

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MULTI-LCB: EXTENDING LIVECODEBENCH TO MULTIPLE PROGRAMMING LANGUAGES

Anonymous authors

Paper under double-blind review

ABSTRACT

LiveCodeBench (LCB) has recently become a widely adopted benchmark for evaluating large language models (LLMs) on code-generation tasks. By curating competitive programming problems, constantly adding fresh problems to the set, and filtering them by release dates, LCB provides contamination-aware evaluation and offers a holistic view of coding capability. However, LCB remains restricted to Python, leaving open the question of whether LLMs can generalize across the diverse programming languages required in real-world software engineering.

We introduce Multi-LCB, a benchmark for evaluating LLMs across twelve programming languages, including Python. Multi-LCB transforms Python tasks from the LCB dataset into equivalent tasks in other languages while preserving LCB’s contamination controls and evaluation protocol. Because it is fully compatible with the original LCB format, Multi-LCB will automatically track future LCB updates, enabling systematic assessment of cross-language code generation competence and requiring models to sustain performance well beyond Python.

We evaluated 24 LLMs for instruction and reasoning on Multi-LCB, uncovering evidence of Python overfitting, language-specific contamination, and substantial disparities in multilingual performance. Our results establish Multi-LCB as a rigorous new benchmark for multi-programming-language code evaluation, directly addressing LCB’s primary limitation and exposing critical gaps in current LLM capabilities. All prompts, source code and experimental configurations are publicly available at <https://anonymous.4open.science/r/Multi-LiveCodeBench-C627/>.

1 INTRODUCTION

Large language models (LLMs) have recently demonstrated impressive capabilities in code-related tasks (Ridnik et al., 2024; Lozhkov et al., 2024; Roziere et al., 2023; Li et al., 2022; Nijkamp et al., 2022), powering applications such as AI-assisted programming, automated debugging, and code translation. To measure these abilities, benchmarks such as HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), and APPS (Hendrycks et al., 2021) have been widely adopted. However, these datasets suffer from well-documented limitations, including contamination from training corpora, narrow task scope, and weak correlation with human judgment. LiveCodeBench (LCB) (Jain et al., 2024) addresses these shortcomings by continuously curating competitive-programming problems, filtering them by release date, and enabling *contamination-aware, continuously updatable evaluation*. As a result, LCB has quickly become a standard benchmark for evaluating LLMs on code-generation tasks (Google DeepMind, 2025; DeepSeek, 2025).

Despite these strengths, LCB (Jain et al., 2024) evaluates only Python. While convenient, this limitation overlooks a central reality of software engineering: developers routinely work across diverse programming languages, each with its own syntax, semantics, and idiomatic practices. An LLM capable of solving problems exclusively in Python may perform poorly when C++ is required for systems programming, Java for enterprise software, or JavaScript for web development. Current evaluations therefore leave open a critical question: *can LLMs generalize coding competence across multiple programming languages, or are they overfitted to Python?*

In this work, we introduce **Multi-LCB**, an extension of LCB (Jain et al., 2024) to twelve programming languages while preserving its contamination controls and evaluation protocol. Multi-LCB

replicates every LCB task across all supported languages, enabling direct comparison of model performance on identical problems in different programming languages and updating automatically as LCB evolves. We evaluate 24 reasoning- and instruction-oriented LLMs on Multi-LCB and uncover key findings:

1. *Python is not always a reliable proxy for individual non-Python languages.* Our results reveal substantial and practically meaningful performance gaps across languages. In several cases, models that are stronger on Python do not retain their advantage in other languages.
2. *Python overfitting.* Models that perform strongly in Python often degrade sharply in other languages.
3. *Language-specific contamination.* Evidence of data leakage varies by programming language, reflecting uneven distribution in pretraining corpora.
4. *Substantial multi-programming-language disparities.* Models show large performance gaps across languages, with weaker results in statically typed or less prevalent languages.

Our main contributions are:

1. We extend LCB (Jain et al., 2024) to 12 programming languages without task loss, enabling direct comparison of LLM abilities to solve identical problems across different languages.
2. We provide a comprehensive evaluation of 24 instruction- and reasoning-oriented LLMs across these languages, revealing systematic multi programming languages performance gaps and evidence of language-specific contamination.
3. We publicly release all prompts, source code and experimental configurations at <https://anonymous.4open.science/r/Multi-LiveCodeBench-C627/> to facilitate reproducibility and future research.

These results establish Multi-LCB as a rigorous benchmark for multi-programming-language code evaluation, directly addressing LCB’s Python-only limitation and providing a foundation for developing more robust, programming language agnostic coding models.

2 RELATED WORK

Single-language code benchmarks. Early code-generation benchmarks evaluate functional correctness almost exclusively in Python. *HumanEval* (Chen et al., 2021) contains 164 hand-written problems, each defined by a natural language prompt, a fixed function signature, and hidden unit tests; tasks are short, single-function programs created specifically for evaluation rather than drawn from programming contests. *MBPP* (Mostly Basic Programming Problems) (Austin et al., 2021) likewise offers small Python exercises aimed at introductory programming and interview practice. Subsequent datasets expanded scale and difficulty: *APPS* (Hendrycks et al., 2021) aggregates competition and interview style problems with hidden test suites, *CodeContests* (Li et al., 2022) compiles algorithmic contest tasks with official judge input/output data, and *CodeXGLUE* (Lu et al., 2021) provides a broad suite of generation, translation, and retrieval tasks. Despite their influence, these resources are static snapshots, lack release date filtering to prevent training set contamination and are therefore largely saturated, remain heavily Python centric, and do not enforce a unified STD-IN/STDOUT protocol.

Multi-programming-language benchmarks. Several datasets extend code generation evaluation beyond Python. *MBXP* (Athiwaratkun et al., 2022) translates functional-format Python problems (e.g., *HumanEval* (Chen et al., 2021), *MBPP* (Austin et al., 2021)) by rewriting function signatures and regenerating unit tests for each language. Even a simple Python assertion like:

```
103 assert binomial.coeff(5, 2) == 10
```

must be expanded into multi-line Java test code. This translation must be repeated separately for every language and is sensitive to syntax and runtime differences. Concurrent work *MultiPL-E* (Casano et al., 2023) similarly performs translation of *HumanEval* and *MBPP* (including their unit tests) into 19 programming languages. *HumanEval-XL* (Peng et al., 2024) similarly expands *HumanEval*

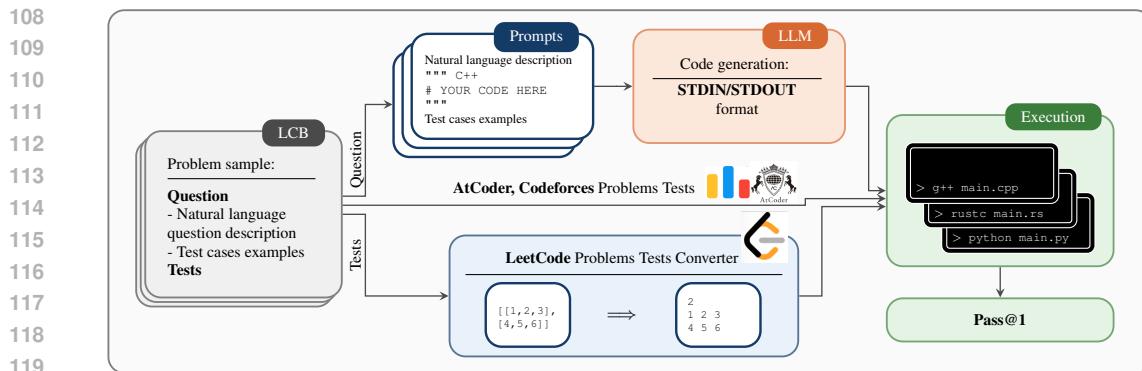


Figure 1: **Multi-LCB overview.** Top: LCB natural-language problem descriptions are wrapped into prompts specifying the target programming language and passed to the LLM for STDIN/STDOUT code generation. AtCoder and Codeforces problem tests are passed directly to the execution stage. Bottom: LeetCode problem tests are transformed through a dedicated test converter to produce equivalent STDIN/STDOUT inputs. The generated code is compiled or executed in the target programming language and evaluated using Pass@1.

to additional languages and provides a standardized execution harness while preserving the functional, unit-test format. Multi-LCB avoids this by keeping only the natural-language description and converting hidden tests into a language-agnostic STDIN/STDOUT format, for example:

Input:

5 2

Output:

10

Other projects broaden language coverage in different ways. *Ag-LiveCodeBench-X* (Boruch-Gruszecki et al., 2025) reuses a subset of LiveCodeBench tasks already in STDIN/STDOUT format and adds rarer targets such as Lua, R, Julia, OCaml, and Fortran. *xCodeEval* (Khan et al., 2023) likewise provides a unified multilingual execution framework and resembles our approach, but it draws exclusively from Codeforces problems and is not continuously updated. *McEval* (Chai et al., 2024) and *BigCodeBench* (Zhuo et al., 2024) once offered broad language coverage, but both are static and evaluate different task sets per language, hindering direct cross language comparison.

Contamination-aware evaluation. LiveCodeBench (LCB) (Jain et al., 2024) introduced release date filtering and continuous collection of Python problems from three major competitive programming platforms: LeetCode, AtCoder, and Codeforces (see Appendix D.1 for task statistics). By harvesting new tasks and filtering them by post-training release dates, LCB enables live, contamination aware evaluation of LLMs and has become a *de-facto standard* for robust single language (Python) code assessment (Comanici et al., 2025; Yang et al., 2025; Liu et al., 2024). A related effort, *EvoCodeBench* (Li et al., 2024), followed a similar evolving design but was not actively maintained and remained limited to Python. *Multi-LCB* builds directly on this foundation. It reuses the entire LCB (Jain et al., 2024) task pool and inherits its contamination controls.

3 BENCHMARK DESIGN

This section describes the approach, used to construct the Multi-LCB benchmark. Figure 1 illustrates the full pipeline. Please note, that although Multi-LCB is built on LCB, the same approach *can be applied to any dataset* with a comparable structure.

Data Source. Earlier versions of LCB supported several evaluation scenarios beyond code generation: self-repair, code execution, and test output prediction. But the latest releases (v5-v6) focus exclusively on *code generation*, the most widely benchmarked capability of modern LLMs. In this setting, a model receives a natural language problem statement with sample input/output pairs and must synthesize a program that passes all hidden test cases.

162 To construct Multi-LCB, we load the desired version of the LCB *code generation* dataset from Hug-
 163 ging Face, retrieving Python problems and their metadata. We convert every release of LCB code
 164 generation dataset without modification, preserving all tasks from three competitive-programming
 165 platforms: LeetCode, AtCoder, and Codeforces. Each task includes a natural language description,
 166 input/output examples, and contest release date for contamination-aware filtering. Test conversion
 167 is applied only to LeetCode’s functional format tasks to ensure unified STDIN/STDOUT evaluation.
 168 Details about platforms and temporal distribution appear in the Appendix D.1.

169 **Conversion of functional format.** LCB supports two native task formats: **STDIN/STDOUT** (as
 170 in AtCoder and Codeforces), where a program reads from standard input and writes to standard
 171 output, and **Functional** (as in LeetCode), where a specific function is implemented and invoked by
 172 the evaluation system. Directly extending the functional format to a multi-programming language
 173 benchmark is challenging. Each LeetCode task provides Python starter code tightly coupled to its
 174 own testing harness. Producing equivalent starter code and call signatures for many target languages
 175 would require custom templates for every language, leading to an unsustainable and error-prone
 176 process. To overcome this limitation, we designed an **automatic conversion pipeline** that rewrites
 177 every Functional task into a unified STDIN/STDOUT format. This pipeline consists of two compo-
 178 nents: (1) prompt adaptation that reformats problem statements and examples for model input, and
 179 (2) test conversion that transforms all test cases for automated evaluation.

180 The pipeline first parses examples from the problem statement and reformats them into STDIN/STD-
 181 OUT format for inclusion in model prompts. (see Appendix C.1). Separately, it converts all test
 182 cases (both public and hidden) from the original format to enable unified automated evaluation. This
 183 unification allows a single evaluation harness to handle both the original STDIN/STDOUT prob-
 184 lems and the adapted functional tasks across all supported languages. Since the original benchmark
 185 is based on Python, tasks involving Python-specific behavior could theoretically appear. However,
 186 tasks on LeetCode, AtCoder, and Codeforces are authored by human experts and are intentionally
 187 designed to avoid language-specific ambiguities, as these platforms support many programming
 188 languages. Consequently, Multi-LCB requires no language-specific rewriting, and the tasks remain
 189 inherently language-agnostic. Moreover, in our manual inspection of approximately 500 tasks, we
 190 did not find any cases in which language-dependent features introduced inconsistencies. Note that
 191 tasks unsuitable for strict input/output grading, such as those admitting multiple valid answers or
 192 requiring explicit data structure construction, are already excluded in the official LCB dataset that
 193 we load, so Multi-LCB inherits this filtering without any additional intervention. The remaining
 194 tasks are grouped by I/O structure: **Scalar**: inputs and outputs are single, scalar values (e.g. integers,
 195 floats, booleans, or simple strings); **One-Dimensional**: involve one-dimensional arrays (lists) as
 196 input or output; **Two-Dimensional**: include exactly one two-dimensional array (matrix or jagged
 197 array) in the I/O. As a result, all functional tasks, including their examples and hidden tests, are con-
 198 sistent converted to STDIN/STDOUT format: lists are space-separated, and for 2D arrays the first
 199 line specifies the number of rows, followed by row-wise space-separated values. This conversion
 applies to both the examples shown to the models and all test cases used for evaluation.

200 **Code generation.** We adopt a zero-shot prompting strategy that follows the original LiveCodeBench
 201 protocol. For each task, the benchmark constructs a prompt with three components:
 202

- 203 1. a system message instructs the model to act as an expert programmer in the target
 204 language (e.g., ‘‘You are an expert Python programmer...’’);
- 205 2. a user message provides the complete natural language problem statement with ex-
 206 plicit STDIN/STDOUT specifications and input/output sample cases already provided in
 207 the original problem descriptions;
- 208 3. a code-block placeholder indicates where the solution must be written:

```
209
210     """ python
211     # YOUR CODE HERE
212     """
213
214     ### Answer: (use the provided format with backticks)
```

215 The code-block header is set to the target language (e.g., cpp, java, python) to ensure
 correct syntax highlighting and parsing.

216 Models are required to output only the complete program source that reads from the standard input
 217 and writes to the standard output. High-level zero-shot template prompts for both native AtCoder
 218 and CodeForces tasks and adapted LeetCode problems are included in the Appendix C for reference.
 219

220 **Automatic Testing and Evaluation.** Correctness is assessed against a hidden suite of official test
 221 cases provided by the original contests. A program is marked correct only if it passes all tests
 222 without runtime errors or timeouts. For quantitative comparison we report Pass@1, the fraction of
 223 tasks for which the model’s first generated solution passes every public and hidden test.
 224

225 Together, these stages create a fully automated pipeline: a model receives a problem prompt, emits
 226 a candidate solution, the code is securely compiled and executed, and the output is graded against
 227 hidden tests – all without human intervention. This process preserves LCB’s rigorous contamination
 228 controls while enabling direct, language-agnostic evaluation of code generation across the diverse
 229 set of languages supported by Multi-LCB. Note, that the same set of tasks is used across evaluations
 230 on different programming languages, hence task difference does not hinder the comparison of the
 231 multi-language model capabilities.
 232

233 3.1 LANGUAGE SET AND MOTIVATION

234 This study evaluates multilingual code generation across major programming languages: C++, C#,
 235 Python, Java, Rust, Go, TypeScript, JavaScript, Ruby, PHP, Kotlin and Scala. The selection balances
 236 three criteria: (1) popularity based on Github, StackOverFlow, RedMonk and TIOBE rankings, (2)
 237 stable infrastructure support through package managers like Conda for reproducible execution, and
 238 (3) paradigmatic diversity across compilation strategies, type systems, and memory management
 239 models. For detailed programming language rankings across multiple sources, as well as the runtime
 240 characteristics information, please see Appendix E.
 241

242 4 EXPERIMENT SETUP

243 Here we describe the experimental configuration used to evaluate LLMs on the Multi-LCB bench-
 244 mark.

245 **Models** We evaluate a diverse set of 24 publicly available large language models (LLMs) span-
 246 ning from 7B to 685B parameters and covering both general-purpose and code-specialized do-
 247 mains. The pool includes instruction-tuned and reasoning-augmented variants from the Qwen3,
 248 DeepSeek, OlympicCoder, OpenReasoning, and OpenCoder families, among others. Representative
 249 examples include Gpt-oss-120B* (Medium), Qwen3-235B-A22B-Thinking-2507*,
 250 DeepSeek-R1-0528* and OpenReasoning-Nemotron-32B*. We intentionally selected
 251 models to capture a wide variety of training paradigms (pure code pretraining, mixed-domain train-
 252 ing, instruction tuning, reasoning-enhanced fine-tuning). Appendix F.1 lists all checkpoints with
 253 their estimated training cut-off dates.
 254

255 **Hardware and Environment.** All experiments were run on a cluster of 16 NVIDIA H100 80 GB
 256 GPUs with CUDA 12.3 and Python 3.11 inside Conda environments. Each programming language is
 257 executed inside an isolated sandbox container that bundles its corresponding compiler or interpreter
 258 (e.g., GCC 13 for C++, Rust 1.79, OpenJDK 21, .NET 8, CPython 3.11, Node.js 20). The sandbox
 259 enforces strict resource limits: 6 s wall-time per test case, 4 GB memory, and no external network
 260 access. This ensures deterministic, secure, and language-agnostic execution.
 261

262 **Inference Protocol.** Following the original LiveCodeBench protocol, we adopt a zero-shot prompt-
 263 ing strategy. For each problem, we generate a model-specific number of tokens (set according to its
 264 configuration) using nucleus sampling with temperature = 0.2 and top-p = 0.95, applying a triple-
 265 backtick stop sequence to capture the complete code block. Models are served with vLLM (Kwon
 266 et al., 2023) or SGLang (Zheng et al., 2024) for efficient batched decoding.

267 **Evaluation Metric** We report Pass@1 (%) averaged on 10 runs as the primary metric, which mea-
 268 sures the fraction of problems solved correctly by the first generated solution. A solution is marked
 269 correct only if it compiles/interprets successfully and passes all hidden official test cases without
 runtime errors or timeouts.

