
ArtWhisperer: A Dataset for Characterizing Human-AI Interactions in Artistic
Creations

Kailas Vodrahalli 1 James Zou 1

Abstract
In this work, we investigate how people use text-
to-image models to generate desired target images.
To study this interaction, we created ArtWhis-
perer, an online game where users are given a
target image and are tasked with iteratively find-
ing a prompt that creates a similar-looking image
as the target. Through this game, we recorded
over 50,000 human-AI interactions; each interac-
tion corresponds to one text prompt created by a
user and the corresponding generated image. The
majority of these are repeated interactions where a
user iterates to find the best prompt for their target
image, making this a unique sequential dataset for
studying human-AI collaborations. In an initial
analysis of this dataset, we identify several charac-
teristics of prompt interactions and user strategies.
People submit diverse prompts and are able to
discover a variety of text descriptions that gener-
ate similar images. Interestingly, prompt diversity
does not decrease as users find better prompts.
We further propose a new metric to quantify AI
model steerability using our dataset. We define
steerability as the expected number of interactions
required to adequately complete a task. We esti-
mate this value by fitting a Markov chain for each
target task and calculating the expected time to
reach an adequate score. We quantify and com-
pare AI steerability across different types of target
images and two different models, finding that im-
ages of cities and nature are more steerable than
artistic and fantasy images. We also evaluate pop-
ular vision-language models to assess their image
understanding and ability to incorporate feedback.
These findings provide insights into human-AI
interaction behavior, present a concrete method
of assessing AI steerability, and demonstrate the
general utility of the ArtWhisperer dataset.
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1. Introduction
Direct human interaction with AI models has become
widespread following a number of technical innovations
improving the quality of text-to-text (Brown et al., 2020;
Ouyang et al., 2022; Anil et al., 2023) and text-to-image
models (Rombach et al., 2022a; Ramesh et al., 2022), en-
abling the public release of high-quality AI-based services
like ChatGPT (chatGPT), Bard (Bard), and Midjourney
(Midjourney). These models have seen rapid interest and
adoption largely due to the ability of the general public to
interact with and steer the AI in diverse contexts including
engineering, creative writing, art, education, medicine, and
law (Dakhel et al., 2023; Nguyen & Nadi, 2022; Ippolito
et al., 2022; Cetinic & She, 2022; Qadir, 2023; Cascella
et al., 2023; Sloan, 2023).

A key challenge in developing these models is aligning their
output to human inputs. This is made challenging by the
broad domain of use cases as well as the diverse prompting
styles of different users. Many approaches can be catego-
rized as “prompt engineering,” where specific strategies for
prompting are used to steer a model (Oppenlaender, 2022;
Liu & Chilton, 2022; Zhou et al., 2022b; Wei et al., 2022;
White et al., 2023). Great success has also been found by
fine-tuning models using relatively small datasets to fol-
low human instructions (Ouyang et al., 2022), respond in
a specific style (Hu et al., 2021), or behave differently to
specified prompts (Zhou et al., 2022a; Gal et al., 2022).

In this work, we take interest in the fact that human inter-
action with these models is often an iterative process. We
develop a dataset to study this interaction. The dataset is
collected through an interactive game we created where
players try to find an optimal prompt for a given task (see
Figure 1). In particular, we focus on text-to-image models
and ask the player to generate a similar image (AI Image)
to a given target image. The player is allowed to iterate on
their prompt, using the previously generated image(s) as
feedback to help them adjust their prompt. A score is also
provided as feedback to help the user calibrate how “close”
they are to a similar image.

Using this setup, we collected data on 51,026 interactions
from 2,250 players across 191 unique target images. The tar-
get images were selected from a diverse set of AI-generated
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and natural images. We also collected a separate dataset of
4,572 interactions, 140 users, and 51 unique target images
in a more controlled setting to assess the robustness of our
findings.

Based on this data, we find several interesting patterns in
how people interact with AI models. Players discover a
diverse set of prompts that all result in images similar to
the target. To discover these prompts, players typically
make small, iterative updates to their prompts. Each update
improves their image with a moderate success rate (40 −
60% for most target images). Based on these findings, we
define and evaluate a metric for model steerability using
the stopping time of an empirical Markov model. We use
this metric to assess steerability across image categories and
across two AI models.

