenCodeRsn-Nmt-1.1-32B* 412426 31.8 448 99456 68x35 250x20 12x08 257434 21.1x33 13.6+24 Tdx32 212z
Devstral-Small-2505* 22011 229 %09 223+13 240+1s 22316 199+12 202+25 21121 21618 16313 209 +24
DeepSeek-R 1-Distill-Qwen-14B* 185+23 24.6+41 98+17 105+23 305+32 37+15 366+35s 40x19 13.6+34 35+10 174140
DeepSeek-Coder-33B-Instr 18209 208 £13 108 £36 9.0x38 18.6x18 29x15 17.0x20 16215 17.0x17 121x25 14.6+£51

Table 6 reports Pass@1 scores averaged over 10 runs at sampling temperature { = 1.0. Each score
indicates the percentage of problems solved correctly on the first attempt, with higher values reflect-
ing better performance.

18

https://https://huggingface.co/openai/gpt-oss-120b
https://https://huggingface.co/openai/gpt-oss-20b
https://huggingface.co/Qwen/Qwen3-235B-A22B-Thinking-2507
https://huggingface.co/deepseek-ai/DeepSeek-R1-0528
https://huggingface.co/Qwen/Qwen3-30B-A3B-Instruct-2507
https://huggingface.co/Qwen/Qwen3-32B
https://huggingface.co/Qwen/Qwen3-235B-A22B
https://huggingface.co/Qwen/Qwen3-30B-A3B
https://huggingface.co/Qwen/Qwen3-14B
https://huggingface.co/open-r1/OlympicCoder-32B
https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507
https://huggingface.co/Qwen/Qwen3-8B
https://huggingface.co/Qwen/Qwen3-Coder-30B-A3B-Instruct
https://huggingface.co/Qwen/Qwen3-30B-A3B-Instruct-2507
https://huggingface.co/open-r1/OlympicCoder-7B
https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct
https://huggingface.co/nvidia/OpenCodeReasoning-Nemotron-1.1-32B
https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Instruct
https://huggingface.co/Qwen/Qwen2.5-Coder-14B-Instruct
https://huggingface.co/mistralai/Devstral-Small-2505
https://huggingface.co/nvidia/OpenReasoning-Nemotron-32B
https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct

Under review as a conference paper at ICLR 2026

Table 6: Performance results at temperature ¢ = 1.0. Scores represent the Pass@1 (%) metric
averaged on 10 runs. Higher is better, bold is best, ifalic is the second best. (* - reasoning mode)

Model

Gpt-o0ss-120B* (Medium)
Qwen3-235B-A22B-Thk-2507*
Gpt-0ss-20B* (Medium)
DeepSeek-R1-0528*
Gpt-oss-120B* (Low)
Qwen3-30B-A3B-Thk-2507%
Qwen3-32B*
Qwen3-235B-A22B*
Qwen3-30B-A3B*

Qwen3-14B*

Gpt-0ss-20B* (Low)
Qwen3-235B-A22B-Instr-2507
Qwen3-8B*
Qwen3-30B-A3B-Instr-2507
Qwen3-Coder-30B-A3B-Instr
DeepSeek-R1-Distill-Qwen-32B*
Qwen2.5-Coder-32B-Instr
OpenRsn-Nmt-32B*
Seed-Coder-8B-Instr
Qwen2.5-Coder-14B-Instr
OpenCodeRsn-Nmt-1.1-32B%*
Devstral-Small-250:
DeepSeek-R 1-Distill-Qwen-14B*
Deepseek-Coder-33B-Instr

C++ Java Go IS TS C# Rust Ruby PHP Kotlin Scala Avg

723419 70035 679 :28 71831 T05+21 58845 70531 69919 68122 Tl2i18 511 +34 67.6 £63
750 +27 737 +32 57.0+32 69.0+35 635+22 674+25 542435 492424 687 118 68.6+34 585+28 649 +s4
65.0+21 63.1+32 58925 62131 61.5+25 526x28 59.8+21 61.7+30 61.5+33 62934 404+23 595 +es
623 +24 62411 599 +17 553 +27 58425 57423 573+26 5T4x1a 57720 574 +28 58.0+32
56.6 £30 553 %33 54422 547+36 473 +27 546x25 537 +18 53118 56.0+27 40.0x28 531 xa9
659 +£32 63.8+37 495432 450439 57635 51.2+33 424434 57320 51636 40515 528 £3s
56.8 £26 558424 51.8+£20 512431 50632 388x25 51028 51748 465+37 357+36 493 +71
585+21 56.6+22 S51.5+26 48.6+23 50.0=x28 434+23 47330 479zx18 46.6+28 342126 493 69
522+23 52125 50.1 £32 504 +25 44720 394+27 47.0x23 48946 449:x32 33813 46569
50.6 £20 50.5 +22 50519 502+18 45412 315+20 472x25 463 x30 378x19 324125 44415
452121 429429 42.6+22 421431 385+29 43.0+24 434122 443120 4291220 314123 42140
42.8 +36 457 +32 273 +25 239445 435127 385+30 424121 434131 429121 312127 385173
445 23 427 433 41.6 £31 420430 408 +24 241419 428418 35924 277128 299426 378481
35615 374+18 208 £15 20.6+18 36.6+24 313421 345120 347x21 348417 259132 31.6+66
32819 35028 263 +32 2701 +32 343 x21 341x25 31933 295122 347+18 19220 30.6+s51
249 £24 387 22 19.6 £20 159 +36 33444 227433 443435 13720 23.1+24 92+13 25.6 +126
252+14 275+24 100+25 253 +17 281x17 247+11 246+25 23724 254x20 231x25 24147
44.1 +21 384 31 114 +62 82+47 29719 24+22 176438 14917 160+23 6.6+24 223 +188
21.8+23 219+22 209 +23 19.8+23 206£20 202£30 21.7+19 19.0x28 21.8+17 212x23 20712
225+18 23.0+15 214419 185426 229=+19 168+17 217415 19326 226+17 188418 206 +23
417 £36 30.5+37 85+61 55+s50 227x35 1.9x07 232+32 17.7x34 127+19 57x26 202=x180
21227 22413 208 +18 205422 208=x16 18914 189+19 20218 21414 152119 198 +28
18.1 £26 22.7 £33 95+26 10.0x15 282x19 45+14 348+30 38x10 12834 38x18 169 xn133
17917 189 +14 107 £31 87 x25 16824 23+13 144114 128213 161+15 78+17 13.0 £49

F.2.2 PASS@5 PERFORMANCE AT DIFFERENT SAMPLING TEMPERATURES

Table 7, Table 8 and Table 9 reports Pass@5 scores at sampling temperatures ¢ = 0.2, ¢ = 0.6 and
t = 1.0 respectively. Each score indicates the percentage of problems solved correctly on the Sth
attempt, with higher values reflecting better performance.

