
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MULTI-LCB: EXTENDING LIVECODEBENCH TO
MULTIPLE PROGRAMMING LANGUAGES

Anonymous authors
Paper under double-blind review

ABSTRACT

LiveCodeBench (LCB) has recently become a widely adopted benchmark for eval-
uating large language models (LLMs) on code-generation tasks. By curating com-
petitive programming problems, constantly adding fresh problems to the set, and
filtering them by release dates, LCB provides contamination-aware evaluation and
offers a holistic view of coding capability. However, LCB remains restricted to
Python, leaving open the question of whether LLMs can generalize across the
diverse programming languages required in real-world software engineering.
We introduce Multi-LCB, a benchmark for evaluating LLMs across twelve pro-
gramming languages, including Python. Multi-LCB transforms Python tasks from
the LCB dataset into equivalent tasks in other languages while preserving LCB’s
contamination controls and evaluation protocol. Because it is fully compatible
with the original LCB format, Multi-LCB will automatically track future LCB
updates, enabling systematic assessment of cross-language code generation com-
petence and requiring models to sustain performance well beyond Python.
We evaluated 24 LLMs for instruction and reasoning on Multi-LCB, uncover-
ing evidence of Python overfitting, language-specific contamination, and sub-
stantial disparities in multilingual performance. Our results establish Multi-LCB
as a rigorous new benchmark for multi-programming-language code evaluation,
directly addressing LCB’s primary limitation and exposing critical gaps in cur-
rent LLM capabilities. All prompts, source code and experimental configura-
tions are publicly available at https://anonymous.4open.science/r/
Multi-LiveCodeBench-C627/.

1 INTRODUCTION

Large language models (LLMs) have recently demonstrated impressive capabilities in code-related
tasks (Ridnik et al., 2024; Lozhkov et al., 2024; Roziere et al., 2023; Li et al., 2022; Nijkamp et al.,
2022), powering applications such as AI-assisted programming, automated debugging, and code
translation. To measure these abilities, benchmarks such as HumanEval (Chen et al., 2021), MBPP
(Austin et al., 2021), and APPS (Hendrycks et al., 2021) have been widely adopted. However, these
datasets suffer from well-documented limitations, including contamination from training corpora,
narrow task scope, and weak correlation with human judgment. LiveCodeBench (LCB) (Jain et al.,
2024) addresses these shortcomings by continuously curating competitive-programming problems,
filtering them by release date, and enabling contamination-aware, continuously updatable evalua-
tion. As a result, LCB has quickly become a standard benchmark for evaluating LLMs on code-
generation tasks (Google DeepMind, 2025; DeepSeek, 2025).

Despite these strengths, LCB (Jain et al., 2024) evaluates only Python. While convenient, this
limitation overlooks a central reality of software engineering: developers routinely work across
diverse programming languages, each with its own syntax, semantics, and idiomatic practices. An
LLM capable of solving problems exclusively in Python may perform poorly when C++ is required
for systems programming, Java for enterprise software, or JavaScript for web development. Current
evaluations therefore leave open a critical question: can LLMs generalize coding competence across
multiple programming languages, or are they overfitted to Python?

In this work, we introduce Multi-LCB, an extension of LCB (Jain et al., 2024) to twelve program-
ming languages while preserving its contamination controls and evaluation protocol. Multi-LCB

1

https://anonymous.4open.science/r/Multi-LiveCodeBench-C627/
https://anonymous.4open.science/r/Multi-LiveCodeBench-C627/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

replicates every LCB task across all supported languages, enabling direct comparison of model per-
formance on identical problems in different programming languages and updating automatically as
LCB evolves. We evaluate 24 reasoning- and instruction-oriented LLMs on Multi-LCB and uncover
key findings:

1. Python is not always a reliable proxy for individual non-Python languages. Our results re-
veal substantial and practically meaningful performance gaps across languages. In several
cases, models that are stronger on Python do not retain their advantage in other languages.

2. Python overfitting. Models that perform strongly in Python often degrade sharply in other
languages.

3. Language-specific contamination. Evidence of data leakage varies by programming lan-
guage, reflecting uneven distribution in pretraining corpora.

4. Substantial multi-programming-language disparities. Models show large performance
gaps across languages, with weaker results in statically typed or less prevalent languages.

Our main contributions are:

1. We extend LCB (Jain et al., 2024) to 12 programming languages without task loss, enabling
direct comparison of LLM abilities to solve identical problems across different languages.

2. We provide a comprehensive evaluation of 24 instruction- and reasoning-oriented LLMs
across these languages, revealing systematic multi programming languages performance
gaps and evidence of language-specific contamination.

3. We publicly release all prompts, source code and experimental configurations at https:
//anonymous.4open.science/r/Multi-LiveCodeBench-C627/ to facili-
tate reproducibility and future research.

These results establish Multi-LCB as a rigorous benchmark for multi-programming-language code
evaluation, directly addressing LCB’s Python-only limitation and providing a foundation for devel-
oping more robust, programming language agnostic coding models.

2 RELATED WORK

Single-language code benchmarks. Early code-generation benchmarks evaluate functional cor-
rectness almost exclusively in Python. HumanEval (Chen et al., 2021) contains 164 hand-written
problems, each defined by a natural language prompt, a fixed function signature, and hidden unit
tests; tasks are short, single-function programs created specifically for evaluation rather than drawn
from programming contests. MBPP (Mostly Basic Programming Problems) (Austin et al., 2021)
likewise offers small Python exercises aimed at introductory programming and interview practice.
Subsequent datasets expanded scale and difficulty: APPS (Hendrycks et al., 2021) aggregates com-
petition and interview style problems with hidden test suites, CodeContests (Li et al., 2022) compiles
algorithmic contest tasks with official judge input/output data, and CodeXGLUE (Lu et al., 2021)
provides a broad suite of generation, translation, and retrieval tasks. Despite their influence, these
resources are static snapshots, lack release date filtering to prevent training set contamination and
are therefore largely saturated, remain heavily Python centric, and do not enforce a unified STD-
IN/STDOUT protocol.

Multi-programming-language benchmarks. Several datasets extend code generation evaluation
beyond Python. MBXP (Athiwaratkun et al., 2022) translates functional-format Python problems
(e.g., HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021)) by rewriting function signatures
and regenerating unit tests for each language. Even a simple Python assertion like:

assert binomial coeff(5, 2) == 10

must be expanded into multi-line Java test code. This translation must be repeated separately for
every language and is sensitive to syntax and runtime differences. Concurrent work MultiPL-E (Cas-
sano et al., 2023) similarly performs translation of HumanEval and MBPP (including their unit tests)
into 19 programming languages. HumanEval-XL (Peng et al., 2024) similarly expands HumanEval

2

https://anonymous.4open.science/r/Multi-LiveCodeBench-C627/
https://anonymous.4open.science/r/Multi-LiveCodeBench-C627/

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Problem sample:

Question
- Natural language
question description
- Test cases examples
Tests

LCB

Natural language description
""" C++
YOUR CODE HERE
"""
Test cases examples

Natural language description
""" C++
YOUR CODE HERE
"""
Test cases examples

Natural language description
""" C++
YOUR CODE HERE
"""
Test cases examples

Prompts

Q
ue

st
io

n

Code generation:

STDIN/STDOUT
format

LLM

LeetCode Problems Tests Converter

=⇒
Te

st
s

[[1,2,3],
[4,5,6]]

2
1 2 3
4 5 6

Execution

AtCoder, Codeforces Problems Tests

> python main.py

> rustc main.rs

> g++ main.cpp

Pass@1

Figure 1: Multi-LCB overview. Top: LCB natural-language problem descriptions are wrapped
into prompts specifying the target programming language and passed to the LLM for STDIN/STD
OUT code generation. AtCoder and Codeforces problem tests are passed directly to the execution
stage. Bottom: LeetCode problem tests are transformed through a dedicated test converter to pro-
duce equivalent STDIN/STDOUT inputs. The generated code is compiled or executed in the target
programming language and evaluated using Pass@1.

to additional languages and provides a standardized execution harness while preserving the func-
tional, unit-test format. Multi-LCB avoids this by keeping only the natural-language description and
converting hidden tests into a language-agnostic STDIN/STDOUT format, for example:
Input:
5 2
Output:
10

Other projects broaden language coverage in different ways. Ag-LiveCodeBench-X (Boruch-
Gruszecki et al., 2025) reuses a subset of LiveCodeBench tasks already in STDIN/STDOUT format
and adds rarer targets such as Lua, R, Julia, OCaml, and Fortran. xCodeEval (Khan et al., 2023)
likewise provides a unified multilingual execution framework and resembles our approach, but it
draws exclusively from Codeforces problems and is not continuously updated. McEval (Chai et al.,
2024) and BigCodeBench (Zhuo et al., 2024) once offered broad language coverage, but both are
static and evaluate different task sets per language, hindering direct cross language comparison.

Contamination-aware evaluation. LiveCodeBench (LCB) (Jain et al., 2024) introduced release
date filtering and continuous collection of Python problems from three major competitive program-
ming platforms: LeetCode, AtCoder, and Codeforces (see Appendix D.1 for task statistics). By
harvesting new tasks and filtering them by post-training release dates, LCB enables live, contam-
ination aware evaluation of LLMs and has become a de-facto standard for robust single language
(Python) code assessment (Comanici et al., 2025; Yang et al., 2025; Liu et al., 2024). A related
effort, EvoCodeBench (Li et al., 2024), followed a similar evolving design but was not actively
maintained and remained limited to Python. Multi-LCB builds directly on this foundation. It reuses
the entire LCB (Jain et al., 2024) task pool and inherits its contamination controls.

3 BENCHMARK DESIGN

This section describes the approach, used to construct the Multi-LCB benchmark. Figure 1 illustrates
the full pipeline. Please note, that although Multi-LCB is built on LCB, the same approach can be
applied to any dataset with a comparable structure.

Data Source. Earlier versions of LCB supported several evaluation scenarios beyond code gener-
ation: self-repair, code execution, and test output prediction. But the latest releases (v5-v6) focus
exclusively on code generation, the most widely benchmarked capability of modern LLMs. In this
setting, a model receives a natural language problem statement with sample input/output pairs and
must synthesize a program that passes all hidden test cases.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

To construct Multi-LCB, we load the desired version of the LCB code generation dataset from Hug-
ging Face, retrieving Python problems and their metadata. We convert every release of LCB code
generation dataset without modification, preserving all tasks from three competitive-programming
platforms: LeetCode, AtCoder, and Codeforces. Each task includes a natural language description,
input/output examples, and contest release date for contamination-aware filtering. Test conversion
is applied only to LeetCode’s functional format tasks to ensure unified STDIN/STDOUT evaluation.
Details about platforms and temporal distribution appear in the Appendix D.1.

Conversion of functional format. LCB supports two native task formats: STDIN/STDOUT (as
in AtCoder and Codeforces), where a program reads from standard input and writes to standard
output, and Functional (as in LeetCode), where a specific function is implemented and invoked by
the evaluation system. Directly extending the functional format to a multi-programming language
benchmark is challenging. Each LeetCode task provides Python starter code tightly coupled to its
own testing harness. Producing equivalent starter code and call signatures for many target languages
would require custom templates for every language, leading to an unsustainable and error-prone
process. To overcome this limitation, we designed an automatic conversion pipeline that rewrites
every Functional task into a unified STDIN/STDOUT format. This pipeline consists of two compo-
nents: (1) prompt adaptation that reformats problem statements and examples for model input, and
(2) test conversion that transforms all test cases for automated evaluation.

The pipeline first parses examples from the problem statement and reformats them into STDIN/STD-
OUT format for inclusion in model prompts. (see Appendix C.1). Separately, it converts all test
cases (both public and hidden) from the original format to enable unified automated evaluation. This
unification allows a single evaluation harness to handle both the original STDIN/STDOUT prob-
lems and the adapted functional tasks across all supported languages. Since the original benchmark
is based on Python, tasks involving Python-specific behavior could theoretically appear. However,
tasks on LeetCode, AtCoder, and Codeforces are authored by human experts and are intentionally
designed to avoid language-specific ambiguities, as these platforms support many programming
languages. Consequently, Multi-LCB requires no language-specific rewriting, and the tasks remain
inherently language-agnostic. Moreover, in our manual inspection of approximately 500 tasks, we
did not find any cases in which language-dependent features introduced inconsistencies. Note that
tasks unsuitable for strict input/output grading, such as those admitting multiple valid answers or
requiring explicit data structure construction, are already excluded in the official LCB dataset that
we load, so Multi-LCB inherits this filtering without any additional intervention. The remaining
tasks are grouped by I/O structure: Scalar: inputs and outputs are single, scalar values (e.g. inte-
gers, floats, booleans, or simple strings); One-Dimensional: involve one-dimensional arrays (lists)
as input or output; Two-Dimensional: include exactly one two-dimensional array (matrix or jagged
array) in the I/O. As a result, all functional tasks, including their examples and hidden tests, are con-
sistently converted to STDIN/STDOUT format: lists are space-separated, and for 2D arrays the first
line specifies the number of rows, followed by row-wise space-separated values. This conversion
applies to both the examples shown to the models and all test cases used for evaluation.

Code generation. We adopt a zero-shot prompting strategy that follows the original LiveCodeBench
protocol. For each task, the benchmark constructs a prompt with three components:

1. a system message instructs the model to act as an expert programmer in the target
language (e.g., ‘‘You are an expert Python programmer...’’);

2. a user message provides the complete natural language problem statement with ex-
plicit STDIN/STDOUT specifications and input/output sample cases already provided in
the original problem descriptions;

3. a code-block placeholder indicates where the solution must be written:

""" python
YOUR CODE HERE
"""
Answer: (use the provided format with backticks)

The code-block header is set to the target language (e.g., cpp, java, python) to ensure
correct syntax highlighting and parsing.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Models are required to output only the complete program source that reads from the standard input
and writes to the standard output. High-level zero-shot template prompts for both native AtCoder
and CodeForces tasks and adapted LeetCode problems are included in the Appendix C for reference.

Automatic Testing and Evaluation. Correctness is assessed against a hidden suite of official test
cases provided by the original contests. A program is marked correct only if it passes all tests
without runtime errors or timeouts. For quantitative comparison we report Pass@1, the fraction of
tasks for which the model’s first generated solution passes every public and hidden test.

Together, these stages create a fully automated pipeline: a model receives a problem prompt, emits
a candidate solution, the code is securely compiled and executed, and the output is graded against
hidden tests – all without human intervention. This process preserves LCB’s rigorous contamination
controls while enabling direct, language-agnostic evaluation of code generation across the diverse
set of languages supported by Multi-LCB. Note, that the same set of tasks is used across evaluations
on different programming languages, hence task difference does not hinder the comparison of the
multi-language model capabilities.

3.1 LANGUAGE SET AND MOTIVATION

This study evaluates multilingual code generation across major programming languages: C++, C#,
Python, Java, Rust, Go, TypeScript, JavaScript, Ruby, PHP, Kotlin and Scala. The selection balances
three criteria: (1) popularity based on Github, StackOverFlow, RedMonk and TIOBE rankings, (2)
stable infrastructure support through package managers like Conda for reproducible execution, and
(3) paradigmatic diversity across compilation strategies, type systems, and memory management
models. For detailed programming language rankings across multiple sources, as well as the runtime
characteristics information, please see Appendix E.