Our contributions We release a public dataset on human
interactions with an AI model. To our knowledge, this is the
first such dataset showing repeated interactions of people
with a text-to-image model to accomplish specified tasks.
We also provide an initial analysis of this data and propose
a simple-to-calculate metric for assessing model steerability.
Additionally, we use our dataset and this steerability metric
to evaluate the ability of vision-language models to utilize
feedback. Our dataset and associated code is made available
at https://github.com/kailas-v/ArtWhisperer.

Related Works Human-AI interaction datasets for text-to-
text and text-to-image models typically focus on single in-
teractions and generally do not provide users with a specific
task. Public text-to-image interaction datasets typically con-
tain the generated AI images and/or prompts (Santana, 2022;
Wang et al., 2022) and optionally some form of human pref-
erence rating (Pressman et al., 2022; Wu et al., 2023; Xu
et al., 2023; Kirstain et al., 2023). These datasets generally
rely on scraping online repositories like Lexica (Lexica) or
Discord servers focused on AI art. Though some of these
datasets include metadata that may allow for reconstruction
of prompt iteration, there is no guarantee the user has the
same desired output in mind over the iteration. Public text-
to-text interaction datasets are much more limited as the best
performing models are generally accessible only through
APIs with no public user interaction datasets. While some
researchers have investigated how human-AI interaction for
text-to-text can be improved through various tools (Wu et al.,
2022a;b), the amount of data collected is limited and not
publicly available. There are also repositories containing
prompt strategies for various tasks (Bach et al., 2022) but
no human interaction component.

We seek to rectify two of the shortcomings of the existing
datasets–namely, that they do not contain extended inter-
actions as the user attempts to steer the AI, and they do
not have a predefined goal. In our work, we maintain a
controlled environment for human users where we allow

extended interactions towards a fixed goal. As shown by our
initial analysis, our dataset may enable deeper understanding
of user prompting strategies, assessing model steerability,
and evaluating vision-language AI models.

2. Interaction Game
In our game, players are shown a target image (see Figures 2
and 4). Players are also given a limited interface to a text-to-
image model, Stable Diffusion (SD) v2.1 model (Rombach
et al., 2022b). In particular, players can enter a “positive
prompt” (describes the desired content) and a “negative
prompt” (describes what should be omitted) to steer the AI
model. All models hyperparameters including the seed are
fixed. Upon inputting a prompt, the player is shown the
image generated by the AI model, along with a similarity
score between their generated image and the target image.
The interface is shown in Figure 1.

2.1. How Target Images are Selected

We randomly sample target images from two sources. The
first is a collection of Wikipedia pages, and the second is a
dataset of prompts AI artists have used with SD (Santana,
2022). In addition to sampling target images, we need
to ensure the task is feasible to users. We do not allow
users to adjust the seed or other parameters of the model,
so we need to ensure the selected model parameters can
generate reasonably similar images to the target image. We
find that selecting an appropriate random seed is sufficient,
and fix all other model parameters (see Appendix A.3 for
examples of generated images and Appendix A.5 for details
and discussion).

Wikipedia Images A collection of 35 Wikipedia pages
on various topics including art, nature, cities, and various
people. A full list of pages sampled from is provided in
Appendix 2. From these pages, we scraped 670 figures
licensed under the Creative Commons license. These figures
were then filtered by which had captions, as well as which
images were JPG or PNG images (i.e., not animated, and
not PDF files), resulting in 557 images.

For each of the 557 images, we first resize and crop the
image to size 512 × 512. The Wikipedia caption is used
as the ground truth “prompt”. Let the image-caption pair
be denoted as (ti, p∗i ). We sample the model on 50 random
seeds, with p∗i as the prompt input. This generates a set of
50 images: Si = {(xi, si) : i = 1, . . . , 50} for generated
image xi and seed si. Let C(x) denote the CLIP image
embedding (Radford et al., 2021) of an image x. Then we
select the seed as si∗ , where

i∗ := min
i=1,...,50

∣∣∣∣∣∣∣∣ C(xi)

||C(xi)||2
− C(ti)

||C(ti)||2

∣∣∣∣∣∣∣∣
2

(1)
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Figure 1. Interface of the ArtWhisperer game. Prompts entered on right. Target (goal) image and player-generated image on left. Previous
prompts and scores are displayed in the lower right.