Table 7: Performance results at temperature ¢ = 0.2. Scores represent the Pass@5 (%) metric.
Higher is better, bold is best, italic is the second best. (* - reasoning mode)

Model Python C++ Java Go JS TS C# Rust Ruby PHP Kotlin Scala Avg
Gpt-0ss-120B* (Medium) 83.7 837 851 838 852 826 776 850 85.2 80.4 85.0 78.7 83.0
Qwen3-235B-A22B-Thk-2507* 83.6 862 858 788 800 804 818 753 650 811 84.5 79.1 80.1
DeepSeek-R1-0528* 783 797 799 729 713 782 715 779 757 71.0 79.1 784 717
Gpt-0ss-20B* (Medium) 77.3 804 781 789 777 788 731 76.0 75.9 749 79.3 66.6 76.4
Qwen3-30B-A3B-Thk-2507* 71.5 795 774 654 734 724 719 725 573 73.9 67.6 62.0 709
Gpt-0ss-120B* (Low) 69.1 69.4 703 659 703 705 626 682 655 658 69.1 63.6 675
Qwen3-235B-A22B* 69.2 704 70.1 664 69.0 695 669 668 58.1 66.5 65.8 551 662
Qwen3-32B* 68.8 687 705 619 673 673 654 618 64.7 63.8 67.6 577 655
Qwen3-30B-A3B* 66.9 645 632 563 628 62.1 59.1 541 58.0 61.5 59.8 470 596
Qwen3-14B* 66.4 593 61.7 544 604 629 577 480 59.7 58.9 60.9 47.0 58.1
Gpt-0ss-20B* (Low) 59.6 61.1 593 558 562 542 538 546 554 578 59.8 48.5 563
Qwen3-8B* 56.0 51.8 510 446 520 529 493 363 512 483 38.7 390 476
Qwen3-235B-A22B-Instr-2507 53.0 539 585 454 368 31.6 527 501 48.0 52.1 49.7 39.1 476
OpenRsn-Nmt-32B* 78.4 69.2 662 30.1 338 30.1 548 109 402 42.1 395 202 430
OlympicCoder-7B* 49.6 49.1 459 389 440 436 433 29.1 445 39.1 419 322 418
Qwen3-30B-A3B-Instr-2507 49.0 449 469 31.0 324 275 470 422 436 429 455 344 406
Qwen3-Coder-30B-A3B-Instr 43.0 395 421 340 369 343 432 399 421 383 434 29.0 388
DeepSeek-R1-Distill-Qwen-32B* 514 355 471 278 393 322 437 387 492 335 40.8 19.6 382
OpenCodeRsn-Nmt-1.1-32B* 74.5 59.8 587 245 266 182 477 38 44.4 425 29.7 213 377
Qwen2.5-Coder-32B-Instr 33.0 313 361 31,6 134 312 345 313 306 310 33.0 289 305
DeepSeek-R1-Distill-Qwen-14B* 514 303 420 21.0 280 296 441 109 472 11.1 288 105 29.6
Seed-Coder-8B-Instr 27.8 260 312 266 293 275 317 266 26.6 26.5 26.7 262 277
Devstral-Small-2505* 273 269 253 240 270 292 270 248 26.3 26.8 25.7 221 26.0
Qwen2.5-Coder-14B-Instr 229 259 287 258 265 245 28.0 224 290 266 254 246 258
DeepSeek-Coder-33B-Instr 2.5 223 241 190 147 136 229 88 232 235 227 188 19.6

Table 8: Performance results at temperature ¢ = 0.6. Scores represent the Pass@5 (%) metric.
Higher is better, bold is best, italic is the second best. (* - reasoning mode)

Model Python C++ Java Go JS TS C# Rust Ruby PHP Kotlin Scala Avg
Gpt-0ss-120B* (Medium) 84.7 849 848 851 841 852 807 841 833 82.1 83.7 80.2 836
Qwen3-235B-A22B-Thk-2507* 85.0 857 864 780 808 813 814 784 68.4 79.3 82.7 79.6 80.6
Gpt-0ss-20B* (Medium) 79.2 81.5 801 795 807 825 755 798 79.1 719 79.8 658 784
DeepSeek-R1-0528* 79.6 79.1 788 724 715 760 781 791 763 759 795 776 715
Qwen3-30B-A3B-Thk-2507* 783 793 785 676 752 730 722 699 624 718 703 59.1 715
Gpt-0ss-120B* (Low) 70.5 68.6 705 685 68.1 687 634 715 69.6 65.7 68.1 65.0 68.2
Qwen3-235B-A22B* 71.1 694 707 662 703 677 67.1 670 60.6 67.0 66.9 57.1 66.8
Qwen3-32B* 70.1 687 695 653 674 698 660 611 658 67.1 68.8 585 665
Qwen3-14B* 68.4 639 636 570 636 628 604 501 604 587 613 476 59.8
Qwen3-30B-A3B* 64.4 65.0 648 569 639 624 581 537 59.9 60.1 59.1 484 597
Gpt-0ss-20B* (Low) 59.9 61.1 59.1 573 566 568 546 581 58.4 55.7 58.4 533 574
Qwen3-8B* 61.0 554 574 510 562 566 518 393 554 493 414 435 515
Qwen3-235B-A22B-Instr-2507 54.6 544 589 503 442 395 535 510 490 552 512 43.0 504
Qwen3-30B-A3B-Instr-2507 50.3 47.1 490 39.0 368 385 484 446 428 455 47.9 38.0 440
OpenRsn-Nmt-32B* 77.8 71.6 674 283 353 363 571 107 412 39.8 36.9 235 438
DeepSeek-R1-Distill-Qwen-32B* 58.3 428 534 318 451 362 544 414 534 40.2 43.8 244 438
OlympicCoder-7B* STIES 495 448 397 463 432 434 312 400 400 380 294 414
OpenCodeRsn-Nmt-1.1-32B* 75.6 634 604 261 327 254 492 56 460 466 323 227 405
Qwen3-Coder-30B-A3B-Instr 424 403 413 340 389 377 424 417 412 43.0 435 30.1 39.7
Qwen2.5-Coder-32B-Instr 343 33.0 363 335 178 340 377 322 329 345 359 323 329
DeepSeek-R1-Distill-Qwen-14B* SEL 351 398 194 281 280 460 132 506 156 31.6 112 312
Seed-Coder-8B-Instr 327 294 303 283 320 312 311 321 311 288 313 278 305
Devstral-Small-2505* 30.8 296 291 285 308 333 296 29.1 29.5 295 294 252 295
Qwen2.5-Coder-14B-Instr 29.0 279 299 269 289 278 316 258 29.4 28.3 30.0 273 286
DeepSeek-Coder-33B-Instr 26.7 256 270 21.8 208 224 268 74 26.2 249 235 218 229

19

Under review as a conference paper at ICLR 2026

Table 9: Performance results at temperature ¢ = 1.0. Scores represent the Pass@5 (%) metric.
Higher is better, bold is best, italic is the second best. (* - reasoning mode)

Model Python C++ Java Go JS TS C# Rust Ruby PHP Kotlin Scala Avg
Gpt-oss-120B* (Medium) 82.8 838 859 841 846 839 780 835 836 840 852 781 83.1
Qwen3-235B-A22B-Thk-2507* 85.2 852 859 714 816 824 824 80 678 798 84.0 790 811
Gpt-0ss-20B (Medium)* 79.4 805 810 775 792 805 752 715 782 77.4 82.6 66.9 78.0
DeepSeek-R1-0528* 723 743 739 676 725 718 732 708 69.4 72.3 68.7 71.7 715
Qwen3-30B-A3B-Thk-2507* 76.7 799 778 685 729 733 731 700 60.0 719 68.5 60.5 711
Gpt-oss-120B* (Low) 71.8 717 710 678 687 69.7 653 68.7 67.7 65.1 69.6 634 684
Qwen3-32B* 734 70.1 703 641 709 694 662 61.8 65.3 66.5 67.5 58.9 67.0
Qwen3-235B-A22B* 70.0 714 700 658 69.7 705 660 66.6 61.7 65.4 66.3 549 66.5
Qwen3-14B* 68.4 635 66.1 579 675 646 595 507 603 612 60.4 50.7 609
Qwen3-30B-A3B* 66.3 637 648 59.1 647 638 59.0 577 577 626 61.4 49.8 60.9
Gpt-0ss-20B* (Low) 60.0 593 597 549 556 556 556 586 58.0 56.8 57.7 514 569
Qwen3-8B* 63.1 56.7 587 528 593 575 563 426 56.8 50.9 44.8 43.1 535
Qwen3-235B-A22B-Instr-2507 54.8 56.1 59.6 511 441 461 537 494 523 559 529 449 518
DeepSeek-R1-Distill-Qwen-32B* 59.6 470 554 355 456 430 532 449 566 39.1 477 256 46.1
Qwen3-30B-A3B-Instr-2507 520 488 494 402 381 393 475 449 455 488 47.0 39.7 451
OpenRsn-Nmt-32B* 78.8 69.6 641 293 352 272 533 9.5 419 429 39.7 224 428
OlympicCoder-7B* 47.6 47.1 467 367 431 422 433 282 423 39.1 37.8 292 403
Qwen3-Coder-30B-A3B-Instr 445 409 433 344 376 393 43.0 421 40.0 40.0 443 32,6 402
OpenCodeRsn-Nmt-1.1-32B* 713 66.1 606 244 293 211 448 83 44.1 445 315 194 393
Qwen2.5-Coder-32B-Instr 347 340 398 336 261 367 366 336 36.3 34.4 35.6 331 345
DeepSeek-R1-Distill-Qwen-14B* 56.4 352 419 215 297 31.0 441 147 50.0 155 3235 136 322
Seed-Coder-8B-Instr 32.0 293 306 280 307 29.6 317 308 31.9 31.8 30.6 31.9 307
Qwen2.5-Coder-14B-Instr 29.7 302 308 28.0 298 290 31.7 286 318 296 31.0 285 299
Devstral-Small-2505* 334 285 301 262 328 306 308 277 281 30.7 304 258 296
Deepseek-Coder-33B-Instr 25.7 272 278 233 223 213 260 88 244 20.5 238 179 224