4 EXPERIMENT SETUP

Here we describe the experimental configuration used to evaluate LLMs on the Multi-LCB bench-
mark.

Models We evaluate a diverse set of 24 publicly available large language models (LLMs) span-
ning from 7B to 685B parameters and covering both general-purpose and code-specialized do-
mains. The pool includes instruction-tuned and reasoning-augmented variants from the Qwen3,
DeepSeek, OlympicCoder, OpenReasoning, and OpenCoder families, among others. Representative
examples include Gpt-oss-120B∗ (Medium), Qwen3-235B-A22B-Thinking-2507∗,
DeepSeek-R1-0528∗ and OpenReasoning-Nemotron-32B∗. We intentionally selected
models to capture a wide variety of training paradigms (pure code pretraining, mixed-domain train-
ing, instruction tuning, reasoning-enhanced fine-tuning). Appendix F.1 lists all checkpoints with
their estimated training cut-off dates.

Hardware and Environment. All experiments were run on a cluster of 16 NVIDIA H100 80 GB
GPUs with CUDA 12.3 and Python 3.11 inside Conda environments. Each programming language is
executed inside an isolated sandbox container that bundles its corresponding compiler or interpreter
(e.g., GCC 13 for C++, Rust 1.79, OpenJDK 21, .NET 8, CPython 3.11, Node.js 20). The sandbox
enforces strict resource limits: 6 s wall-time per test case, 4 GB memory, and no external network
access. This ensures deterministic, secure, and language-agnostic execution.

Inference Protocol. Following the original LiveCodeBench protocol, we adopt a zero-shot prompt-
ing strategy. For each problem, we generate a model-specific number of tokens (set according to its
configuration) using nucleus sampling with temperature = 0.2 and top-p = 0.95, applying a triple-
backtick stop sequence to capture the complete code block. Models are served with vLLM (Kwon
et al., 2023) or SGLang (Zheng et al., 2024) for efficient batched decoding.

Evaluation Metric We report Pass@1 (%) averaged on 10 runs as the primary metric, which mea-
sures the fraction of problems solved correctly by the first generated solution. A solution is marked
correct only if it compiles/interprets successfully and passes all hidden official test cases without
runtime errors or timeouts.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Performance results on Multi-LCB for the tasks from February 2025 till May 2025. Scores
represent the Pass@1 (%) metric averaged on 10 runs. Higher is better, bold is best, italic is the
second best. Temperature t=0.2 (* - reasoning mode)

Model Python C++ Java Go JS TS C# Rust Ruby PHP Kotlin Scala Avg

Gpt-oss-120B* (Medium) 71.1 ± 2.1 72.3± 1.9 70.4± 3.0 69.9 ± 3.0 70.5 ± 1.9 70.3 ± 3.8 57.3± 2.7 70.5 ± 2.5 70.2 ± 2.0 66.1 ± 2.8 71.0 ± 2.5 54.1 ± 3.0 67.8 ± 5.9

Qwen3-235B-A22B-Thk-2507* 74.0 ± 3.7 75.8 ± 2.4 73.9 ± 2.0 56.7 ± 2.0 67.0 ± 3.5 62.5 ± 2.9 66.5 ± 2.2 47.7 ± 2.8 49.4 ± 3.2 69.0 ± 3.7 67.7 ± 3.0 57.6 ± 3.0 64.0 ± 9.4

DeepSeek-R1-0528* 66.3 ± 2.0 68.0 ± 1.6 67.8 ± 1.8 55.0 ± 3.0 64.6 ± 2.8 58.9 ± 3.5 61.6 ± 2.8 63.1 ± 2.3 62.4 ± 1.5 61.6 ± 2.2 66.0 ± 2.8 62.3 ± 2.2 63.1 ± 3.8

Gpt-oss-20B* (Medium) 63.6 ± 2.5 65.7 ± 4.0 62.7 ± 2.7 59.9 ± 3.4 61.9 ± 3.4 61.8 ± 2.3 52.4 ± 2.5 61.9 ± 2.3 61.7 ± 2.1 60.5 ± 2.5 62.4 ± 2.2 43.1 ± 2.9 59.8 ± 6.1

Qwen3-30B-A3B-Thk-2507* 64.0 ± 2.6 65.7 ± 4.0 62.4 ± 3.2 44.1 ± 1.9 51.9 ± 4.3 46.5 ± 2.3 56.5 ± 3.8 51.7 ± 4.0 42.1 ± 2.6 58.8 ± 2.9 50.6 ± 2.7 43.6 ± 2.8 53.2 ± 8.3

Gpt-oss-120B* (Low) 56.0 ± 3.1 55.4 ± 2.8 56.8 ± 2.0 51.8 ± 2.2 55.9 ± 2.9 55.6 ± 1.9 45.7 ± 2.3 56.0 ± 1.7 53.0 ± 2.8 53.4 ± 2.3 55.8 ± 2.8 42.2 ± 4.2 53.1 ± 4.6

Qwen3-235B-A22B* 58.9 ± 2.8 58.3 ± 2.7 55.0 ± 4.2 48.7 ± 3.5 50.0 ± 2.8 48.8 ± 3.1 51.0 ± 4.0 40.7 ± 3.7 46.6 ± 2.6 48.4 ± 3.8 47.5 ± 3.9 33.6 ± 3.4 48.9 ± 7.0

Qwen3-32B* 57.6 ± 4.0 55.3 ± 3.4 56.0 ± 4.5 42.1 ± 2.6 49.6 ± 2.6 49.3 ± 3.8 49.1 ± 4.1 40.1 ± 4.1 52.1 ± 2.7 50.0 ± 3.1 46.4 ± 2.7 35.6 ± 3.4 48.6 ± 6.7

Qwen3-30B-A3B* 55.0 ± 3.6 51.5 ± 3.2 50.6 ± 2.6 36.9 ± 1.8 49.9 ± 4.0 48.2 ± 4.9 43.9 ± 2.8 38.4 ± 2.9 46.8 ± 3.1 48.0 ± 3.0 44.3 ± 3.7 32.2 ± 2.7 45.5 ± 6.7

Gpt-oss-20B* (Low) 46.2 ± 3.0 47.9 ± 2.4 46.3 ± 1.8 42.6 ± 1.4 45.1 ± 2.0 42.7 ± 1.9 41.2 ± 2.1 42.0 ± 1.7 44.7 ± 1.6 45.8 ± 1.6 46.3 ± 2.3 29.2 ± 2.7 43.3 ± 4.9

Qwen3-14B* 53.5 ± 5.3 47.2 ± 4.1 47.2 ± 2.8 32.4 ± 3.9 45.0 ± 3.0 46.0 ± 5.2 43.3 ± 2.8 31.5 ± 2.7 45.3 ± 5.0 45.5 ± 2.9 39.2 ± 3.1 32.4 ± 3.0 42.4 ± 7.0

Qwen3-235B-A22B-Instr-2507 43.8 ± 2.8 42.7 ± 2.4 45.5 ± 2.4 35.0 ± 1.4 26.4 ± 1.3 19.5 ± 2.7 44.1 ± 1.8 39.5 ± 1.0 41.5 ± 1.4 42.4 ± 2.2 41.1 ± 2.0 28.1 ± 1.9 37.5 ± 8.4

Qwen3-8B* 46.3 ± 5.9 39.7 ± 5.0 36.7 ± 5.5 25.8 ± 4.4 36.5 ± 4.9 38.8 ± 4.8 36.3 ± 4.3 20.5 ± 4.1 39.5 ± 5.8 36.0 ± 2.2 24.0 ± 3.3 27.0 ± 2.7 33.9 ± 7.7

Qwen3-Coder-30B-A3B-Instr 36.6 ± 2.5 31.1 ± 2.9 35.3 ± 2.8 25.8 ± 2.2 28.4 ± 1.5 28.0 ± 1.4 34.7 ± 2.3 34.3 ± 2.3 34.7 ± 2.2 31.8 ± 1.3 35.7 ± 2.3 20.2 ± 1.8 31.4 ± 4.9

Qwen3-30B-A3B-Instr-2507 38.9 ± 2.5 35.6 ± 2.2 37.2 ± 2.0 22.4 ± 1.9 20.8 ± 1.8 18.2 ± 1.7 36.5 ± 1.1 32.1 ± 2.7 34.7 ± 2.2 34.8 ± 1.9 35.9 ± 1.9 25.7 ± 1.6 31.1 ± 7.2

Qwen2.5-Coder-32B-Instr 27.5 ± 0.8 26.9 ± 0.7 30.5 ± 0.9 23.9 ± 0.7 6.3 ± 1.2 28.8 ± 0.6 28.5 ± 1.3 24.7 ± 0.6 24.6 ± 0.8 27.3 ± 0.6 26.6 ± 0.8 24.5 ± 0.6 25.0 ± 6.2

Seed-Coder-8B-Instr 22.1 ± 0.8 23.4 ± 0.7 26.0 ± 1.5 22.1 ± 1.5 23.3 ± 2.3 23.1 ± 1.6 27.0 ± 0.8 21.8 ± 1.4 21.6 ± 0.9 20.4 ± 1.3 23.4 ± 1.4 21.8 ± 1.0 23.0 ± 1.9

OpenRsn-Nmt-32B* 64.4 ± 3.6 44.2 ± 5.2 40.8 ± 3.0 11.5 ± 4.2 10.8 ± 6.9 10.5 ± 5.3 29.9 ± 3.8 2.8 ± 1.5 18.3 ± 3.4 15.8 ± 3.2 17.3 ± 3.5 6.0 ± 1.3 22.7 ± 18.5

DeepSeek-R1-Distill-Qwen-32B* 39.4 ± 7.3 22.2 ± 4.6 33.2 ± 6.5 11.9 ± 2.8 16.2 ± 3.9 11.6 ± 3.4 29.3 ± 4.3 20.2 ± 4.6 40.1 ± 5.9 12.9 ± 2.6 20.5 ± 4.7 7.0 ± 1.4 22.0 ± 11.2

Devstral-Small-2505* 23.2 ± 1.0 22.6 ± 0.9 22.8 ± 0.7 16.1 ± 2.2 22.7 ± 1.0 24.7 ± 1.4 24.1 ± 1.4 19.9 ± 1.2 19.9 ± 2.0 20.8 ± 1.3 21.2 ± 1.0 17.2 ± 1.4 21.3 ± 2.7

Qwen2.5-Coder-14B-Instr 22.0 ± 0.6 21.3 ± 0.3 23.9 ± 0.8 19.2 ± 0.6 22.6 ± 0.8 17.5 ± 0.8 23.3 ± 0.5 16.7 ± 0.6 22.7 ± 0.8 22.7 ± 0.6 18.1 ± 0.4 20.4 ± 0.6 20.9 ± 2.4

OpenCodeRsn-Nmt-1.1-32B* 56.0 ± 12.4 37.3 ± 8.0 33.1 ± 4.2 9.9 ± 2.6 8.2 ± 3.7 4.9 ± 2.0 25.5 ± 3.4 1.1 ± 0.6 23.4 ± 3.1 19.3 ± 4.3 12.3 ± 3.2 7.0 ± 2.2 19.8 ± 16.1

DeepSeek-R1-Distill-Qwen-14B* 41.8 ± 5.5 16.3 ± 1.8 24.9 ± 2.7 10.8 ± 2.1 10.2 ± 3.4 11.5 ± 3.0 29.2 ± 4.0 3.7 ± 1.4 34.5 ± 4.2 3.8 ± 1.8 11.5 ± 3.6 3.3 ± 1.3 16.8 ± 12.8

Deepseek-Coder-33B-Instr 17.2 ± 0.7 16.2 ± 0.5 18.5 ± 0.8 12.4 ± 0.5 8.5 ± 1.7 7.4 ± 2.3 17.1 ± 0.7 2.6 ± 0.6 15.2 ± 0.7 16.5 ± 0.7 16.0 ± 0.5 12.2 ± 1.0 13.3 ± 4.9

5 EXPERIMENTS AND RESULTS

We evaluate a suite of frontier large language models on Multi-LCB, spanning 12 programming
languages and reporting Pass@1 averaged on 10 runs as the primary metric (Table 1). This section
presents a detailed analysis of model performance on latest Dataset v6 (Feb 2025 – May 2025)
(Section 5.1), compares findings with single-language LiveCodeBench (LCB) results (Section 5.2),
and investigates contamination signals (Section 5.3). For additional performance results at various
sampling temperatures, Pass@5 and Pass@10 metrics and other dataset releases (July 2024-May
2025 and the full 1,055-task benchmark) see appendix F.

5.1 EXPERIMENTS RESULTS ON MULTI-LCB

We study performance variations in models released more recently. Particularly, we evaluate 24
recent large language models on Multi-LCB, restricting tasks to those released after 2025-02-01 to
ensure live, post-cutoff evaluation and minimize any risk of training-data leakage. Model approxi-
mate cutoff dates are listed in Appendix F.1 Table 4.

Figure 2: Top-10 models by Pass@1

Table 1 summarizes Pass@1 averaged on
10 runs with temperature t = 0.2 perfor-
mance across twelve programming languages
on Dataset v6 (Feb 2025 – May 2025), while
Figure 2 highlights the results for the 10 best-
performing models.

Our results reveal substantial and
practically meaningful performance
gaps across languages. For example,
Gpt-oss-120B∗ (Medium) outper-
forms Qwen3-235B-A22B-Thk-2507∗

on Go, Javascript, Typescript, Rust, Ruby and
Kotlin, and DeepSeek-R1-0528∗ outper-
forms Qwen3-235B-A22B-Thk-2507∗

on Rust, Ruby and Scala, despite
Qwen3-235B-A22B-Thk-2507∗ be-
ing consistently stronger on Python. This
is precisely why strong Python ability is not
always a reliable proxy for true cross-lingual
code generation competence and evaluation
must consider performance in the target
languages rather than relying on Python alone.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 3: Scatter of Python vs. Average Pass@1

Figure 3 plots per-model Pass@1 averaged on
10 runs with sampling temperature t = 0.2
scores on Python against the cross program-
ming language average on Dataset v6 (Feb
2025 – May 2025).

Almost every point lies above the x = y
diagonal, demonstrating a consistent bias
toward Python. Models without ex-
plicit multi programming languages train-
ing, such as OpenRsn-Nmt-32B∗ and
OpenCodeRsn-Nmt-1.1-32B∗, show the
starkest gap, exceeding 60% on Python while
remaining below 30% across other languages.

Even the largest reasoning-augmented mod-
els, including Qwen3-235B-Thk and
DeepSeek-R1, retain a measurable positive
bias toward Python, though the disparity is less
pronounced.

These results confirm that strong Python ability
is not necessarily a reliable proxy for true cross-
lingual code generation competence.

The most strongest models, Gpt-oss-120B∗ (Medium), Qwen3-235B-A22B-Thk-2507∗

and DeepSeek-R1-0528∗ establish a strong yet far-from-saturated frontier, while the next tier of
high-performing models, such as Qwen3-30B-A3B-Thk-2507∗, illustrates that only a handful
of reasoning-augmented variants can exceed the 50% mark. Most of the evaluated models remain
below 40%, underscoring the benchmark’s challenge of achieving robust multi programming lan-
guage code generation correctness.