Here, si∗ is selected to minimize the distance to the target
image given the target prompt.

AI-Generated Images A collection of 2,000 AI-art
prompts are randomly sampled from the Stable Diffusion
Prompts dataset (Santana, 2022). For each prompt, p∗i ,
we generate two sets of images. As before, we use 50
unique random seeds to select the seed, si∗ and an ad-
ditional 10 random seeds to use for selecting the gener-
ated target image (so in total, we use 60 unique random
seeds): the first set, Si,1 = {(xi,1, si) : i = 1, . . . , 10} and
Si,2 = {(xi,2, si) : i = 1, . . . , 50}. We select the target
image, ti∗1 , from Si,1:

i∗1 := min
i=1,...,10

median
({∣∣∣∣∣∣∣∣ C(xi,1)

||C(xi,1)||2
− C(xj,2)

||C(xj,2)||

∣∣∣∣∣∣∣∣
2

:

j = 1, . . . , 50}) (2)

We select the random seed, si∗2 , using ti∗1 and Si,2, with

i∗2 := min
i=1,...,50

∣∣∣∣∣∣∣∣ C(xi,2)

||C(xi,2)||2
−

C(ti∗1 )

||C(ti∗1 )||2

∣∣∣∣∣∣∣∣
2

(3)

Here, ti∗1 is chosen to be more representative of the types
of images we may expect given the fixed prompt, p∗i . This
is because ti∗1 is selected to be close to the center of the
sampled images, Si,2. The intuition for selecting si∗2 is the
same as selecting si∗ for the Wikipedia images.

2.2. Scoring Function

To provide feedback to players, we created a scoring func-
tion to assess the similarity of a player’s generated image

and the target image. We define the scoring function as

score(x, t) =max(0,min(100,

α ·
∣∣∣∣∣∣∣∣ C(x)

||C(x)||2
− C(t)

||C(t)||2

∣∣∣∣∣∣∣∣
2

+ β)) (4)

for generated image x, target image t, and constants α, β.
Note the range of score(x, t) is integers in the interval
[0, 100]. Details on how α, β are selected parameters are
provided in Appendix A.4.

While this scoring function is often reasonable, it does not
always align with the opinions of a human user. To as-
sess how well score(x, t) follows a user’s preferences, we
acquire ratings from a subset of users (see ArtWhisperer-
Validation in Section 2.3). We find score(x, t) has a Pearson
correlation coefficient of 0.579 indicating reasonable agree-
ment. Further assessment is performed in Section 4.3 and
discussed at length in Appendix A.14.

2.3. Dataset Overview

We collected two datasets: ArtWhisperer and ArtWhisperer-
Validation. We use ArtWhisperer for most analysis and
results; for some of the results in Sections 2.2, 4.2,and
4.3, we also use ArtWhisperer-Validation (when referenced).
Data was collected from March-May 2023. IRB approval
was obtained.

ArtWhisperer: A public version of our game was released
online, with three new target images released daily. We col-
lected data from consenting users playing the game. Users
were not paid. Users were anonymous and we only collected
data related to the prompts submitted to ensure privacy of
users. While we expect some users played the game across
multiple days, we did not track them. A summary of the
ArtWhisperer dataset is provided in Table 1. In total, we
have 2,250 (potentially non-unique) players corresponding
to 51,026 interactions across 191 target images. Players

3



ArtWhisperer: A Dataset for Characterizing Human-AI Interactions in Artistic Creations

Figure 2. Example user trajectories. In each row, we show (1) a given user’s prompts, (2) the target image (rightmost image), and (3) a plot
of this target image’s average score trajectory across users (blue), this user’s full score trajectory (red), and the displayed images (orange).

interacted with the model SD v2.1. In Figure 3, we plot
the number of queries submitted by players across different
target images.

ArtWhisperer-Validation: The game (with a near identical
interface) was also released as a controlled user study to paid
crowd workers on Prolific (Prolific Academic). The crowd
workers were compensated at a rate of $12.00 per hour for
roughly 20 minutes of their time. Workers played the game
across 5 randomly selected target images from a pre-selected
subset of 51 target images chosen to have diverse content.
Workers were also asked to rate each of their images on a
scale of 1-10 (i.e., self-scoring their generated images). In
total, we collected data on 4,572 interactions, corresponding
to 140 users and 51 unique target images across two different
diffusion models, SD v2.1 and SD v1.5. Additional details
and demographic information are provided in Appendix A.7.