F.2.3 PASS@10 PERFORMANCE AT DIFFERENT SAMPLING TEMPERATURES

Table 10, Table 11 and Table 12 reports Pass@10 scores at sampling temperatures ¢ = 0.2, £ = 0.6
and ¢t = 1.0 respectively. Each score indicates the percentage of problems solved correctly on the
10th attempt, with higher values reflecting better performance.

Table 10: Performance results at temperature ¢t = 0.2. Scores represent the Pass@10 (%) metric.
Higher is better, bold is best, italic is the second best. (* - Rsn mode)

Model Python C++ Java Go JS TS C# Rust Ruby PHP Kotlin Scala Avg
Gpt-0ss-120B* (Medium) 87.0 863 878 863 870 847 840 878 886 840 87.0 84.0 86.2
Qwen3-235B-A22B-Thinking-2507* 87.0 88.6 88.6 840 840 855 855 824 71.8 84.7 87.8 84.0 84.5
Gpt-0ss-20B* (Medium) 80.2 840 824 840 817 847 779 809 8.7 794 832 76.3 814
DeepSeek-R1-0528* 80.9 824 832 786 802 832 809 809 80.9 80.9 81.7 81.7 813
Qwen3-30B-A3B-Thinking-2507* 80.9 824 794 687 7719 779 748 719 626 794 733 672 752
Gpt-0ss-120B* (Low) 733 725 741 702 756 748 687 71.8 687 702 725 67.9 71.7
Qwen3-235B-A22B* 725 748 733 695 718 748 702 725 6l.1 725 71.0 61.8 705
Qwen3-32B* 725 733 741 672 725 733 695 679 679 687 733 634 703
Qwen3-30B-A3B* 69.5 672 664 611 657 649 634 588 626 649 63.4 519 633
Qwen3-14B* 71.0 634 664 603 649 679 634 542 649 634 65.7 512 63.0
Gpt-0ss-20B* (Low) 64.1 649 634 603 603 588 573 588 595 611 64.9 557 608
OpenRsn-Nmt-32B* 84.0 763 741 397 458 405 657 183 496 550 49.6 305 524
Qwen3-8B* 60.3 565 557 512 565 565 527 412 565 519 435 428 521
Qwen3-235B-A22B-Instr-2507 557 580 634 481 412 374 550 527 512 557 527 42.8 512
OlympicCoder-7B* 534 534 512 443 489 473 481 374 504 450 45.8 389 470
OpenCodeRsn-Nmt-1.1-32B* 78.6 679 657 321 374 267 580 53 542 534 374 282 454
Qwen3-30B-A3B-Instr-2507 51.9 489 512 336 374 328 519 466 458 466 49.6 374 445
DeepSeek-R1-Distill-Qwen-32B* 550 389 489 351 481 428 466 443 527 412 473 267 440
Qwen3-Coder-30B-A3B-Instr 450 420 435 366 389 366 458 412 435 397 458 336 410
DeepSeek-R1-Distill-Qwen-14B* 542 359 458 260 359 382 489 153 519 153 359 145 3438
Qwen2.5-Coder-32B-Instr 36.6 328 405 351 145 328 359 344 328 33.6 36.6 ALy 3l
Seed-Coder-8B-Instr 29.8 267 328 275 321 290 336 282 282 282 275 282 293
Devstral-Small-2505* 29.0 27.5 260 267 282 305 275 275 29.8 282 275 244 277
Qwen2.5-Coder-14B-Instr 237 275 298 275 275 260 298 244 305 290 275 252 274
DeepSeek-Coder-33B-Instr 229 237 244 206 176 160 252 107 252 260 237 214 214

Table 11: Performance results at temperature t = 0.6. Scores represent the Pass@10 (%) metric.
Higher is better, bold is best, italic is the second best. (* - Rsn mode)

Model Python C++ Java Go JS TS C# Rust Ruby PHP Kotlin Scala Avg
Gpt-0ss-120B* (Medium) 86.7 878 847 878 878 878 870 863 863 855 86.3 855 878
Qwen3-235B-A22B-Thinking-2507* 84.5 87.0 863 878 84.0 901 847 84.7 82.4 74.1 84.0 84.7 840
Gpt-0ss-20B* (Medium) 83.0 832 832 840 832 832 847 832 817 855 84.0 733 87.0
DeepSeek-R1-0528* 81.2 832 817 809 794 817 817 832 80.9 80.2 832 80.2 78.6
Qwen3-30B-A3B-Thinking-2507* 76.1 809 77.1 824 733 817 794 771 756 695 74.8 657 75.6
Gpt-0ss-120B* (Low) 727 741 695 725 725 741 718 718 695 748 75.6 725 741
Qwen3-32B* 1.7 756 710 733 718 748 725 748 725 702 64.9 64.1 748
Qwen3-235B-A22B* 71.3 756 702 718 71.0 748 763 725 71.0 641 733 64.1 71.0
Qwen3-14B* 65.0 725 657 687 641 664 664 672 657 649 56.5 550 672
Qwen3-30B-A3B* 63.6 664 626 664 626 695 679 618 634 641 58.8 534 657
Gpt-0ss-20B* (Low) 61.9 634 595 649 618 618 618 618 611 62.6 62.6 595 618
Qwen3-8B* 56.2 64.1 557 603 573 626 603 473 519 603 443 48.9 6l.1
Qwen3-235B-A22B-Instr-2507 54.6 580 565 588 542 641 504 550 595 512 542 473 46.6
OpenRsn-Nmt-32B* 525 809 679 794 382 741 473 443 519 504 153 321 489
DeepSeek-R 1-Distill-Qwen-32B* 50.5 634 595 481 405 550 542 512 504 573 48.1 336 443
OpenCodeRsn-Nmt-1.1-32B* 49.1 786 595 695 374 687 466 412 550 512 10.7 313 397
Qwen3-30B-A3B-Instr-2507 484 527 527 512 450 542 428 519 489 458 48.9 412 450
OlympicCoder-7B* 46.6 56.5 473 542 450 49.6 504 443 450 435 39.7 351 481
Qwen3-Coder-30B-A3B-Instr 42.1 443 450 428 374 420 412 458 45.8 435 435 328 412
DeepSeek-R1-Distill-Qwen-14B* 373 595 519 412 244 428 366 397 244 550 19.9 160 359
Qwen2.5-Coder-32B-Instr 363 374 405 351 366 397 214 389 374 389 Shul 36.6 374
Seed-Coder-8B-Instr 335 36.6 321 328 321 313 359 351 313 35.1 359 298 336
Devstral-Small-2505* 325 359 328 313 321 313 344 321 313 321 33.6 282 351
Qwen2.5-Coder-14B-Instr 309 305 344 305 290 313 305 321 313 32.1 282 305 305
DeepSeek-Coder-33B-Instr 257 298 290 275 252 29.0 244 260 282 282 9.9 237 215