270 Table 1: Performance results on Multi-LCB for the tasks from February 2025 till May 2025. Scores
 271 represent the **Pass@1 (%)** metric averaged on 10 runs. Higher is better, **bold** is best, *italic* is the
 272 second best. Temperature $t=0.2$ (* - reasoning mode)

Model	Python	C++	Java	Go	JS	TS	C#	Rust	Ruby	PHP	Kotlin	Scala	Avg
Gpt-oss-120B* (Medium)	<i>71.1</i> \pm 2.1	72.3 \pm 1.9	70.4 \pm 3.0	69.9 \pm 3.0	70.5 \pm 1.9	70.3 \pm 3.8	<i>57.3</i> \pm 2.7	70.5 \pm 2.5	70.2 \pm 2.0	<i>66.7</i> \pm 2.8	71.0 \pm 2.5	54.1 \pm 3.0	67.8 \pm 5.9
Qwen3-235B-A22B-Thk-2507*	74.0 \pm 3.7	75.8 \pm 2.4	73.9 \pm 2.0	56.7 \pm 2.0	67.0 \pm 3.5	62.5 \pm 2.9	66.5 \pm 2.2	47.7 \pm 2.8	49.4 \pm 3.2	69.0 \pm 3.7	67.7 \pm 3.0	57.6 \pm 3.0	64.0 \pm 9.4
DeepSeek-R1-0528*	66.3 \pm 2.0	68.0 \pm 1.6	67.8 \pm 1.8	55.0 \pm 3.0	64.6 \pm 3.5	61.6 \pm 2.8	63.1 \pm 2.3	62.4 \pm 1.5	61.6 \pm 2.2	66.0 \pm 2.8	62.3 \pm 2.2	63.1 \pm 3.8	
Gpt-oss-20B* (Medium)	63.6 \pm 2.5	65.7 \pm 4.0	62.7 \pm 2.7	59.9 \pm 3.4	61.9 \pm 3.4	61.8 \pm 2.3	52.4 \pm 2.5	61.9 \pm 2.3	61.7 \pm 2.1	60.5 \pm 2.5	62.4 \pm 2.2	43.1 \pm 2.9	59.8 \pm 6.1
Qwen3-30B-A22B-Thk-2507*	64.0 \pm 2.6	62.5 \pm 3.2	44.1 \pm 1.9	51.9 \pm 4.3	46.5 \pm 2.3	56.5 \pm 3.8	51.7 \pm 4.0	42.1 \pm 2.6	58.8 \pm 2.9	50.6 \pm 2.7	43.6 \pm 2.8	53.2 \pm 8.3	
Gpt-oss-120B* (Low)	56.0 \pm 3.1	55.4 \pm 2.8	56.8 \pm 2.0	51.8 \pm 2.2	55.9 \pm 2.9	55.6 \pm 1.9	45.7 \pm 2.3	56.0 \pm 1.7	53.0 \pm 2.8	53.4 \pm 2.3	55.8 \pm 2.2	42.2 \pm 4.2	53.1 \pm 4.6
Qwen3-235B-A22B*	58.9 \pm 2.8	58.3 \pm 2.7	55.0 \pm 4.2	48.7 \pm 3.5	50.0 \pm 2.8	48.8 \pm 3.1	51.0 \pm 4.0	40.7 \pm 3.7	46.6 \pm 2.6	48.4 \pm 3.8	47.5 \pm 3.9	33.6 \pm 3.4	48.9 \pm 7.0
Qwen3-32B*	57.6 \pm 4.0	55.3 \pm 3.3	56.0 \pm 4.5	42.1 \pm 2.6	49.6 \pm 2.6	49.3 \pm 3.8	49.1 \pm 4.1	40.1 \pm 4.1	52.1 \pm 2.7	50.0 \pm 3.1	46.4 \pm 2.7	35.6 \pm 3.4	48.6 \pm 6.7
Qwen3-30B-A3B*	55.0 \pm 3.6	51.5 \pm 3.3	50.6 \pm 2.6	36.9 \pm 1.8	49.9 \pm 4.0	48.2 \pm 4.9	43.9 \pm 2.8	38.4 \pm 2.9	46.8 \pm 3.1	48.0 \pm 3.0	44.3 \pm 3.7	32.2 \pm 2.7	45.5 \pm 6.7
Gpt-oss-20B* (Low)	46.2 \pm 3.0	47.9 \pm 2.2	46.3 \pm 1.8	42.6 \pm 1.4	45.1 \pm 2.0	42.7 \pm 1.9	41.2 \pm 2.1	42.0 \pm 1.7	44.7 \pm 1.6	45.8 \pm 1.6	46.3 \pm 2.3	29.2 \pm 2.7	43.3 \pm 4.9
Qwen3-14B*	53.5 \pm 5.3	47.2 \pm 4.1	47.2 \pm 2.8	32.4 \pm 3.9	45.0 \pm 3.9	46.0 \pm 5.2	43.3 \pm 2.8	31.5 \pm 2.7	45.3 \pm 5.0	45.5 \pm 2.9	39.2 \pm 3.1	32.4 \pm 3.0	42.4 \pm 7.0
Qwen3-235B-A22B-Instr-2507	43.8 \pm 2.8	42.7 \pm 2.0	45.5 \pm 2.4	35.0 \pm 1.4	26.4 \pm 1.3	19.5 \pm 2.7	44.1 \pm 1.8	39.5 \pm 2.5	41.5 \pm 1.4	42.4 \pm 2.2	41.1 \pm 2.0	28.1 \pm 1.9	37.5 \pm 8.4
Qwen3-8B*	46.3 \pm 5.9	39.7 \pm 5.0	36.7 \pm 5.5	25.8 \pm 4.4	36.5 \pm 4.9	38.8 \pm 4.8	36.3 \pm 4.3	20.5 \pm 4.1	39.5 \pm 5.8	36.0 \pm 2.2	24.0 \pm 3.3	27.0 \pm 2.7	33.9 \pm 7.7
Qwen3-Coder-30B-A3B-Instr	36.6 \pm 2.5	31.1 \pm 2.0	35.3 \pm 2.8	25.8 \pm 2.2	28.4 \pm 1.5	28.0 \pm 1.4	34.7 \pm 2.3	34.3 \pm 2.1	34.7 \pm 2.2	31.8 \pm 1.3	35.7 \pm 2.2	20.2 \pm 1.8	31.4 \pm 4.9
Qwen3-30B-A3B-Instr-2507	38.9 \pm 2.5	35.6 \pm 2.2	37.2 \pm 2.0	22.4 \pm 1.9	20.8 \pm 1.8	18.2 \pm 1.7	36.5 \pm 1.1	32.1 \pm 2.7	34.7 \pm 2.2	34.8 \pm 1.9	35.9 \pm 1.8	25.7 \pm 1.6	31.1 \pm 7.2
Qwen2.5-Coder-32B-Instr	27.5 \pm 0.8	26.9 \pm 0.7	30.5 \pm 0.9	23.9 \pm 0.7	6.3 \pm 1.2	28.8 \pm 0.6	28.5 \pm 1.3	24.7 \pm 0.6	24.6 \pm 0.8	27.3 \pm 0.6	26.6 \pm 0.8	24.5 \pm 0.6	25.0 \pm 6.2
Seed-Coder-RB-Instr	22.1 \pm 0.8	23.4 \pm 0.7	26.0 \pm 1.5	22.1 \pm 1.5	23.1 \pm 2.3	23.1 \pm 1.6	27.0 \pm 0.8	21.8 \pm 1.4	20.4 \pm 1.3	23.4 \pm 1.4	21.8 \pm 1.0	23.0 \pm 1.9	
OpenRnN-Nmt-32B*	64.4 \pm 3.6	44.2 \pm 2.2	40.5 \pm 3.0	11.5 \pm 4.2	10.8 \pm 6.9	10.5 \pm 5.3	29.9 \pm 3.8	28 \pm 1.5	18.3 \pm 3.4	15.8 \pm 3.2	17.3 \pm 3.5	6.0 \pm 1.3	22.7 \pm 18.5
DeepSeek-R1-Distill-Qwen-32B*	39.4 \pm 7.3	22.2 \pm 4.6	33.2 \pm 6.5	11.9 \pm 2.8	16.2 \pm 3.9	11.6 \pm 3.4	29.3 \pm 4.3	20.2 \pm 4.6	40.1 \pm 5.9	12.9 \pm 2.6	20.5 \pm 4.4	7.0 \pm 1.4	22.0 \pm 11.2
Devstrat-Small-2505*	23.2 \pm 1.0	22.6 \pm 1.6	22.8 \pm 0.7	16.1 \pm 2.2	22.7 \pm 1.0	24.7 \pm 1.4	24.1 \pm 1.4	19.9 \pm 1.2	19.9 \pm 2.0	20.8 \pm 1.3	21.2 \pm 1.0	17.2 \pm 1.4	21.3 \pm 2.7
Qwen2.5-Coder-14B-Instr	22.0 \pm 0.6	21.3 \pm 0.3	23.9 \pm 0.8	19.2 \pm 0.6	22.6 \pm 0.8	17.5 \pm 0.8	23.3 \pm 0.5	16.7 \pm 0.6	22.7 \pm 0.8	22.7 \pm 0.6	18.1 \pm 0.4	20.4 \pm 0.6	20.9 \pm 2.4
OpenCodeRn-Nmt-1.1-32B*	56.0 \pm 12.4	37.3 \pm 8.0	33.1 \pm 4.2	9.9 \pm 2.6	8.2 \pm 3.7	4.9 \pm 2.0	25.5 \pm 3.4	1.1 \pm 0.6	23.4 \pm 3.1	19.3 \pm 4.3	12.3 \pm 3.2	7.0 \pm 2.2	19.8 \pm 16.1
DeepSeek-R1-Distill-Qwen-14B*	41.8 \pm 5.5	16.3 \pm 1.8	24.9 \pm 2.7	10.8 \pm 2.1	10.2 \pm 3.4	11.5 \pm 3.0	29.2 \pm 4.0	3.7 \pm 1.4	34.5 \pm 4.2	3.8 \pm 1.8	11.5 \pm 3.6	3.3 \pm 1.3	16.8 \pm 12.8
Deepseek-Coder-33B-Instr	17.2 \pm 0.7	16.2 \pm 0.5	18.5 \pm 0.8	12.4 \pm 0.5	8.5 \pm 1.7	7.4 \pm 2.3	17.1 \pm 0.7	2.6 \pm 0.6	15.2 \pm 0.7	16.5 \pm 0.7	16.0 \pm 0.5	12.2 \pm 1.0	13.3 \pm 4.9

5 EXPERIMENTS AND RESULTS

We evaluate a suite of frontier large language models on Multi-LCB, spanning 12 programming languages and reporting Pass@1 averaged on 10 runs as the primary metric (Table 1). This section presents a detailed analysis of model performance on latest Dataset v6 (Feb 2025 – May 2025) (Section 5.1), compares findings with single-language LiveCodeBench (LCB) results (Section 5.2), and investigates contamination signals (Section 5.3). For additional performance results at various sampling temperatures, Pass@5 and Pass@10 metrics and other dataset releases (July 2024-May 2025 and the full 1,055-task benchmark) see appendix F.

5.1 EXPERIMENTS RESULTS ON MULTI-LCB

We study performance variations in models released more recently. Particularly, we evaluate 24 recent large language models on Multi-LCB, restricting tasks to those released after 2025-02-01 to ensure live, post-cutoff evaluation and minimize any risk of training-data leakage. Model approximate cutoff dates are listed in Appendix F.1 Table 4.

Table 1 summarizes Pass@1 averaged on 10 runs with temperature $t = 0.2$ performance across twelve programming languages on Dataset v6 (Feb 2025 – May 2025), while Figure 2 highlights the results for the 10 best-performing models.

Our results reveal substantial and practically meaningful performance gaps across languages. For example, Gpt-oss-120B* (Medium) outperforms Qwen3-235B-A22B-Thk-2507* on Go, Javascript, Typescript, Rust, Ruby and Kotlin, and DeepSeek-R1-0528* outperforms Qwen3-235B-A22B-Thk-2507* on Rust, Ruby and Scala, despite Qwen3-235B-A22B-Thk-2507* being consistently stronger on Python. *This is precisely why strong Python ability is not always a reliable proxy for true cross-lingual code generation competence* and evaluation must consider performance in the target languages rather than relying on Python alone.

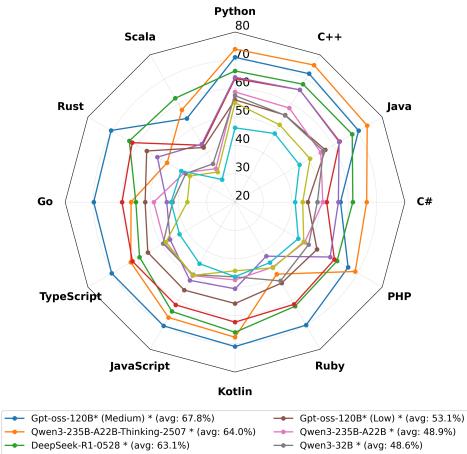


Figure 2: Top-10 models by Pass@1

Figure 3 plots per-model Pass@1 averaged on 10 runs with sampling temperature $t = 0.2$ scores on Python against the cross programming language average on Dataset v6 (Feb 2025 – May 2025).

Almost every point lies above the $x = y$ diagonal, demonstrating a consistent bias toward Python. Models without explicit multi programming languages training, such as OpenRsn-Nmt-32B* and OpenCodeRsn-Nmt-1.1-32B*, show the starker gap, exceeding 60% on Python while remaining below 30% across other languages.

Even the largest reasoning-augmented models, including Qwen3-235B-Thk and DeepSeek-R1, retain a measurable positive bias toward Python, though the disparity is less pronounced.

These results confirm that strong Python ability is not necessarily a reliable proxy for true cross-lingual code generation competence.

The most strongest models, Gpt-oss-120B* (Medium), Qwen3-235B-A22B-Thk-2507* and DeepSeek-R1-0528* establish a strong yet far-from-saturated frontier, while the next tier of high-performing models, such as Qwen3-30B-A3B-Thk-2507*, illustrates that only a handful of reasoning-augmented variants can exceed the 50% mark. Most of the evaluated models remain below 40%, underscoring the benchmark’s challenge of achieving robust multi programming language code generation correctness.

Figure 4 plots Pass@1 distribution across 12 languages on with sampling temperature $t = 0.2$ on Dataset v6 (Feb 2025 – May 2025). Boxes show the interquartile range with the horizontal line marking the median and the red diamond indicating the mean. This reveals a clear difficulty gradient. Python achieves the highest **mean** Pass@1 of 0.482, with Java and C++ close behind at about 0.44. C#, Ruby, PHP, Go, Rust, Kotlin and JavaScript/TypeScript form a middle tier with means near 0.33-0.39, while Scala consistently trail at means below 0.29. These gaps persist across the top-performing models, reflecting structural challenges such as compilation complexity, ownership semantics, and smaller ecosystem resources.

We observe that Python consistently outperforms other languages on Multi-LCB. This suggests that current LLMs are substantially more trained on Python code, especially for reasoning-mode training, and that cross-language knowledge transfer remains only partial. We suppose that model performance could be improved by increasing training coverage of non-Python programming languages.

5.2 COMPARISON WITH LIVECODEBENCH

To verify that our multilingual extensions preserve the fidelity of the original LiveCodeBench (LCB), we compare Pass@1 scores on the Python subset of Multi-LCB against the official results reported

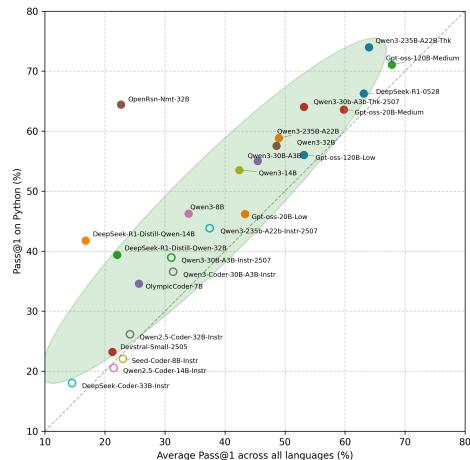


Figure 3: Scatter of Python vs. Average Pass@1

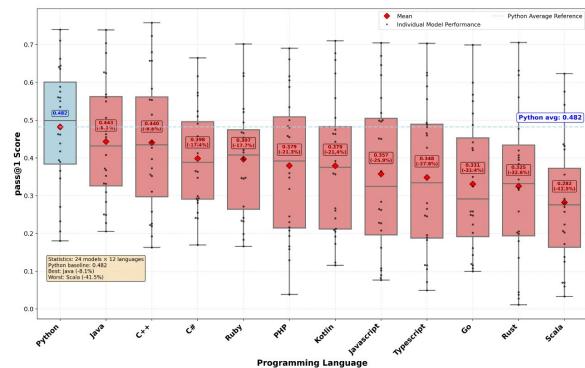
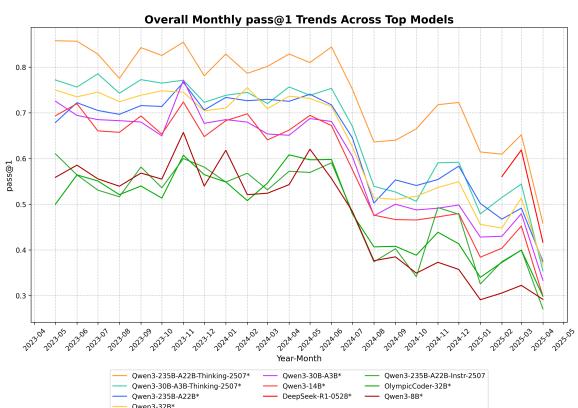


Figure 4: Pass@1 distribution across 12 languages

378 for LCB versions v4-v6. Table 2 reports original leaderboard results (ORIG) and our reproduced
 379 scores (OUR), with Δ representing the absolute difference.
 380

381
 382 Table 2: Comparison of reasoning/code models on Python across benchmark versions (v4–v6).
 383 Original leaderboard values (ORIG, %) are contrasted with our reproduced scores (OUR, %). Dif-
 384 ference is computed as $\Delta = \text{OUR} - \text{ORIG}$.