3. Prompt Diversity
We quantify prompt diversity by looking at the distribution
of prompts in the text embedding space. In particular, we use
the CLIP text embedding (Radford et al., 2021), though we
do find the choice of embedding is not particularly important
for our results (see Appendix A.8).
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Figure 3. Left: Distribution of # of user queries per target image
(average queries per image is 9.18). Right: Distribution of the # of
words submitted in a query (average words submitted is 20.02 and
2.32 for positive and negative prompts respectively).

3.1. Diverse prompts used for high scores

First, we find that users do not converge in their prompt
design but rather achieve similarly high scores through a
diverse set of prompts. This result confirms the need for
models to align to a wide range of user writing styles and de-
scriptive techniques, and suggests a tradeoff between align-
ment to multiple users and specificity of a prompt (e.g., to
support more users, individual prompts will necessarily have
less descriptive ability). Examples of such diverse prompts
are shown in Figure 4.

We quantify this finding in Figure 5, where we plot two
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Table 1. ArtWhisperer Dataset Overview. Each row contains summary data for a different subset of the dataset. Subsets may overlap.
Similar information for ArtWhisperer-Validation is in Appendix A.7.

# Players # Target
Images

# Inter-
actions

Average
# Prompts

Average
Score

Median
Duration Category

2250 191 51026 9.29 58.93 18 s Total

377 25 3884 8.65 56.70 19 s Contains famous person?
353 32 3785 8.26 61.64 21 s Contains famous landmark?

2005 140 40290 9.24 59.83 18 s Contains man-made content?
1177 58 18255 10.93 57.21 17 s Contains people?
344 77 6972 8.81 62.01 20 s Is real image?

2140 103 43524 9.42 58.37 17 s Is AI image?
1483 82 24913 9.14 59.45 17 s Is art?
623 29 7297 9.14 53.77 18 s Contains nature?
160 14 1355 7.28 65.74 19 s Contains city?

1239 39 15872 9.91 56.74 16 s Is fantasy?
618 19 8359 10.51 57.88 17 s Is sci-fi or space?

metrics defined as follows. Let z0, zn be normalized em-
beddings of the initial and best prompt/image found by a
user. Let z∗ be the normalized embedding of the target
prompt/image. We define the difference in embedding dis-
tance to ground truth as ||zn − z∗||2 − ||z0 − z∗||2. In blue,
we use the CLIP text embeddings of the prompts; in orange,
we use the CLIP image embeddings of the generated im-
ages. We note two findings here: (1) the metric applied to
the image embeddings is guaranteed to be non-positive as
the embedding distance is monotonically decreasing with
the score, and (2) the metric applied to the text embeddings
is apparently symmetric around 0, indicating that unlike
the image embedding, distance in the text embedding space
does not monotonically decrease with score. Together, these
findings illustrate that users tend to discover diverse prompts
and do not converge in their prompt design.

Additionally, we find the distribution of prompts does not
converge. In the left of Figure 6, we plot the distribution
of distances between the first prompt (in blue) and the last
prompt (in orange) to the average prompt for the corre-
sponding target image. Despite the average score improving
from 51.9 to 70.3 (out of 100) indicating a significant im-
provement in score, prompt diversity does not significantly
diminish. That is, users do not converge to similar prompts
to achieve high scores. Similar analysis of the image embed-
ding space suggests image diversity decreases (Figure 5).

3.2. People submit similar prompts throughout their
interaction

Second, we find that people do not explore a wide range
of prompt designs even when their initial prompts are not
performing well. This suggests the lack of convergence in
prompt design is inherent to the users’ preference to de-

scribe an image. It also suggests that user initialization (i.e.,
the first submitted prompt) is critical, and that online per-
sonalization may be possible (to adapt to the user’s writing
style) given the more stable nature of an individual’s prompt
design for a given target image.