Figure 4: Pass@1 distribution across 12 languages

Figure 4 plots Pass@1 distribution across
12 languages on with sampling tempera-
ture t = 0.2 on Dataset v6 (Feb 2025 –
May 2025). Boxes show the interquar-
tile range with the horizontal line marking
the median and the red diamond indicat-
ing the mean. This reveals a clear diffi-
culty gradient. Python achieves the high-
est mean Pass@1 of 0.482, with Java and
C++ close behind at about 0.44. C#, Ruby,
PHP, Go, Rust, Kotlin and JavaScript/-
TypeScript form a middle tier with means
near 0.33-0.39, while Scala consistently
trail at means below 0.29. These gaps per-
sist across the top-performing models, re-
flecting structural challenges such as com-
pilation complexity, ownership semantics,
and smaller ecosystem resources.

We observe that Python consistently outperforms other languages on Multi-LCB. This suggests
that current LLMs are substantially more trained on Python code, especially for reasoning-mode
training, and that cross-language knowledge transfer remains only partial. We suppose that model
performance could be improved by increasing training coverage of non-Python programming lan-
guages.

5.2 COMPARISON WITH LIVECODEBENCH

To verify that our multilingual extensions preserve the fidelity of the original LiveCodeBench (LCB),
we compare Pass@1 scores on the Python subset of Multi-LCB against the official results reported

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

for LCB versions v4-v6. Table 2 reports original leaderboard results (ORIG) and our reproduced
scores (OUR), with ∆ representing the absolute difference.

Table 2: Comparison of reasoning/code models on Python across benchmark versions (v4–v6).
Original leaderboard values (ORIG, %) are contrasted with our reproduced scores (OUR, %). Dif-
ference is computed as ∆ = OUR − ORIG.

Model Benchmark ORIG (%) OUR (%) ∆ (%) Source
version (range)

Qwen3-235B-A22B-Thinking-2507 v6 [2502–2505] 74.1 74.0 -0.1 Hugging Face
DeepSeek R1 0528 v6 [2502–2505] 68.7 66.3 -2.4 LCB leaderboard
Qwen3-30B-A3B-Thinking-2507 v6 [2502–2505] 66.0 64.0 -2.0 Hugging Face
OpenReasoning-Nemotron-32B v6 [2502–2505] 65.6 64.4 -1.2 LCB leaderboard
OpenCodeReasoning-Nemotron-1.1-32B v6 [2502–2505] 61.4 56.0 -5.4 LCB leaderboard
Qwen3-30B-A3B* v6 [2502–2505] 57.4 55.0 -2.4 Hugging Face
Qwen3-235B-A22B v6 [2502–2505] 55.7 58.9 3.2 LCB leaderboard
Qwen3-235B-A22B-Instruct-2507 v6 [2502–2505] 51.8 43.8 -8.0 Hugging Face

Qwen3-32B* v5 [2410–2502] 65.7 64.3 -1.4 Qwen3 Tech report
Qwen3-14B* v5 [2410–2502] 63.5 56.7 -6.8 Qwen3 Tech report
Qwen3-30B-A3B* v5 [2410–2502] 62.6 61.0 -1.6 Qwen3 Tech report
Qwen3-8B* v5 [2410–2502] 57.5 49.1 -8.6 Qwen3 Tech report
Seed-Coder-8B-Instruct v5 [2410–2502] 24.7 19.8 -4.9 Hugging Face

OpenCodeReasoning-Nemotron-1.1-32B v4–v5 [2408–2502] 69.9 65.3 -4.6 Hugging Face
OlympicCoder-32B v4–v5 [2408–2502] 54.5 52.3 -2.2 Hugging Face
OlympicCoder-7B v4–v5 [2408–2502] 40.7 35.6 -5.1 Hugging Face
Qwen2.5-Coder-32B-Instruct v4–v5 [2408–2502] 28.3 27.6 -0.7 Hugging Face

Overall, reproduction is strong: differences are typically within a few percentage points, with a mean
absolute deviation of only about 3%. For example, Qwen3-235B-A22B-Thinking-2507
achieves 74.0% Pass@1 in our evaluation versus 74.1% on the original v6 leaderboard (∆ = −0.1),
while DeepSeek-R1-0528 records 66.3% compared to 68.7% (∆ = −2.4). Even for mod-
els with larger gaps, such as Qwen3-235B-A22B-Ins-2507 (∆ = −8.0) or Qwen3-8B*
(∆ = −8.6), the rank ordering across models remains consistent.

These close alignments confirm that Multi-LCB’s multilingual transformations introduce no artifi-
cial difficulty for Python tasks. Performance differences instead reflect natural leaderboard variance
and underscore that the multilingual benchmark faithfully reproduces the single-language LCB set-
ting, ensuring that any additional challenges arise from genuine cross-language generalization rather
than implementation artifacts.

5.3 CONTAMINATION ON MULTI-LCB

Figure 5: Monthly Pass@1 trends averaged across all
programming languages for top-10 models.

A core design goal of Multi-LCB is
contamination-aware evaluation via
release-date filtering. Nevertheless,
time-wise analysis reveals clear evidence
of residual contamination on older (pre-
cutoff) problems. Figure 5 shows monthly
Pass@1 trends for the top-10 models aver-
aged across all programming languages :
scores are systematically higher on earlier
months and exhibit step-like drops when
the evaluation window crosses model
cutoffs, followed by sustained lower per-
formance on post–cutoff problems. Our
main comparisons in Section 5 restrict
evaluation to tasks released on or after
2025-02-01, ensuring live, post-cutoff
measurement. Under this setting, perfor-
mance drops to a level that better reflects
true generalization, whereas inflated
scores on older windows are explained by
pretraining exposure rather than genuine zero-contamination generalization.

8

https://huggingface.co/Qwen/Qwen3-235B-A22B-Thinking-2507
https://livecodebench.github.io/leaderboard.html
https://huggingface.co/Qwen/Qwen3-30B-A3B-Thinking-2507
https://livecodebench.github.io/leaderboard.html
https://livecodebench.github.io/leaderboard.html
https://huggingface.co/Qwen/Qwen3-30B-A3B-Thinking-2507
https://livecodebench.github.io/leaderboard.html
https://https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507
https://arxiv.org/pdf/2505.09388
https://arxiv.org/pdf/2505.09388
https://arxiv.org/pdf/2505.09388
https://arxiv.org/pdf/2505.09388
https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Instruct
https://huggingface.co/nvidia/OpenCodeReasoning-Nemotron-1.1-32B
https://huggingface.co/open-r1/OlympicCoder-32B
https://huggingface.co/open-r1/OlympicCoder-32B
https://huggingface.co/open-r1/OlympicCoder-32B

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

6 LIMITATIONS AND THREATS TO VALIDITY

Language Coverage and Selection. Multi-LCB covers 12 programming languages but does not
include some important languages such as Swift, Haskell, R, and others. The language selection
is based on popularity rankings in 2025, which may not reflect specialized domains or emerging
languages. Additionally, some languages have various dialects and versions that are not accounted
for in our evaluation framework.

Task Complexity and Domain. While the selected programming languages span different domains
(systems programming, web development, data science), the tasks themselves remain rooted in com-
petitive programming. Although algorithmic problem-solving has indirect relevance to industrial
coding capabilities, Multi-LCB does not directly assess real-world software engineering scenarios
such as API integration, debugging legacy code, or collaborative development workflows.

Evaluation Protocol Constraints. The strict STDIN/STDOUT format may introduce performance
degradation not only due to algorithmic reasoning limitations but also due to syntax unfamiliarity,
difficulty parsing input formats, or failure to follow output specifications. Models may fail tasks due
to format compliance issues rather than core problem-solving deficits, potentially confounding our
assessment of true multilingual coding competence.

Model Selection Bias. Our evaluation focuses exclusively on publicly available models, excluding
proprietary systems that may represent the current state-of-the-art. This limitation means our results
reflect only a subset of available models and may not accurately represent the real-world leaderboard
of multilingual code generation capabilities.

Construct Validity. The automatic conversion from functional format to STDIN/STDOUT may
alter task complexity differently across programming languages. Some languages may be more
naturally suited for certain problem types, potentially creating unequal evaluation conditions that
affect cross-language comparisons.

Internal Validity. Despite date-based filtering, hidden forms of contamination may persist through
similar problem patterns or solution templates present in training data. Additionally, models may
exhibit temporal bias based on varying exposure to different programming languages during their
training periods.

7 FUTURE WORK

Multi-LCB’s modular design enables straightforward language expansion. We plan to add Swift,
Haskell, R, and Julia by defining their compilation commands and runtime environments. We
will evaluate proprietary models (GPT-4, Claude, Gemini) to establish comprehensive multilin-
gual leaderboards reflecting current state-of-the-art performance. The STDIN/STDOUT framework
directly supports LCB-Pro (Zheng et al., 2025) and other benchmarks requiring format conver-
sion, enabling broader contamination-aware multilingual evaluation without additional infrastruc-
ture changes.

8 CONCLUSIONS

We introduced Multi-LCB, a contamination aware benchmark for evaluating large language mod-
els on multilingual code generation. Multi-LCB provides an extensible framework spanning twelve
programming languages and continuously updates with newly released problems. The conversion
methodology extends beyond LCB to other Python benchmarks (e. g. LCB Pro (Zheng et al., 2025)),
offering a general approach for multilingual code evaluation. By inheriting LiveCodeBench’s live
evaluation protocol and unified STDIN/STDOUT execution, it enables rigorous, cross programming
language assessment and mitigates data contamination that affects static benchmarks. Our experi-
ments expose programming language specific contamination, evidence of Python overfitting, and
significant performance gaps across programming languages. We hope Multi-LCB will serve as a
durable resource for advancing the evaluation of code-oriented LLMs and guiding future research in
multilingual program synthesis.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, Yuchen Tian, Ming Tan,
Wasi Uddin Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, et al. Multi-lingual evaluation of
code generation models. arXiv preprint arXiv:2210.14868, 2022.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Aleksander Boruch-Gruszecki, Yangtian Zi, Zixuan Wu, Tejas Oberoi, Carolyn Jane Anderson, Joy-
deep Biswas, and Arjun Guha. Agnostics: Learning to code in any programming language via
reinforcement with a universal learning environment. arXiv preprint arXiv:2508.04865, 2025.

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, et al. Multipl-
e: A scalable and polyglot approach to benchmarking neural code generation. IEEE Transactions
on Software Engineering, 49(7):3675–3691, 2023.

Linzheng Chai, Shukai Liu, Jian Yang, Yuwei Yin, Ke Jin, Jiaheng Liu, Tao Sun, Ge Zhang,
Changyu Ren, Hongcheng Guo, et al. Mceval: Massively multilingual code evaluation. arXiv
preprint arXiv:2406.07436, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

DeepSeek. Deepseek-r1-0528 release, May 2025. URL https://api-docs.deepseek.
com/news/news250528. DeepSeek News release.

Google DeepMind. Gemini 2.5: Our most intelligent ai model, March
2025. URL https://blog.google/technology/google-deepmind/
gemini-model-thinking-updates-march-2025. Google DeepMind Blogpost.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Mohammad Abdullah Matin Khan, M Saiful Bari, Xuan Long Do, Weishi Wang, Md Rizwan
Parvez, and Shafiq Joty. xcodeeval: A large scale multilingual multitask benchmark for code
understanding, generation, translation and retrieval. arXiv preprint arXiv:2303.03004, 2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th symposium on operating systems princi-
ples, pp. 611–626, 2023.

Jia Li, Ge Li, Xuanming Zhang, Yihong Dong, and Zhi Jin. Evocodebench: An evolving code gen-
eration benchmark aligned with real-world code repositories. arXiv preprint arXiv:2404.00599,
2024.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

10

https://api-docs.deepseek.com/news/news250528
https://api-docs.deepseek.com/news/news250528
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173, 2024.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. Codexglue: A machine learning benchmark
dataset for code understanding and generation. arXiv preprint arXiv:2102.04664, 2021.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. arXiv preprint arXiv:2203.13474, 2022.

Qiwei Peng, Yekun Chai, and Xuhong Li. Humaneval-xl: A multilingual code generation bench-
mark for cross-lingual natural language generalization. arXiv preprint arXiv:2402.16694, 2024.

Tal Ridnik, Dedy Kredo, and Itamar Friedman. Code generation with alphacodium: From prompt
engineering to flow engineering. arXiv preprint arXiv:2401.08500, 2024.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi
Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of
structured language model programs. Advances in neural information processing systems, 37:
62557–62583, 2024.

Zihan Zheng, Zerui Cheng, Zeyu Shen, Shang Zhou, Kaiyuan Liu, Hansen He, Dongruixuan Li,
Stanley Wei, Hangyi Hao, Jianzhu Yao, et al. Livecodebench pro: How do olympiad medalists
judge llms in competitive programming? arXiv preprint arXiv:2506.11928, 2025.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari,
Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Bench-
marking code generation with diverse function calls and complex instructions. arXiv preprint
arXiv:2406.15877, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Appendix

CONTENTS

A Legal Compliance and License 13

B UI of Multi-LCB 13

C Prompt Examples 13

C.1 AtCoder/CodeForces Example (native STDIN/STDOUT) 14

C.2 LeetCode Example (adapted into STDIN/STDOUT) 14

D Tasks Distribution 15

D.1 Task Distribution by Difficulty and Platform . 15

D.2 Task Distribution by I/O Data Dimensionality (LeetCode Functional Format) . . . 16

E Programming language rankings and runtime characteristics 17

F Experiments 18

F.1 Models overview . 18

F.2 Performance on the Multi-LCB (Feb-May 2025 Subset) Across Sampling Tempera-
tures . 18

F.3 Performance on the Multi-LCB (Jul 2024-May 2025 Subset) 21

F.4 Performance on the Complete Multi-LCB Benchmark 21

G Computation time 22

H Languages and Compiler Versions 22

I Platform Analysis 23

J Difficulty Analysis 26

K Temporal Analysis 29

L Languages errors type 31

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A LEGAL COMPLIANCE AND LICENSE

The Multi-LCB benchmark contains no personally identifiable information, offensive content, or
proprietary code. It is derived entirely from the publicly released LiveCodeBench (LCB) dataset,
which itself sources only publicly accessible contest problems, reference solutions, and test cases
from LeetCode, AtCoder, and Codeforces. Our redistribution and multi programming language
transformation of LCB fall under Fair Use (§107, U.S. Copyright Act): the benchmark is provided
solely for non-commercial academic research, reproduces only the material necessary for evaluation,
and does not diminish the market value of the original platforms or LCB. Multi-LCB is strictly an
evaluation resource, no models are trained on these tasks, and is released under a CC BY-NC 4.0
license to ensure non-commercial use.

B UI OF MULTI-LCB

Figure 6 presents the web interface of Multi-LCB, displaying a subset of tasks released between
January 2024 and December 2024. A time-range scroller at the top allows users to interactively
select different time windows to filter tasks and monitor model performance on newly released prob-
lems. This interactive design highlights the live and continuously updated nature of the benchmark,
enabling researchers to track progress as fresh contest tasks are incorporated.