Model	Benchmark version (range)	ORIG (%)	OUR (%)	Δ (%)	Source
Qwen3-235B-A22B-Thinking-2507	v6 [2502–2505]	74.1	74.0	-0.1	Hugging Face
DeepSeek R1 0528	v6 [2502–2505]	68.7	66.3	-2.4	LCB leaderboard
Qwen3-30B-A3B-Thinking-2507	v6 [2502–2505]	66.0	64.0	-2.0	Hugging Face
OpenReasoning-Nemotron-32B	v6 [2502–2505]	65.6	64.4	-1.2	LCB leaderboard
OpenCodeReasoning-Nemotron-1.1-32B	v6 [2502–2505]	61.4	56.0	-5.4	LCB leaderboard
Qwen3-30B-A3B*	v6 [2502–2505]	57.4	55.0	-2.4	Hugging Face
Qwen3-235B-A22B	v6 [2502–2505]	55.7	58.9	3.2	LCB leaderboard
Qwen3-235B-A22B-Instruct-2507	v6 [2502–2505]	51.8	43.8	-8.0	Hugging Face
Qwen3-32B*	v5 [2410–2502]	65.7	64.3	-1.4	Qwen3 Tech report
Qwen3-14B*	v5 [2410–2502]	63.5	56.7	-6.8	Qwen3 Tech report
Qwen3-30B-A3B*	v5 [2410–2502]	62.6	61.0	-1.6	Qwen3 Tech report
Qwen3-8B*	v5 [2410–2502]	57.5	49.1	-8.6	Qwen3 Tech report
Seed-Coder-8B-Instruct	v5 [2410–2502]	24.7	19.8	-4.9	Hugging Face
OpenCodeReasoning-Nemotron-1.1-32B	v4–v5 [2408–2502]	69.9	65.3	-4.6	Hugging Face
OlympicCoder-32B	v4–v5 [2408–2502]	54.5	52.3	-2.2	Hugging Face
OlympicCoder-7B	v4–v5 [2408–2502]	40.7	35.6	-5.1	Hugging Face
Qwen2.5-Coder-32B-Instruct	v4–v5 [2408–2502]	28.3	27.6	-0.7	Hugging Face

395 Overall, reproduction is strong: differences are typically within a few percentage points, with a mean
 396 absolute deviation of only about 3%. For example, Qwen3-235B-A22B-Thinking-2507
 397 achieves 74.0% Pass@1 in our evaluation versus 74.1% on the original v6 leaderboard ($\Delta = -0.1$),
 398 while DeepSeek-R1-0528 records 66.3% compared to 68.7% ($\Delta = -2.4$). Even for mod-
 399 els with larger gaps, such as Qwen3-235B-A22B-Ins-2507 ($\Delta = -8.0$) or Qwen3-8B*
 400 ($\Delta = -8.6$), the rank ordering across models remains consistent.

401 These close alignments confirm that Multi-LCB’s multilingual transformations introduce no arti-
 402 ficial difficulty for Python tasks. Performance differences instead reflect natural leaderboard varian-
 403 ce and underscore that the multilingual benchmark faithfully reproduces the single-language LCB set-
 404 ting, ensuring that any additional challenges arise from genuine cross-language generalization rather
 405 than implementation artifacts.

5.3 CONTAMINATION ON MULTI-LCB

411 A core design goal of Multi-LCB is
 412 contamination-aware evaluation via
 413 release-date filtering. Nevertheless,
 414 *time-wise* analysis reveals clear evidence
 415 of residual contamination on older (pre-
 416 cutoff) problems. Figure 5 shows monthly
 417 Pass@1 trends for the top-10 models aver-
 418 aged across all programming languages :
 419 scores are systematically higher on earlier
 420 months and exhibit step-like drops when
 421 the evaluation window crosses model
 422 cutoffs, followed by sustained lower per-
 423 formance on post-cutoff problems. Our
 424 main comparisons in Section 5 restrict
 425 evaluation to tasks released on or after
 426 2025-02-01, ensuring *live, post-cutoff*
 427 measurement. Under this setting, per-
 428 formance drops to a level that better reflects
 429 true generalization, whereas inflated
 430 scores on older windows are explained by
 431 pretraining exposure rather than genuine zero-contamination generalization.

432 Figure 5: Monthly Pass@1 trends averaged across all
 433 programming languages for top-10 models.

432

6 LIMITATIONS AND THREATS TO VALIDITY

433
434
435 **Language Coverage and Selection.** Multi-LCB covers 12 programming languages but does not
436 include some important languages such as Swift, Haskell, R, and others. The language selection
437 is based on popularity rankings in 2025, which may not reflect specialized domains or emerging
438 languages. Additionally, some languages have various dialects and versions that are not accounted
439 for in our evaluation framework.440 **Task Complexity and Domain.** While the selected programming languages span different domains
441 (systems programming, web development, data science), the tasks themselves remain rooted in com-
442 petitive programming. Although algorithmic problem-solving has indirect relevance to industrial
443 coding capabilities, Multi-LCB does not directly assess real-world software engineering scenarios
444 such as API integration, debugging legacy code, or collaborative development workflows.445 **Evaluation Protocol Constraints.** The strict STDIN/STDOUT format may introduce performance
446 degradation not only due to algorithmic reasoning limitations but also due to syntax unfamiliarity,
447 difficulty parsing input formats, or failure to follow output specifications. Models may fail tasks due
448 to format compliance issues rather than core problem-solving deficits, potentially confounding our
449 assessment of true multilingual coding competence.450 **Model Selection Bias.** Our evaluation focuses exclusively on publicly available models, excluding
451 proprietary systems that may represent the current state-of-the-art. This limitation means our results
452 reflect only a subset of available models and may not accurately represent the real-world leaderboard
453 of multilingual code generation capabilities.454 **Construct Validity.** The automatic conversion from functional format to STDIN/STDOUT may
455 alter task complexity differently across programming languages. Some languages may be more
456 naturally suited for certain problem types, potentially creating unequal evaluation conditions that
457 affect cross-language comparisons.458 **Internal Validity.** Despite date-based filtering, hidden forms of contamination may persist through
459 similar problem patterns or solution templates present in training data. Additionally, models may
460 exhibit temporal bias based on varying exposure to different programming languages during their
461 training periods.463

7 FUTURE WORK

464
465
466 Multi-LCB’s modular design enables straightforward language expansion. We plan to add Swift,
467 Haskell, R, and Julia by defining their compilation commands and runtime environments. We
468 will evaluate proprietary models (GPT-4, Claude, Gemini) to establish comprehensive multilin-
469 gual leaderboards reflecting current state-of-the-art performance. The STDIN/STDOUT framework
470 directly supports LCB-Pro (Zheng et al., 2025) and other benchmarks requiring format conver-
471 sion, enabling broader contamination-aware multilingual evaluation without additional infrastruc-
472 ture changes.473
474

8 CONCLUSIONS

475
476
477 We introduced **Multi-LCB**, a contamination aware benchmark for evaluating large language mod-
478 els on multilingual code generation. Multi-LCB provides an extensible framework spanning twelve
479 programming languages and continuously updates with newly released problems. The conversion
480 methodology extends beyond LCB to other Python benchmarks (e. g. LCB Pro (Zheng et al., 2025)),
481 offering a general approach for multilingual code evaluation. By inheriting LiveCodeBench’s live
482 evaluation protocol and unified STDIN/STDOUT execution, it enables rigorous, cross programming
483 language assessment and mitigates data contamination that affects static benchmarks. Our experi-
484 ments expose programming language specific contamination, evidence of Python overfitting, and
485 significant performance gaps across programming languages. We hope Multi-LCB will serve as a
durable resource for advancing the evaluation of code-oriented LLMs and guiding future research in
multilingual program synthesis.

486 REFERENCES
487

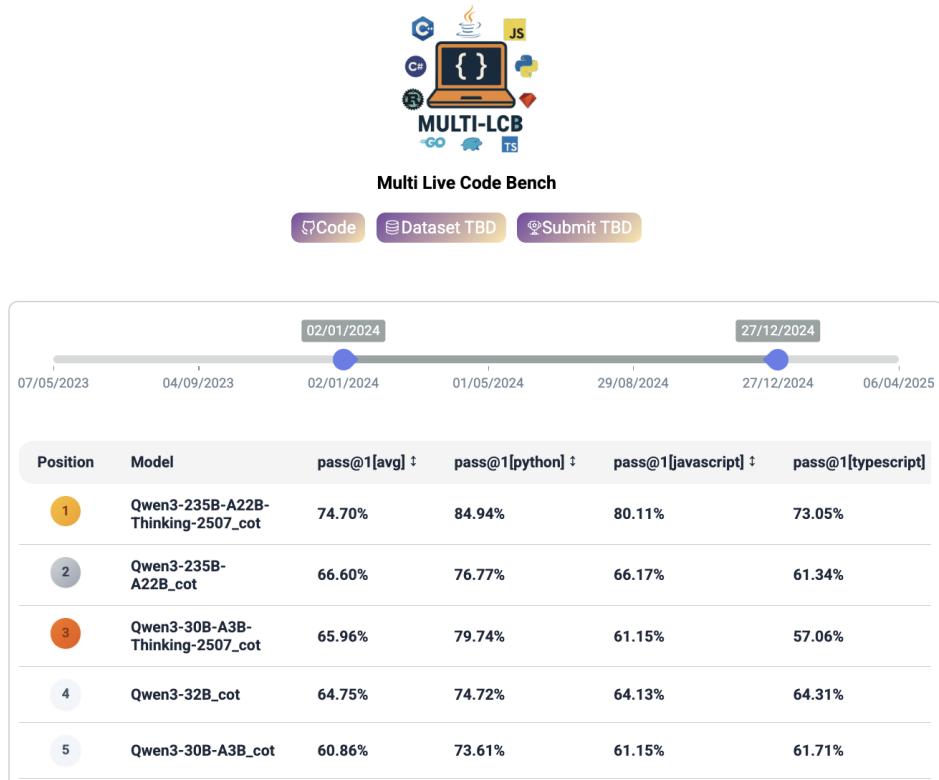
- 488 Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, Yuchen Tian, Ming Tan,
489 Wasi Uddin Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, et al. Multi-lingual evaluation of
490 code generation models. *arXiv preprint arXiv:2210.14868*, 2022.
- 491 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
492 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
493 models. *arXiv preprint arXiv:2108.07732*, 2021.
- 494 Aleksander Boruch-Gruszecki, Yangtian Zi, Zixuan Wu, Tejas Oberoi, Carolyn Jane Anderson, Joy-
495 deep Biswas, and Arjun Guha. Agnostics: Learning to code in any programming language via
496 reinforcement with a universal learning environment. *arXiv preprint arXiv:2508.04865*, 2025.
- 497 Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
498 Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, et al. Multipl-
499 e: A scalable and polyglot approach to benchmarking neural code generation. *IEEE Transactions
500 on Software Engineering*, 49(7):3675–3691, 2023.
- 501 Linzheng Chai, Shukai Liu, Jian Yang, Yuwei Yin, Ke Jin, Jiaheng Liu, Tao Sun, Ge Zhang,
502 Changyu Ren, Hongcheng Guo, et al. Mceval: Massively multilingual code evaluation. *arXiv
503 preprint arXiv:2406.07436*, 2024.
- 504
- 505 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
506 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
507 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.
- 508
- 509 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
510 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
511 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
512 bilities. *arXiv preprint arXiv:2507.06261*, 2025.
- 513
- 514 DeepSeek. Deepseek-r1-0528 release, May 2025. URL <https://api-docs.deepseek.com/news/news250528>. DeepSeek News release.
- 515
- 516 Google DeepMind. Gemini 2.5: Our most intelligent ai model, March
517 2025. URL <https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025>. Google DeepMind Blogpost.
- 518
- 519 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
520 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv
521 preprint arXiv:2103.03874*, 2021.
- 522
- 523 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
524 Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
525 evaluation of large language models for code. *arXiv preprint arXiv:2403.07974*, 2024.
- 526
- 527 Mohammad Abdullah Matin Khan, M Saiful Bari, Xuan Long Do, Weishi Wang, Md Rizwan
528 Parvez, and Shafiq Joty. xcodeeval: A large scale multilingual multitask benchmark for code
529 understanding, generation, translation and retrieval. *arXiv preprint arXiv:2303.03004*, 2023.
- 530
- 531 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
532 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
533 serving with pagedattention. In *Proceedings of the 29th symposium on operating systems prin-
534 ciples*, pp. 611–626, 2023.
- 535
- 536 Jia Li, Ge Li, Xuanming Zhang, Yihong Dong, and Zhi Jin. Evocodebench: An evolving code gen-
537 eration benchmark aligned with real-world code repositories. *arXiv preprint arXiv:2404.00599*,
538 2024.
- 539 Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. *Science*, 378(6624):1092–1097, 2022.

- 540 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 541 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 542 *arXiv:2412.19437*, 2024.
- 543 Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
 544 Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
 545 next generation. *arXiv preprint arXiv:2402.19173*, 2024.
- 546 Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
 547 Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. Codexglue: A machine learning benchmark
 548 dataset for code understanding and generation. *arXiv preprint arXiv:2102.04664*, 2021.
- 549 Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
 550 and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
 551 synthesis. *arXiv preprint arXiv:2203.13474*, 2022.
- 552 Qiwei Peng, Yekun Chai, and Xuhong Li. Humaneval-xl: A multilingual code generation bench-
 553 mark for cross-lingual natural language generalization. *arXiv preprint arXiv:2402.16694*, 2024.
- 554 Tal Ridnik, Dedy Kredo, and Itamar Friedman. Code generation with alphacodium: From prompt
 555 engineering to flow engineering. *arXiv preprint arXiv:2401.08500*, 2024.
- 556 Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
 557 Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
 558 code. *arXiv preprint arXiv:2308.12950*, 2023.
- 559 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 560 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
 561 *arXiv:2505.09388*, 2025.
- 562 Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi
 563 Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sqlang: Efficient execution of
 564 structured language model programs. *Advances in neural information processing systems*, 37:
 565 62557–62583, 2024.
- 566 Zihan Zheng, Zerui Cheng, Zeyu Shen, Shang Zhou, Kaiyuan Liu, Hansen He, Dongruixuan Li,
 567 Stanley Wei, Hangyi Hao, Jianzhu Yao, et al. Livecodebench pro: How do olympiad medalists
 568 judge llms in competitive programming? *arXiv preprint arXiv:2506.11928*, 2025.
- 569 Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari,
 570 Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Bench-
 571 marking code generation with diverse function calls and complex instructions. *arXiv preprint*
 572 *arXiv:2406.15877*, 2024.
- 573
- 574
- 575
- 576
- 577
- 578
- 579
- 580
- 581
- 582
- 583
- 584
- 585
- 586
- 587
- 588
- 589
- 590
- 591
- 592
- 593

594
595
596
597
598
599
600

Appendix

CONTENTS


601	A Legal Compliance and License	13
602		
603	B UI of Multi-LCB	13
604		
605	C Prompt Examples	13
606		
607	C.1 AtCoder/CodeForces Example (native STDIN/STDOUT)	14
608	C.2 LeetCode Example (adapted into STDIN/STDOUT)	14
609		
610	D Tasks Distribution	15
611		
612	D.1 Task Distribution by Difficulty and Platform	15
613	D.2 Task Distribution by I/O Data Dimensionality (LeetCode Functional Format)	16
614		
615	E Programming language rankings and runtime characteristics	17
616		
617	F Experiments	18
618		
619	F.1 Models overview	18
620	F.2 Performance on the Multi-LCB (Feb-May 2025 Subset) Across Sampling Tempera-	
621	F.3 Performance on the Multi-LCB (Jul 2024-May 2025 Subset)	21
622	F.4 Performance on the Complete Multi-LCB Benchmark	21
623		
624	G Computation time	22
625		
626	H Languages and Compiler Versions	22
627		
628	I Platform Analysis	23
629		
630	J Difficulty Analysis	26
631		
632	K Temporal Analysis	29
633		
634	L Languages errors type	31
635		
636		
637		
638		
639		
640		
641		
642		
643		
644		
645		
646		
647		

648 **A LEGAL COMPLIANCE AND LICENSE**
649

650 The Multi-LCB benchmark contains no personally identifiable information, offensive content, or
 651 proprietary code. It is derived entirely from the publicly released LiveCodeBench (LCB) dataset,
 652 which itself sources only publicly accessible contest problems, reference solutions, and test cases
 653 from **LeetCode**, **AtCoder**, and **Codeforces**. Our redistribution and multi programming language
 654 transformation of LCB fall under Fair Use (§107, U.S. Copyright Act): the benchmark is provided
 655 solely for non-commercial academic research, reproduces only the material necessary for evaluation,
 656 and does not diminish the market value of the original platforms or LCB. Multi-LCB is strictly an
 657 evaluation resource, no models are trained on these tasks, and is released under a **CC BY-NC 4.0**
 658 license to ensure non-commercial use.

659 **B UI OF MULTI-LCB**
660

661 Figure 6 presents the web interface of **Multi-LCB**, displaying a subset of tasks released between
 662 **January 2024** and **December 2024**. A *time-range scroller* at the top allows users to interactively
 663 select different time windows to filter tasks and monitor model performance on newly released prob-
 664 lems. This interactive design highlights the *live and continuously updated* nature of the benchmark,
 665 enabling researchers to track progress as fresh contest tasks are incorporated.

693 Figure 6: Multi-LCB web interface showing tasks released between January 2024 to Decem-
 694 ber 2024, with an interactive time-range scroller for filtering and visualization.

695 **C PROMPT EXAMPLES**
696

697 This appendix shows example prompts from Multi-LCB. We distinguish the **original problem text**
 698 as it appears on the source platform and the **additional instructions** that we add in order to unify
 699 everything into the STDIN/STDOUT format. Original parts are placed in blue boxes, while added
 700 parts are placed in red boxes.

702 C.1 ATCODER/CODEFORCES EXAMPLE (NATIVE STDIN/STDOUT)
703704 **Original**706 ### Question: Find the number of positive integers not greater than N that have exactly 9
707 positive divisors.709 **Input:** N710 **Output:** Print the answer.711 **Constraints:** $1 \leq N \leq 4 \times 10^12$ 713 **Sample Input 1:**

714 200

716 **Sample Output 1:**

717 3

719 **Added**

721 ### Format:

722 Read the inputs from STDIN solve the problem and write the answer to STDOUT (do not
723 directly test on the sample inputs). Enclose your code within delimiters as follows. Ensure
724 that when the python program runs, it reads the inputs, runs the algorithm and writes output
725 to STDOUT.726 """ python
727 # YOUR CODE HERE
728 """

730 ### Answer: (use the provided format with triple quotes)

733 C.2 LEETCODE EXAMPLE (ADAPTED INTO STDIN/STDOUT)

735 **Original**737 ### Question: You are given an integer array enemyEnergies and an integer
738 currentEnergy... (original description)740 **Example 1:**741 **Input:** enemyEnergies = [3, 2, 2], currentEnergy = 2742 **Output:** 3743 **Explanation:**

744 Several operations lead to a maximum of 3 points (see original problem description).

745 **Example 2:**746 **Input:** enemyEnergies = [2], currentEnergy = 10747 **Output:** 5748 **Explanation:**

749 Performing the first operation 5 times on enemy 0 yields the maximum number of points.

751 **Constraints:**

- 752 •
- $1 \leq \text{enemyEnergies.length} \leq 10^5$
-
- 753 •
- $1 \leq \text{enemyEnergies}[i] \leq 10^9$
-
- 754 •
- $0 \leq \text{currentEnergy} \leq 10^9$

756

Added

757

Format:

759

Read the inputs from STDIN solve the problem and write the answer to STDOUT (do not directly test on the sample inputs). Enclose your code within delimiters as follows. Ensure that when the python program runs, it reads the inputs, runs the algorithm and writes output to STDOUT.

760

761

For 2D arrays, the first line indicates the number of rows, followed by newline-separated rows.

762

763

Sample Input 1:

764

```
3 2 2
2
```

765

Sample Output 1:

766

```
3
```

767

```
""" python
# YOUR CODE HERE
"""
```

768

Answer: (use the provided format with triple quotes)

769

For non-Python settings, only the header of the code block is replaced (e.g., """ cpp, """ java). The rest of the prompt structure remains identical.