In the center of Figure 6, we plot the distribution of the stan-
dard deviation of prompts for users (blue) and for permuted
users (orange). Permuted users are generated by sampling
from all prompts for a given target image uniformly, us-
ing the same distribution of number of prompts as for real
users. The gap between the two distributions shows that in-
dividuals do not randomly sample prompts each interaction,
but base new prompts off of previously submitted prompts
(p-value < 10−10, t-test for independent variables). An
analysis of how scores change between adjacent prompts
shows that this strategy has a moderate success rate and
improves the score 40− 60% of the time, with an average
rate of 48.6% (note that score changes < 1 are counted as
unchanged; this occurs 10.2% of the time).

3.3. People have similar prompt styles across images

Finally, we find that people have a measurable writing style
or prompt design that appears across images; however, this
prompt design is predominantly informed by the target im-
age rather than any consistent style. This implies that online
personalization across different target images may require a
large number of images to be effective (across a small set
of individual target images, the prompt design and writing
style may still change significantly). This is in contrast to
our earlier finding that suggests personalization for a given
image may be possible given the relative stability of a user’s
prompt design for a given target image.

We quantify user style by computing the difference (in the
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CLIP text embedding space) between the average prompt of
a given user and the average prompt across all users for a
given target image. To quantify style variation for a user, we
then compute the standard deviation of the user style across
the target images the user generated. In the right of Figure 6,
we plot the distribution of user style variation for real users
(blue) and permuted users (orange). Permuted users are
generated by randomly sampling user styles. This allows
us to test whether users have a consistent prompting style.
We find users do indeed have specific styles of prompting
(p-value < 10−10, t-test for independent variables). How-
ever, the difference is seemingly not large, suggesting that
while user style may a component to prompting, other fac-
tors related to the target image may be more important.

4. Model Steerability
Model steerability refers to the ability of a user to steer a
model towards a desired outcome. Measuring steerability
has great utility, as it enables quantitative tracking of the
human usability of generative models. However, there is
no current consensus on how to measure AI steerability. A
common approach is to simply measure performance of a
model on standardized dataset evaluations (Jahanian et al.,
2019; OpenAI, 2023). While this can enable comparisons
between tasks and models, this approach does not allow
for the feedback loop present when humans interact with a
model. Steerability can also be measured qualitatively based
on user assessment of their experience interacting with the
AI (Chung et al., 2022).

Here, we propose a simple yet informative measure to assess
model steerability. This metric is general across model
types and data modalities, and we are able to use it here
to compare across image categories and models. We then
analyze this measure across different subgroups of images
and across two different Stable Diffusion models: SDv2.1
and the older SDv1.5 (Rombach et al., 2022a).

4.1. Measuring steerability

As discussed in Section 3.2, users typically engage with
the model through clusters of similar prompts. They typi-
cally start with an initial base prompt and proceed to make
multiple incremental modifications to it. We use this ob-
servation as a basis for creating a steerability metric. We
define a Markov chain between scores. Each node is a score
with edges connecting to the subsequent score. To make
this tractable for empirical analysis, we bin scores into five
groups: [0, 20], [21, 40], [41, 60], [61, 80], [81, 100]. We use
the expected time taken to reach the last score bin, [81, 100],
as our steerability score (i.e., the stopping time to reach an
adequate score).

For each target image, we calculate the empirical transition

probability matrix between binned scores using all the play-
ers’ data for that image. We then calculate the steerability
score for the given target image by running a Monte Carlo
simulation to estimate stopping time, as defined above. To
assess steerability across a group of images, we average
steerability score across all images in the group.

4.2. Analysis

In Figure 7, we plot the steerability score across image
groups. Error bars show the standard error. For examples of
steerability scores for individual images, see Appendix A.12.
We find that images containing famous people or landmarks,
real images (not AI generated), contain cities, or contain
nature are the most steerable. AI-generated images, fantasy
images, and images of human art are the least steerable.
There are a few possible explanations. The model we are
assessing here, SDv2.1, as well as its text encoder Open-
CLIP, are trained on subsets of LAION5B (Schuhmann
et al., 2022). The contents of LAION5B are predominantly
real world images, indicating why these images may be
more steerable (i.e., text describing these types of images
may have a better encoding). Moreover, the prompts for
AI-generated images and fantasy images generally include
specific internet artists and/or art styles which may not be
known to most users making achieving the desired target
image more difficult. Another potential reason is the distri-
bution of images chosen for each category. Clearly, there are
“easier” and “more difficult” images in each category; part
of the reason for smaller stopping time may be the sample
of images chosen rather than the actual image category.