20

Under review as a conference paper at ICLR 2026

Table 12: Performance results at temperature ¢ = 1.0. Scores represent the Pass@10 (%) metric.
Higher is better, bold is best, italic is the second best. (* - Rsn mode)

Model Python C++ Java Go JS TS C# Rust Ruby PHP Kotlin Scala
Gpt-0ss-120B* (Medium) 86.3 855 809 870 870 893 878 87.0 87.0 86.3 86.3 84.0
Qwen3-235B-A22B-Thk-2507* 84.8 90.1 855 87.8 802 901 855 870 824 741 85.5 84.0
Gpt-0ss-20B* (Medium) 82.6 824 817 847 824 855 847 863 802 817 80.9 75.6
DeepSeek-R1-0528% 75.9 779 779 794 748 779 763 T1.8 76.3 733 733 76.3
Qwen3-30B-A3B-Thk-2507* 754 786 756 832 741 817 771 733 74.8 65.7 74.1 68.7
Gpt-0ss-120B* (Low) 73.1 748 710 763 725 756 733 748 68.7 71.8 733 69.5
Qwen3-32B* 71.9 763 710 748 710 748 763 T1.8 710 702 67.2 64.9
Qwen3-235B-A22B* 70.8 725 710 748 710 741 741 710 68.7 66.4 71.0 60.3
Qwen3-14B* 65.7 725 649 672 641 710 718 657 66.4 64.1 56.5 S5
Qwen3-30B-A3B* 64.5 68.7 61.1 657 641 672 687 649 664 61.8 62.6 542
Gpt-0ss-20B* (Low) 61.2 64.1 603 634 603 649 588 6l.1 61.1 61.1 64.1 557
Qwen3-8B* 58.6 672 603 603 595 649 641 512 565 611 489 473
Qwen3-235B-A22B-Instr-2507 558 580 565 603 557 641 489 557 595 565 LY 49.6
DeepSeek-R 1-Distill-Qwen-32B* 532 649 580 550 443 595 542 534 489 603 51.9 33.6
OpenRsn-Nmt-32B* 51.8 824 61.1 771 382 718 466 519 527 527 15.3 32.8
Qwen3-30B-A3B-Instr-2507 49.7 557 512 542 435 542 443 519 534 489 49.6 435
OpenCodeRsn-Nmt-1.1-32B* 475 817 512 718 351 71.0 412 382 542 534 13.7 26.7
OlympicCoder-7B* 46.1 527 504 519 428 519 473 428 466 481 35.1 359
Qwen3-Coder-30B-A3B-Instr 428 48.1 458 443 374 450 397 458 435 412 443 36.6
DeepSeek-R1-Distill-Qwen-14B* 39.5 603 489 420 275 489 428 412 244 550 21.4 20.6
Qwen2.5-Coder-32B-Instr 382 382 397 382 359 435 336 382 374 405 359 374
Seed-Coder-8B-Instr 33.8 351 351 313 305 328 336 328 35.1 351 35.1 35.1
Qwen2.5-Coder-14B-Instr 332 328 344 336 313 344 328 344 33.6 351 321 328
Devstral-Small-2505* 33.1 382 344 305 305 33.6 366 344 344 321 29.8 29.0
DeepSeek-Coder-33B-Instr 26.0 290 290 313 275 313 260 267 237 275 137 20.6

F.3 PERFORMANCE ON THE MULTI-LCB (JUL 2024-MAY 2025 SUBSET)

Table 13 reports Pass@1 scores at sampling temperature ¢ = 0.2 for all evaluated models on the
Multi-LCB subset containing tasks from July 2024 to May 2025. Each score reflects the percentage
of problems solved correctly on the first attempt, with higher values indicating better performance.

Table 13: Performance results on Multi-LCB tasks from July 2024 till May 2025. Scores represent
the Pass@1 (%) metric (higher is better). (* - reasoning mode)

Model Python C++ Java Go JS TS C# Ruby PHP Kotlin Scala Avg
Qwen3-235B-A22B-Thk-2507* 76.7 783 783 596 714 622 69.6 54.1 70.0 64.6 569 66.0
Qwen3-30B-A3B-Thk-2507* 69.4 68.2 666 445 521 485 598 45.1 59.0 46.7 41.0 544
Qwen3-235B-A22B* 65.8 634 594 497 563 519 575 519 527 48.7 328 529
Qwen3-32B* 634 636 596 437 519 547 535 539 525 423 356 513
Qwen3-30B-A3B* 60.8 565 563 370 499 531 505 505 507 392 304 482
Qwen3-14B* 575 547 517 384 507 499 485 50.1 46.9 37.6 302 458
Qwen3-235B-A22B-Instr-2507 49.5 479 479 38.6 294 227 465 41.6 437 4235 29.8 402
OlympicCoder-32B* 513 519 346 360 344 429 45.3 43.3 34.6 256 40.1
Qwen3-8B* 49.9 443 272 398 417 380 423 336 18.1 249 356
Qwen3-30B-A3B-Instr-2507 40.6 36.4 22.1 237 225 374 350 36.8 26.8 19.7 310
Qwen3-Coder-30B-A3B-Instr 352 30.0 211 272 260 340 342 310 336 183 296
OlympicCoder-7B* 360 356 245 256 241 289 266 247 247 133 257
OpenRsn-Nemotron-32B* 69.8 49.5 129 137 105 330 20.7 20.3 16.5 7.8 24.9
Qwen2.5-Coder-32B-Instr 274 274 247 60 280 278 24.1 27.0 26.8 227 248
Seed-Coder-8B-Instr 20.7 217 177 221 217 225 223 215 215 193 212
Qwen2.5-Coder-14B-Instr 21.3 21.1 205 231 189 225 217 227 213 189 211
Devstral-Small-2505 254 20.9 19.1 229 227 211 19.1 213 20.7 151 210
OpenCodeRsn-Nemotron-1.1-32B* 62.8 38.0 8.5 8.9 8.0 270 235 24.7 12.5 5.6 21.0
DeepSeek-Coder-33B-Instr 17.5 15.9 121 87 58 177 14.7 15.7 16.9 12.9 13.3

F.4 PERFORMANCE ON THE COMPLETE MULTI-LCB BENCHMARK

Table 14: Performance results on Multi-LCB (n=1055 per language). Scores represent the Pass@1
(%) metric (higher is better). (* - reasoning mode)