770

771

D TASKS DISTRIBUTION

772

D.1 TASK DISTRIBUTION BY DIFFICULTY AND PLATFORM

773

LiveCodeBench (LCB) continuously aggregates competitive programming problems in Python from three major platforms: **LeetCode**, **AtCoder**, and **Codeforces**. Figure 7 shows the monthly distribution of tasks by difficulty, and Figure 8 presents the monthly distribution by source platform. Together, these figures highlight the steady inflow of new problems and the live, contamination-aware nature of LCB, and, by extension Multi-LCB.

774

775

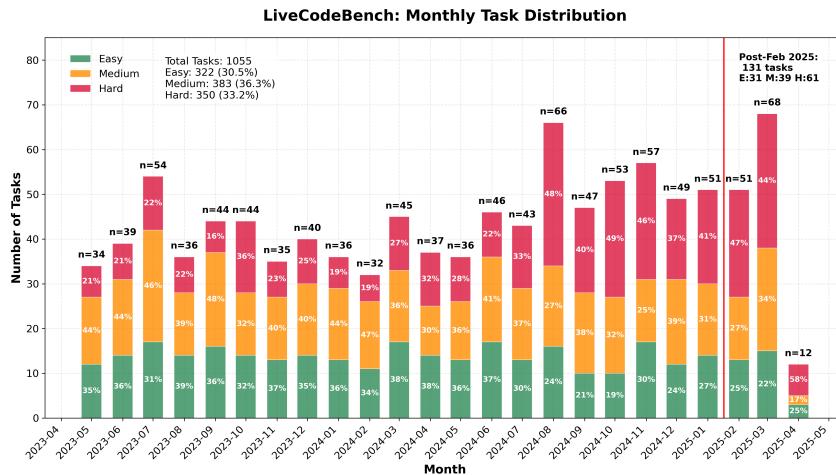


Figure 7: Monthly distribution of Tasks by Difficulty.

800

801

802

803

804

805

806

807

808

809

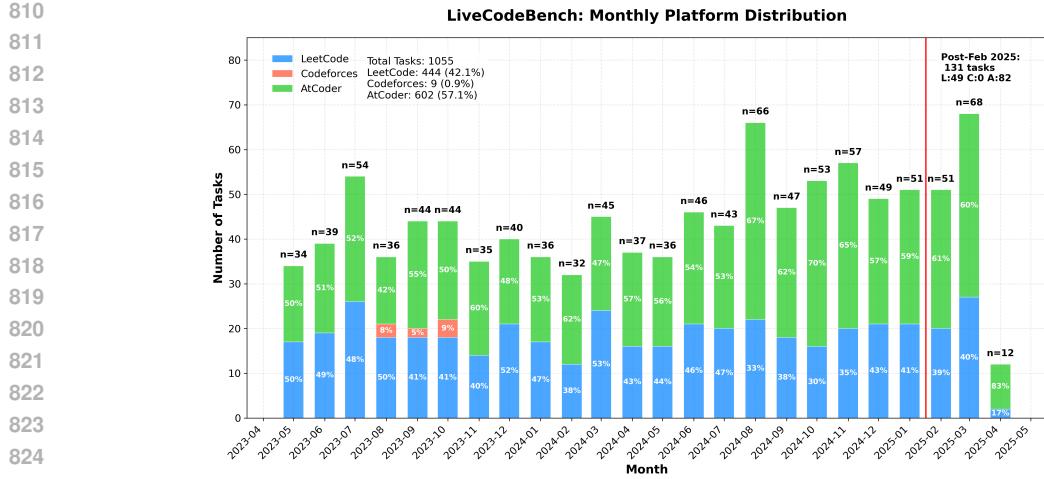


Figure 8: Monthly distribution of LCB tasks by platform.

Each platform hosts frequent contests whose tasks provide a natural language description of a problem, example input/output pairs, and hidden tests, ensuring that solutions must be fully correct to receive credit. Because every contest attracts thousands of participants and receives official editorial review, the problems are inherently vetted for clarity and correctness. Across the full lifetime of the dataset, the platform composition is as follows:

Codeforces: Competitive-programming problems known for a wide range of difficulty and algorithmic focus, almost exclusively in STDIN/STDOUT format.

LeetCode: Interview oriented challenges emphasizing data structures and algorithms, originally in a Functional format.

AtCoder: Algorithmically rich competitive programming problems, typically using STDIN/STDOUT input/output.

D.2 TASK DISTRIBUTION BY I/O DATA DIMENSIONALITY (LEETCODE FUNCTIONAL FORMAT)

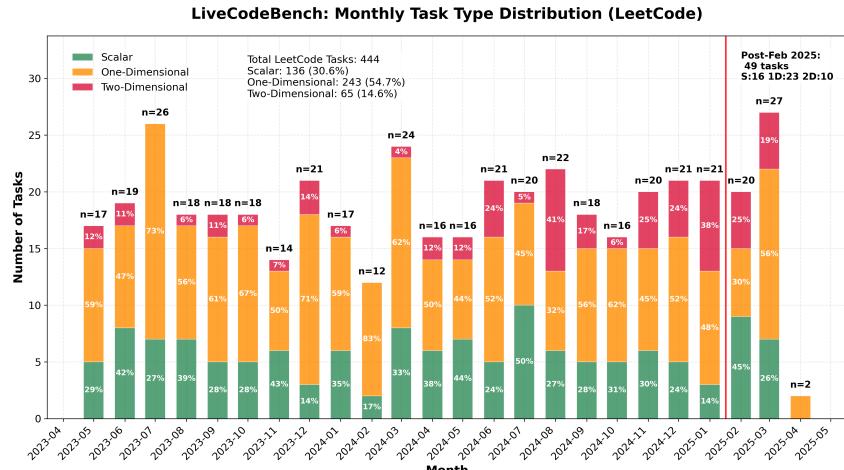


Figure 9: Monthly task distribution by I/O data dimensionality (LeetCode Functional format).

Figure 9 presents the temporal distribution of LeetCode tasks grouped by the I/O data dimensionality of their Functional format. The plot highlights how problems with different input/output structures,

such as scalar values, one-dimensional arrays, and two-dimensional arrays, have entered the benchmark over time, illustrating the variety of functional tasks inherited from LeetCode within the LCB dataset.

E PROGRAMMING LANGUAGE RANKINGS AND RUNTIME CHARACTERISTICS

This study evaluates multilingual code generation across major programming languages selected for their 2025 popularity and broad industrial relevance. Programming language rankings across multiple sources presented in Table 3.

Table 3: Programming language rankings across multiple sources (dates in footnotes)

Language	TIOBE ¹	GitHub ²	Stack Overflow ³	RedMonk ⁴
Python	1 (26.98%)	1	4 (57%)	2
C++	2 (9.80%)	5	9 (23%)	7
Java	4 (8.76%)	2	7 (29%)	3
C#	5 (4.87%)	10	8 (27%)	5
JavaScript	6 (3.36%)	4	1 (66%)	1
TypeScript	37 (0.28%)	6	6 (43%)	6
Go	7 (2.04%)	3	13 (~2%)	12
Rust	18 (1.01%)	13	14 (~2%)	19
Ruby	23 (0.76%)	8	18 (~1.5%)	9
PHP	14 (1.28%)	7	12 (~15%)	4
Kotlin	20 (0.90%)	15	15 (~3%)	14
Scala	34 (0.41%)	14	29 (~1%)	14

These languages span a wide range of paradigms and runtime characteristics, capturing the diversity of real-world software development:

- **Compilation model:**

- Compiled/JIT — C++, Rust, Go, Java, C#, Scala, Kotlin
- Interpreted — Python, Ruby, PHP
- Transpiled — TypeScript → JavaScript

- **Type system:**

- Static — C++, Rust, Go, Java, C#, Scala, Kotlin, TypeScript
- Dynamic — Python, JavaScript, Ruby, PHP

- **Memory management:**

- RAII/manual — C++
- Ownership/borrowing — Rust
- Garbage collection — Java, C#, Go, Scala, Kotlin, PHP, Ruby, JavaScript/TypeScript

- **Runtime platforms:**

- Native — C++, Rust, Go
- JVM — Java, Scala, Kotlin
- .NET CLR — C#
- Interpreters/VMs — Python, Ruby, PHP
- JavaScript engines — JavaScript, TypeScript

- **Domain ecosystems:**

- Systems/performance — C++, Rust, Go
- Enterprise/JVM and .NET — Java, C#, Scala, Kotlin
- Web/backend and scripting — JavaScript, TypeScript, PHP, Ruby
- Data/AI glue — Python

918 F EXPERIMENTS

919 F.1 MODELS OVERVIEW

920 We provide details for all models included in our study in Table 4.

921
922 Table 4: Overview of Large Language Models (* denotes reasoning mode)

926 Model	927 Short Name	928 Approximate Cutoff Date	929 Link
openai/gpt-oss-120b	Gpt-oss-120B* (Medium/Low)	08/05/2025	gpt-oss
openai/gpt-oss-20b	Gpt-oss-20B* (Medium/Low)	08/05/2025	gpt-oss
Qwen/Qwen3-235B-A22B-Thinking-2507	Qwen3-235B-A22B-Thk*	10/31/2024	qwen
deepseek-ai/DeepSeek-R1-0528	DeepSeek-R1-0528*	11/29/2024	deepseek-ai
Qwen/Qwen3-30B-A3B-Instruct-2507	Qwen3-30b-A3b-Thk-2507*	10/31/2024	qwen
Qwen/Qwen3-32B	Qwen3-32B*	10/31/2024	qwen
Qwen/Qwen3-235B-A22B	Qwen3-235B-A22B*	10/31/2024	qwen
Qwen/Qwen3-30B-A3B	Qwen3-30B-A3B*	10/31/2024	qwen
Qwen/Qwen3-14B	Qwen3-14B*	10/31/2024	qwen
open-r1/OlympicCoder-32B	OlympicCoder-32B*	-	open-r1
Qwen/Qwen3-235B-A22B-Instruct-2507	Qwen3-235B-A22B-Instr-2507	10/31/2024	qwen
Qwen/Qwen3-8B	Qwen3-8B*	10/31/2024	qwen
Qwen/Qwen3-Coder-30B-A3B-Instruct	Qwen3-Coder-30B-A3B-Instr	-	qwen
Qwen/Qwen3-30B-A3B-Instruct-2507	Qwen3-30B-A3B-Instr-2507	10/31/2024	qwen
open-r1/OlympicCoder-7B	OlympicCoder-7B*	-	open-r1
Qwen/Qwen2.5-Coder-32B-Instruct	Qwen2.5-Coder-32B-Instr	03/23/2024	qwen
nvidia/OpenCodeReasoning-Nemotron-1.1-32B	OpenRsn-Nmt-32B*	-	nvidia
ByteDance-Seed/Seed-Coder-8B-Instruct	Seed-Coder-8B-Instr	-	bytedance-seed
Qwen/Qwen2.5-Coder-14B-Instruct	Qwen2.5-Coder-14B-Instr	03/23/2024	qwen
mistralai/Devstral-Small-2505	Devstral-Small-2505	11/22/2024	mistralai
nvidia/OpenReasoning-Nemotron-32B	OpenRsn-Nmt-32B	-	nvidia
deepseek-ai/DeepSeek-Coder-33b-Instr	DeepSeek-Coder-33B-Instr	08/30/2023	deepseek-ai

944 F.2 PERFORMANCE ON THE MULTI-LCB (FEB-MAY 2025 SUBSET) ACROSS SAMPLING 945 TEMPERATURES

946 F.2.1 PASS@1 AVERAGED OVER 10 RUNS PERFORMANCE AT VARIOUS SAMPLING 947 TEMPERATURES

948 Table 5 report Pass@1 scores averaged over 10 runs at sampling temperature $t = 0.6$. Each score in-
949 dicates the percentage of problems solved correctly on the first attempt, with higher values reflecting
950 better performance.

951 Table 5: Performance results at temperature $t = 0.6$. Scores represent the **Pass@1 (%)** metric
952 averaged on 10 runs. Higher is better, **bold** is best, *italic* is the second best. (* - reasoning mode)

956 Model	957 Python	958 C++	959 Java	960 Go	961 JS	962 TS	963 C#	964 Rust	965 Ruby	966 PHP	967 Kotlin	968 Scala	969 Avg
Gpt-oss-120B* (Medium)	69.9 \pm 1.8	72.6 \pm 2.1	70.0 \pm 1.9	69.9 \pm 2.4	71.9 \pm 2.7	59.8 \pm 2.9	70.1 \pm 2.4	69.6 \pm 3.1	67.3 \pm 1.8	70.2 \pm 2.4	54.1 \pm 3.6	68.0 \pm 5.5	
Qwen3-235B-A22B-Thk-2507*	74.0 \pm 2.5	75.3 \pm 2.6	74.8 \pm 2.9	57.7 \pm 2.4	68.6 \pm 2.5	63.4 \pm 2.1	65.8 \pm 2.6	51.5 \pm 3.2	48.9 \pm 2.4	67.5 \pm 2.5	68.6 \pm 2.8	63.7 \pm 8.6	
DeepSeek-R1-0528*	66.6 \pm 2.6	68.4 \pm 2.8	67.2 \pm 2.3	54.1 \pm 2.4	64.9 \pm 2.8	58.6 \pm 4.6	62.1 \pm 2.6	62.5 \pm 3.8	62.4 \pm 2.0	61.3 \pm 1.9	66.4 \pm 3.0	61.2 \pm 3.5	63.0 \pm 41
Gpt-oss-20B* (Medium)	62.3 \pm 2.7	65.5 \pm 3.3	62.5 \pm 2.0	59.2 \pm 0.4	63.6 \pm 2.0	63.9 \pm 2.0	50.2 \pm 2.3	61.5 \pm 2.1	61.4 \pm 2.8	60.6 \pm 3.1	62.1 \pm 2.6	42.4 \pm 3.3	59.6 \pm 6.6
Qwen3-30B-A3B-Thk-2507*	65.2 \pm 3.0	66.0 \pm 3.6	63.9 \pm 2.9	44.5 \pm 2.0	53.4 \pm 1.9	50.6 \pm 3.0	56.2 \pm 3.0	51.2 \pm 3.2	43.1 \pm 3.5	57.0 \pm 3.6	52.2 \pm 3.3	40.5 \pm 2.4	53.6 \pm 8.5
Gpt-oss-120B* (Low)	57.6 \pm 2.5	56.6 \pm 2.4	57.2 \pm 3.0	53.6 \pm 2.6	54.8 \pm 2.1	54.6 \pm 2.3	46.4 \pm 1.4	55.8 \pm 2.3	53.8 \pm 3.2	53.4 \pm 2.5	54.9 \pm 2.6	40.8 \pm 3.2	53.3 \pm 4.9
Qwen3-235B-A22B*	58.2 \pm 2.5	58.6 \pm 3.1	56.1 \pm 2.6	48.0 \pm 3.6	49.9 \pm 2.9	46.6 \pm 2.5	51.1 \pm 2.8	43.2 \pm 2.9	48.4 \pm 1.8	48.9 \pm 3.0	47.7 \pm 4.0	34.4 \pm 3.5	49.3 \pm 6.7
Qwen3-32B*	58.6 \pm 2.7	58.2 \pm 2.5	54.2 \pm 2.7	42.5 \pm 4.0	50.5 \pm 3.5	50.8 \pm 3.2	51.1 \pm 2.4	39.1 \pm 2.1	52.0 \pm 2.3	51.9 \pm 1.8	45.2 \pm 2.6	38.1 \pm 2.1	49.2 \pm 6.5
Qwen3-30B-A3B*	55.3 \pm 3.2	55.5 \pm 3.4	51.0 \pm 3.4	37.1 \pm 2.1	50.1 \pm 1.8	49.9 \pm 2.9	42.9 \pm 2.8	38.4 \pm 3.0	47.3 \pm 2.6	48.2 \pm 2.0	43.9 \pm 3.1	33.7 \pm 1.7	46.0 \pm 6.8
Qwen3-14B*	55.9 \pm 3.5	49.9 \pm 2.2	50.6 \pm 3.2	34.6 \pm 2.1	48.1 \pm 3.1	47.7 \pm 3.8	44.8 \pm 2.7	32.0 \pm 3.3	46.2 \pm 2.9	44.5 \pm 1.3	39.5 \pm 5.3	31.2 \pm 2.7	43.7 \pm 7.8
Gpt-oss-20B* (Low)	45.7 \pm 2.0	47.5 \pm 2.1	45.6 \pm 2.4	41.8 \pm 1.9	43.5 \pm 1.8	44.1 \pm 2.4	39.9 \pm 2.9	43.1 \pm 2.8	44.0 \pm 3.0	44.7 \pm 2.7	45.0 \pm 1.6	32.5 \pm 4.1	43.1 \pm 3.9
Qwen3-235B-A22B-Instr-2507	44.9 \pm 2.6	42.8 \pm 2.7	45.5 \pm 2.9	36.1 \pm 2.2	27.9 \pm 2.0	21.8 \pm 1.8	43.7 \pm 2.5	40.2 \pm 2.3	41.5 \pm 2.9	42.6 \pm 2.5	41.5 \pm 1.5	28.8 \pm 3.2	38.1 \pm 7.8
Qwen3-8B*	50.5 \pm 2.5	43.7 \pm 2.8	42.5 \pm 1.8	29.2 \pm 3.7	41.3 \pm 2.5	41.8 \pm 2.6	39.8 \pm 1.7	22.4 \pm 2.0	42.5 \pm 3.2	38.7 \pm 2.6	25.4 \pm 2.8	29.5 \pm 2.5	37.3 \pm 8.5
Qwen3-30B-A3B-Instr-2507	41.3 \pm 2.5	36.7 \pm 1.5	37.1 \pm 2.5	23.4 \pm 1.5	21.4 \pm 1.5	20.2 \pm 3.5	35.3 \pm 2.5	31.8 \pm 2.5	33.7 \pm 1.4	35.3 \pm 1.4	36.1 \pm 1.9	26.4 \pm 2.1	31.6 \pm 6.9
Qwen3-Coder-30B-A3B-Instr	36.0 \pm 2.0	33.1 \pm 1.8	35.5 \pm 3.1	25.2 \pm 1.8	28.6 \pm 1.5	26.3 \pm 2.1	34.5 \pm 2.2	33.7 \pm 2.2	33.8 \pm 1.7	31.5 \pm 1.2	35.0 \pm 2.1	20.9 \pm 1.7	31.2 \pm 4.8
DeepSeek-R1-Distill-Qwen-32B*	45.9 \pm 2.8	25.8 \pm 1.6	38.8 \pm 2.9	12.9 \pm 3.3	20.4 \pm 3.4	15.9 \pm 1.9	34.2 \pm 3.2	21.2 \pm 2.2	43.0 \pm 2.3	13.8 \pm 1.5	21.1 \pm 2.4	8.7 \pm 1.3	25.1 \pm 12.5
Qwen2.5-Coder-32B-Instr	27.4 \pm 2.6	25.3 \pm 2.4	27.6 \pm 2.7	25.0 \pm 2.1	8.1 \pm 1.9	25.0 \pm 1.3	28.6 \pm 2.1	24.2 \pm 2.3	23.5 \pm 2.1	25.3 \pm 2.3	26.6 \pm 2.1	23.5 \pm 1.8	24.2 \pm 5.3
OpenRsn-Nmt-32B*	66.0 \pm 2.9	44.8 \pm 4.7	41.3 \pm 1.7	10.8 \pm 3.8	12.2 \pm 7.2	11.0 \pm 6.6	31.5 \pm 2.0	3.1 \pm 2.6	17.6 \pm 4.7	13.9 \pm 2.9	17.2 \pm 2.0	7.4 \pm 1.9	23.1 \pm 18.9
Seed-Coder-8B-Instr	22.6 \pm 1.2	22.9 \pm 1.7	24.4 \pm 1.7	19.2 \pm 1.9	23.4 \pm 1.6	22.8 \pm 1.8	22.8 \pm 1.8	21.8 \pm 1.3	21.5 \pm 2.6	19.9 \pm 2.0	23.5 \pm 1.6	21.5 \pm 0.7	22.2 \pm 1.5
Qwen2.5-Coder-14B-Instr	22.3 \pm 1.8	21.8 \pm 1.7	24.6 \pm 1.4	18.2 \pm 1.6	22.5 \pm 2.2	19.8 \pm 1.9	23.7 \pm 2.3	17.6 \pm 1.3	22.4 \pm 1.7	21.0 \pm 2.7	22.3 \pm 0.7	19.8 \pm 2.3	21.3 \pm 2.1
OpenCodeRsn-Nmt-1.1-32B*	62.8 \pm 3.6	41.2 \pm 2.0	31.8 \pm 4.8	8.6 \pm 2.1	9.9 \pm 5.6	6.8 \pm 3.5	25.0 \pm 2.9	1.2 \pm 0.8	25.7 \pm 3.4	21.1 \pm 3.3	13.6 \pm 2.4	7.1 \pm 3.2	21.2 \pm 17.6
Devstral-Small-2505*	22.1 \pm 1.6	22.0 \pm 1.1	22.9 \pm 0.9	16.8 \pm 2.4	22.3 \pm 1.3	24.1 \pm 1.5	22.3 \pm 1.6	19.9 \pm 1.2	20.2 \pm 2.5	21.1 \pm 2.1	21.6 \pm 1.8	16.3 \pm 1.3	20.9 \pm 2.4
DeepSeek-R1-Distill-Qwen-14B*	45.7 \pm 3.2	18.5 \pm 2.3	24.6 \pm 4.1	8.3 \pm 1.3	9.8 \pm 1.7	10.5 \pm 2.3	30.5 \pm 3.2	3.7 \pm 1.5	36.6 \pm 3.5	4.0 \pm 1.9	13.6 \pm 3.4	3.5 \pm 1.0	17.4 \pm 14.0
DeepSeek-Coder-33B-Instr	18.6 \pm 1.5	18.2 \pm 0.9	20.8 \pm 1.3	14.0 \pm 1.4	10.8 \pm 3.6	9.0 \pm 3.8	18.6 \pm 1.8	2.9 \pm 1.5	17.0 \pm 2.0	16.2 \pm 1.5	17.0 \pm 1.7	12.1 \pm 2.5	14.6 \pm 5.1