Figure 6: Multi-LCB web interface showing tasks released between January 2024 to Decem-
ber 2024, with an interactive time-range scroller for filtering and visualization.

C PROMPT EXAMPLES

This appendix shows example prompts from Multi-LCB. We distinguish the original problem text
as it appears on the source platform and the additional instructions that we add in order to unify
everything into the STDIN/STDOUT format. Original parts are placed in blue boxes, while added
parts are placed in red boxes.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C.1 ATCODER/CODEFORCES EXAMPLE (NATIVE STDIN/STDOUT)

Original

Question: Find the number of positive integers not greater than N that have exactly 9
positive divisors.

Input: N
Output: Print the answer.

Constraints: 1 ≤ N ≤ 4× 1012

Sample Input 1:
200

Sample Output 1:
3

Added

Format:
Read the inputs from STDIN solve the problem and write the answer to STDOUT (do not
directly test on the sample inputs). Enclose your code within delimiters as follows. Ensure
that when the python program runs, it reads the inputs, runs the algorithm and writes output
to STDOUT.

""" python
YOUR CODE HERE
"""

Answer: (use the provided format with triple quotes)

C.2 LEETCODE EXAMPLE (ADAPTED INTO STDIN/STDOUT)

Original

Question: You are given an integer array enemyEnergies and an integer
currentEnergy... (original description)

Example 1:
Input: enemyEnergies = [3, 2, 2], currentEnergy = 2
Output: 3
Explanation:
Several operations lead to a maximum of 3 points (see original problem description).

Example 2:
Input: enemyEnergies = [2], currentEnergy = 10
Output: 5
Explanation:
Performing the first operation 5 times on enemy 0 yields the maximum number of points.

Constraints:
• 1 ≤ enemyEnergies.length ≤ 105

• 1 ≤ enemyEnergies[i] ≤ 109

• 0 ≤ currentEnergy ≤ 109

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Added

Format:
Read the inputs from STDIN solve the problem and write the answer to STDOUT (do not
directly test on the sample inputs). Enclose your code within delimiters as follows. Ensure
that when the python program runs, it reads the inputs, runs the algorithm and writes output
to STDOUT.

For 2D arrays, the first line indicates the number of rows, followed by newline-separated
rows.

Sample Input 1:
3 2 2
2

Sample Output 1:
3

""" python
YOUR CODE HERE
"""

Answer: (use the provided format with triple quotes)

For non-Python settings, only the header of the code block is replaced (e.g., """ cpp, """
java). The rest of the prompt structure remains identical.

D TASKS DISTRIBUTION

D.1 TASK DISTRIBUTION BY DIFFICULTY AND PLATFORM

LiveCodeBench (LCB) continuously aggregates competitive programming problems in Python from
three major platforms: LeetCode, AtCoder, and Codeforces. Figure 7 shows the monthly distri-
bution of tasks by difficulty, and Figure 8 presents the monthly distribution by source platform. To-
gether, these figures highlight the steady inflow of new problems and the live, contamination-aware
nature of LCB, and, by extension Multi-LCB.

Figure 7: Monthly distribution of Tasks by Difficulty.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 8: Monthly distribution of LCB tasks by platform.

Each platform hosts frequent contests whose tasks provide a natural language description of a prob-
lem, example input/output pairs, and hidden tests, ensuring that solutions must be fully correct to
receive credit. Because every contest attracts thousands of participants and receives official editorial
review, the problems are inherently vetted for clarity and correctness. Across the full lifetime of the
dataset, the platform composition is as follows:

Codeforces: Competitive-programming problems known for a wide range of difficulty and algorith-
mic focus, almost exclusively in STDIN/STDOUT format.

LeetCode: Interview oriented challenges emphasizing data structures and algorithms, originally in
a Functional format.

AtCoder: Algorithmically rich competitive programming problems, typically using
STDIN/STDOUT input/output.

D.2 TASK DISTRIBUTION BY I/O DATA DIMENSIONALITY (LEETCODE FUNCTIONAL
FORMAT)

Figure 9: Monthly task distribution by I/O data dimensionality (LeetCode Functional format).

Figure 9 presents the temporal distribution of LeetCode tasks grouped by the I/O data dimensionality
of their Functional format. The plot highlights how problems with different input/output structures,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

such as scalar values, one-dimensional arrays, and two-dimensional arrays, have entered the bench-
mark over time, illustrating the variety of functional tasks inherited from LeetCode within the LCB
dataset.

E PROGRAMMING LANGUAGE RANKINGS AND RUNTIME CHARACTERISTICS

This study evaluates multilingual code generation across major programming languages selected
for their 2025 popularity and broad industrial relevance. Programming language rankings across
multiple sources presented in Table 3.

Table 3: Programming language rankings across multiple sources (dates in footnotes)

Language TIOBE1 GitHub2 Stack Overflow3 RedMonk4

Python 1 (26.98%) 1 4 (57%) 2
C++ 2 (9.80%) 5 9 (23%) 7
Java 4 (8.76%) 2 7 (29%) 3
C# 5 (4.87%) 10 8 (27%) 5
JavaScript 6 (3.36%) 4 1 (66%) 1
TypeScript 37 (0.28%) 6 6 (43%) 6
Go 7 (2.04%) 3 13 (∼2%) 12
Rust 18 (1.01%) 13 14 (∼2%) 19
Ruby 23 (0.76%) 8 18 (∼1.5%) 9
PHP 14 (1.28%) 7 12 (∼15%) 4
Kotlin 20 (0.90%) 15 15 (∼3%) 14
Scala 34 (0.41%) 14 29 (∼1%) 14

These languages span a wide range of paradigms and runtime characteristics, capturing the diversity
of real-world software development:

• Compilation model:
– Compiled/JIT — C++, Rust, Go, Java, C#, Scala, Kotlin
– Interpreted — Python, Ruby, PHP
– Transpiled — TypeScript → JavaScript

• Type system:
– Static — C++, Rust, Go, Java, C#, Scala, Kotlin, TypeScript
– Dynamic — Python, JavaScript, Ruby, PHP

• Memory management:
– RAII/manual — C++
– Ownership/borrowing — Rust
– Garbage collection — Java, C#, Go, Scala, Kotlin, PHP, Ruby, JavaScript/TypeScript

• Runtime platforms:
– Native — C++, Rust, Go
– JVM — Java, Scala, Kotlin
– .NET CLR — C#
– Interpreters/VMs — Python, Ruby, PHP
– JavaScript engines — JavaScript, TypeScript

• Domain ecosystems:
– Systems/performance — C++, Rust, Go
– Enterprise/JVM and .NET — Java, C#, Scala, Kotlin
– Web/backend and scripting — JavaScript, TypeScript, PHP, Ruby
– Data/AI glue — Python

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

F EXPERIMENTS

F.1 MODELS OVERVIEW

We provide details for all models included in our study in Table 4.

Table 4: Overview of Large Language Models (* denotes reasoning mode)

Model Short Name Approximate Cutoff Date Link

openai/gpt-oss-120b Gpt-oss-120B* (Medium/Low) 08/05/2025 gpt-oss
openai/gpt-oss-20b Gpt-oss-20B* (Medium/Low) 08/05/2025 gpt-oss
Qwen/Qwen3-235B-A22B-Thinking-2507 Qwen3-235B-A22B-Thk* 10/31/2024 qwen
deepseek-ai/DeepSeek-R1-0528 DeepSeek-R1-0528* 11/29/2024 deepseek-ai
Qwen/Qwen3-30B-A3B-Instruct-2507 Qwen3-30b-A3b-Thk-2507* 10/31/2024 qwen
Qwen/Qwen3-32B Qwen3-32B* 10/31/2024 qwen
Qwen/Qwen3-235B-A22B Qwen3-235B-A22B* 10/31/2024 qwen
Qwen/Qwen3-30B-A3B Qwen3-30B-A3B* 10/31/2024 qwen
Qwen/Qwen3-14B Qwen3-14B* 10/31/2024 qwen
open-r1/OlympicCoder-32B OlympicCoder-32B* - open-r1
Qwen/Qwen3-235B-A22B-Instruct-2507 Qwen3-235b-A22b-Instr-2507 10/31/2024 qwen
Qwen/Qwen3-8B Qwen3-8B* 10/31/2024 qwen
Qwen/Qwen3-Coder-30B-A3B-Instruct Qwen3-Coder-30B-A3B-Instr - qwen
Qwen/Qwen3-30B-A3B-Instruct-2507 Qwen3-30B-A3B-Instr-2507 10/31/2024 qwen
open-r1/OlympicCoder-7B OlympicCoder-7B* - open-r1
Qwen/Qwen2.5-Coder-32B-Instruct Qwen2.5-Coder-32B-Instr 03/23/2024 qwen
nvidia/OpenCodeReasoning-Nemotron-1.1-32B OpenRsn-Nmt-32B* - nvidia
ByteDance-Seed/Seed-Coder-8B-Instruct Seed-Coder-8B-Instr - bytedance-seed
Qwen/Qwen2.5-Coder-14B-Instruct Qwen2.5-Coder-14B-Instr 03/23/2024 qwen
mistralai/Devstral-Small-2505 Devstral-Small-2505 11/22/2024 mistralai
nvidia/OpenReasoning-Nemotron-32B OpenRsn-Nmt-32B - nvidia
deepseek-ai/deepseek-coder-33b-instruct DeepSeek-Coder-33B-Instr 08/30/2023 deepseek-ai

F.2 PERFORMANCE ON THE MULTI-LCB (FEB-MAY 2025 SUBSET) ACROSS SAMPLING
TEMPERATURES

F.2.1 PASS@1 AVERAGED OVER 10 RUNS PERFORMANCE AT VARIOUS SAMPLING
TEMPERATURES

Table 5 report Pass@1 scores averaged over 10 runs at sampling temperature t = 0.6. Each score in-
dicates the percentage of problems solved correctly on the first attempt, with higher values reflecting
better performance.

Table 5: Performance results at temperature t = 0.6 Scores represent the Pass@1 (%) metric
averaged on 10 runs. Higher is better, bold is best, italic is the second best. (* - reasoning mode)

Model Python C++ Java Go JS TS C# Rust Ruby PHP Kotlin Scala Avg

Gpt-oss-120B* (Medium) 69.9 ± 1.8 72.6 ± 2.1 70.0 ± 1.9 69.9 ± 2.4 70.5 ± 2.7 71.9 ± 2.0 59.8 ± 2.9 70.1 ± 2.4 69.6 ± 3.1 67.3 ± 1.8 70.2 ± 2.8 54.1 ± 3.6 68.0 ± 5.5

Qwen3-235B-A22B-Thk-2507* 74.0 ± 2.5 75.3 ± 2.6 74.8 ± 2.9 57.7 ± 2.4 68.6 ± 2.5 63.4 ± 2.1 65.8 ± 2.6 51.5 ± 3.2 48.9 ± 2.4 67.5 ± 2.5 68.6 ± 2.8 59.2 ± 2.8 63.7 ± 8.6

DeepSeek-R1-0528* 66.6 ± 2.6 68.4 ± 2.8 67.2 ± 2.3 54.1 ± 2.4 64.9 ± 2.8 58.6 ± 4.6 62.1 ± 2.2 62.5 ± 3.8 62.4 ± 2.0 61.3 ± 1.9 66.4 ± 3.0 61.2 ± 3.5 63.0 ± 4.1

Gpt-oss-20B* (Medium) 62.3 ± 2.7 65.5 ± 3.3 62.5 ± 2.0 59.2 ± 0.4 63.6 ± 2.9 63.9 ± 2.0 50.2 ± 2.3 61.5 ± 2.1 61.4 ± 2.8 60.6 ± 3.1 62.1 ± 2.6 42.4 ± 3.3 59.6 ± 6.6

Qwen3-30B-A3B-Thk-2507* 65.2 ± 3.0 66.0 ± 3.6 63.9 ± 2.9 44.5 ± 2.0 53.4 ± 1.9 50.6 ± 3.0 56.2 ± 3.0 51.2 ± 3.2 43.1 ± 3.5 57.0 ± 3.6 52.2 ± 3.3 40.5 ± 2.4 53.6 ± 8.5

Gpt-oss-120B* (Low) 57.6 ± 2.5 56.6 ± 2.4 57.2 ± 3.0 53.6 ± 2.6 54.8 ± 2.1 54.6 ± 2.3 46.4 ± 1.4 55.8 ± 2.3 53.8 ± 3.2 53.4 ± 2.5 54.9 ± 2.6 40.8 ± 3.2 53.3 ± 4.9

Qwen3-235B-A22B* 58.2 ± 1.7 58.6 ± 3.1 56.1 ± 2.6 48.6 ± 3.6 49.9 ± 2.9 46.6 ± 2.5 51.5 ± 2.8 43.2 ± 2.9 48.4 ± 1.8 48.9 ± 3.0 47.7 ± 4.0 34.4 ± 3.5 49.3 ± 6.7

Qwen3-32B* 58.6 ± 2.7 56.2 ± 2.5 54.2 ± 2.7 42.5 ± 4.0 50.5 ± 3.5 50.8 ± 3.2 51.1 ± 2.4 39.1 ± 2.1 52.0 ± 2.3 51.9 ± 1.8 45.2 ± 2.6 38.1 ± 2.1 49.2 ± 6.5

Qwen3-30B-A3B* 55.3 ± 3.2 53.5 ± 3.4 51.0 ± 3.4 37.1 ± 3.1 50.1 ± 1.8 49.9 ± 2.9 42.9 ± 2.8 38.4 ± 3.0 47.3 ± 2.6 48.2 ± 2.0 43.9 ± 3.1 33.7 ± 1.7 46.0 ± 6.8

Qwen3-14B* 55.9 ± 3.5 49.9 ± 2.2 50.6 ± 3.2 34.6 ± 1.8 48.1 ± 3.1 47.7 ± 3.8 44.8 ± 1.5 32.0 ± 3.3 46.2 ± 2.9 44.5 ± 1.3 39.5 ± 5.3 31.2 ± 2.7 43.7 ± 7.8

Gpt-oss-20B* (Low) 45.7 ± 2.0 47.5 ± 2.1 45.6 ± 2.4 41.8 ± 1.9 43.5 ± 1.8 44.1 ± 2.4 39.9 ± 2.9 43.1 ± 2.8 44.0 ± 3.0 44.7 ± 2.7 45.0 ± 1.6 32.5 ± 4.1 43.1 ± 3.9

Qwen3-235B-A22B-Instr-2507 44.9 ± 2.6 42.8 ± 2.7 45.5 ± 2.9 36.1 ± 2.2 27.9 ± 3.0 21.8 ± 1.8 43.7 ± 2.5 40.2 ± 2.3 41.5 ± 2.9 42.6 ± 2.5 41.5 ± 1.5 28.8 ± 3.2 38.1 ± 7.8

Qwen3-8B* 50.5 ± 2.5 43.7 ± 2.8 42.5 ± 1.8 29.2 ± 3.7 41.3 ± 2.5 41.8 ± 2.6 39.8 ± 1.7 22.4 ± 2.0 42.5 ± 3.2 38.7 ± 2.6 25.4 ± 2.8 29.5 ± 2.5 37.3 ± 8.5