Model Python C++ Java Go JS TS C# Rust Ruby PHP Kotlin Scala Avg
Qwen3-235B-A22B-Thk-2507* 85.6 86.6 85.9 60.0 80.8 73.7 79.1 588 65.0 78.8 75.7 66.1 74.7
Qwen3-30B-A3B-Thk-2507* 80.6 80.2 785 50.2 62.5 577 735 63.2 58.7 70.0 60.5 50.6 65.5
Qwen3: -A22B* 77.5 720 720 602 646 633 685 562 65.2 62.4 537 40.0 629
Qwen3-32B* 775 702 733 513 646 643 671 514 68.4 64.0 545 48.1 629
Qwen3-30B-A3B* 74.8 67.9 68.2 43.9 62.5 632 614 528 64.3 60.8 47.1 399 589
Qwen3-14B* 73.4 67.2 65.9 47.8 63.5 62.9 60.7 41.7 64.8 60.0 417 39.0 574
Qwen3-235B-A22B-Instr-2507 59.8 59.4 59.3 45.0 343 270 564 5013 BE5] 54.9 46.3 354 48.7
OlympicCoder-32B* 61.4 573 58.7 41.0 448 417 529 41.1 55.0 53.1 41.0 31.2 48.3
Qwen3-8B* 65.6 547 545 363 514 529 518 319 55.6 475 23.6 344 467
Qwen3-30B-A3B-Instr-2507 525 484 515 316 336 308 492 432 46.4 47.6 338 28.1 41.4
Qwen3-Coder-30B-A3B-Instr 47.8 413 435 26.1 36.6 34.1 46.1 423 44.6 41.7 2Bk 223 383
Qwen2.5-Coder-32B-Instr 40.5 36.8 41.6 33.6 5.7 38.7 39.1 36.4 38.0 38.0 33.0 30.3 34.1
OlympicCoder-7B* 45.0 43.0 40.7 30.0 328 319 363 18.6 345 285 285 19.8 327
Qwen2.5-Coder-14B-Instr 33.6 28.0 35.1 28.3 322 23.0 309 31.6 26.6 263 26.6 26.3 29.5
OpenRsn-Nmt-32B* 80.2 569 505 138 165 125 399 43 25.1 215 17.4 10.1 29.1
Seed-Coder-8B-Instr 283 27.8 288 227 3001 290 299 256 285 27.0 277 238 274
OpenCodeRsn-Nmt-1.1-32B* 724 472 39.1 8.5 11.8 100 309 2.1 30.3 283 13.7 78 252
Devstral-Small-2505 30.3 239 279 21.1 275 26.8 257 24.4 264 26.0 24.0 17.9 249
DeepSeek-Coder-33B-Instr 224 18.9 227 55 12.0 8.5 223 il 17.9 18.8 18.8 154 16.4

Table 14 reports Pass@1 scores at sampling temperature ¢ = 0.2, for all 19 evaluated models on
the complete Multi-LCB benchmark, which contains 1,055 tasks per programming language. Each

21

Under review as a conference paper at ICLR 2026

score reflects the percentage of problems solved correctly on the first attempt, with higher values
indicating better performance. Models marked with an asterisk (*) are reasoning-enhanced variants.

G COMPUTATION TIME

Table 15 reports the average compilation and execution time required to evaluate one full Multi-LCB
run (1,050 tasks per language) across 90 parallel CPUs. On average, each language requires about
8 min 50 s (= 530 s) per model, with a total wall-clock time of roughly 106 hours when aggregated
over all twelve languages.

Execution cost varies noticeably by language. Ruby shows the highest mean time at 17 min 37 s,
followed by Go and Python, each exceeding 11 minutes on average. In contrast, Kotlin, PHP, and
JavaScript complete evaluation in under 4 minutes. These differences primarily reflect compilation
overheads and runtime performance of each language’s toolchain, and they guide resource planning
for future large-scale model evaluations.

Table 15: Evaluation times (compilation + execution on tests + matching) across programming
languages. Runs were executed in parallel on 90 CPUs over 1050 tasks (v1-v6). Averages and
standard deviations are computed across the measured models.

Language Avg. Time (mm:ss) Std. Dev. (mm:ss) Avg. Time (s) Std. Dev. (s)

C# 9:10 3:08 550.15 188.83
C++ 10:25 2:54 625.72 174.17
Go 12:36 2:36 756.13 156.71
Java 10:44 2:55 644.07 175.96
JavaScript 3:44 1:05 224.73 65.14
Kotlin 3:14 1:46 194.87 106.23
PHP 3:29 0:49 209.82 49.78
Python 11:38 2:56 698.71 176.07
Ruby 17:37 3:27 1057.42 207.45
Rust 7:41 3:50 461.04 230.24
Scala 7:25 1:16 44524 76.41
TypeScript 8:17 0:55 497.59 55.37
Average 8:50 4:12 530.46 252.51
Total (sum) 106:05 — 6365.48 —

H LANGUAGES AND COMPILER VERSIONS

All experiments were conducted in a controlled environment using the following language runtimes
and compiler versions to ensure consistency and reproducibility across all tasks in Multi-LCB:

o C++:gcc 1430

* Java: OpenJDK 8.0.412

e Python: 3.12.11

* Rust: 1.88.0

* Go: 1.22.12

* Ruby: 3.3.6

» JavaScript (Node.js): 20.19.4

* TypeScript (Deno): 2.3.4

e C# (Mono): 6.12.0.199

¢ Compilers (general): 1.11.0

« PHP: 8.1.0

¢ Kotlin: 2.2.0

e Scala: 2.11.8

e pip: 25.2
These versions were used consistently for compilation, execution, and evaluation to guarantee re-
producibility of all Multi-LCB results.

22

Under review as a conference paper at ICLR 2026

Ezz I PLATFORM ANALYSIS
112? Figures 10, 11, and 12 show performance comparison between LeetCode and AtCoder platforms

across different programming languages. Models demonstrate varying capabilities depending on
1192 the platform, with some excelling on LeetCode’s interview-style problems while others perform
1193 Dbetter on AtCoder’s competitive programming tasks.

1194
1195 Code Generation Metrics Heatmap - Group 1
1196 (PYTHON, C++, JAVA, C#)
100
1197 Qwen3-2355»A22B-Thk-2507*- 69.5 - - 69.5 67.9 . 63.4
1198 DeepSeek-R1-0528*- 65.6 61.2 68.3 64.1 59.2 67.1 64.1 63.3 64.6 55.7 46.9 61.0
1199
1200 Qwen3-30B-A3B-Thk-2507*- 64.1 69.4 61.0 64.1 69.4 61.0 64.1 59.2 67.1 57.3 63.3 53.7
1201 Qwen3-32B*- 60.3 65.3 57.3 57.3 53.1 59.8 54.2 53.1 54.9 49.6 53.1 47.6
80
1202 Qwen3-235B-A22B*- 55.0 53.1 56.1 55.7 57.1 54.9 49.6 49.0 50.0 51.1 53.1 50.0
1203
Qwen3-30B-A3B*- 54.2 49.0 57.3 51.1 51.0 51.2 48.1 42,9 51.2 47.3 38.8 52.4
1204
1205 Qwen3-14B*- 50.4 44.9 53.7 49.6 46.9 51.2 46.6 44.9 47.6 45.8 44.9 46.3
1206 OlympicCoder-32B*- 46.6 42.9 48.8 50.4 44.9 53.7 42.0 38.8 43.9 39.7 38.8 40.2
-60
1207 Qwen3-235B-A22B-Instr-2507 - 42.7 34.7 47.6 41.2 30.6 47.6 47.3 38.8 52.4 45.0 34.7 51.2
1208 9
L] Qwen3-8B*- 40.5 38.8 41.5 41.2 38.8 42.7 38.2 34.7 40.2 32.1 30.6 32.9 <
1209 3 ®
121 0 g Qwen3-Coder-30B-A3B-Instr- 35.9 30.6 39.0 30.5 36.6 32.1 ﬁ
o
1211 Qwen3-30B-A3B-Instr-2507 - 38.9 30.6 43.9 31.3 39.0 33.6
-40
1212 OlympicCoder-7B* - 32.8 35.4 34.4 43.9 30.5
1213
1214 Qwen2.5-Coder-32B-Instr 30.5
121 5 OpenRsn-Nemotron-32B*- 61.8 58.5
1 21 6 Seed-Coder-8B-Instr
1217
Devstral-Small-2505
1218
121 9 OpenCodeRsn-Nemotron-1.1-32B*- 55.0 49.0 58.5
1220 deepseek-coder-33b-instr B 5 23.2
1 221 Qwen?2.5-Coder-14B-Instruct
1222
> > R\ AR\ SR\ o
1223 O X320 TS T2 T
L & LTS @ S
1994 ot e gL o &
Y
1225 Languages and Platforms
1226 . .
- Figure 10: Code generation performance heatmap by platform for Python, C++, Java, and C#.