970 Table 6 reports Pass@1 scores averaged over 10 runs at sampling temperature $t = 1.0$. Each score
971 indicates the percentage of problems solved correctly on the first attempt, with higher values reflecting
972 better performance.

972 Table 6: Performance results at temperature $t = 1.0$. Scores represent the **Pass@1 (%)** metric
973 averaged on 10 runs. Higher is better, **bold** is best, *italic* is the second best. (* - reasoning mode)
974

Model	Python	C++	Java	Go	JS	TS	C#	Rust	Ruby	PHP	Kotlin	Scala	Avg
Gpt-oss-120B* (Medium)	<i>69.1</i> ± 2.0	72.3 ± 1.0	70.0 ± 2.5	<i>67.9</i> ± 2.8	<i>71.8</i> ± 3.1	<i>70.5</i> ± 2.1	<i>58.8</i> ± 4.8	<i>70.5</i> ± 3.1	<i>69.9</i> ± 1.9	<i>68.1</i> ± 2.2	<i>68.6</i> ± 1.8	<i>58.5</i> ± 2.8	<i>67.6</i> ± 6.2
Qwen3-23B-A22B-Thk-2507*	73.7 ± 2.6	75.0 ± 2.7	73.7 ± 3.2	<i>57.0</i> ± 3.2	<i>69.0</i> ± 3.5	<i>63.5</i> ± 2.2	67.4 ± 2.5	<i>54.2</i> ± 3.5	<i>49.2</i> ± 2.4	68.7 ± 1.8	<i>62.9</i> ± 3.4	<i>40.4</i> ± 2.3	<i>59.5</i> ± 6.8
Gpt-oss-20B* (Medium)	64.2 ± 2.9	65.0 ± 2.1	63.1 ± 3.2	58.9 ± 2.5	62.1 ± 3.1	61.5 ± 2.5	52.6 ± 2.8	59.8 ± 2.1	61.7 ± 3.0	61.5 ± 3.5	62.9 ± 3.4	57.4 ± 2.3	59.5 ± 6.8
DeepSeek-R1-0528*	59.8 ± 2.7	62.3 ± 2.4	62.4 ± 1.1	50.5 ± 4.6	59.9 ± 1.7	55.3 ± 2.7	58.4 ± 2.5	57.4 ± 2.3	57.3 ± 2.6	57.4 ± 1.4	57.7 ± 2.2	57.4 ± 2.8	58.0 ± 3.2
Gpt-oss-120B* (Low)	58.2 ± 3.2	56.6 ± 3.0	55.3 ± 3.3	53.0 ± 2.4	54.4 ± 2.2	54.7 ± 3.6	47.3 ± 2.7	54.6 ± 2.5	53.1 ± 1.8	56.0 ± 2.7	40.1 ± 2.8	53.1 ± 4.9	
Qwen3-30B-A3B-Thk-2507*	63.9 ± 3.9	65.9 ± 3.2	63.8 ± 3.7	45.2 ± 4.1	49.5 ± 3.2	45.0 ± 3.9	57.6 ± 3.5	51.2 ± 3.3	42.4 ± 3.4	57.3 ± 2.9	51.6 ± 3.6	40.9 ± 1.5	52.8 ± 8.8
Qwen3-32B*	59.0 ± 3.2	56.8 ± 2.8	55.8 ± 2.4	42.7 ± 2.5	51.8 ± 2.0	51.2 ± 3.1	50.6 ± 3.2	51.5 ± 2.8	48.3 ± 2.5	51.7 ± 4.8	46.5 ± 3.7	35.7 ± 3.6	49.3 ± 7.1
Qwen3-23B-A22B*	59.2 ± 1.7	58.5 ± 2.1	56.6 ± 2.2	48.0 ± 3.2	51.5 ± 2.4	48.6 ± 2.8	50.8 ± 3.2	43.4 ± 2.3	47.3 ± 3.0	47.9 ± 1.8	46.6 ± 2.8	34.2 ± 2.6	49.3 ± 6.9
Qwen3-30B-A3B*	57.4 ± 2.7	52.2 ± 2.3	52.1 ± 2.5	36.7 ± 3.1	50.1 ± 3.2	50.4 ± 2.5	44.7 ± 2.0	39.4 ± 2.7	47.0 ± 2.3	48.9 ± 4.6	44.9 ± 3.2	33.8 ± 1.3	46.5 ± 6.9
Qwen3-14B*	55.3 ± 2.1	50.6 ± 2.0	50.5 ± 2.2	34.7 ± 2.0	50.5 ± 1.9	50.2 ± 1.8	45.4 ± 1.2	31.5 ± 2.0	47.2 ± 2.5	46.3 ± 3.0	37.8 ± 1.9	32.4 ± 2.5	44.4 ± 8.1
Gpt-oss-20B* (Low)	47.3 ± 2.4	45.2 ± 2.1	42.9 ± 2.9	41.4 ± 2.9	42.6 ± 2.2	42.1 ± 3.1	38.5 ± 2.9	43.0 ± 2.4	44.3 ± 2.0	42.9 ± 2.2	31.4 ± 2.3	42.1 ± 4.0	
Qwen3-23B-A22B-Instr-2507	44.3 ± 1.6	42.8 ± 3.6	45.7 ± 3.2	36.7 ± 2.0	27.3 ± 2.5	23.9 ± 4.5	43.5 ± 2.7	38.5 ± 3.0	42.4 ± 2.1	43.4 ± 3.1	42.9 ± 2.1	31.2 ± 2.7	38.5 ± 7.3
Qwen3-8B*	50.8 ± 3.1	44.5 ± 2.3	42.7 ± 3.3	30.2 ± 4.3	41.6 ± 3.3	42.0 ± 3.0	40.8 ± 2.4	24.1 ± 1.9	42.8 ± 1.8	35.9 ± 2.4	27.7 ± 2.8	29.9 ± 2.6	37.8 ± 8.1
Qwen3-30B-A3B-Instr-2507	40.5 ± 2.0	35.6 ± 1.5	37.4 ± 1.8	26.0 ± 1.9	20.8 ± 1.5	20.6 ± 1.8	36.6 ± 2.4	31.3 ± 2.1	34.5 ± 2.9	34.7 ± 2.1	34.8 ± 1.7	25.9 ± 3.2	31.6 ± 6.6
Qwen3-Coder-14B-A3B-Instr	36.6 ± 2.1	32.8 ± 1.9	35.0 ± 2.8	25.4 ± 1.9	26.3 ± 2.3	27.1 ± 3.2	34.3 ± 2.1	34.1 ± 2.3	31.9 ± 3.3	29.5 ± 2.2	34.7 ± 2.1	19.2 ± 2.0	30.6 ± 1.1
DeepSeek-R1-Distill-Qwen-32B*	47.6 ± 2.3	24.9 ± 2.4	38.7 ± 2.2	14.7 ± 4.0	19.6 ± 2.0	15.9 ± 3.6	33.4 ± 4.4	22.7 ± 3.3	44.3 ± 3.5	13.7 ± 2.0	23.1 ± 2.2	9.2 ± 1.3	25.6 ± 12.6
Qwen2.5-Coder-32B-Instr	26.9 ± 2.2	25.1 ± 1.4	27.5 ± 2.4	24.2 ± 1.8	25.3 ± 1.7	28.1 ± 1.7	24.6 ± 2.1	24.6 ± 2.5	23.7 ± 2.4	25.4 ± 2.2	23.1 ± 2.5	24.1 ± 4.7	
OpenRsn-Nmt-32B*	66.1 ± 3.0	44.1 ± 2.1	38.4 ± 3.1	11.6 ± 3.0	11.4 ± 6.2	8.2 ± 4.7	29.7 ± 1.9	2.4 ± 2.2	17.6 ± 3.8	14.9 ± 1.7	16.0 ± 2.3	6.6 ± 2.4	22.3 ± 18.8
Seed-Coder-RB-Instr	21.2 ± 2.2	21.8 ± 2.1	21.9 ± 2.2	18.2 ± 1.1	20.9 ± 2.3	19.8 ± 2.3	20.6 ± 2.0	20.2 ± 3.0	21.7 ± 1.9	19.1 ± 2.8	21.8 ± 1.7	21.2 ± 2.3	20.7 ± 1.2
Qwen2.5-Coder-14B-Instr	22.1 ± 2.2	22.5 ± 1.8	23.0 ± 1.5	17.5 ± 2.1	21.4 ± 1.9	18.5 ± 2.6	22.9 ± 1.9	16.8 ± 1.7	21.7 ± 1.5	19.3 ± 2.6	22.6 ± 1.7	18.8 ± 1.8	20.6 ± 2.3
OpenCodeRsn-Nmt-1.1-32B*	63.5 ± 2.8	41.7 ± 2.6	30.5 ± 3.7	8.2 ± 4.5	8.5 ± 6.1	5.5 ± 5.0	22.7 ± 3.5	1.9 ± 0.7	23.2 ± 3.2	17.7 ± 3.4	12.7 ± 1.9	5.7 ± 2.6	20.2 ± 18.0
Devstral-Small-2505*	23.3 ± 2.0	21.2 ± 2.7	22.4 ± 1.3	13.6 ± 2.8	20.8 ± 1.8	20.5 ± 2.2	20.8 ± 1.6	18.9 ± 1.4	18.9 ± 1.9	20.2 ± 1.8	21.4 ± 2.1	15.2 ± 1.9	19.8 ± 2.8
DeepSeek-R1-Distill-Qwen-14B*	45.0 ± 2.8	18.1 ± 2.6	22.7 ± 3.8	9.2 ± 2.0	9.5 ± 2.6	10.0 ± 1.5	28.2 ± 1.9	4.5 ± 1.4	34.8 ± 3.0	3.8 ± 1.0	12.8 ± 3.4	3.8 ± 1.8	16.9 ± 13.3
Deepseek-Coder-33B-Instr	16.9 ± 1.6	17.9 ± 1.7	18.9 ± 1.4	12.9 ± 1.7	10.7 ± 3.1	8.7 ± 2.5	16.8 ± 2.4	2.3 ± 1.3	14.4 ± 1.4	12.8 ± 1.3	16.1 ± 1.5	7.8 ± 1.7	13.0 ± 4.9

F.2.2 PASS@5 PERFORMANCE AT DIFFERENT SAMPLING TEMPERATURES

990 Table 7, Table 8 and Table 9 reports Pass@5 scores at sampling temperatures $t = 0.2$, $t = 0.6$ and
991 $t = 1.0$ respectively. Each score indicates the percentage of problems solved correctly on the 5th
992 attempt, with higher values reflecting better performance.

993 Table 7: Performance results at temperature $t = 0.2$. Scores represent the **Pass@5 (%)** metric.
994 Higher is better, **bold** is best, *italic* is the second best. (* - reasoning mode)

Model	Python	C++	Java	Go	JS	TS	C#	Rust	Ruby	PHP	Kotlin	Scala	Avg	
Gpt-oss-120B* (Medium)	83.7	83.7	<i>85.1</i>	83.8	85.2	82.6	77.6	85.0	85.2	80.4	85.0	78.7	83.0	
Qwen3-23B-A22B-Thk-2507*	83.6	86.2	85.8	78.8	80.0	80.4	81.5	81.0	81.1	84.5	79.1	80.1		
DeepSeek-R1-0528*	78.3	79.7	79.9	72.9	77.3	78.2	77.5	77.9	75.7	77.0	79.1	78.4	77.7	
Gpt-oss-20B* (Medium)	77.3	80.4	78.4	78.7	77.7	78.8	73.1	76.0	75.9	74.9	79.3	66.6	76.4	
Qwen3-30B-A3B-Thk-2507*	77.5	79.5	77.4	65.4	73.4	72.4	71.9	72.5	57.3	73.9	67.6	62.0	70.9	
Gpt-oss-120B* (Low)	69.1	69.4	70.3	65.9	70.3	70.5	62.6	68.2	65.5	65.8	69.1	63.6	67.5	
Qwen3-23B-A22B*	69.2	70.4	70.1	66.4	69.0	69.5	66.9	66.8	58.1	66.5	65.8	55.1	66.2	
Qwen3-32B*	68.8	68.7	70.5	61.9	67.3	67.3	65.4	61.8	64.7	63.8	67.6	57.7	65.5	
Qwen3-30B-A3B*	66.9	64.5	63.2	56.3	62.8	62.1	59.1	54.1	58.0	61.5	59.8	47.0	59.6	
Qwen3-14B*	66.4	59.3	61.7	54.4	60.4	62.9	57.7	48.0	59.7	58.9	60.9	47.0	58.1	
Gpt-oss-20B* (Low)	59.6	61.1	59.3	55.8	56.2	54.2	53.8	54.6	55.4	57.8	59.8	48.5	56.3	
Qwen3-8B*	56.0	51.8	51.0	44.6	52.0	52.0	52.9	49.3	36.3	51.2	48.3	38.7	39.0	47.6
Qwen3-23B-A22B-Instr-2507	53.0	53.9	58.5	45.4	36.8	31.6	52.7	50.1	48.0	52.1	49.7	39.1	47.6	
OpenRsn-Nmt-32B*	78.4	69.2	66.2	30.1	33.8	30.1	54.8	10.9	40.2	42.1	39.5	31.0	33.0	28.9
OlympicCoder-7B*	49.6	44.9	45.9	38.9	44.0	43.6	43.3	29.1	44.5	39.1	41.9	32.2	41.8	
Qwen3-30B-A3B-Instr-2507	49.0	44.9	46.9	31.0	32.4	27.5	47.0	42.2	43.6	42.9	45.5	34.4	40.6	
Qwen3-Coder-30B-A3B-Instr	43.0	39.5	42.1	34.0	36.9	34.3	43.2	39.9	42.1	38.3	43.4	29.0	38.8	
DeepSeek-R1-Distill-Qwen-32B*	51.4	35.5	47.1	27.8	39.3	32.2	43.7	38.7	49.2	33.5	40.8	19.6	38.2	
OpenCodeRsn-Nmt-1.1-32B*	74.5	59.8	58.7	24.5	26.6	18.2	47.7	3.8	44.4	42.5	29.7	21.3	37.7	
Qwen2.5-Coder-32B-Instr	33.0	31.3	36.1	31.6	31.4	35.4	31.3	30.6	31.0	31.0	33.0	28.9	30.5	
DeepSeek-R1-Distill-Qwen-14B*	51.4	30.3	42.0	21.0	28.0	29.6	44.1	10.9	47.2	11.1	28.8	10.5	29.6	
Seed-Coder-8B-Instr	27.8	26.0	31.2	26.6	29.3	27.5	31.7	26.6	26.6	26.5	26.7	26.2	27.7	
Devstral-Small-2505*	27.3	26.9	25.3	24.0	27.0	29.2	27.0	24.8	26.3	26.8	25.7	22.1	26.0	
Qwen2.5-Coder-14B-Instr	22.9	25.9	28.7	25.8	26.5	24.5	28.0	22.4	29.0	26.6	25.4	24.6	25.8	
DeepSeek-Coder-33B-Instr	21.5	22.3	24.1	19.0	14.7	13.6	22.9	8.8	23.2	23.5	22.7	18.8	19.6	

1010 Table 8: Performance results at temperature $t = 0.6$. Scores represent the **Pass@5 (%)** metric.
1011 Higher is better, **bold** is best,

Table 9: Performance results at temperature $t = 1.0$. Scores represent the **Pass@5 (%)** metric.
Higher is better, **bold** is best, *italic* is the second best. (* - reasoning mode)