Qwen3-30B-A3B-Instr-2507 41.3 ± 2.5 36.7 ± 1.5 37.1 ± 2.5 23.4 ± 3.6 21.4 ± 1.3 20.2 ± 3.5 35.3 ± 2.5 31.8 ± 2.5 33.7 ± 1.4 35.3 ± 1.4 36.1 ± 1.9 26.4 ± 2.1 31.6 ± 6.9

Qwen3-Coder-30B-A3B-Instr 36.0 ± 2.0 33.1 ± 1.8 35.5 ± 3.1 25.2 ± 1.8 28.6 ± 1.5 26.3 ± 2.1 34.5 ± 2.2 33.7 ± 2.2 33.8 ± 1.7 31.5 ± 1.2 35.0 ± 2.1 20.9 ± 1.7 31.2 ± 4.8

DeepSeek-R1-Distill-Qwen-32B* 45.9 ± 2.8 25.8 ± 1.6 38.8 ± 2.9 12.9 ± 3.3 20.4 ± 3.4 15.9 ± 1.9 34.2 ± 3.2 21.2 ± 2.2 43.0 ± 2.3 13.8 ± 1.5 21.1 ± 2.4 8.7 ± 1.3 25.1 ± 12.5

Qwen2.5-Coder-32B-Instr 27.4 ± 2.6 25.3 ± 2.4 27.6 ± 2.7 25.0 ± 2.1 8.1 ± 1.9 25.0 ± 1.3 28.6 ± 2.1 24.2 ± 2.3 23.5 ± 2.1 25.3 ± 2.3 26.6 ± 2.1 23.5 ± 1.8 24.2 ± 5.3

OpenRsn-Nmt-32B* 66.0 ± 2.9 44.8 ± 4.7 41.3 ± 1.7 10.8 ± 3.8 12.2 ± 7.2 11.0 ± 6.6 31.5 ± 2.0 3.1 ± 2.6 17.6 ± 4.7 13.9 ± 2.9 17.2 ± 2.9 7.4 ± 1.9 23.1 ± 18.9

Seed-Coder-8B-Instr 22.6 ± 1.2 22.9 ± 1.7 24.4 ± 1.7 19.2 ± 1.9 23.4 ± 1.6 22.8 ± 1.8 22.8 ± 1.8 21.8 ± 1.3 21.5 ± 2.6 19.9 ± 2.0 23.5 ± 1.9 21.5 ± 0.7 22.2 ± 1.5

Qwen2.5-Coder-14B-Instr 22.3 ± 1.8 21.8 ± 1.7 24.6 ± 1.4 18.2 ± 1.6 22.5 ± 2.5 19.8 ± 1.9 23.7 ± 2.3 17.6 ± 1.3 22.4 ± 1.7 21.0 ± 2.7 22.3 ± 0.7 19.8 ± 2.3 21.3 ± 2.1

OpenCodeRsn-Nmt-1.1-32B* 62.8 ± 3.6 41.2 ± 2.6 31.8 ± 4.8 8.6 ± 2.1 9.9 ± 5.6 6.8 ± 3.5 25.0 ± 2.9 1.2 ± 0.8 25.7 ± 3.4 21.1 ± 3.3 13.6 ± 2.4 7.1 ± 3.2 21.2 ± 17.6

Devstral-Small-2505* 22.1 ± 1.6 22.0 ± 1.1 22.9 ± 0.9 16.8 ± 2.4 22.3 ± 1.3 24.1 ± 1.5 22.3 ± 1.6 19.9 ± 1.2 20.2 ± 2.5 21.1 ± 2.1 21.6 ± 1.8 16.3 ± 1.3 20.9 ± 2.4

DeepSeek-R1-Distill-Qwen-14B* 45.7 ± 3.2 18.5 ± 2.3 24.6 ± 4.1 8.3 ± 1.3 9.8 ± 1.7 10.5 ± 2.3 30.5 ± 3.2 3.7 ± 1.5 36.6 ± 3.5 4.0 ± 1.9 13.6 ± 3.4 3.5 ± 1.0 17.4 ± 14.0

DeepSeek-Coder-33B-Instr 18.6 ± 1.5 18.2 ± 0.9 20.8 ± 1.3 14.0 ± 1.4 10.8 ± 3.6 9.0 ± 3.8 18.6 ± 1.8 2.9 ± 1.5 17.0 ± 2.0 16.2 ± 1.5 17.0 ± 1.7 12.1 ± 2.5 14.6 ± 5.1

Table 6 reports Pass@1 scores averaged over 10 runs at sampling temperature t = 1.0. Each score
indicates the percentage of problems solved correctly on the first attempt, with higher values reflect-
ing better performance.

18

https://https://huggingface.co/openai/gpt-oss-120b
https://https://huggingface.co/openai/gpt-oss-20b
https://huggingface.co/Qwen/Qwen3-235B-A22B-Thinking-2507
https://huggingface.co/deepseek-ai/DeepSeek-R1-0528
https://huggingface.co/Qwen/Qwen3-30B-A3B-Instruct-2507
https://huggingface.co/Qwen/Qwen3-32B
https://huggingface.co/Qwen/Qwen3-235B-A22B
https://huggingface.co/Qwen/Qwen3-30B-A3B
https://huggingface.co/Qwen/Qwen3-14B
https://huggingface.co/open-r1/OlympicCoder-32B
https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507
https://huggingface.co/Qwen/Qwen3-8B
https://huggingface.co/Qwen/Qwen3-Coder-30B-A3B-Instruct
https://huggingface.co/Qwen/Qwen3-30B-A3B-Instruct-2507
https://huggingface.co/open-r1/OlympicCoder-7B
https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct
https://huggingface.co/nvidia/OpenCodeReasoning-Nemotron-1.1-32B
https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Instruct
https://huggingface.co/Qwen/Qwen2.5-Coder-14B-Instruct
https://huggingface.co/mistralai/Devstral-Small-2505
https://huggingface.co/nvidia/OpenReasoning-Nemotron-32B
https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 6: Performance results at temperature t = 1.0. Scores represent the Pass@1 (%) metric
averaged on 10 runs. Higher is better, bold is best, italic is the second best. (* - reasoning mode)

Model Python C++ Java Go JS TS C# Rust Ruby PHP Kotlin Scala Avg

Gpt-oss-120B* (Medium) 69.1 ± 2.0 72.3 ± 1.9 70.0 ± 3.5 67.9 ± 2.8 71.8 ± 3.1 70.5 ± 2.1 58.8 ± 4.8 70.5 ± 3.1 69.9 ± 1.9 68.1 ± 2.2 71.2 ± 1.8 51.1 ± 3.4 67.6 ± 6.3

Qwen3-235B-A22B-Thk-2507* 73.7 ± 2.6 75.0 ± 2.7 73.7 ± 3.2 57.0 ± 3.2 69.0 ± 3.5 63.5 ± 2.2 67.4 ± 2.5 54.2 ± 3.5 49.2 ± 2.4 68.7 ± 1.8 68.6 ± 3.4 58.5 ± 2.8 64.9 ± 8.4

Gpt-oss-20B* (Medium) 64.2 ± 2.9 65.0 ± 2.1 63.1 ± 3.2 58.9 ± 2.5 62.1 ± 3.1 61.5 ± 2.5 52.6 ± 2.8 59.8 ± 2.1 61.7 ± 3.0 61.5 ± 3.3 62.9 ± 3.4 40.4 ± 2.3 59.5 ± 6.8

DeepSeek-R1-0528* 59.8 ± 2.7 62.3 ± 2.4 62.4 ± 1.1 50.5 ± 4.6 59.9 ± 1.7 55.3 ± 2.7 58.4 ± 2.5 57.4 ± 2.3 57.3 ± 2.6 57.4 ± 1.4 57.7 ± 2.2 57.4 ± 2.8 58.0 ± 3.2

Gpt-oss-120B* (Low) 58.2 ± 3.2 56.6 ± 3.0 55.3 ± 3.3 53.0 ± 2.4 54.4 ± 2.2 54.7 ± 3.6 47.3 ± 2.7 54.6 ± 2.5 53.7 ± 1.8 53.1 ± 1.8 56.0 ± 2.7 40.1 ± 2.8 53.1 ± 4.9

Qwen3-30B-A3B-Thk-2507* 63.9 ± 3.9 65.9 ± 3.2 63.8 ± 3.7 45.2 ± 4.1 49.5 ± 3.2 45.0 ± 3.9 57.6 ± 3.5 51.2 ± 3.3 42.4 ± 3.4 57.3 ± 2.9 51.6 ± 3.6 40.5 ± 1.5 52.8 ± 8.8

Qwen3-32B* 59.0 ± 3.2 56.8 ± 2.6 55.8 ± 2.4 42.7 ± 2.5 51.8 ± 2.0 51.2 ± 3.1 50.6 ± 3.2 38.8 ± 2.5 51.0 ± 2.8 51.7 ± 4.8 46.5 ± 3.7 35.7 ± 3.6 49.3 ± 7.1

Qwen3-235B-A22B* 59.2 ± 1.7 58.5 ± 2.1 56.6 ± 2.2 48.0 ± 3.4 51.5 ± 2.6 48.6 ± 2.3 50.0 ± 2.8 43.4 ± 2.3 47.3 ± 3.0 47.9 ± 1.8 46.6 ± 2.8 34.2 ± 2.6 49.3 ± 6.9

Qwen3-30B-A3B* 57.4 ± 2.7 52.2 ± 2.3 52.1 ± 2.5 36.7 ± 3.2 50.1 ± 3.2 50.4 ± 2.5 44.7 ± 2.0 39.4 ± 2.7 47.0 ± 2.3 48.9 ± 4.6 44.9 ± 3.2 33.8 ± 1.3 46.5 ± 6.9

Qwen3-14B* 55.3 ± 2.1 50.6 ± 2.0 50.5 ± 2.2 34.7 ± 4.4 50.5 ± 1.9 50.2 ± 1.8 45.4 ± 1.2 31.5 ± 2.0 47.2 ± 2.5 46.3 ± 3.0 37.8 ± 1.9 32.4 ± 2.5 44.4 ± 8.1

Gpt-oss-20B* (Low) 47.3 ± 2.4 45.2 ± 2.1 42.9 ± 2.9 41.4 ± 2.9 42.6 ± 2.2 42.1 ± 3.1 38.5 ± 2.9 43.0 ± 2.4 43.4 ± 2.2 44.3 ± 2.0 42.9 ± 2.2 31.4 ± 2.3 42.1 ± 4.0

Qwen3-235B-A22B-Instr-2507 44.3 ± 1.6 42.8 ± 3.6 45.7 ± 3.2 36.7 ± 2.0 27.3 ± 2.5 23.9 ± 4.5 43.5 ± 2.7 38.5 ± 3.0 42.4 ± 2.1 43.4 ± 3.1 42.9 ± 2.1 31.2 ± 2.7 38.5 ± 7.3

Qwen3-8B* 50.8 ± 3.1 44.5 ± 2.3 42.7 ± 3.3 30.2 ± 4.3 41.6 ± 3.1 42.0 ± 3.0 40.8 ± 2.4 24.1 ± 1.9 42.8 ± 1.8 35.9 ± 2.4 27.7 ± 2.8 29.9 ± 2.6 37.8 ± 8.1

Qwen3-30B-A3B-Instr-2507 40.5 ± 2.0 35.6 ± 1.5 37.4 ± 1.8 26.0 ± 1.9 20.8 ± 1.5 20.6 ± 1.8 36.6 ± 2.4 31.3 ± 2.1 34.5 ± 2.9 34.7 ± 2.1 34.8 ± 1.7 25.9 ± 3.2 31.6 ± 6.6

Qwen3-Coder-30B-A3B-Instr 36.6 ± 2.1 32.8 ± 1.9 35.0 ± 2.8 25.4 ± 1.9 26.3 ± 3.2 27.1 ± 3.2 34.3 ± 2.1 34.1 ± 2.5 31.9 ± 3.3 29.5 ± 2.2 34.7 ± 1.8 19.2 ± 2.0 30.6 ± 5.1

DeepSeek-R1-Distill-Qwen-32B* 47.6 ± 2.3 24.9 ± 2.4 38.7 ± 2.2 14.7 ± 4.0 19.6 ± 2.0 15.9 ± 3.6 33.4 ± 4.4 22.7 ± 3.3 44.3 ± 3.5 13.7 ± 2.0 23.1 ± 2.4 9.2 ± 1.3 25.6 ± 12.6

Qwen2.5-Coder-32B-Instr 26.9 ± 2.2 25.2 ± 1.4 27.5 ± 2.4 24.2 ± 1.8 10.0 ± 2.5 25.3 ± 1.7 28.1 ± 1.7 24.7 ± 1.1 24.6 ± 2.5 23.7 ± 2.4 25.4 ± 2.9 23.1 ± 2.5 24.1 ± 4.7

OpenRsn-Nmt-32B* 66.1 ± 3.0 44.1 ± 2.1 38.4 ± 3.1 11.6 ± 3.0 11.4 ± 6.2 8.2 ± 4.7 29.7 ± 1.9 2.4 ± 2.2 17.6 ± 3.8 14.9 ± 1.7 16.0 ± 2.3 6.6 ± 2.4 22.3 ± 18.8

Seed-Coder-8B-Instr 21.2 ± 2.4 21.8 ± 2.3 21.9 ± 2.2 18.2 ± 1.1 20.9 ± 2.3 19.8 ± 2.3 20.6 ± 2.0 20.2 ± 3.0 21.7 ± 1.9 19.1 ± 2.8 21.8 ± 1.7 21.2 ± 2.3 20.7 ± 1.2

Qwen2.5-Coder-14B-Instr 22.1 ± 2.2 22.5 ± 1.8 23.0 ± 1.5 17.5 ± 2.1 21.4 ± 1.9 18.5 ± 2.6 22.9 ± 1.9 16.8 ± 1.7 21.7 ± 1.5 19.3 ± 2.6 22.6 ± 1.7 18.8 ± 1.8 20.6 ± 2.3

OpenCodeRsn-Nmt-1.1-32B* 63.5 ± 2.8 41.7 ± 3.6 30.5 ± 3.7 8.2 ± 4.6 8.5 ± 6.1 5.5 ± 5.0 22.7 ± 3.5 1.9 ± 0.7 23.2 ± 3.2 17.7 ± 3.4 12.7 ± 1.9 5.7 ± 2.6 20.2 ± 18.0

Devstral-Small-2505* 23.3 ± 2.0 21.2 ± 2.7 22.4 ± 1.3 13.6 ± 2.8 20.8 ± 1.8 20.5 ± 2.2 20.8 ± 1.6 18.9 ± 1.4 18.9 ± 1.9 20.2 ± 1.8 21.4 ± 1.4 15.2 ± 1.9 19.8 ± 2.8

DeepSeek-R1-Distill-Qwen-14B* 45.0 ± 2.8 18.1 ± 2.6 22.7 ± 3.8 9.2 ± 2.0 9.5 ± 2.6 10.0 ± 1.5 28.2 ± 1.9 4.5 ± 1.4 34.8 ± 3.0 3.8 ± 1.0 12.8 ± 3.4 3.8 ± 1.8 16.9 ± 13.3

Deepseek-Coder-33B-Instr 16.9 ± 1.6 17.9 ± 1.7 18.9 ± 1.4 12.9 ± 1.7 10.7 ± 3.1 8.7 ± 2.5 16.8 ± 2.4 2.3 ± 1.3 14.4 ± 1.4 12.8 ± 1.3 16.1 ± 1.5 7.8 ± 1.7 13.0 ± 4.9

F.2.2 PASS@5 PERFORMANCE AT DIFFERENT SAMPLING TEMPERATURES

Table 7, Table 8 and Table 9 reports Pass@5 scores at sampling temperatures t = 0.2, t = 0.6 and
t = 1.0 respectively. Each score indicates the percentage of problems solved correctly on the 5th
attempt, with higher values reflecting better performance.