Shows overall performance and platform-specific results (LeetCode vs AtCoder) across different

1225 models. Values represent Pass@1 scores (%).
1229

1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

23

Under review as a conference paper at ICLR 2026

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252 Code Generation Metrics Heatmap - Group 2
1253 (RUBY, PHP, KOTLIN, JAVASCRIPT)
100
1254 Qwen3-235B-A22B-Thk-2507*- 48.1 59.2 41.5 sa.1-53.4 63.4 61.2 64.6 sa.1. 63.4
1255
DeepSeek-R1-0528*- 56.5 51.0 59.8 56.5 51.0 59.8 58.0 55.1 59.8 55.7 49.0 59.8
1256
1257 Qwen3-30B-A3B-Thk-2507* - 38.2 53.1. 59.5 63.3 57.3 48.1 40.8 52.4 49.6 53.1 47.6
1258 Qwen3-32B*- 47.3 51.0 45.1 52.7 49.0 54.9 41.2 36.7 43.9 45.8 55.1 40.2
80
1259 Qwen3-235B-A22B*- 45.8 53.1 41.5 50.4 51.0 50.0 45.8 40.8 48.8 49.6 44.9 52.4
1260
Qwen3-30B-A3B*- 47.3 44.9 48.8 49.6 51.0 48.8 40.5 36.7 42.7 45.8 44.9 46.3
1261
1262 Qwen3-14B*- 45.8 46.9 45.1 42.7 40.8 43.9 38.2 30.6 42.7 43.5 44.9 42.7
1263 OlympicCoder-32B*- 42.7 42.9 42.7 44.3 42,9 45.1 32.8.36.6 36.6 42.9 32.9
-60
1264 Qwen3-235B-A22B-Instr-2507 - 40.5 34.7 43.9 44.3 32,7 51.2 39.7 30.6 45.1 18.4 3
1265 3
] Qwen3-8B*- 35.1 38.8 32.9 30.5 32.7 22.1 12.2 35.1 38.8 32.9 ~
1266] o
g €]
1267 s Qwen3-Coder-30B-A3B-Instr - 35.9 41.5 B 37.4 32.7 40.2 g
Qwen3-30B-A3B-Instr-2507 - 19.1
1268
-40
1269 OlympicCoder-7B* 19.1
1270
Qwen2.5-Coder-32B-Instr 6.9
1271
1272 OpenRsn-Nemotron-32B* 9.2
1273 Seed-Coder-8B-Instr 22.1
1274
Devstral-Small-2505 . 12.2 21.4
1275
OpenCodeRsn-Nemotron-1.1-32B* . 24.5 9.9
1276
1277 deepseek-coder-33b-instr Y 12.2 9.9
1278 Qwen2.5-Coder-14B-Instruct 1=kl SR PIPR - 1) 24.4 18.4
1279 e
1280 ;,@ SIS
X
) Y
1281 N
1282 Languages and Platforms
1283

1oy Figure 11: Code generation performance heatmap by platform for Ruby, PHP, Kotlin, and

12 JavaScript. Shows overall performance and platform-specific results (LeetCode vs AtCoder) across
85 .

o different models. Values represent Pass@1 scores (%).

1287
1288
1289
1290
1291
1292
1293
1294
1295

24

Under review as a conference paper at ICLR 2026

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306 Code Generation Metrics Heatmap - Group 3
1307 (TYPESCRIPT, GO, RUST, SCALA)
100
1308 Qwen3-235B-A22B-Thk-2507*- 58.0 63.3 54.9 57.3 57.1 57.3 42.0 38.8 43.9 51.9 55.1 50.0
1309
310 DeepSeek-R1-0528*- 55.7 55.1 56.1 47.3 40.8 51.2 57.3 51.0 61.0 56.5 53.1 58.5
131
1311 Qwen3-30B-A3B-Thk-2507*- 42.7 46.9 40.2 412 30.6 47.6 50.4 53.1 48.8 38.9 36.7 40.2
1312 Qwen3-32B*- 48.1 53.1 45.1 41.2 40.8 41.5 41.2 36.7 43.9 30.5 30.6 30.5
1313 Qwen3-235B-A22B*- 49.6 55.1 46.3 44.3 38.8 47.6 37.4 429 34.1 313 32.7 305
1314
1315 Qwen3-30B-A3B*- 48.9 53.1 46.3 35.1 39.0 38.2 32.7 415
1316 Qwen3-14B*- 36.6 43.9 30.5 32.9
1317 OlympicCoder-328* - 32.8 40.2 31.3 35.4 25.2 22.4
-60
1318 Qwen3-235B-A22B-Instr-2507 38.2 45.1 47.6
1319 9
1320 % Qwen3-8B* - §
° ®
1 321 g Qwen3-Coder-30B-A3B-Instr ﬁ
o
1322 Qwen3-30B-A3B-Instr-2507
-40
1 323 OlympicCoder-7B*
1324
1325 Qwen2.5-Coder-32B-Instr 24.4
1 326 OpenRsn-Nemotron-32B* 19.5
1327 Seed-Coder-8B-Instr 23.2
1 328 Devstral-Small-2505 20.7
1329
1 330 OpenCodeRsn-Nemotron-1.1-32B* 14.6
1331 deepseek-coder-33b-instr 4.1 | 19.5 3.8
1332 Qwen2.5-Coder-14B-Instruct 16.3 | 24.4 17.6 10.2 10.2
1333 O O O A0 & &
1334 S % % TITESy
AN & &L S & &L (O
1335 & MR o ¥
1336 Languages and Platforms
1337

1995 Figure 12: Code generation performance heatmap by platform for TypeScript, Go, Rust, and Scala.
1339 Shows overall performance and platform-specific results (LeetCode vs AtCoder) across different
. models. Values represent Pass@1 scores (%).

1341
1342
1343
1344
1345
1346
1347
1348
1349

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

J DIFFICULTY ANALYSIS

Figures 13, 14, and 15 present performance breakdown by difficulty levels (Easy, Medium, Hard)
across programming languages. The results reveal significant performance degradation as problem
complexity increases, with Hard problems showing the largest performance gaps between models.

Difficulty Metrics Heatmap - Group 1
(PYTHON, C++, JAVA, C#)

100

Qwen3-235B-A22B-Thk-2507* - 71.0

DeepSeek-R1-0528* - 65.6

Qwen3-30B-A3B-Thk-2507* - 64.1

Qwen3-32B*- 60.3

Qwen3-235B-A22B* - 55.0

Qwen3-30B-A3B*- 54.2

Qwen3-14B*- 50.4

OlympicCoder-328* - 46.6

Qwen3-235B-A22B-Instr-2507 - 42.7

Qwen3-8B*- 40.5

Models

Qwen3-Coder-30B-A3B-Instr - 35.9

Pass@1 (%)

Qwen3-30B-A3B-Instr-2507 - 38.9
-40
OlympicCoder-7B* -
Qwen2.5-Coder-32B-Instr
OpenRsn-Nemotron-32B* -
Seed-Coder-8B-Instr
Devstral-Small-2505

OpenCodeRsn-Nemotron-1.1-32B* -

deepseek-coder-33b-instr

Qwen2.5-Coder-14B-Instruct

R R B b KL b

S s S o8 Ty T e o dy g de ©
SECEEE Vo ¥ ¥o© ¥ & &
Tt Q NG > & o' &

Languages and Difficulty Levels

Figure 13: Code generation performance heatmap by difficulty level for Python, C++, Java, and C#.
Shows overall performance and difficulty-specific results (Easy, Medium, Hard) across different
models. Values represent Pass@1 scores (%).