Model	Python	C++	Java	Go	JS	TS	C#	Rust	Ruby	PHP	Kotlin	Scala	Avg
Gpt-oss-120B* (Medium)	82.8	83.8	85.9	84.1	84.6	83.9	78.0	83.5	83.6	84.0	85.2	78.1	83.1
Qwen3-235B-A22B-Thk-2507*	85.2	85.2	85.9	77.4	81.6	82.4	82.4	82.0	67.8	79.8	84.0	79.0	81.1
Gpt-oss-20B (Medium)*	79.4	80.5	81.0	77.5	79.2	80.5	75.2	77.5	78.2	77.4	82.6	66.9	78.0
DeepSeek-R1-0528*	72.3	74.3	73.9	67.6	72.5	71.8	73.2	70.8	69.4	72.3	68.7	71.7	71.5
Qwen3-30B-A3B-Thk-2507*	76.7	79.9	77.8	68.5	72.9	73.3	73.1	70.0	60.0	71.9	68.5	60.5	71.1
Gpt-oss-120B* (Low)	71.8	71.7	71.0	67.8	68.7	69.7	65.3	68.7	67.7	65.1	69.6	63.4	68.4
Qwen3-32B*	73.4	70.1	70.3	64.1	70.9	69.4	66.2	61.8	65.3	66.5	67.5	58.9	67.0
Qwen3-235B-A22B*	70.0	71.4	70.0	65.8	69.7	70.5	66.0	66.6	61.7	65.4	66.3	54.9	66.5
Qwen3-14B*	68.4	63.5	66.1	57.9	67.5	64.6	59.5	50.7	60.3	61.2	60.4	50.7	60.9
Qwen3-30B-A3B*	66.3	63.7	64.8	59.1	64.7	63.8	59.0	57.7	57.7	62.6	61.4	49.8	60.9
Gpt-oss-20B* (Low)	60.0	59.3	59.4	54.9	55.6	55.6	55.6	58.6	58.0	56.8	57.7	51.4	56.9
Qwen3-8B*	63.1	56.7	58.7	52.8	59.3	57.5	56.3	42.6	56.8	50.9	44.8	43.1	53.5
Qwen3-235B-A22B-Instr-2507	54.8	56.1	59.6	51.1	44.1	46.1	53.7	49.4	52.3	55.9	52.9	44.9	51.8
DeepSeek-R1-Distill-Qwen-32B*	59.6	47.0	55.4	35.5	45.6	43.0	53.2	44.9	56.6	39.1	47.7	25.6	46.1
Qwen3-30B-A3B-Instr-2507	52.0	48.8	49.4	40.2	38.1	39.3	47.5	44.9	45.5	48.8	47.0	39.7	45.1
OpenRsn-Nmt-32B*	78.8	69.6	64.1	29.3	35.2	27.2	53.3	9.5	41.9	42.9	39.7	22.4	42.8
OlympicCoder-7B*	47.6	47.1	46.7	36.7	43.1	42.2	43.3	28.2	42.3	39.1	37.8	29.2	40.3
Qwen3-30B-A3B-Instr	44.5	40.9	43.3	34.4	37.6	39.3	43.0	42.1	40.0	40.0	44.3	32.6	40.2
OpenCodeRsn-Nmt-1.1-32B*	77.3	66.1	60.6	24.4	29.3	21.1	44.8	8.3	44.1	44.5	31.5	19.4	39.3
Qwen2.5-Coder-32B-Instr	34.7	34.0	39.8	33.6	26.1	36.7	36.6	33.6	36.3	34.4	35.6	33.1	34.5
DeepSeek-R1-Distill-Qwen-14B*	56.4	35.2	41.9	21.5	29.7	31.0	44.1	14.7	50.0	15.5	32.5	13.6	32.2
Seed-Coder-8B-Instr	32.0	29.3	30.6	28.0	30.7	29.6	31.7	30.8	31.9	31.8	30.6	31.9	30.7
Qwen2.5-Coder-14B-Instr	29.7	30.2	30.8	28.0	29.8	29.0	31.7	28.6	31.8	29.6	31.0	28.5	29.9
Devstral-Small-2505*	33.4	28.5	30.1	26.2	32.8	30.6	30.8	27.7	28.1	30.7	30.4	25.8	29.6
Deepseek-Coder-33B-Instr	25.7	27.2	27.8	23.3	22.3	21.3	26.0	8.8	24.4	20.5	23.8	17.9	22.4

F.2.3 PASS@10 PERFORMANCE AT DIFFERENT SAMPLING TEMPERATURES

Table 10, Table 11 and Table 12 reports Pass@10 scores at sampling temperatures $t = 0.2$, $t = 0.6$ and $t = 1.0$ respectively. Each score indicates the percentage of problems solved correctly on the 10th attempt, with higher values reflecting better performance.

Table 10: Performance results at temperature $t = 0.2$. Scores represent the **Pass@10 (%)** metric.
Higher is better, **bold** is best, *italic* is the second best. (* - Rsn mode)

Model	Python	C++	Java	Go	JS	TS	C#	Rust	Ruby	PHP	Kotlin	Scala	Avg
Gpt-oss-120B* (Medium)	87.0	86.3	87.8	86.3	87.0	84.7	84.0	87.8	88.6	84.0	87.0	84.0	86.2
Qwen3-235B-A22B-Thinking-2507*	87.0	88.6	88.6	84.0	84.0	85.5	85.5	82.4	71.8	84.7	87.8	84.0	84.5
Gpt-oss-20B* (Medium)	80.2	84.0	82.4	81.7	84.7	77.9	80.9	81.7	79.4	83.2	76.3	81.4	
DeepSeek-R1-0528*	80.9	82.4	83.2	78.6	80.2	83.2	80.9	80.9	80.9	80.9	81.7	81.7	81.3
Qwen3-30B-A3B-Thinking-2507*	80.9	82.4	79.4	68.7	77.9	77.9	74.8	77.9	62.6	79.4	73.3	67.2	75.2
Gpt-oss-120B* (Low)	73.3	72.5	74.1	70.2	75.6	74.8	70.2	75.8	68.7	70.2	72.5	67.9	71.7
Qwen3-235B-A22B*	72.5	74.8	73.3	69.5	71.8	74.8	70.2	72.5	61.1	72.5	71.0	61.8	70.5
Qwen3-32B*	72.5	73.3	74.1	67.2	72.5	73.3	69.5	67.9	67.9	68.7	73.3	63.4	70.3
Qwen3-30B-A3B*	69.5	67.2	66.4	61.1	65.7	64.9	63.4	58.8	62.6	64.9	63.4	51.9	63.3
Qwen3-14B*	71.0	63.4	66.4	60.3	64.9	67.9	63.4	54.2	64.9	63.4	65.7	51.2	63.0
Gpt-oss-20B* (Low)	64.1	64.9	63.4	60.3	60.3	58.8	57.3	58.8	59.5	61.1	64.9	55.7	60.8
OpenRsn-Nmt-32B*	84.0	76.3	74.1	39.7	45.8	40.5	65.7	18.3	49.6	55.0	49.6	30.5	52.4
Qwen3-SB*	60.3	56.5	55.7	51.2	56.5	56.5	52.7	41.2	56.5	51.9	43.5	42.8	52.1
Qwen3-235B-A22B-Instr-2507	55.7	58.0	63.4	48.1	41.2	37.4	55.0	52.7	51.2	55.7	52.7	42.8	51.2
OlympicCoder-7B*	53.4	53.4	51.2	44.3	48.9	47.3	48.1	37.4	50.4	45.0	45.8	38.9	47.0
OpenCodeRsn-Nmt-1.1-32B*	78.6	67.9	65.7	32.1	37.4	26.7	58.0	5.3	54.2	53.4	37.4	28.2	45.4
Qwen3-30B-A3B-Instr-2507	51.9	48.9	51.2	33.6	37.4	32.8	51.9	46.6	45.8	46.6	49.6	37.4	44.5
DeepSeek-R1-Distill-Qwen-32B*	55.0	38.9	48.9	35.1	48.1	42.8	46.6	44.3	52.7	41.2	47.3	26.7	44.0
Qwen3-Coder-30B-A3B-Instr	45.0	42.0	43.5	36.6	38.9	36.6	45.8	41.2	43.5	39.7	45.8	33.6	41.0
DeepSeek-R1-Distill-Qwen-14B*	54.2	35.9	45.8	26.0	35.9	38.2	48.9	15.3	51.9	15.3	35.9	14.5	34.8
Qwen2.5-Coder-32B-Instr	36.6	32.8	40.5	35.1	14.5	32.8	35.9	34.4	32.8	33.6	36.6	31.3	33.1
Seed-Coder-8B-Instr	29.8	26.7	32.8	27.5	32.1	29.0	33.6	28.2	29.2	28.2	27.5	28.2	29.3
Devstral-Small-2505*	29.0	27.5	26.0	26.7	28.2	30.5	27.5	27.5	29.8	28.2	27.5	24.4	27.7
Qwen2.5-Coder-14B-Instr	23.7	27.5	29.8	27.5	26.0	29.8	24.4	30.5	29.0	27.5	25.2	27.4	
DeepSeek-Coder-33B-Instr	22.9	23.7	24.4	20.6	17.6	16.0	25.2	10.7	25.2	26.0	23.7	21.4	21.4

Table 11: Performance results at temperature $t = 0.6$. Scores represent the **Pass@10 (%)** metric.
Higher is better, **bold** is best, *italic* is the second best. (* - Rsn mode)

Model	Python	C++	Java	Go	JS	TS	C#	Rust	Ruby	PHP	Kotlin	Scala	Avg
Gpt-oss-120B* (Medium)	86.7	87.8	84.7	87.8	87.8	87.8	87.0	86.3	86.3	85.5	86.3	85.5	87.8
Qwen3-235B-A22B-Thinking-2507*	84.5	87.0	86.3	87.8	84.0	90.1	84.7	84.7	82.4	74.1	84.0	84.7	84.0
Gpt-oss-20B* (Medium)	83.0	83.2	83.2	84.0	83.2	83.2	84.7	83.2	81.7	85.5	84.0	73.3	87.0
DeepSeek-R1-0528*	81.2	83.2	81.7	81.7	79.4	81.7	81.7	83.2	80.9	80.2	83.2	80.2	78.6
Qwen3-30B-A3B-Thinking-2507*	76.1	80.9	77.1	82.4	73.3	81.7	79.4	77.1	75.6	69.5	74.8	65.7	75.6
Gpt-oss-120B* (Low)	72.7	74.1	69.5	72.5	72.5	74.1	71.8	71.8	69.5	74.8	75.6	72.5	74.1
Qwen3-235B-A22B*	71.7	75.6	71.0	73.3	71.8	74.8	72.5	74.8	72.5	70.2	64.9	64.1	74.8
Qwen3-235B-A22B-Instr-2507	71.3	75.6	70.2	71.8	71.0	74.8	76.3	72.5	71.0	64.1	73.3	64.1	71.0
Qwen3-32B*	65.0	72.5	65.7	68.7	64.1	66.4	66.4	67.2	65.7	64.9	64.5	56.5	67.2
Qwen3-30B-A3B*	63.6	66.4	62.6	66.4	62.6	69.5	67.9	61.8	63.4	64.1	58.8	53.4	65.7
Gpt-oss-20B* (Low)	61.9	63.4	59.5	64.9	61.8	61.8	61.8	61.8	61.8	61.1	62.6	59.5	61.8
Qwen3-SB*	56.2	64.1	55.7	60.3	57.3	62.6	60.3	47.3	51.9	60.3	44.3	48.9	61.1
Qwen3-235B-A22B-Instr-2507	54.6	58.0	56.5	58.8	54.2	64.1	50.4	55.0	59.5	51.2	54.2	47.3	46.6
OpenRsn-Nmt-32B*	52.5	80.9	67.9	79.4	38.2	74.1	47.3	44.3	51.9	50.4	15.3	32.1	48.9
DeepSeek-R1-Distill-Qwen-32B*	50.5	63.4	59.5	48.1	40.5	55.0	54.2	51.2	50.4	57.3	48.1	33.6	44.3
OpenCodeRsn-Nmt-1.1-32B*	49.1	78.6	59.5	69.5	37.4	68.7	46.6	41.2	55.0	51.2	10.7	31.3	39.7
Qwen3-30B-A3B-Instr-2507	48.4	52.7	51.2	45.0	54.2	42.8	51.9	48.9	48.9	45.8	48.9	41.2	45.0
OlympicCoder-7B*	46.6	56.5	47.3	54.2	45.0	49.6	50.4	44.3	45.0	43.5	39.7	35.1	48.1
Qwen3-Coder-30B-A3B-Instr	42.1	44.3	45.0	42.8	37.4	42.0	41.2	45.8	45.8	43.5	43.5	32.8	41.2</

1080 Table 12: Performance results at temperature $t = 1.0$. Scores represent the **Pass@10 (%)** metric.
1081 Higher is better, **bold** is best, *italic* is the second best. (* - Rsn mode)

Model	Python	C++	Java	Go	JS	TS	C#	Rust	Ruby	PHP	Kotlin	Scala	Avg
Gpt-oss-120B*(Medium)	86.3	85.5	80.9	87.0	87.0	89.3	87.8	87.0	87.0	86.3	86.3	84.0	87.0
Qwen3-23B-A22B-Thk-2507*	84.8	90.1	85.5	87.8	80.2	90.1	85.5	87.0	82.4	74.1	85.5	84.0	85.5
Gpt-oss-20B*(Medium)	82.6	82.4	81.7	84.7	82.4	85.5	84.7	86.3	80.2	81.7	80.9	75.6	84.7
DeepSeek-R1-0528*	75.9	77.9	77.9	79.4	74.8	77.9	76.3	71.8	76.3	73.3	73.3	76.3	75.6
Qwen3-30B-A3B-Thk-2507*	75.4	78.6	75.6	83.2	74.1	81.7	77.1	73.3	74.8	65.7	74.1	68.7	77.9
Gpt-oss-120B*(Low)	73.1	74.8	71.0	76.3	72.5	75.6	73.3	74.8	68.7	71.8	73.3	69.5	75.6
Qwen3-32B*	71.9	76.3	71.0	74.8	71.0	74.8	76.3	71.8	71.0	70.2	67.2	64.9	73.3
Qwen3-23B-A22B*	70.8	72.5	71.0	74.8	71.0	74.1	71.4	68.7	66.4	71.0	60.3	74.8	
Qwen3-14B*	65.7	72.5	64.9	67.2	64.1	71.0	71.8	65.7	66.4	64.1	56.5	55.7	68.7
Qwen3-30B-A3B*	64.5	68.7	61.1	65.7	64.1	67.2	68.7	64.9	66.4	61.8	62.6	54.2	68.7
Gpt-oss-20B*(Low)	61.2	64.1	60.3	63.4	60.3	64.9	58.8	61.1	61.1	61.1	64.1	55.7	59.5
Qwen3-8B*	58.6	67.2	60.3	60.3	59.5	64.9	64.1	51.2	56.5	61.1	48.9	47.3	61.8
Qwen3-23B-A22B-Instr-2507	55.8	58.0	56.5	60.3	55.7	64.1	48.9	55.7	59.5	56.5	51.9	49.6	52.7
DeepSeek-R1-Distill-Qwen-32B*	53.2	64.9	58.0	55.0	44.3	59.5	54.2	53.4	48.9	60.3	51.9	33.6	54.2
OpenRsn-Nmt-32B*	51.8	82.4	61.1	77.1	38.2	71.8	46.6	51.9	52.7	52.7	15.3	32.8	38.9
Qwen3-30B-A3B-Instr-2507	49.7	55.7	51.2	54.2	43.5	54.2	44.3	51.9	53.4	48.9	49.6	43.5	45.8
OpenRsn-Nmt-1.1-32B*	47.5	81.7	51.2	71.8	35.1	71.0	41.2	38.2	54.2	53.4	13.7	26.7	31.3
OlympicCoder-7B*	46.1	52.7	50.4	51.9	42.8	51.9	47.3	42.8	46.6	48.1	35.1	35.9	48.1
Qwen3-Coder-30B-A3B-Instr	42.8	48.1	45.8	44.3	37.4	45.0	39.7	48.5	43.5	41.2	44.3	36.6	41.2
DeepSeek-R1-Distill-Qwen-14B*	39.5	60.3	48.9	42.0	27.5	48.9	42.8	41.2	24.4	55.0	21.4	20.6	41.2
Qwen2.5-Coder-32B-Instr	38.2	38.2	39.7	38.2	35.9	43.5	33.6	38.2	37.4	40.5	35.9	37.4	40.5
Seed-Coder-8B-Instr	33.8	35.1	31.3	30.5	32.8	33.6	32.8	35.1	35.1	35.1	33.6		
Qwen2.5-Coder-14B-Instr	33.2	32.8	34.4	33.6	31.3	34.4	32.8	34.4	33.6	35.1	32.1	32.8	31.3
Devstral-Small-2505*	33.1	38.2	34.4	30.5	30.5	33.6	36.6	34.4	34.4	32.1	29.8	29.0	33.6
DeepSeek-Coder-33B-Instr	26.0	29.0	29.0	31.3	27.5	31.3	26.0	26.7	23.7	27.5	13.7	20.6	25.2

F.3 PERFORMANCE ON THE MULTI-LCB (JUL 2024-MAY 2025 SUBSET)

1099 Table 13 reports Pass@1 scores at sampling temperature $t = 0.2$ for all evaluated models on the
1100 Multi-LCB subset containing tasks from July 2024 to May 2025. Each score reflects the percentage
1101 of problems solved correctly on the first attempt, with higher values indicating better performance.