Using the ArtWhisperer-Validation data, we also compare
steerability across two models: SDv2.1 and SDv1.5. Across
most image categories, we observe a similar steerability.
Images of nature, sci-fi or space, and real images have the
largest differences in steerability between the two models;
SDv2.1 is more steerable in all three cases. This suggests
that SDv2.1 may be more steerable for natural images as
well as sci-fi images, and is similarly steerable for other
kinds of images including AI-generated artwork. One ex-
planation may be that most of our users were not aware of
certain prompting strategies that help models generate more
aesthetic images or certain art styles; it is possible that for
experienced users, AI art images may be more steerable,
and differences between models may be magnified if, for
example, a user is experienced working with one particular
model. More discussion is provided in Appendix A.11.

4.3. Justification for automated score

One limitation of our steerability metric comes from the
method of scoring user-submitted prompts. Ideally, we
would assess steerability with a user’s personal preferences.
As mentioned in Section 2.2, the scores and human ratings
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Figure 4. Diverse, high-scoring prompt submissions from different users. Target image in rightmost column.
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Figure 5. Difference of distance from the first prompt to ground
truth and distance from the last (best) prompt to ground truth for
CLIP text (blue) and CLIP image embeddings (orange).

have a positive correlation. Here, we use the human ratings
from ArtWhisperer-Validation instead of our score function
to assess steerability. We compute the steerability score
across both models and across image groups. Generally, the
steerability scores change little. In all but two cases (SDv2.1
on sci-fi and space images; SDv1.5 on nature images), the
human rating-based steerability score remains within a 95%
confidence interval of the score-based steerability score.
While our score function may not perfectly capture human
preferences, the steerability score we generate appears to
be robust to these issues. Further discussion is included in
Appendix A.14.

5. Vision-Language Model Evaluation
We also use the ArtWhisperer dataset to evaluate vision-
language models (VLMs) for their ability to incorporate
feedback. In particular, we have two VLMs, GPT-4
and Gemini (OpenAI, 2023; Team et al., 2023), play the
ArtWhisperer game across all target images. In this context,
the models are interacting with a “tool” – an SD model.
However, we can also consider this SD model as a proxy
for a user whose preferences the model must adapt to over
time.

A system prompt is crafted to inform the model about the
game. A starting prompt is used to query the model for an
initial prompt. The generated prompt is evaluated using the
ArtWhisperer game pipeline – an image is generated and
then scored. In the “Feedback” mode, this generated image
and the ArtWhisperer score is then fed back to the VLM with
a request for an updated prompt. This process is repeated
until the model attains a perfect score or 20 attempts have
been made. In “No feedback” mode, the VLM is not given
any feedback and is just queried repeatedly without any
conversation history given. More details on the prompts
used are included in Appendix A.16.

In Figure 8, we compare the average score (across target
images) trajectory of the VLM models over time. Here, the
score is the ArtWhisperer game score, where larger values
indicate a better prompt. For each of GPT-4 and Gemini,
we have two trajectories. “GPT-4” and “Gemini” represent
the prompting methodology described above and further
detailed in Appendix A.16. The “No feedback” plots repre-
sent the average score across queries as well, as each query
is independent; this is a baseline measure of the VLM’s
ability to prompt Stable Diffusion given an image with no
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GPT-4 (smaller indicates increased steerability). Bars show av-
erage expected stopping time across images in the image group;
error bars show standard error.

feedback.

When given feedback, GPT-4 consistently improves as it
receives more feedback, with minimal improvement after
about 15 rounds of feedback. This indicates the model
is able to incorporate feedback well. In contrast, Gemini
does not improve with feedback. This is expected – the
Gemini model we evaluated on was not trained for multi-
turn conversations (an API for such a model was not released
at the time of writing).