Table 7: Performance results at temperature t = 0.2. Scores represent the Pass@5 (%) metric.
Higher is better, bold is best, italic is the second best. (* - reasoning mode)

Model Python C++ Java Go JS TS C# Rust Ruby PHP Kotlin Scala Avg

Gpt-oss-120B* (Medium) 83.7 83.7 85.1 83.8 85.2 82.6 77.6 85.0 85.2 80.4 85.0 78.7 83.0
Qwen3-235B-A22B-Thk-2507* 83.6 86.2 85.8 78.8 80.0 80.4 81.8 75.3 65.0 81.1 84.5 79.1 80.1
DeepSeek-R1-0528* 78.3 79.7 79.9 72.9 77.3 78.2 77.5 77.9 75.7 77.0 79.1 78.4 77.7
Gpt-oss-20B* (Medium) 77.3 80.4 78.1 78.9 77.7 78.8 73.1 76.0 75.9 74.9 79.3 66.6 76.4
Qwen3-30B-A3B-Thk-2507* 77.5 79.5 77.4 65.4 73.4 72.4 71.9 72.5 57.3 73.9 67.6 62.0 70.9
Gpt-oss-120B* (Low) 69.1 69.4 70.3 65.9 70.3 70.5 62.6 68.2 65.5 65.8 69.1 63.6 67.5
Qwen3-235B-A22B* 69.2 70.4 70.1 66.4 69.0 69.5 66.9 66.8 58.1 66.5 65.8 55.1 66.2
Qwen3-32B* 68.8 68.7 70.5 61.9 67.3 67.3 65.4 61.8 64.7 63.8 67.6 57.7 65.5
Qwen3-30B-A3B* 66.9 64.5 63.2 56.3 62.8 62.1 59.1 54.1 58.0 61.5 59.8 47.0 59.6
Qwen3-14B* 66.4 59.3 61.7 54.4 60.4 62.9 57.7 48.0 59.7 58.9 60.9 47.0 58.1
Gpt-oss-20B* (Low) 59.6 61.1 59.3 55.8 56.2 54.2 53.8 54.6 55.4 57.8 59.8 48.5 56.3
Qwen3-8B* 56.0 51.8 51.0 44.6 52.0 52.9 49.3 36.3 51.2 48.3 38.7 39.0 47.6
Qwen3-235B-A22B-Instr-2507 53.0 53.9 58.5 45.4 36.8 31.6 52.7 50.1 48.0 52.1 49.7 39.1 47.6
OpenRsn-Nmt-32B* 78.4 69.2 66.2 30.1 33.8 30.1 54.8 10.9 40.2 42.1 39.5 20.2 43.0
OlympicCoder-7B* 49.6 49.1 45.9 38.9 44.0 43.6 43.3 29.1 44.5 39.1 41.9 32.2 41.8
Qwen3-30B-A3B-Instr-2507 49.0 44.9 46.9 31.0 32.4 27.5 47.0 42.2 43.6 42.9 45.5 34.4 40.6
Qwen3-Coder-30B-A3B-Instr 43.0 39.5 42.1 34.0 36.9 34.3 43.2 39.9 42.1 38.3 43.4 29.0 38.8
DeepSeek-R1-Distill-Qwen-32B* 51.4 35.5 47.1 27.8 39.3 32.2 43.7 38.7 49.2 33.5 40.8 19.6 38.2
OpenCodeRsn-Nmt-1.1-32B* 74.5 59.8 58.7 24.5 26.6 18.2 47.7 3.8 44.4 42.5 29.7 21.3 37.7
Qwen2.5-Coder-32B-Instr 33.0 31.3 36.1 31.6 13.4 31.2 34.5 31.3 30.6 31.0 33.0 28.9 30.5
DeepSeek-R1-Distill-Qwen-14B* 51.4 30.3 42.0 21.0 28.0 29.6 44.1 10.9 47.2 11.1 28.8 10.5 29.6
Seed-Coder-8B-Instr 27.8 26.0 31.2 26.6 29.3 27.5 31.7 26.6 26.6 26.5 26.7 26.2 27.7
Devstral-Small-2505* 27.3 26.9 25.3 24.0 27.0 29.2 27.0 24.8 26.3 26.8 25.7 22.1 26.0
Qwen2.5-Coder-14B-Instr 22.9 25.9 28.7 25.8 26.5 24.5 28.0 22.4 29.0 26.6 25.4 24.6 25.8
DeepSeek-Coder-33B-Instr 21.5 22.3 24.1 19.0 14.7 13.6 22.9 8.8 23.2 23.5 22.7 18.8 19.6

Table 8: Performance results at temperature t = 0.6. Scores represent the Pass@5 (%) metric.
Higher is better, bold is best, italic is the second best. (* - reasoning mode)

Model Python C++ Java Go JS TS C# Rust Ruby PHP Kotlin Scala Avg

Gpt-oss-120B* (Medium) 84.7 84.9 84.8 85.1 84.1 85.2 80.7 84.1 83.3 82.1 83.7 80.2 83.6
Qwen3-235B-A22B-Thk-2507* 85.0 85.7 86.4 78.0 80.8 81.3 81.4 78.4 68.4 79.3 82.7 79.6 80.6
Gpt-oss-20B* (Medium) 79.2 81.5 80.1 79.5 80.7 82.5 75.5 79.8 79.1 77.9 79.8 65.8 78.4
DeepSeek-R1-0528* 79.6 79.1 78.8 72.4 77.5 76.0 78.1 79.1 76.3 75.9 79.5 77.6 77.5
Qwen3-30B-A3B-Thk-2507* 78.3 79.3 78.5 67.6 75.2 73.0 72.2 69.9 62.4 71.8 70.3 59.1 71.5
Gpt-oss-120B* (Low) 70.5 68.6 70.5 68.5 68.1 68.7 63.4 71.5 69.6 65.7 68.1 65.0 68.2
Qwen3-235B-A22B* 71.1 69.4 70.7 66.2 70.3 67.7 67.1 67.0 60.6 67.0 66.9 57.1 66.8
Qwen3-32B* 70.1 68.7 69.5 65.3 67.4 69.8 66.0 61.1 65.8 67.1 68.8 58.5 66.5
Qwen3-14B* 68.4 63.9 63.6 57.0 63.6 62.8 60.4 50.1 60.4 58.7 61.3 47.6 59.8
Qwen3-30B-A3B* 64.4 65.0 64.8 56.9 63.9 62.4 58.1 53.7 59.9 60.1 59.1 48.4 59.7
Gpt-oss-20B* (Low) 59.9 61.1 59.1 57.3 56.6 56.8 54.6 58.1 58.4 55.7 58.4 53.3 57.4
Qwen3-8B* 61.0 55.4 57.4 51.0 56.2 56.6 51.8 39.3 55.4 49.3 41.4 43.5 51.5
Qwen3-235B-A22B-Instr-2507 54.6 54.4 58.9 50.3 44.2 39.5 53.5 51.0 49.0 55.2 51.2 43.0 50.4
Qwen3-30B-A3B-Instr-2507 50.3 47.1 49.0 39.0 36.8 38.5 48.4 44.6 42.8 45.5 47.9 38.0 44.0
OpenRsn-Nmt-32B* 77.8 71.6 67.4 28.3 35.3 36.3 57.1 10.7 41.2 39.8 36.9 23.5 43.8
DeepSeek-R1-Distill-Qwen-32B* 58.3 42.8 53.4 31.8 45.1 36.2 54.4 41.4 53.4 40.2 43.8 24.4 43.8
OlympicCoder-7B* 51.5 49.5 44.8 39.7 46.3 43.2 43.4 31.2 40.0 40.0 38.0 29.4 41.4
OpenCodeRsn-Nmt-1.1-32B* 75.6 63.4 60.4 26.1 32.7 25.4 49.2 5.6 46.0 46.6 32.3 22.7 40.5
Qwen3-Coder-30B-A3B-Instr 42.4 40.3 41.3 34.0 38.9 37.7 42.4 41.7 41.2 43.0 43.5 30.1 39.7
Qwen2.5-Coder-32B-Instr 34.3 33.0 36.3 33.5 17.8 34.0 37.7 32.2 32.9 34.5 35.9 32.3 32.9
DeepSeek-R1-Distill-Qwen-14B* 55.5 35.1 39.8 19.4 28.1 28.0 46.0 13.2 50.6 15.6 31.6 11.2 31.2
Seed-Coder-8B-Instr 32.7 29.4 30.3 28.3 32.0 31.2 31.1 32.1 31.1 28.8 31.3 27.8 30.5
Devstral-Small-2505* 30.8 29.6 29.1 28.5 30.8 33.3 29.6 29.1 29.5 29.5 29.4 25.2 29.5
Qwen2.5-Coder-14B-Instr 29.0 27.9 29.9 26.9 28.9 27.8 31.6 25.8 29.4 28.3 30.0 27.3 28.6
DeepSeek-Coder-33B-Instr 26.7 25.6 27.0 21.8 20.8 22.4 26.8 7.4 26.2 24.9 23.5 21.8 22.9

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 9: Performance results at temperature t = 1.0. Scores represent the Pass@5 (%) metric.
Higher is better, bold is best, italic is the second best. (* - reasoning mode)

Model Python C++ Java Go JS TS C# Rust Ruby PHP Kotlin Scala Avg

Gpt-oss-120B* (Medium) 82.8 83.8 85.9 84.1 84.6 83.9 78.0 83.5 83.6 84.0 85.2 78.1 83.1
Qwen3-235B-A22B-Thk-2507* 85.2 85.2 85.9 77.4 81.6 82.4 82.4 82.0 67.8 79.8 84.0 79.0 81.1
Gpt-oss-20B (Medium)* 79.4 80.5 81.0 77.5 79.2 80.5 75.2 77.5 78.2 77.4 82.6 66.9 78.0
DeepSeek-R1-0528* 72.3 74.3 73.9 67.6 72.5 71.8 73.2 70.8 69.4 72.3 68.7 71.7 71.5
Qwen3-30B-A3B-Thk-2507* 76.7 79.9 77.8 68.5 72.9 73.3 73.1 70.0 60.0 71.9 68.5 60.5 71.1
Gpt-oss-120B* (Low) 71.8 71.7 71.0 67.8 68.7 69.7 65.3 68.7 67.7 65.1 69.6 63.4 68.4
Qwen3-32B* 73.4 70.1 70.3 64.1 70.9 69.4 66.2 61.8 65.3 66.5 67.5 58.9 67.0
Qwen3-235B-A22B* 70.0 71.4 70.0 65.8 69.7 70.5 66.0 66.6 61.7 65.4 66.3 54.9 66.5
Qwen3-14B* 68.4 63.5 66.1 57.9 67.5 64.6 59.5 50.7 60.3 61.2 60.4 50.7 60.9
Qwen3-30B-A3B* 66.3 63.7 64.8 59.1 64.7 63.8 59.0 57.7 57.7 62.6 61.4 49.8 60.9
Gpt-oss-20B* (Low) 60.0 59.3 59.7 54.9 55.6 55.6 55.6 58.6 58.0 56.8 57.7 51.4 56.9
Qwen3-8B* 63.1 56.7 58.7 52.8 59.3 57.5 56.3 42.6 56.8 50.9 44.8 43.1 53.5
Qwen3-235B-A22B-Instr-2507 54.8 56.1 59.6 51.1 44.1 46.1 53.7 49.4 52.3 55.9 52.9 44.9 51.8
DeepSeek-R1-Distill-Qwen-32B* 59.6 47.0 55.4 35.5 45.6 43.0 53.2 44.9 56.6 39.1 47.7 25.6 46.1
Qwen3-30B-A3B-Instr-2507 52.0 48.8 49.4 40.2 38.1 39.3 47.5 44.9 45.5 48.8 47.0 39.7 45.1
OpenRsn-Nmt-32B* 78.8 69.6 64.1 29.3 35.2 27.2 53.3 9.5 41.9 42.9 39.7 22.4 42.8
OlympicCoder-7B* 47.6 47.1 46.7 36.7 43.1 42.2 43.3 28.2 42.3 39.1 37.8 29.2 40.3
Qwen3-Coder-30B-A3B-Instr 44.5 40.9 43.3 34.4 37.6 39.3 43.0 42.1 40.0 40.0 44.3 32.6 40.2
OpenCodeRsn-Nmt-1.1-32B* 77.3 66.1 60.6 24.4 29.3 21.1 44.8 8.3 44.1 44.5 31.5 19.4 39.3
Qwen2.5-Coder-32B-Instr 34.7 34.0 39.8 33.6 26.1 36.7 36.6 33.6 36.3 34.4 35.6 33.1 34.5
DeepSeek-R1-Distill-Qwen-14B* 56.4 35.2 41.9 21.5 29.7 31.0 44.1 14.7 50.0 15.5 32.5 13.6 32.2
Seed-Coder-8B-Instr 32.0 29.3 30.6 28.0 30.7 29.6 31.7 30.8 31.9 31.8 30.6 31.9 30.7
Qwen2.5-Coder-14B-Instr 29.7 30.2 30.8 28.0 29.8 29.0 31.7 28.6 31.8 29.6 31.0 28.5 29.9
Devstral-Small-2505* 33.4 28.5 30.1 26.2 32.8 30.6 30.8 27.7 28.1 30.7 30.4 25.8 29.6
Deepseek-Coder-33B-Instr 25.7 27.2 27.8 23.3 22.3 21.3 26.0 8.8 24.4 20.5 23.8 17.9 22.4

F.2.3 PASS@10 PERFORMANCE AT DIFFERENT SAMPLING TEMPERATURES

Table 10, Table 11 and Table 12 reports Pass@10 scores at sampling temperatures t = 0.2, t = 0.6
and t = 1.0 respectively. Each score indicates the percentage of problems solved correctly on the
10th attempt, with higher values reflecting better performance.