1103 Table 13: Performance results on Multi-LCB tasks from July 2024 till May 2025. Scores represent
1104 the **Pass@1 (%)** metric (higher is better). (* - reasoning mode)

Model	Python	C++	Java	Go	JS	TS	C#	Rust	Ruby	PHP	Kotlin	Scala	Avg
Qwen3-23B-A22B-Thk-2507*	76.7	78.3	78.3	59.6	71.4	62.2	69.6	50.9	54.1	70.0	64.6	56.9	66.0
Qwen3-30B-A3B-Thk-2507*	69.4	68.2	66.6	44.5	52.1	48.5	59.8	52.5	45.1	59.0	46.7	41.0	54.4
Qwen3-23B-A22B*	65.8	63.4	59.4	49.7	56.3	51.9	57.5	45.1	51.9	52.7	48.7	32.8	52.9
Qwen3-32B*	63.4	63.6	59.6	43.7	51.9	54.7	53.5	41.4	53.9	52.5	42.3	35.6	51.3
Qwen3-30B-A3B*	60.8	56.5	56.3	37.0	49.9	53.1	50.5	43.1	50.5	50.7	39.2	30.4	48.2
Qwen3-14B*	57.5	54.7	51.7	38.4	50.7	49.9	48.5	33.4	50.1	46.9	37.6	30.2	45.8
Qwen3-23B-A22B-Instr-2507	49.5	47.9	47.9	38.6	29.4	22.7	46.5	42.9	41.6	43.7	42.5	29.8	40.2
OlympicCoder-32B*	51.3	51.9	47.9	34.6	36.0	34.4	42.9	34.0	45.3	43.3	34.6	25.6	40.1
Qwen3-8B*	49.9	44.3	42.5	27.2	39.8	41.7	38.0	24.7	42.3	33.6	18.1	24.9	35.6
Qwen3-30B-A3B-Instr-2507	40.6	36.4	37.8	22.1	23.7	22.5	37.4	32.4	35.0	36.8	26.8	19.7	31.0
Qwen3-Coder-30B-A3B-Instr	35.2	30.0	33.0	21.1	27.2	26.0	34.0	31.9	34.2	31.0	33.6	18.3	29.6
OlympicCoder-7B*	36.0	35.6	31.4	24.5	25.6	24.1	28.9	13.3	26.6	24.7	24.7	13.3	25.7
OpenRsn-Nemotron-32B*	69.8	49.5	41.9	12.9	13.7	10.5	33.0	1.8	20.7	20.3	16.5	7.8	24.9
Qwen2.5-Coder-32B-Instr	27.4	27.4	30.2	24.7	6.0	28.0	27.8	25.4	24.1	27.0	26.8	22.7	24.8
Seed-Coder-8B-Instr	20.7	21.7	21.9	17.7	22.1	21.7	22.5	20.7	22.3	21.5	21.5	19.3	21.2
Qwen2.5-Coder-14B-Instr	21.3	21.1	23.5	20.5	23.1	18.9	22.5	17.3	21.7	22.7	21.3	18.9	21.1
Devstral-Small-2505	25.4	20.9	23.7	19.1	22.9	22.7	21.1	19.5	19.1	21.3	20.7	15.1	21.0
OpenCodeRsn-Nemotron-1.1-32B*	62.8	38.0	30.6	8.5	8.9	8.0	27.0	1.4	23.5	24.7	12.5	5.6	21.0
DeepSeek-Coder-33B-Instr	17.5	15.9	18.9	12.1	8.7	5.8	17.7	2.8	14.7	15.7	16.9	12.9	

F.4 PERFORMANCE ON THE COMPLETE MULTI-LCB BENCHMARK

1119 Table 14: Performance results on Multi-LCB (n=1055 per language). Scores represent the **Pass@1**
1120 (%) metric (higher is better). (* - reasoning mode)

Model	Python	C++	Java	Go	JS	TS	C#	Rust	Ruby	PHP	Kotlin	Scala	Avg
Qwen3-23B-A22B-Thk-2507*	85.6	86.6	85.9	60.0	80.8	73.7	79.1	58.8	65.0	78.8	75.7	66.1	74.7
Qwen3-30B-A3B-Thk-2507*	80.6	80.2	78.5	50.2	62.5	57.7	63.2	58.7	70.0	60.5	50.6	65.5	
Qwen3-23B-A22B*	77.5	72.0	72.0	60.2	64.6	63.3	68.5	56.2	62.4	53.7	40.0	62.9	
Qwen3-32B*	77.5	70.2	73.3	51.3	64.6	64.3	67.1	51.4	68.4	64.0	54.5	48.1	62.9
Qwen3-30B-A3B*	74.8	67.9	68.2	43.9	62.5	63.2	61.4	52.8	64.3	60.8	47.1	39.9	58.9
Qwen3-14B*	73.4	67.2	65.9	47.8	63.5	62.9	60.7	41.7	64.8	60.0	41.7	39.0	57.4
Qwen3-23B-A22B-Instr-2507	59.8	59.4	59.3	45.0	34.3	27.0	56.4	53.5	53.5	54.9	46.3	35.4	48.7
OlympicCoder-32B*	61.4	57.3	58.7	41.0	44.8	41.7	52.9	41.1	55.0	53.1	41.0	31.2	48.3
Qwen3-8B*	65.6	54.7	54.5	36.3	51.4	52.9	51.8	31.9	55.6	47.5	23.6	34.4	46.7
Qwen3-30B-A3B-Instr-2507	52.5	48.4	51.5	31.6	33.6	30.8	49.2	43.2	46.4	47.6	33.8	28.1	41.4
Qwen3-Coder-30B-A3B-Instr	47.8	41.3	43.5	26.1	36.6	34.1	46.1	42.3	44.6	41.7	33.5	22.3	38.3
OlympicCoder-7B*	40.5	36.8	41.6	33.6	5.7	38.7	39.1	36.4	38.0	38.0	33.0	30.3	34.1
Qwen2.5-Coder-32B-Instr	45.0	43.0	40.7	30.0	32.8	31.9	36.3	18.6	34.5	28.5	28.5	19.8	32.7
Qwen2.5-Coder-14B-Instr	33.6	28.0	35.1	28.3	32.2	32.0	30.9	31.6	26.6	26.3	26.3	26.3	29.5
OpenRsn-Nmt-32B*	80.2	56.9	50.5	13.8	16.5	12.5	39.9	4.3	25.1	21.5	17.4	10.1	29.1
Seed-Coder-8B-Instr	28.3	27.8	28.8	22.7	30.1	29.0	29.9	25.6	28.5	27.0	27.7	23.8	27.4
OpenCodeRsn-Nmt-1.1-32B*	72.4	47.2	39.1	8.5	11.8	10.0	30.9	2.1	30.3	28.3	13.7	7.8	25.2
Devstral-Small-2505	30.3	23.9	27.9	21.1	27.5	26.8	25.7	24.4	26.4	26.0	24.0	17.9	24.9
DeepSeek-Coder-33B-Instr	22.4	18.9	22.7	15.5	12.0	8.5	22.3	3.1	17.9	18.8	18.8	15.4	16.4

1132 Table 14 reports Pass@1 scores at sampling temperature $t = 0.2$, for all 19 evaluated models on
1133 the complete Multi-LCB benchmark, which contains 1,055 tasks per programming language. Each

score reflects the percentage of problems solved correctly on the first attempt, with higher values indicating better performance. Models marked with an asterisk (*) are reasoning-enhanced variants.

G COMPUTATION TIME

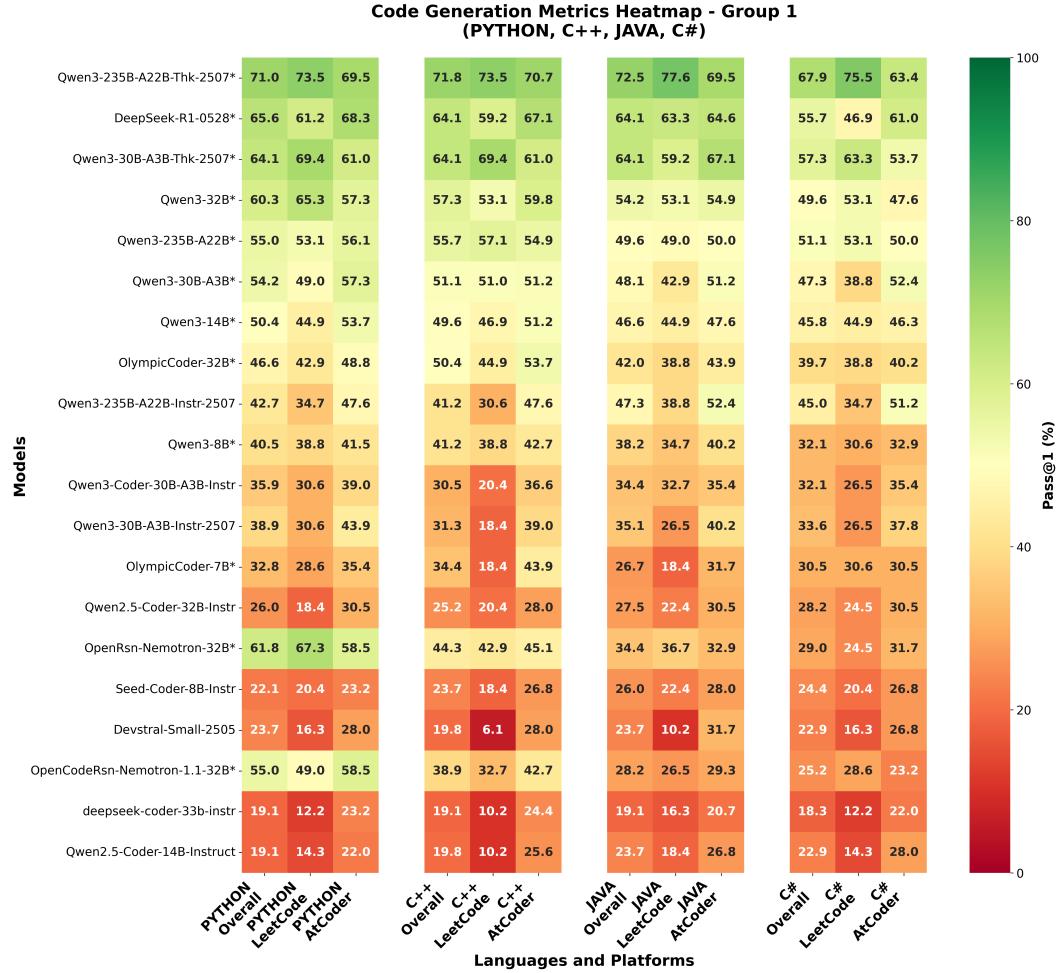
Table 15 reports the average compilation and execution time required to evaluate one full Multi-LCB run (1,050 tasks per language) across 90 parallel CPUs. On average, each language requires about 8 min 50 s (≈ 530 s) per model, with a total wall-clock time of roughly 106 hours when aggregated over all twelve languages.

Execution cost varies noticeably by language. Ruby shows the highest mean time at 17 min 37 s, followed by Go and Python, each exceeding 11 minutes on average. In contrast, Kotlin, PHP, and JavaScript complete evaluation in under 4 minutes. These differences primarily reflect compilation overheads and runtime performance of each language’s toolchain, and they guide resource planning for future large-scale model evaluations.

Table 15: Evaluation times (compilation + execution on tests + matching) across programming languages. Runs were executed in parallel on 90 CPUs over 1050 tasks (v1–v6). Averages and standard deviations are computed across the measured models.

Language	Avg. Time (mm:ss)	Std. Dev. (mm:ss)	Avg. Time (s)	Std. Dev. (s)
C#	9:10	3:08	550.15	188.83
C++	10:25	2:54	625.72	174.17
Go	12:36	2:36	756.13	156.71
Java	10:44	2:55	644.07	175.96
JavaScript	3:44	1:05	224.73	65.14
Kotlin	3:14	1:46	194.87	106.23
PHP	3:29	0:49	209.82	49.78
Python	11:38	2:56	698.71	176.07
Ruby	17:37	3:27	1057.42	207.45
Rust	7:41	3:50	461.04	230.24
Scala	7:25	1:16	445.24	76.41
TypeScript	8:17	0:55	497.59	55.37
Average	8:50	4:12	530.46	252.51
Total (sum)	106:05	—	6365.48	—

H LANGUAGES AND COMPILER VERSIONS

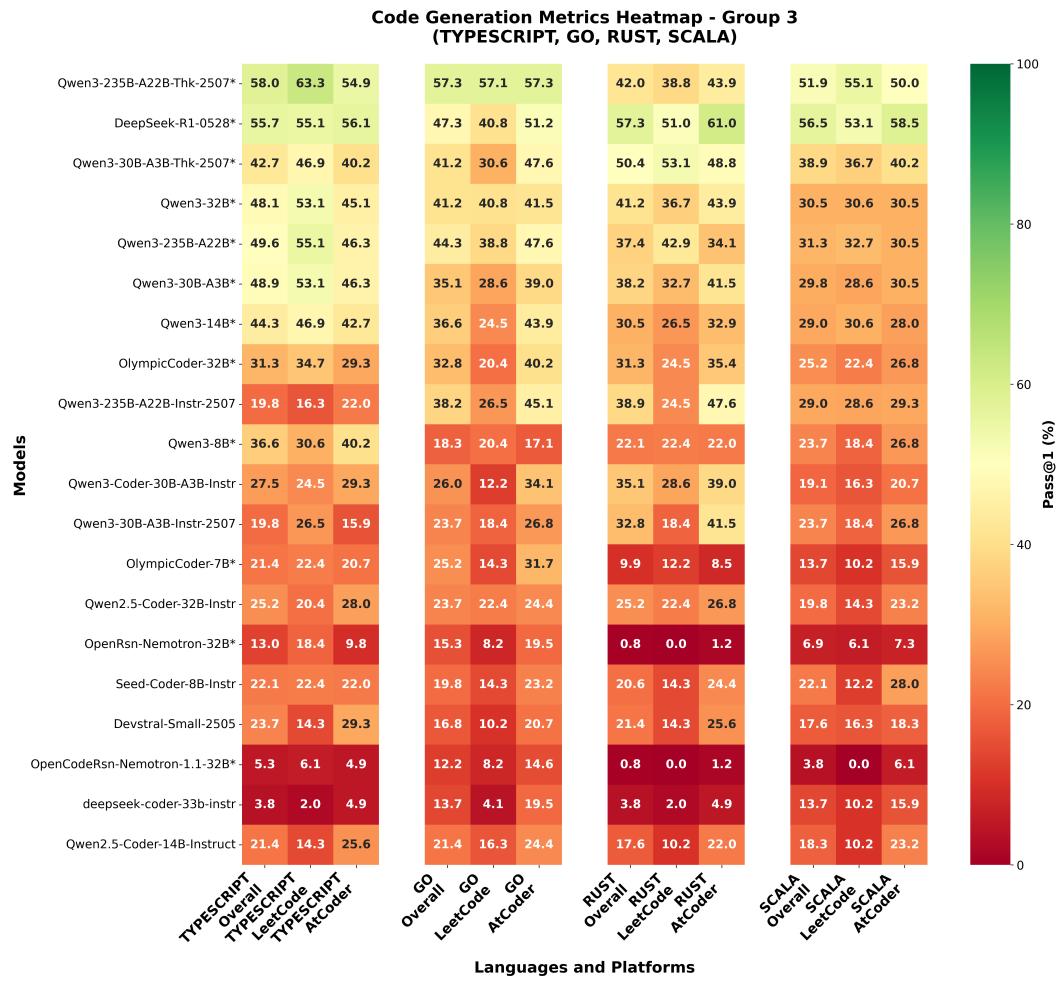

All experiments were conducted in a controlled environment using the following language runtimes and compiler versions to ensure consistency and reproducibility across all tasks in Multi-LCB:

- **C++**: gcc 14.3.0
- **Java**: OpenJDK 8.0.412
- **Python**: 3.12.11
- **Rust**: 1.88.0
- **Go**: 1.22.12
- **Ruby**: 3.3.6
- **JavaScript (Node.js)**: 20.19.4
- **TypeScript (Deno)**: 2.3.4
- **C# (Mono)**: 6.12.0.199
- **Compilers (general)**: 1.11.0
- **PHP**: 8.1.0
- **Kotlin**: 2.2.0
- **Scala**: 2.11.8
- **pip**: 25.2

These versions were used consistently for compilation, execution, and evaluation to guarantee reproducibility of all Multi-LCB results.

1188 I PLATFORM ANALYSIS

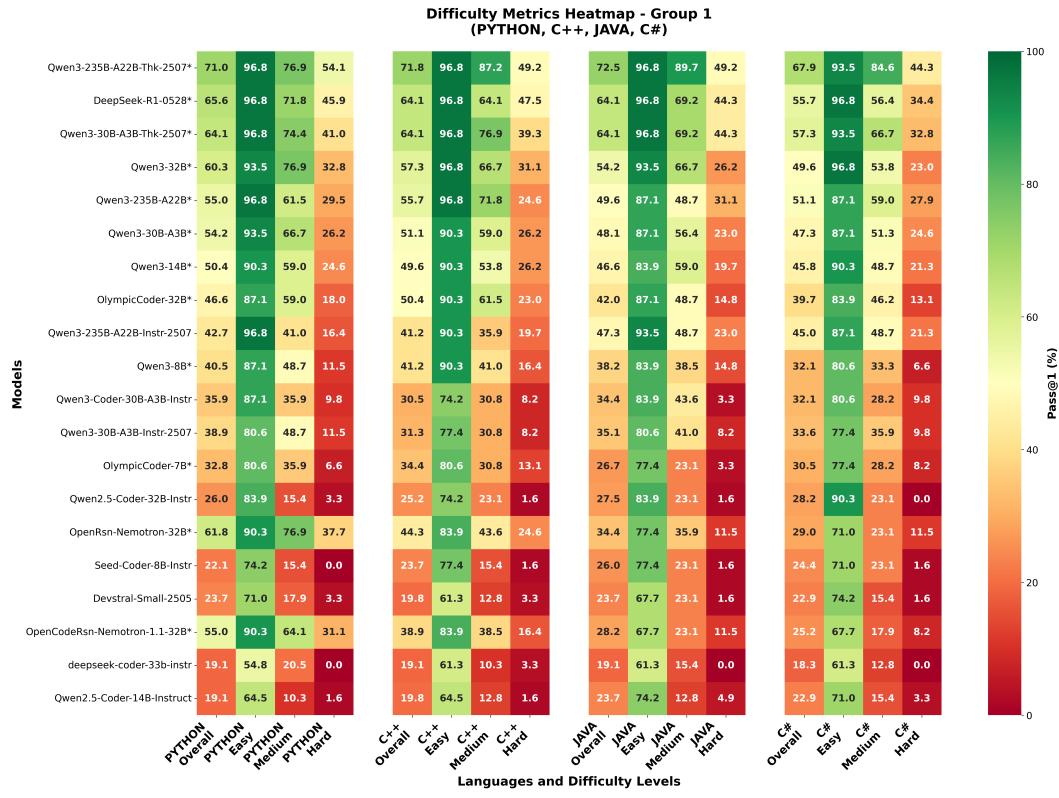
1190 Figures 10, 11, and 12 show performance comparison between LeetCode and AtCoder platforms
 1191 across different programming languages. Models demonstrate varying capabilities depending on
 1192 the platform, with some excelling on LeetCode’s interview-style problems while others perform
 1193 better on AtCoder’s competitive programming tasks.



1226 Figure 10: Code generation performance heatmap by platform for Python, C++, Java, and C#.
 1227 Shows overall performance and platform-specific results (LeetCode vs AtCoder) across different
 1228 models. Values represent Pass@1 scores (%).

Figure 11: Code generation performance heatmap by platform for Ruby, PHP, Kotlin, and JavaScript. Shows overall performance and platform-specific results (LeetCode vs AtCoder) across different models. Values represent Pass@1 scores (%).

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305



1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Figure 12: Code generation performance heatmap by platform for TypeScript, Go, Rust, and Scala. Shows overall performance and platform-specific results (LeetCode vs AtCoder) across different models. Values represent Pass@1 scores (%).