26

Under review as a conference paper at ICLR 2026

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417 Difficulty Metrics Heatmap - Group 2

1418 (RUBY, PHP, KOTLIN, JAVASCRIPT)

1419 eSS AT

1 420 DeepSeek-R1-0528* -

1 421 Qwen3-30B-A3B-Thk-2507* -

1422 Quen-328™1

1423 Quend-2358-A226"1

1424 Quen3 308 3841

1425 uan 142

1426 OlympicCoder-328* -

1427 Qwen3-235B-A22B-Instr-2507 -

1428 4 Qwers - :
1429 € Qwen3Coder308-A38-Instr - 2
1 430 Qwen3-30B-A3B-Instr-2507 - ¢
1431 OlympicCoder 78+

1432 Quen?.5-Coder 328-Instr

1433 OpenRsn-Nemotron-328*

1434 Seed-Coder-8B-Instr

1435 Devstral-Small-2505

1436 OpenCodeRsn-Nemotron-1.1-328*

1437 deepseck-coder-33bnstr

1438 Qwen2.5-Coder-14B-Instruct

1439 & T Se S

1440 o° G ECLEST Y P
1441 Languages and Difficulty Levels

1442

1445 Figure 14: Code generation performance heatmap by difficulty level for Ruby, PHP, Kotlin, and
JavaScript. Shows overall performance and difficulty-specific results (Easy, Medium, Hard) across

1444
different models. Values represent Pass@ 1 scores (%).

1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

27

Under review as a conference paper at ICLR 2026

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471 Difficulty Metrics Heatmap - Group 3

1472 (TYPESCRIPT, GO, RUST, SCALA)

1473 Quen3-2358-A22B-Thk-2507+ - 58.0 | 7 79.5 JETRY

1474 DeepSeek-R1-0528+- 55.7 [LERM 615 37.7

1475 Qwen3-30B-A3BThk-2507+- 42.7 58.1 56.4

1476 Quen3-328+- 48.1 64.1

1477 Qwen3-2358-A22B*- 49.6 [LERM 615

1478 Quwen3-308-A38*- 48.9 [ELEN 61.5

1479 Qwen3-148+-

1480 OlympicCoder-328+ -

1481 Quwen3-235B-A22B-Instr-2507

1482 Quen3ony :

1483 E Qwen3-Coder-308-A3B-Instr %
[

1484 Qwen3-30B-A3B-Instr-2507

1485 OlympicCoder-78*

1486 Quwen2.5-Coder-32B-Instr

1487 OpenRsn-Nemotron-328* 8 32 o

1488 Seed-Coder-8B-Instr 20.6 JGEN 17.9

1489 Devstral-Small-2505 21.4 15.4

1490 OpenCodeRsn-Nemotron-1.1-328* 8 00 o

1491 deepseek-coder-33b-instr .8 129 2.

1492 Qwen2.5-Coder-14B-Instruct

1493 e,°‘§">\é’§'*é§‘%<%§°

1494 o «

1495 Languages and Difficulty Levels

1496

1207 Figure 15: Code generation performance heatmap by difficulty level for TypeScript, Go, Rust, and
110s Scala. Shows overall performance and difficulty-specific results (Easy, Medium, Hard) across dif-
1499 ferent models. Values represent Pass@1 scores (%).

1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

28

Under review as a conference paper at ICLR 2026

K TEMPORAL ANALYSIS

Figures 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, and 27 illustrate monthly performance trends
from 2023 to 2025 across different programming languages. A notable declining trend is observed
across all models and languages, with top-performing models dropping from approximately 80%
to 60% Pass@1 scores over time. This consistent degradation pattern appears universally across
programming languages, suggesting systematic factors rather than language-specific issues. The
decline may be attributed to two primary factors: (1) data contamination effects, where models
perform better on older, potentially seen problems, and (2) increasing problem complexity over time
as benchmark creators develop more challenging tasks to maintain discriminative power.

Monthly pass@1 Trends for Python Across Models

Monthly pass@1 Trends for C++ Across Models

Figure 16: Monthly Pass@1 trends for Python.

Monthly pass@1 Trends for C# Across Models

Quen 2358A228 Thinking 2507 — Quien3 308438 Openfeasoning Nematron- 328
—— Qen330BAITHinking 2507 — Quen3-148* — OlympicCoder328"
Quen3 328+

Figure 17: Monthly Pass@1 trends for C++.

Monthly pass@1 Trends for Java Across Models

Bos
g
os
os
0
02
SIS DS D e s S
Rl i g
FETTETE TS
e
v S T 5T — v 145 PO S — Z Otmeaniasa
- ; = v 18- AP

Figure 18: Monthly Pass@1 trends for C#.

Monthly pass@1 Trends for Go Across Models

I P NP s PPN >

S eSO S > D IR &

o o o o5 o5 T T T 0T W W o S

R P A R P P R R

i R R R R R R R i R
Year Month

— Quen323sB.A228¢ — Quen3-1a8* — DeepSeek R1.0528"

Quen3.308.436 — Quen3-88"

3326
Qwen-30B.A3B-Thinking 257"

Figure 20: Monthly Pass@1 trends for Go.

Figure 19: Monthly Pass@1 trends for Java.

Monthly pass@1 Trends for Javascript Across Models

o
05
o4
03
02
CC U N P TS IR I I B I T e B I S
PP PP Pdd@df@ @ dddded s
T IS ST IT TS
Year-Month
Quen32356.A228 Thinking 2507+ — Quen.308.A38" — 0w
3280 Qwen3-300A3BThinking 2507 — Ol

— Quen32358.4228"
— Quen31am°

— Quen3as*

Figure 21: Monthly Pass@] trends for

JavaScript.

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Monthly pass@1 Trends for Kotlin Across Models

Monthly pass@1 Trends for Php Across Models

AR
&
wwwwwwwwwww

Figure 22: Monthly Pass@1 trends for Kotlin.

Monthly pass@1 Trends for Ruby Across Models

Figure 23: Monthly Pass@1 trends for PHP.

Monthly pass@1 Trends for Rust Across Models

Figure 24: Monthly Pass@1 trends for Ruby.

Monthly pass@1 Trends for Scala Across Models

Y S eSS Py S > o e o

R b P g

FEFFIFIIITIFIELSTIT ST TS
Year-Mor

— Quen3-gs"

— DeepSeekRL0528" — Quen3.308-A38"
3 Quen2.5-Coder-328-nstr

Quen3-30BAIBTNNKING 2507 — Quen-148-
e

Figure 26: Monthly Pass@1 trends for Scala.

30

Figure 25: Monthly Pass@1 trends for Rust.

Monthly pass@1 Trends for ipt Across Models

pass@l

I N I S S S

U R I e R g g g

R R R A
YearMonth

Quen3 328" — Quen3.ss —— Quen2.5.Coder-328-nstr

— Quen3-1ap+

Figure 27: Monthly Pass@1 trends for Type-
Script.

Under review as a conference paper at ICLR 2026

L LANGUAGES ERRORS TYPE

Figures 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42 and 43 illustrate detailed error break-
downs across different programming languages and models. Several consistent patterns emerge:

1.

Wrong-answer (WA) errors dominate across almost all languages and models. For every
model, WA is the largest source of failure in both Python and non-Python languages, indi-
cating that the primary bottleneck remains algorithmic correctness rather than compilation
or parsing.

. Compiled languages show substantially more compiler- and type-related errors. Languages

such as C++, Java, Rust, and Go exhibit significantly higher rates of compilation errors
(e.g., missing imports, type mismatches, incorrect signatures) compared to Python. This
pattern is consistent across all models and reflects the challenge of generating syntactically
valid and type-correct code when strict compilation pipelines are enforced.