Table 10: Performance results at temperature t = 0.2. Scores represent the Pass@10 (%) metric.
Higher is better, bold is best, italic is the second best. (* - Rsn mode)

Model Python C++ Java Go JS TS C# Rust Ruby PHP Kotlin Scala Avg

Gpt-oss-120B* (Medium) 87.0 86.3 87.8 86.3 87.0 84.7 84.0 87.8 88.6 84.0 87.0 84.0 86.2
Qwen3-235B-A22B-Thinking-2507* 87.0 88.6 88.6 84.0 84.0 85.5 85.5 82.4 71.8 84.7 87.8 84.0 84.5
Gpt-oss-20B* (Medium) 80.2 84.0 82.4 84.0 81.7 84.7 77.9 80.9 81.7 79.4 83.2 76.3 81.4
DeepSeek-R1-0528* 80.9 82.4 83.2 78.6 80.2 83.2 80.9 80.9 80.9 80.9 81.7 81.7 81.3
Qwen3-30B-A3B-Thinking-2507* 80.9 82.4 79.4 68.7 77.9 77.9 74.8 77.9 62.6 79.4 73.3 67.2 75.2
Gpt-oss-120B* (Low) 73.3 72.5 74.1 70.2 75.6 74.8 68.7 71.8 68.7 70.2 72.5 67.9 71.7
Qwen3-235B-A22B* 72.5 74.8 73.3 69.5 71.8 74.8 70.2 72.5 61.1 72.5 71.0 61.8 70.5
Qwen3-32B* 72.5 73.3 74.1 67.2 72.5 73.3 69.5 67.9 67.9 68.7 73.3 63.4 70.3
Qwen3-30B-A3B* 69.5 67.2 66.4 61.1 65.7 64.9 63.4 58.8 62.6 64.9 63.4 51.9 63.3
Qwen3-14B* 71.0 63.4 66.4 60.3 64.9 67.9 63.4 54.2 64.9 63.4 65.7 51.2 63.0
Gpt-oss-20B* (Low) 64.1 64.9 63.4 60.3 60.3 58.8 57.3 58.8 59.5 61.1 64.9 55.7 60.8
OpenRsn-Nmt-32B* 84.0 76.3 74.1 39.7 45.8 40.5 65.7 18.3 49.6 55.0 49.6 30.5 52.4
Qwen3-8B* 60.3 56.5 55.7 51.2 56.5 56.5 52.7 41.2 56.5 51.9 43.5 42.8 52.1
Qwen3-235B-A22B-Instr-2507 55.7 58.0 63.4 48.1 41.2 37.4 55.0 52.7 51.2 55.7 52.7 42.8 51.2
OlympicCoder-7B* 53.4 53.4 51.2 44.3 48.9 47.3 48.1 37.4 50.4 45.0 45.8 38.9 47.0
OpenCodeRsn-Nmt-1.1-32B* 78.6 67.9 65.7 32.1 37.4 26.7 58.0 5.3 54.2 53.4 37.4 28.2 45.4
Qwen3-30B-A3B-Instr-2507 51.9 48.9 51.2 33.6 37.4 32.8 51.9 46.6 45.8 46.6 49.6 37.4 44.5
DeepSeek-R1-Distill-Qwen-32B* 55.0 38.9 48.9 35.1 48.1 42.8 46.6 44.3 52.7 41.2 47.3 26.7 44.0
Qwen3-Coder-30B-A3B-Instr 45.0 42.0 43.5 36.6 38.9 36.6 45.8 41.2 43.5 39.7 45.8 33.6 41.0
DeepSeek-R1-Distill-Qwen-14B* 54.2 35.9 45.8 26.0 35.9 38.2 48.9 15.3 51.9 15.3 35.9 14.5 34.8
Qwen2.5-Coder-32B-Instr 36.6 32.8 40.5 35.1 14.5 32.8 35.9 34.4 32.8 33.6 36.6 31.3 33.1
Seed-Coder-8B-Instr 29.8 26.7 32.8 27.5 32.1 29.0 33.6 28.2 28.2 28.2 27.5 28.2 29.3
Devstral-Small-2505* 29.0 27.5 26.0 26.7 28.2 30.5 27.5 27.5 29.8 28.2 27.5 24.4 27.7
Qwen2.5-Coder-14B-Instr 23.7 27.5 29.8 27.5 27.5 26.0 29.8 24.4 30.5 29.0 27.5 25.2 27.4
DeepSeek-Coder-33B-Instr 22.9 23.7 24.4 20.6 17.6 16.0 25.2 10.7 25.2 26.0 23.7 21.4 21.4

Table 11: Performance results at temperature t = 0.6. Scores represent the Pass@10 (%) metric.
Higher is better, bold is best, italic is the second best. (* - Rsn mode)

Model Python C++ Java Go JS TS C# Rust Ruby PHP Kotlin Scala Avg

Gpt-oss-120B* (Medium) 86.7 87.8 84.7 87.8 87.8 87.8 87.0 86.3 86.3 85.5 86.3 85.5 87.8
Qwen3-235B-A22B-Thinking-2507* 84.5 87.0 86.3 87.8 84.0 90.1 84.7 84.7 82.4 74.1 84.0 84.7 84.0
Gpt-oss-20B* (Medium) 83.0 83.2 83.2 84.0 83.2 83.2 84.7 83.2 81.7 85.5 84.0 73.3 87.0
DeepSeek-R1-0528* 81.2 83.2 81.7 80.9 79.4 81.7 81.7 83.2 80.9 80.2 83.2 80.2 78.6
Qwen3-30B-A3B-Thinking-2507* 76.1 80.9 77.1 82.4 73.3 81.7 79.4 77.1 75.6 69.5 74.8 65.7 75.6
Gpt-oss-120B* (Low) 72.7 74.1 69.5 72.5 72.5 74.1 71.8 71.8 69.5 74.8 75.6 72.5 74.1
Qwen3-32B* 71.7 75.6 71.0 73.3 71.8 74.8 72.5 74.8 72.5 70.2 64.9 64.1 74.8
Qwen3-235B-A22B* 71.3 75.6 70.2 71.8 71.0 74.8 76.3 72.5 71.0 64.1 73.3 64.1 71.0
Qwen3-14B* 65.0 72.5 65.7 68.7 64.1 66.4 66.4 67.2 65.7 64.9 56.5 55.0 67.2
Qwen3-30B-A3B* 63.6 66.4 62.6 66.4 62.6 69.5 67.9 61.8 63.4 64.1 58.8 53.4 65.7
Gpt-oss-20B* (Low) 61.9 63.4 59.5 64.9 61.8 61.8 61.8 61.8 61.1 62.6 62.6 59.5 61.8
Qwen3-8B* 56.2 64.1 55.7 60.3 57.3 62.6 60.3 47.3 51.9 60.3 44.3 48.9 61.1
Qwen3-235B-A22B-Instr-2507 54.6 58.0 56.5 58.8 54.2 64.1 50.4 55.0 59.5 51.2 54.2 47.3 46.6
OpenRsn-Nmt-32B* 52.5 80.9 67.9 79.4 38.2 74.1 47.3 44.3 51.9 50.4 15.3 32.1 48.9
DeepSeek-R1-Distill-Qwen-32B* 50.5 63.4 59.5 48.1 40.5 55.0 54.2 51.2 50.4 57.3 48.1 33.6 44.3
OpenCodeRsn-Nmt-1.1-32B* 49.1 78.6 59.5 69.5 37.4 68.7 46.6 41.2 55.0 51.2 10.7 31.3 39.7
Qwen3-30B-A3B-Instr-2507 48.4 52.7 52.7 51.2 45.0 54.2 42.8 51.9 48.9 45.8 48.9 41.2 45.0
OlympicCoder-7B* 46.6 56.5 47.3 54.2 45.0 49.6 50.4 44.3 45.0 43.5 39.7 35.1 48.1
Qwen3-Coder-30B-A3B-Instr 42.1 44.3 45.0 42.8 37.4 42.0 41.2 45.8 45.8 43.5 43.5 32.8 41.2
DeepSeek-R1-Distill-Qwen-14B* 37.3 59.5 51.9 41.2 24.4 42.8 36.6 39.7 24.4 55.0 19.9 16.0 35.9
Qwen2.5-Coder-32B-Instr 36.3 37.4 40.5 35.1 36.6 39.7 21.4 38.9 37.4 38.9 35.1 36.6 37.4
Seed-Coder-8B-Instr 33.5 36.6 32.1 32.8 32.1 31.3 35.9 35.1 31.3 35.1 35.9 29.8 33.6
Devstral-Small-2505* 32.5 35.9 32.8 31.3 32.1 31.3 34.4 32.1 31.3 32.1 33.6 28.2 35.1
Qwen2.5-Coder-14B-Instr 30.9 30.5 34.4 30.5 29.0 31.3 30.5 32.1 31.3 32.1 28.2 30.5 30.5
DeepSeek-Coder-33B-Instr 25.7 29.8 29.0 27.5 25.2 29.0 24.4 26.0 28.2 28.2 9.9 23.7 27.5

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 12: Performance results at temperature t = 1.0. Scores represent the Pass@10 (%) metric.
Higher is better, bold is best, italic is the second best. (* - Rsn mode)

Model Python C++ Java Go JS TS C# Rust Ruby PHP Kotlin Scala Avg

Gpt-oss-120B* (Medium) 86.3 85.5 80.9 87.0 87.0 89.3 87.8 87.0 87.0 86.3 86.3 84.0 87.0
Qwen3-235B-A22B-Thk-2507* 84.8 90.1 85.5 87.8 80.2 90.1 85.5 87.0 82.4 74.1 85.5 84.0 85.5
Gpt-oss-20B* (Medium) 82.6 82.4 81.7 84.7 82.4 85.5 84.7 86.3 80.2 81.7 80.9 75.6 84.7
DeepSeek-R1-0528* 75.9 77.9 77.9 79.4 74.8 77.9 76.3 71.8 76.3 73.3 73.3 76.3 75.6
Qwen3-30B-A3B-Thk-2507* 75.4 78.6 75.6 83.2 74.1 81.7 77.1 73.3 74.8 65.7 74.1 68.7 77.9
Gpt-oss-120B* (Low) 73.1 74.8 71.0 76.3 72.5 75.6 73.3 74.8 68.7 71.8 73.3 69.5 75.6
Qwen3-32B* 71.9 76.3 71.0 74.8 71.0 74.8 76.3 71.8 71.0 70.2 67.2 64.9 73.3
Qwen3-235B-A22B* 70.8 72.5 71.0 74.8 71.0 74.1 74.1 71.0 68.7 66.4 71.0 60.3 74.8
Qwen3-14B* 65.7 72.5 64.9 67.2 64.1 71.0 71.8 65.7 66.4 64.1 56.5 55.7 68.7
Qwen3-30B-A3B* 64.5 68.7 61.1 65.7 64.1 67.2 68.7 64.9 66.4 61.8 62.6 54.2 68.7
Gpt-oss-20B* (Low) 61.2 64.1 60.3 63.4 60.3 64.9 58.8 61.1 61.1 61.1 64.1 55.7 59.5
Qwen3-8B* 58.6 67.2 60.3 60.3 59.5 64.9 64.1 51.2 56.5 61.1 48.9 47.3 61.8
Qwen3-235B-A22B-Instr-2507 55.8 58.0 56.5 60.3 55.7 64.1 48.9 55.7 59.5 56.5 51.9 49.6 52.7
DeepSeek-R1-Distill-Qwen-32B* 53.2 64.9 58.0 55.0 44.3 59.5 54.2 53.4 48.9 60.3 51.9 33.6 54.2
OpenRsn-Nmt-32B* 51.8 82.4 61.1 77.1 38.2 71.8 46.6 51.9 52.7 52.7 15.3 32.8 38.9
Qwen3-30B-A3B-Instr-2507 49.7 55.7 51.2 54.2 43.5 54.2 44.3 51.9 53.4 48.9 49.6 43.5 45.8
OpenCodeRsn-Nmt-1.1-32B* 47.5 81.7 51.2 71.8 35.1 71.0 41.2 38.2 54.2 53.4 13.7 26.7 31.3
OlympicCoder-7B* 46.1 52.7 50.4 51.9 42.8 51.9 47.3 42.8 46.6 48.1 35.1 35.9 48.1
Qwen3-Coder-30B-A3B-Instr 42.8 48.1 45.8 44.3 37.4 45.0 39.7 45.8 43.5 41.2 44.3 36.6 41.2
DeepSeek-R1-Distill-Qwen-14B* 39.5 60.3 48.9 42.0 27.5 48.9 42.8 41.2 24.4 55.0 21.4 20.6 41.2
Qwen2.5-Coder-32B-Instr 38.2 38.2 39.7 38.2 35.9 43.5 33.6 38.2 37.4 40.5 35.9 37.4 40.5
Seed-Coder-8B-Instr 33.8 35.1 35.1 31.3 30.5 32.8 33.6 32.8 35.1 35.1 35.1 35.1 33.6
Qwen2.5-Coder-14B-Instr 33.2 32.8 34.4 33.6 31.3 34.4 32.8 34.4 33.6 35.1 32.1 32.8 31.3
Devstral-Small-2505* 33.1 38.2 34.4 30.5 30.5 33.6 36.6 34.4 34.4 32.1 29.8 29.0 33.6
DeepSeek-Coder-33B-Instr 26.0 29.0 29.0 31.3 27.5 31.3 26.0 26.7 23.7 27.5 13.7 20.6 25.2

F.3 PERFORMANCE ON THE MULTI-LCB (JUL 2024-MAY 2025 SUBSET)

Table 13 reports Pass@1 scores at sampling temperature t = 0.2 for all evaluated models on the
Multi-LCB subset containing tasks from July 2024 to May 2025. Each score reflects the percentage
of problems solved correctly on the first attempt, with higher values indicating better performance.