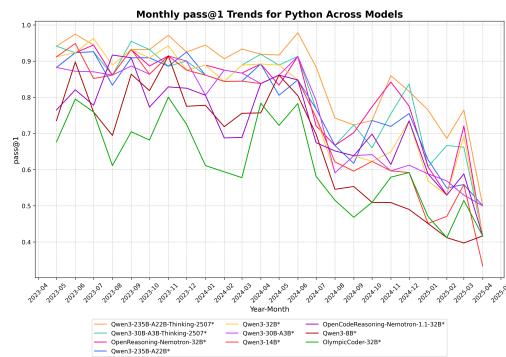
1350 J DIFFICULTY ANALYSIS

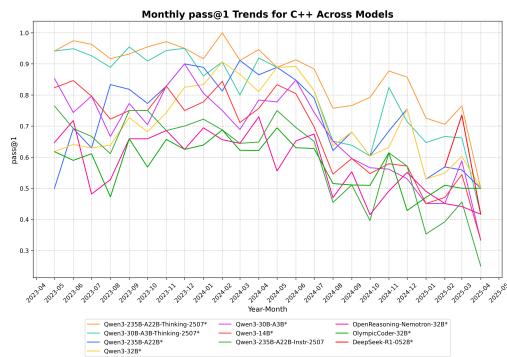
1352 Figures 13, 14, and 15 present performance breakdown by difficulty levels (Easy, Medium, Hard)
 1353 across programming languages. The results reveal significant performance degradation as problem
 1354 complexity increases, with Hard problems showing the largest performance gaps between models.
 1355

1381 Figure 13: Code generation performance heatmap by difficulty level for Python, C++, Java, and C#.
 1382 Shows overall performance and difficulty-specific results (Easy, Medium, Hard) across different
 1383 models. Values represent Pass@1 scores (%).
 1384

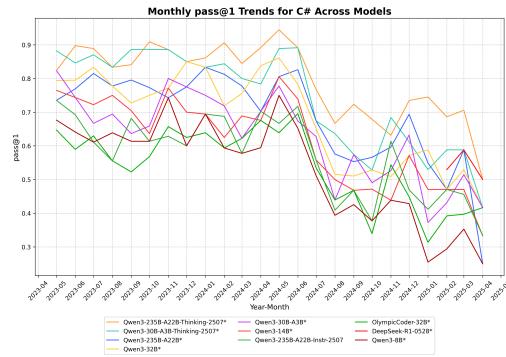
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416

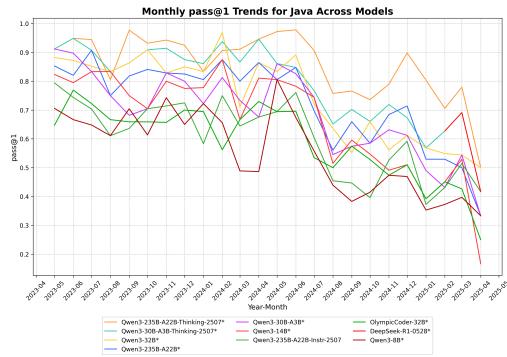
1443 Figure 14: Code generation performance heatmap by difficulty level for Ruby, PHP, Kotlin, and
 1444 JavaScript. Shows overall performance and difficulty-specific results (Easy, Medium, Hard) across
 1445 different models. Values represent Pass@1 scores (%).

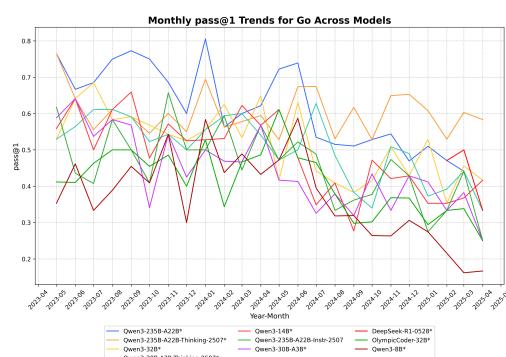

1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

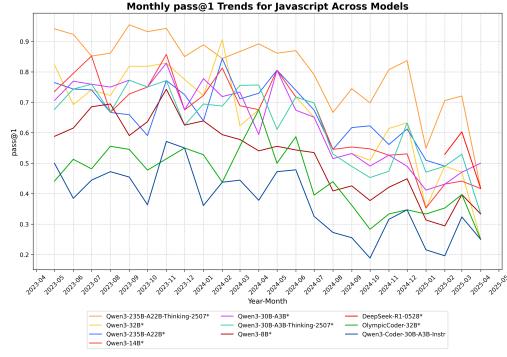

Figure 15: Code generation performance heatmap by difficulty level for TypeScript, Go, Rust, and Scala. Shows overall performance and difficulty-specific results (Easy, Medium, Hard) across different models. Values represent Pass@1 scores (%).

1512 K TEMPORAL ANALYSIS


1514 Figures 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, and 27 illustrate monthly performance trends
 1515 from 2023 to 2025 across different programming languages. A notable declining trend is observed
 1516 across all models and languages, with top-performing models dropping from approximately 80%
 1517 to 60% Pass@1 scores over time. This consistent degradation pattern appears universally across
 1518 programming languages, suggesting systematic factors rather than language-specific issues. The
 1519 decline may be attributed to two primary factors: (1) data contamination effects, where models
 1520 perform better on older, potentially seen problems, and (2) increasing problem complexity over time
 1521 as benchmark creators develop more challenging tasks to maintain discriminative power.


1534 Figure 16: Monthly Pass@1 trends for Python.
 1535


1534 Figure 17: Monthly Pass@1 trends for C++.
 1535


1548 Figure 18: Monthly Pass@1 trends for C#.

1548 Figure 19: Monthly Pass@1 trends for Java.

1563 Figure 20: Monthly Pass@1 trends for Go.
 1564

1563 Figure 21: Monthly Pass@1 trends for JavaScript.
 1564

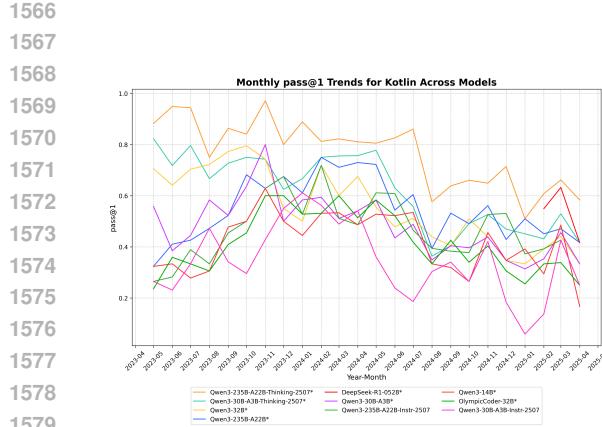


Figure 22: Monthly Pass@1 trends for Kotlin.

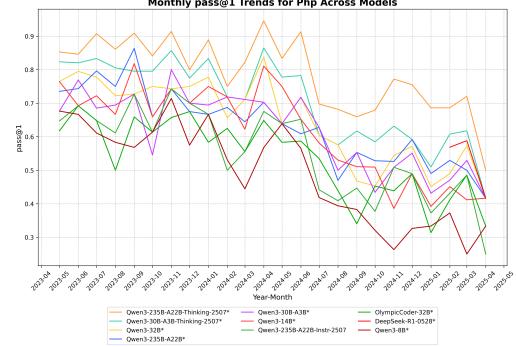


Figure 23: Monthly Pass@1 trends for PHP.

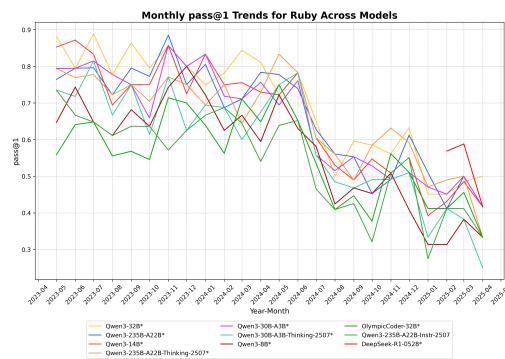


Figure 24: Monthly Pass@1 trends for Ruby.

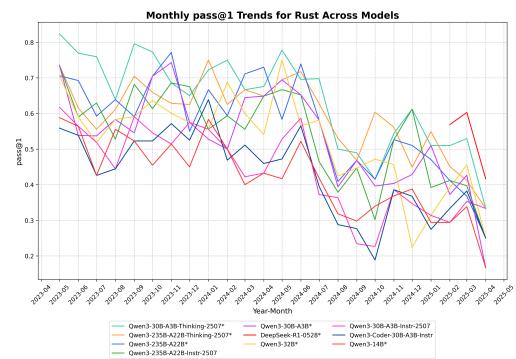


Figure 25: Monthly Pass@1 trends for Rust.

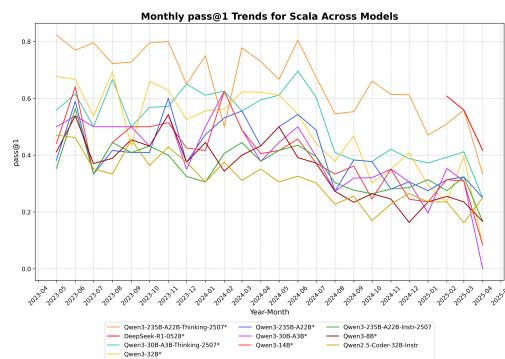


Figure 26: Monthly Pass@1 trends for Scala.

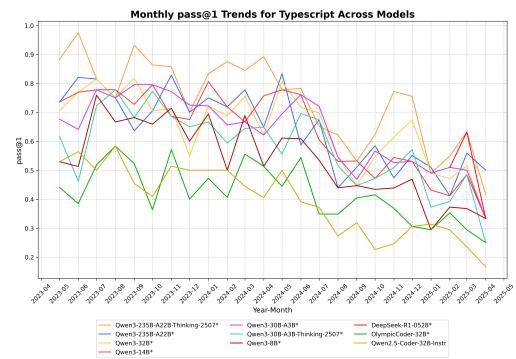
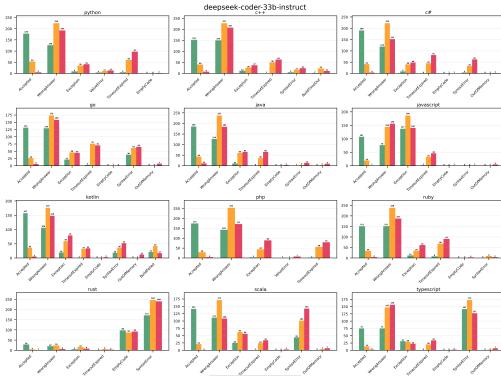
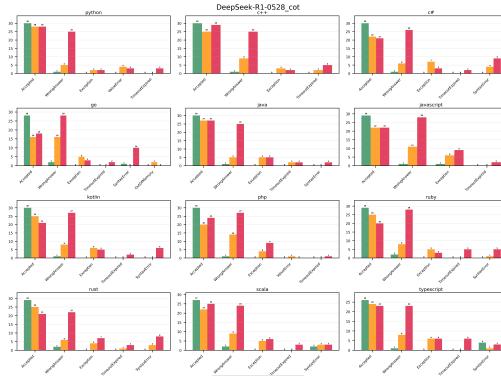



Figure 27: Monthly Pass@1 trends for TypeScript.


1620 L LANGUAGES ERRORS TYPE

1622 Figures 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42 and 43 illustrate detailed error break-
 1623 downs across different programming languages and models. Several consistent patterns emerge:
 1624

- 1625 1. Wrong-answer (WA) errors dominate across almost all languages and models. For every
 1626 model, WA is the largest source of failure in both Python and non-Python languages, indi-
 1627 cating that the primary bottleneck remains algorithmic correctness rather than compilation
 1628 or parsing.
- 1629 2. Compiled languages show substantially more compiler- and type-related errors. Languages
 1630 such as C++, Java, Rust, and Go exhibit significantly higher rates of compilation errors
 1631 (e.g., missing imports, type mismatches, incorrect signatures) compared to Python. This
 1632 pattern is consistent across all models and reflects the challenge of generating syntactically
 1633 valid and type-correct code when strict compilation pipelines are enforced.
- 1634 3. Runtime exceptions increase in languages that require explicit input parsing. In languages
 1635 like Java, C#, and Go, runtime errors (e.g., NullPointerException, IndexError, ValueError)
 1636 are far more frequent than in Python. This supports the hypothesis that the STDIN/STD-
 1637 OUT format, while uniform across languages, exposes weaknesses in model robustness to
 1638 input handling and data conversion.
- 1639 4. Timeout and resource-related failures appear more often in slower languages and for
 1640 reasoning-tuned models. Java, Rust, and Go show noticeably more TimeoutExpired cases,
 1641 likely because models occasionally generate inefficient implementations. Reasoning-heavy
 1642 models (e.g., R1-0528, Nemotron-32B) are more prone to long-running solutions when
 1643 they attempt more complex multi-step logic.
- 1644 5. Empty-code and trivial-syntax errors are rare but nonzero. These errors appear mostly in
 1645 smaller models (e.g., 7B-14B) and are nearly absent for 30B+ models. This indicates that
 1646 larger models rarely fail at the initial code-structuring stage, with most errors occurring
 1647 deeper in the execution pipeline.
- 1648 6. Cross-model consistency in error profiles. Despite architectural and training differences,
 1649 the overall error distributions are remarkably stable across models, demonstrating that:
 1650 Python remains the least error-prone language, Compiled languages introduce predictable
 1651 error modes, and Languages with verbose input/output handling (Java, C#, Go) amplify
 1652 runtime failures.
- 1653 7. Error distributions reinforce the observed performance gaps. The breakdowns offer a mech-
 1654 anistic explanation for the Pass@1 disparities reported in the main results. For example,
 1655 models underperforming in Rust and C++ do so not because they fail to produce solutions,
 1656 but because syntactic and type-level correctness is significantly harder to achieve in those
 1657 languages.

1658 Figure 28: deepseek-coder-33b-instruct

1659 Figure 29: DeepSeek-R1-0528*

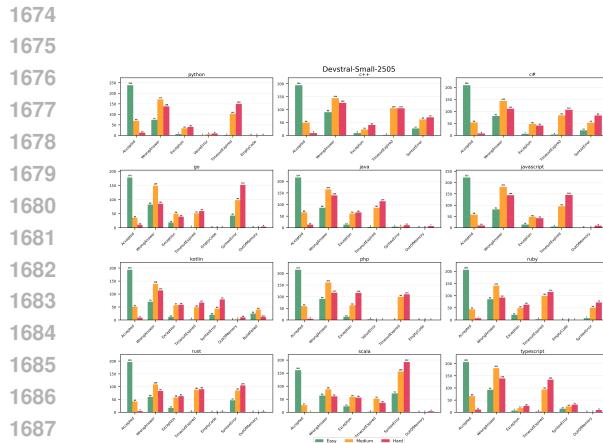


Figure 30: Devstral-Small-2505

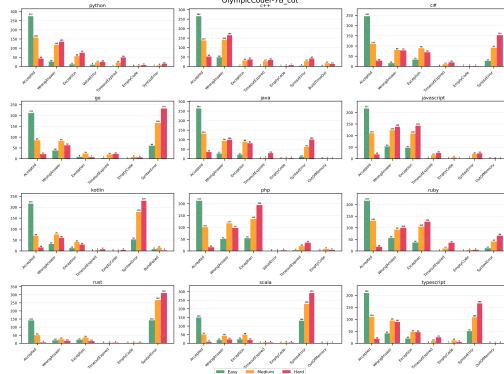


Figure 31: OlympicCoder-7B*

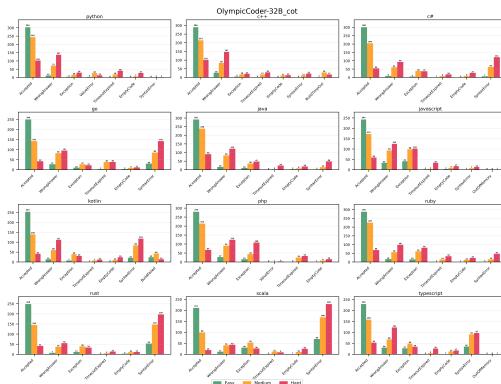


Figure 32: OlympicCoder-32B*

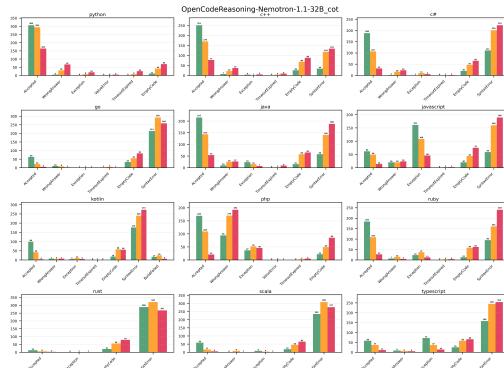


Figure 33: OpenCodeReasoning-Nemotron-1.1-32B*

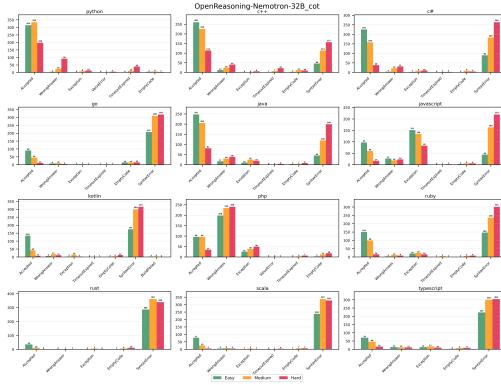


Figure 34: OpenReasoning-Nemotron-32B*

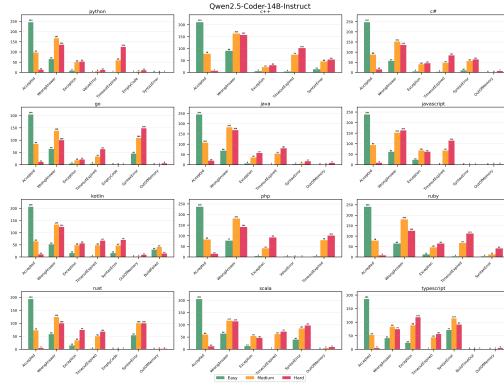
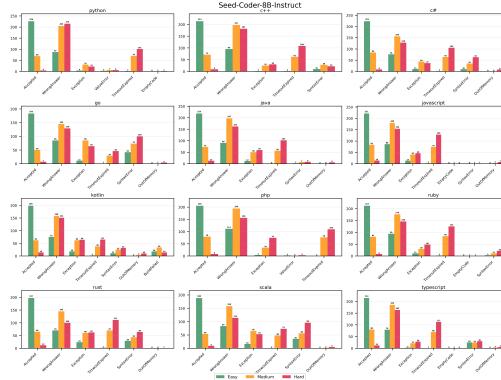



Figure 35: Qwen2.5-Coder-14B-Instruct

1815 Figure 42: Qwen3-Coder-30B-A3B-Instruct
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 18351815 Figure 43: Seed-Coder-8B-Instruct
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835