In Figure 7, we compare steerability of the Stable Diffu-
sion model with respect to GPT-4 and humans. Across all
tasks, Stable Diffusion is at least as steerable with respect
to GPT-4 as it is with humans. This result holds even when
we normalize for initial score (i.e., to reduce the effect of
baseline prompt writing ability and just examine ability to
use feedback), indicating that GPT-4 is better at adapting
to feedback compared to human users. This additional plot
and more discussion is included in Appendix A.16.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Prompts Submitted

0

20

40

60

80

100

Av
er

ag
e 

Sc
or

e

GPT-4 (Feedback)
GPT-4 (No feedback)
Gemini (Feedback)
Gemini (No feedback)

Figure 8. Averaged trajectory of GPT-4 and Gemini. “No feedback”
does not use any feedback from previously generated images.

6. Discussion
As demonstrated in our analysis, the ArtWhisperer and
ArtWhisperer-Validation datasets can provide insights into
user prompting strategies and enables us to assess model
steerability for individual tasks and groups of tasks. What
makes our dataset particularly useful is the controlled inter-
active environment, where users work toward a fixed goal,
that we capture data in.

One of the most exciting use cases we see for our dataset is
to create synthetic humans for prompt generation. For exam-
ple, similar to the method described in Promptist (Hao et al.,
2022), we imagine fine-tuning a large language model with
our dataset to generate prompt trajectories (i.e., rather than
an optimized prompt) using similar exploration strategies
as a human prompter. These synthetic prompters could be
based on multimodal models like OpenFlamingo (Awadalla
et al., 2023) or text-only models and use score-feedback to
condition the trajectory generation. As an initial proof-of-
concept, we fine-tuned a MT0-large model (Muennighoff
et al., 2022) model on our dataset and found the fine-tuned
model can indeed behave similarly to human users (see

8
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Appendix A.15). It is also feasible that a VLM like the
ones assessed in Section 5 could be used as synthetic hu-
mans through few-shot prompting, obviating the need for
fine-tuning. These synthetic prompters have several uses:

1. Automating measurement of text-to-image model steer-
ability by using synthetic users in place of real human
prompters. While we believe our proposed steerability
metric is effective, its main limitation currently is the
requirement for human annotations.

2. Incorporating steerability in the objective function for
text-to-image models. By representing steerability as
a function of synthetic users, it becomes possible to
explicitly optimize a model for steerability.

3. Generating human readable image captions that are
compatible with a Stable Diffusion model by using the
synthetic prompter to optimize the token representation
of the prompt. This is related to (Zhu et al., 2023),
where the authors use models to revise prompts.

Additionally, our dataset can be used for further analysis on
human prompting strategies beyond what we discussed in
the paper. For example, one question we only touched upon
is whether we can compare human prompters to automated
prompt optimization methods (e.g., do humans behave sim-
ilar to some gradient-based optimization approach in the
prompt embedding space?). There are also potential uses
for crafting better image similarity metrics using the human
ratings we collected.

Finally, as discussed in Section 5, our dataset and method-
ology is useful for assessing vision-language models. In
particular, we are able to capture the ability of models to
utilize feedback to adapt to a given user or tool.

Impact Statement
Our dataset and findings provide quantitative insights on
how people interact with generative AI that we hope can
be used to evaluate and design AI that are easier for people
to use. There is, of course, a broader concern that bad
actors may abuse generative AI models. While we share
this concern, addressing it is out of scope for this work.
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A. Appendix
A.1. Dataset Limitations

A potential limitation in our dataset is the diversity of unique images. However, as shown in our analysis (Sections 3, 4.2),
we have multiple illuminating findings despite having <200 unique images in our dataset. In collecting this dataset, there
was a tradeoff – given a fixed budget to collect data, we could choose to collect more unique images or collect more user
interactions per image. We opted to collect data on a fewer number of unique images with more users interacting with each
image, as we believed this data would contain more insights into human interaction with the AI.

A.2. Information on Wikipedia pages scraped

Table 2 presents a list of the Wikipedia pages used to select real-world target images (see Section 2.1). We extracted images
from each listed Wikipedia page. We then uniformly sample a category and subsequently sample an image from a page in
that category. This ensures a diverse set of images, which is important given that some of the Wikipedia pages contain many
more images than others (e.g., Paris has 10 times more usable images than Social_documentary_photography).

Table 2. Wikipedia images used.