Table 13: Performance results on Multi-LCB tasks from July 2024 till May 2025. Scores represent
the Pass@1 (%) metric (higher is better). (* - reasoning mode)

Model Python C++ Java Go JS TS C# Rust Ruby PHP Kotlin Scala Avg

Qwen3-235B-A22B-Thk-2507* 76.7 78.3 78.3 59.6 71.4 62.2 69.6 50.9 54.1 70.0 64.6 56.9 66.0
Qwen3-30B-A3B-Thk-2507* 69.4 68.2 66.6 44.5 52.1 48.5 59.8 52.5 45.1 59.0 46.7 41.0 54.4
Qwen3-235B-A22B* 65.8 63.4 59.4 49.7 56.3 51.9 57.5 45.1 51.9 52.7 48.7 32.8 52.9
Qwen3-32B* 63.4 63.6 59.6 43.7 51.9 54.7 53.5 41.4 53.9 52.5 42.3 35.6 51.3
Qwen3-30B-A3B* 60.8 56.5 56.3 37.0 49.9 53.1 50.5 43.1 50.5 50.7 39.2 30.4 48.2
Qwen3-14B* 57.5 54.7 51.7 38.4 50.7 49.9 48.5 33.4 50.1 46.9 37.6 30.2 45.8
Qwen3-235B-A22B-Instr-2507 49.5 47.9 47.9 38.6 29.4 22.7 46.5 42.9 41.6 43.7 42.5 29.8 40.2
OlympicCoder-32B* 51.3 51.9 47.9 34.6 36.0 34.4 42.9 34.0 45.3 43.3 34.6 25.6 40.1
Qwen3-8B* 49.9 44.3 42.5 27.2 39.8 41.7 38.0 24.7 42.3 33.6 18.1 24.9 35.6
Qwen3-30B-A3B-Instr-2507 40.6 36.4 37.8 22.1 23.7 22.5 37.4 32.4 35.0 36.8 26.8 19.7 31.0
Qwen3-Coder-30B-A3B-Instr 35.2 30.0 33.0 21.1 27.2 26.0 34.0 31.9 34.2 31.0 33.6 18.3 29.6
OlympicCoder-7B* 36.0 35.6 31.4 24.5 25.6 24.1 28.9 13.3 26.6 24.7 24.7 13.3 25.7
OpenRsn-Nemotron-32B* 69.8 49.5 41.9 12.9 13.7 10.5 33.0 1.8 20.7 20.3 16.5 7.8 24.9
Qwen2.5-Coder-32B-Instr 27.4 27.4 30.2 24.7 6.0 28.0 27.8 25.4 24.1 27.0 26.8 22.7 24.8
Seed-Coder-8B-Instr 20.7 21.7 21.9 17.7 22.1 21.7 22.5 20.7 22.3 21.5 21.5 19.3 21.2
Qwen2.5-Coder-14B-Instr 21.3 21.1 23.5 20.5 23.1 18.9 22.5 17.3 21.7 22.7 21.3 18.9 21.1
Devstral-Small-2505 25.4 20.9 23.7 19.1 22.9 22.7 21.1 19.5 19.1 21.3 20.7 15.1 21.0
OpenCodeRsn-Nemotron-1.1-32B* 62.8 38.0 30.6 8.5 8.9 8.0 27.0 1.4 23.5 24.7 12.5 5.6 21.0
DeepSeek-Coder-33B-Instr 17.5 15.9 18.9 12.1 8.7 5.8 17.7 2.8 14.7 15.7 16.9 12.9 13.3

F.4 PERFORMANCE ON THE COMPLETE MULTI-LCB BENCHMARK

Table 14: Performance results on Multi-LCB (n=1055 per language). Scores represent the Pass@1
(%) metric (higher is better). (* - reasoning mode)

Model Python C++ Java Go JS TS C# Rust Ruby PHP Kotlin Scala Avg

Qwen3-235B-A22B-Thk-2507* 85.6 86.6 85.9 60.0 80.8 73.7 79.1 58.8 65.0 78.8 75.7 66.1 74.7
Qwen3-30B-A3B-Thk-2507* 80.6 80.2 78.5 50.2 62.5 57.7 73.5 63.2 58.7 70.0 60.5 50.6 65.5
Qwen3-235B-A22B* 77.5 72.0 72.0 60.2 64.6 63.3 68.5 56.2 65.2 62.4 53.7 40.0 62.9
Qwen3-32B* 77.5 70.2 73.3 51.3 64.6 64.3 67.1 51.4 68.4 64.0 54.5 48.1 62.9
Qwen3-30B-A3B* 74.8 67.9 68.2 43.9 62.5 63.2 61.4 52.8 64.3 60.8 47.1 39.9 58.9
Qwen3-14B* 73.4 67.2 65.9 47.8 63.5 62.9 60.7 41.7 64.8 60.0 41.7 39.0 57.4
Qwen3-235B-A22B-Instr-2507 59.8 59.4 59.3 45.0 34.3 27.0 56.4 53.5 53.5 54.9 46.3 35.4 48.7
OlympicCoder-32B* 61.4 57.3 58.7 41.0 44.8 41.7 52.9 41.1 55.0 53.1 41.0 31.2 48.3
Qwen3-8B* 65.6 54.7 54.5 36.3 51.4 52.9 51.8 31.9 55.6 47.5 23.6 34.4 46.7
Qwen3-30B-A3B-Instr-2507 52.5 48.4 51.5 31.6 33.6 30.8 49.2 43.2 46.4 47.6 33.8 28.1 41.4
Qwen3-Coder-30B-A3B-Instr 47.8 41.3 43.5 26.1 36.6 34.1 46.1 42.3 44.6 41.7 33.5 22.3 38.3
Qwen2.5-Coder-32B-Instr 40.5 36.8 41.6 33.6 5.7 38.7 39.1 36.4 38.0 38.0 33.0 30.3 34.1
OlympicCoder-7B* 45.0 43.0 40.7 30.0 32.8 31.9 36.3 18.6 34.5 28.5 28.5 19.8 32.7
Qwen2.5-Coder-14B-Instr 33.6 28.0 35.1 28.3 32.2 23.0 30.9 31.6 26.6 26.3 26.6 26.3 29.5
OpenRsn-Nmt-32B* 80.2 56.9 50.5 13.8 16.5 12.5 39.9 4.3 25.1 21.5 17.4 10.1 29.1
Seed-Coder-8B-Instr 28.3 27.8 28.8 22.7 30.1 29.0 29.9 25.6 28.5 27.0 27.7 23.8 27.4
OpenCodeRsn-Nmt-1.1-32B* 72.4 47.2 39.1 8.5 11.8 10.0 30.9 2.1 30.3 28.3 13.7 7.8 25.2
Devstral-Small-2505 30.3 23.9 27.9 21.1 27.5 26.8 25.7 24.4 26.4 26.0 24.0 17.9 24.9
DeepSeek-Coder-33B-Instr 22.4 18.9 22.7 15.5 12.0 8.5 22.3 3.1 17.9 18.8 18.8 15.4 16.4

Table 14 reports Pass@1 scores at sampling temperature t = 0.2, for all 19 evaluated models on
the complete Multi-LCB benchmark, which contains 1,055 tasks per programming language. Each

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

score reflects the percentage of problems solved correctly on the first attempt, with higher values
indicating better performance. Models marked with an asterisk (*) are reasoning-enhanced variants.

G COMPUTATION TIME

Table 15 reports the average compilation and execution time required to evaluate one full Multi-LCB
run (1,050 tasks per language) across 90 parallel CPUs. On average, each language requires about
8 min 50 s (≈ 530 s) per model, with a total wall-clock time of roughly 106 hours when aggregated
over all twelve languages.

Execution cost varies noticeably by language. Ruby shows the highest mean time at 17 min 37 s,
followed by Go and Python, each exceeding 11 minutes on average. In contrast, Kotlin, PHP, and
JavaScript complete evaluation in under 4 minutes. These differences primarily reflect compilation
overheads and runtime performance of each language’s toolchain, and they guide resource planning
for future large-scale model evaluations.

Table 15: Evaluation times (compilation + execution on tests + matching) across programming
languages. Runs were executed in parallel on 90 CPUs over 1050 tasks (v1–v6). Averages and
standard deviations are computed across the measured models.

Language Avg. Time (mm:ss) Std. Dev. (mm:ss) Avg. Time (s) Std. Dev. (s)
C# 9:10 3:08 550.15 188.83
C++ 10:25 2:54 625.72 174.17
Go 12:36 2:36 756.13 156.71
Java 10:44 2:55 644.07 175.96
JavaScript 3:44 1:05 224.73 65.14
Kotlin 3:14 1:46 194.87 106.23
PHP 3:29 0:49 209.82 49.78
Python 11:38 2:56 698.71 176.07
Ruby 17:37 3:27 1057.42 207.45
Rust 7:41 3:50 461.04 230.24
Scala 7:25 1:16 445.24 76.41
TypeScript 8:17 0:55 497.59 55.37

Average 8:50 4:12 530.46 252.51
Total (sum) 106:05 — 6365.48 —

H LANGUAGES AND COMPILER VERSIONS

All experiments were conducted in a controlled environment using the following language runtimes
and compiler versions to ensure consistency and reproducibility across all tasks in Multi-LCB:

• C++: gcc 14.3.0
• Java: OpenJDK 8.0.412
• Python: 3.12.11
• Rust: 1.88.0
• Go: 1.22.12
• Ruby: 3.3.6
• JavaScript (Node.js): 20.19.4
• TypeScript (Deno): 2.3.4
• C# (Mono): 6.12.0.199
• Compilers (general): 1.11.0
• PHP: 8.1.0
• Kotlin: 2.2.0
• Scala: 2.11.8
• pip: 25.2

These versions were used consistently for compilation, execution, and evaluation to guarantee re-
producibility of all Multi-LCB results.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

I PLATFORM ANALYSIS

Figures 10, 11, and 12 show performance comparison between LeetCode and AtCoder platforms
across different programming languages. Models demonstrate varying capabilities depending on
the platform, with some excelling on LeetCode’s interview-style problems while others perform
better on AtCoder’s competitive programming tasks.

Figure 10: Code generation performance heatmap by platform for Python, C++, Java, and C#.
Shows overall performance and platform-specific results (LeetCode vs AtCoder) across different
models. Values represent Pass@1 scores (%).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 11: Code generation performance heatmap by platform for Ruby, PHP, Kotlin, and
JavaScript. Shows overall performance and platform-specific results (LeetCode vs AtCoder) across
different models. Values represent Pass@1 scores (%).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 12: Code generation performance heatmap by platform for TypeScript, Go, Rust, and Scala.
Shows overall performance and platform-specific results (LeetCode vs AtCoder) across different
models. Values represent Pass@1 scores (%).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

J DIFFICULTY ANALYSIS

Figures 13, 14, and 15 present performance breakdown by difficulty levels (Easy, Medium, Hard)
across programming languages. The results reveal significant performance degradation as problem
complexity increases, with Hard problems showing the largest performance gaps between models.

Figure 13: Code generation performance heatmap by difficulty level for Python, C++, Java, and C#.
Shows overall performance and difficulty-specific results (Easy, Medium, Hard) across different
models. Values represent Pass@1 scores (%).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 14: Code generation performance heatmap by difficulty level for Ruby, PHP, Kotlin, and
JavaScript. Shows overall performance and difficulty-specific results (Easy, Medium, Hard) across
different models. Values represent Pass@1 scores (%).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 15: Code generation performance heatmap by difficulty level for TypeScript, Go, Rust, and
Scala. Shows overall performance and difficulty-specific results (Easy, Medium, Hard) across dif-
ferent models. Values represent Pass@1 scores (%).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

K TEMPORAL ANALYSIS

Figures 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, and 27 illustrate monthly performance trends
from 2023 to 2025 across different programming languages. A notable declining trend is observed
across all models and languages, with top-performing models dropping from approximately 80%
to 60% Pass@1 scores over time. This consistent degradation pattern appears universally across
programming languages, suggesting systematic factors rather than language-specific issues. The
decline may be attributed to two primary factors: (1) data contamination effects, where models
perform better on older, potentially seen problems, and (2) increasing problem complexity over time
as benchmark creators develop more challenging tasks to maintain discriminative power.

Figure 16: Monthly Pass@1 trends for Python. Figure 17: Monthly Pass@1 trends for C++.

Figure 18: Monthly Pass@1 trends for C#. Figure 19: Monthly Pass@1 trends for Java.

Figure 20: Monthly Pass@1 trends for Go. Figure 21: Monthly Pass@1 trends for
JavaScript.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 22: Monthly Pass@1 trends for Kotlin. Figure 23: Monthly Pass@1 trends for PHP.

Figure 24: Monthly Pass@1 trends for Ruby. Figure 25: Monthly Pass@1 trends for Rust.

Figure 26: Monthly Pass@1 trends for Scala. Figure 27: Monthly Pass@1 trends for Type-
Script.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

L LANGUAGES ERRORS TYPE

Figures 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42 and 43 illustrate detailed error break-
downs across different programming languages and models. Several consistent patterns emerge:

1. Wrong-answer (WA) errors dominate across almost all languages and models. For every
model, WA is the largest source of failure in both Python and non-Python languages, indi-
cating that the primary bottleneck remains algorithmic correctness rather than compilation
or parsing.

2. Compiled languages show substantially more compiler- and type-related errors. Languages
such as C++, Java, Rust, and Go exhibit significantly higher rates of compilation errors
(e.g., missing imports, type mismatches, incorrect signatures) compared to Python. This
pattern is consistent across all models and reflects the challenge of generating syntactically
valid and type-correct code when strict compilation pipelines are enforced.

3. Runtime exceptions increase in languages that require explicit input parsing. In languages
like Java, C#, and Go, runtime errors (e.g., NullPointerException, IndexError, ValueError)
are far more frequent than in Python. This supports the hypothesis that the STDIN/STD-
OUT format, while uniform across languages, exposes weaknesses in model robustness to
input handling and data conversion.

4. Timeout and resource-related failures appear more often in slower languages and for
reasoning-tuned models. Java, Rust, and Go show noticeably more TimeoutExpired cases,
likely because models occasionally generate inefficient implementations. Reasoning-heavy
models (e.g., R1-0528, Nemotron-32B) are more prone to long-running solutions when
they attempt more complex multi-step logic.

5. Empty-code and trivial-syntax errors are rare but nonzero. These errors appear mostly in
smaller models (e.g., 7B-14B) and are nearly absent for 30B+ models. This indicates that
larger models rarely fail at the initial code-structuring stage, with most errors occurring
deeper in the execution pipeline.

6. Cross-model consistency in error profiles. Despite architectural and training differences,
the overall error distributions are remarkably stable across models, demonstrating that:
Python remains the least error-prone language, Compiled languages introduce predictable
error modes, and Languages with verbose input/output handling (Java, C#, Go) amplify
runtime failures.

7. Error distributions reinforce the observed performance gaps. The breakdowns offer a mech-
anistic explanation for the Pass@1 disparities reported in the main results. For example,
models underperforming in Rust and C++ do so not because they fail to produce solutions,
but because syntactic and type-level correctness is significantly harder to achieve in those
languages.

Figure 28: deepseek-coder-33b-instruct Figure 29: DeepSeek-R1-0528*

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Figure 30: Devstral-Small-2505 Figure 31: OlympicCoder-7B*

Figure 32: OlympicCoder-32B* Figure 33: OpenCodeReasoning-Nemotron-
1.1-32B*

Figure 34: OpenReasoning-Nemotron-32B* Figure 35: Qwen2.5-Coder-14B-Instruct

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Figure 36: Qwen2.5-Coder-32B-Instruct Figure 37: Qwen3-8B*

Figure 38: Qwen3-14B* Figure 39: Qwen3-30B-A3B*

Figure 40: Qwen3-30B-A3B-Instruct-2507 Figure 41: Qwen3-235B-A22B-Thinking-
2507*

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Figure 42: Qwen3-Coder-30B-A3B-Instruct Figure 43: Seed-Coder-8B-Instruct

34

	Introduction
	Related Work
	Benchmark Design
	Language set and motivation

	Experiment Setup
	Experiments and Results
	Experiments Results on Multi-LCB
	Comparison with LiveCodeBench
	Contamination on Multi-LCB

	Limitations and Threats to Validity
	Future Work
	Conclusions
	Appendix
	Legal Compliance and License
	UI of Multi-LCB
	Prompt Examples
	AtCoder/CodeForces Example (native STDIN/STDOUT)
	LeetCode Example (adapted into STDIN/STDOUT)

	Tasks Distribution
	Task Distribution by Difficulty and Platform
	Task Distribution by I/O Data Dimensionality (LeetCode Functional Format)

	Programming language rankings and runtime characteristics
	Experiments
	Models overview
	Performance on the Multi-LCB (Feb-May 2025 Subset) Across Sampling Temperatures
	Pass@1 averaged over 10 runs performance at various sampling temperatures
	Pass@5 performance at different sampling temperatures
	Pass@10 performance at different sampling temperatures

	Performance on the Multi-LCB (Jul 2024-May 2025 Subset)
	Performance on the Complete Multi-LCB Benchmark

	Computation time
	Languages and Compiler Versions
	Platform Analysis
	Difficulty Analysis
	Temporal Analysis
	Languages errors type