. Runtime exceptions increase in languages that require explicit input parsing. In languages

like Java, C#, and Go, runtime errors (e.g., NullPointerException, IndexError, ValueError)
are far more frequent than in Python. This supports the hypothesis that the STDIN/STD-
OUT format, while uniform across languages, exposes weaknesses in model robustness to
input handling and data conversion.

. Timeout and resource-related failures appear more often in slower languages and for

reasoning-tuned models. Java, Rust, and Go show noticeably more TimeoutExpired cases,
likely because models occasionally generate inefficient implementations. Reasoning-heavy
models (e.g., R1-0528, Nemotron-32B) are more prone to long-running solutions when
they attempt more complex multi-step logic.

. Empty-code and trivial-syntax errors are rare but nonzero. These errors appear mostly in

smaller models (e.g., 7B-14B) and are nearly absent for 30B+ models. This indicates that
larger models rarely fail at the initial code-structuring stage, with most errors occurring
deeper in the execution pipeline.

. Cross-model consistency in error profiles. Despite architectural and training differences,

the overall error distributions are remarkably stable across models, demonstrating that:
Python remains the least error-prone language, Compiled languages introduce predictable
error modes, and Languages with verbose input/output handling (Java, C#, Go) amplify
runtime failures.

. Error distributions reinforce the observed performance gaps. The breakdowns offer a mech-

anistic explanation for the Pass@1 disparities reported in the main results. For example,
models underperforming in Rust and C++ do so not because they fail to produce solutions,
but because syntactic and type-level correctness is significantly harder to achieve in those
languages.

DeepSeek-R1.0528 cot ,
: I I - I I I Wl I I I - |
v Ay s S S S S LS

P A R R ; ; ; .
oSS S ’ / ’ # /
&S ¢ v s #
o VA L

#
i

A
: I I i . A I I I I I I - ™
s LSS S LSS

Figure 28: deepseek-coder-33b-instruct Figure 29: DeepSeek-R1-0528*

31

1674
1675
1676
1677
1678
1679
1680
1681

1682
1683
1684
1685
1686
1687
1688
1689
1690
1691

1692
1693
1694
1695
1696
1697
1698
1699
1700
1701

1702
1703
1704
1705
1706
1707
1708
1709
1710
1711

1712
1713
1714
1715
1716
1717
1718
1719
1720
1721

1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

7 f'/',e"‘/

Devstral-Small-2505

OlympicCoder-78_cot

//////‘J’/

ST S

Figure 32: OlympicCoder-32B*

OpenReasoning:Nemotron-328_cot

Figure 33:

1.1-32B*

Quen2.5-Coder: 14B-Instruct

,/,/ ,f"/x y,,/;x;'ﬁf,f ;///(//x V/f//f/'//‘gi’/
e d Tt T) o s s b
(AR R AR N AR Al
TR T T T
LSS LTSS S ’?/{/X//n'/’//%'nﬁ//ﬁxf
VL T YR W T T
LSS LSS LSS S "fxf//f/ LSS
Figure 30: Devstral-Small-2505 Figure 31: OlympicCoder-7B*
- - g;ﬁ“m' gz-" ‘ %”_ _ gﬁWMWW%Ei»‘":f
ETIETZ jb"‘,f“*j"**‘} s arianiiria
- RE 1. 2 ,' i, "i Iy | l]
T]':f";ff% S e
T s i
LI jtf“—'?]'f"f‘# S ST L
| S T [,iiz,., Ll
: L@L A A {;_W R A

OpenCodeReasoning-Nemotron-

b

//////

///.//f./ 7

/,;/j!f

N |

"xf//xx

// f/‘

“’/ ’//’f”/

ﬁ

// ’//’f

ii

N

’///////

'/’/ ,/,.

f

LSS

:

ot

.

S

|
s

Figure 34: OpenReasoning-Nemotron-32B*

32

f//// s

J

’///x/

f

’//«// oes

Figure 35: Qwen2.5-Coder-14B-Instruct

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

rre

oy ;/'/,
e
ﬂ»’/f/:/v/z;

SIS

Qwen2.5-Coder:328-Instruct

Quen3-88_cot

/////f/

f////,

// ’//f"’/

-

s f///

i

’ S/ ,/,,,,

7 f/x 77

{

‘s ////,

!

,/ f/x//

{

////

’/’//./,/

////f/

Figure 36: Qwen2.5-Coder-32B-Instruct

L

f/x/x/

{

f/ ///f/ 'f/ Iy

Figure 37: Qwen3-8B*

Quen3-308-A38 ¢

//’ ’/«‘ff"

i

f////,

-

// //,*

i

»”/ ’Xf//

{
i

xxf//f

»’x’ il

F

I/K}f/f/

"// 'f/x’ff/

//////

:

t

////j/J

',f,/ SSSE S

Figure 38: Qwen3-14B*

D

f/j//j/“/

?j//ﬁ//g J/‘Qf;x %///j;f
SIS ':f/ e
"Q//)vx//Aj'flf :’/f/ / i///;/f/-‘,«

Figure 40: Qwen3-30B-A3B-Instruct-2507

i

f/ ,«/,«,

77 f/mx

{

7 oy

Figure 39: Qwen3-30B-A3B*

3-235B-A228 Thinking 2507 _cot

9
<12

Figure 41:
2507*

"f/,'/j/“,é D/.#’.’///"f/. «",f'/.j,ff"f
7 ///f SSIIIIS TSI
L_-—_LM o | .i 5 A

1ITLIT T NPT
T LTI T

Qwen3-235B-A22B-Thinking-

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

syten

Qwen3-Coder-308-A38-Instruct

Seed-Coder.gB-Instruct

T

haeoa. Fhaa by

{.

f

IS

f/f/,* f/l/fjx’/f f////// /‘//&l/f/ ’;fty//ffff
Y "uf f;fwf 7 cf//x 77 TP b cf 77 "fx cf*///
s d -.L.IJ_JAI.LJ_._.L Ll.uu“_.l_lu_d_‘
Gf”x/// //wQ/ff C/ﬂ/ff/ ’/ /f/f f/"f/X

Y

| I I :

f

s f//xf’,/ 7 27

Figure 42: Qwen3-Coder-30B-A3B-Instruct

34

o

’/’f’f/

F

v Q 77

'f/‘/

g’szf

Figure 43: Seed-Coder-8B-Instruct

	Introduction
	Related Work
	Benchmark Design
	Language set and motivation

	Experiment Setup
	Experiments and Results
	Experiments Results on Multi-LCB
	Comparison with LiveCodeBench
	Contamination on Multi-LCB

	Limitations and Threats to Validity
	Future Work
	Conclusions
	Appendix
	Legal Compliance and License
	UI of Multi-LCB
	Prompt Examples
	AtCoder/CodeForces Example (native STDIN/STDOUT)
	LeetCode Example (adapted into STDIN/STDOUT)

	Tasks Distribution
	Task Distribution by Difficulty and Platform
	Task Distribution by I/O Data Dimensionality (LeetCode Functional Format)

	Programming language rankings and runtime characteristics
	Experiments
	Models overview
	Performance on the Multi-LCB (Feb-May 2025 Subset) Across Sampling Temperatures
	Pass@1 averaged over 10 runs performance at various sampling temperatures
	Pass@5 performance at different sampling temperatures
	Pass@10 performance at different sampling temperatures

	Performance on the Multi-LCB (Jul 2024-May 2025 Subset)
	Performance on the Complete Multi-LCB Benchmark

	Computation time
	Languages and Compiler Versions
	Platform Analysis
	Difficulty Analysis
	Temporal Analysis
	Languages errors type