Category Wikipedia Pages

Art Art, Fine_art, Fine-art_photography,
History_of_art, Painting

Astro Astrophotography

Buildings Architectural_photography, Architecture,
Real_estate

City New_York_City, Paris, San_Francisco, Seoul

Fashion Fashion_design, Fashion_photography,
Model_(person)

General
Aerial_photography, Culture,

Documentary_photography, Photography,
Social_documentary_photography

Landscape Landscape_photography

Nature Nature_photography

Plants Flower

Portrait Mug_shot, Portrait_photography, Selfie

US Americans, President_of_the_United_States,
United_States

Wildlife
Aquatic_ecosystem, Macro_photography,
Marine_habitats, Wildlife_observation,

Wildlife_photography

A.3. Examples of images generated for target parameter selection

Here we provide a few examples of images generated during target parameter selection (see Section 2.1). In Figure 9, we
show the original (real) photograph (this is the target image shown to users), some examples of generated images using the
caption as a prompt (i.e., the hidden goal for users), and the generated image using the selected parameters with the caption
as a prompt (i.e., the generated image when a user finds the “best” prompt using the selected seed, si∗ , from Equation 1). In
Figure 10, we show the target image shown to users (ti∗ from Equation 2), examples of generated images using the caption
on various random seeds, as well as the image generated when using the seed provided to users (i.e., using the seed si∗2 ). For
both Figures, scores are normalized with respect to the rightmost image in each row – this image is guaranteed to score 100
/ 100. Notice that the images generated from other seeds (the center two images) are also similar in quality to the image
generated from the selected seed (the rightmost image).
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Figure 9. Wikipedia image examples generated using the target prompt (for target selection). From left to right: (1) original Wikipedia
captions (the target prompt), (2) original photograph, (3-4) images generated with random seeds, (5) image generated using the fixed seed
provided to users.

Figure 10. AI-Generated image examples on the target prompt (for target selection). From left to right: (1) target prompt, (2) target image
(uses a different seed than the user’s seed), (3-4) images generated with random seeds, (5) image generated using the fixed seed provided
to users.
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A.4. Scoring function details

In Section 2.2, we defined the scoring function, score(x, t) as

score(x, t) = max(0,min(100, α ·
∣∣∣∣∣∣∣∣ C(x)

||C(x)||2
− C(t)

||C(t)||2

∣∣∣∣∣∣∣∣
2

+ β)),

α and β are constants used to scale the embedding distance prior to clipping the score. To select α and β, we used a small
dataset of interactions collected by the authors prior to the main dataset collection (this data is not included in the released
dataset). This dataset contains groups of images paired with scores in the range [0, 1]. For each target image in this small
dataset (5 in total), we add the following images to the dataset:

1. AI-generated images that use the target prompt but with a different seed. These images are assigned a score of 1.

2. The images corresponding to the human-generated prompts. These images are assigned a score of 0.5.

3. AI-generated images that use a different prompt than the target prompt. These images are assigned a score of 0.

The intuition here is that with the AI-generated images, we can assume using the same target prompt with a different seed
should generate a similar image hence the highest score possible (1). Using a different prompt (from our prompt dataset
(Santana, 2022)), however, should result in an entirely different image hence the lowest score possible (0). Images generated
by people are assumed to be somewhere in between, hence the score of 0.5.

We then fit a linear regression model to this dataset (to predict score given the CLIP image embedding), using balanced
sampling across the image groups. This linear model has parameters

α′ = −1.503
β′ = 1.791

Since our score range is [0, 100], we scale the model parameters by 100, resulting in

α′′ = −150.3
β′′ = 179.1

We also add a “score adjustment” term that attempts to normalize image difficulty. In particular, for each target image, we
compute the un-clipped score for the target image tk and the image generated using the target prompt with, xk:

unclipped_score(xk, tk) = α′′ ·
∣∣∣∣∣∣∣∣ C(xk)

||C(xk)||2
− C(tk)

||C(tk)||2

∣∣∣∣∣∣∣∣
2

+ β′′

This score assess the score a user would receive if they exactly entered the target prompt. We fix this value as 100 (i.e.,
a perfect score prior to clipping), and set the score adjustment parameter, ck, to appropriately normalize this score. In
particular,

ck =
100

unclipped_score(xk, tk)
,

and then we obtain target specific parameters,

αk = −150.3 · ck
βk = 179.1 · ck

Note that this means each target image may have slightly different parameters as the ck values vary across images.

A.5. Additional information on running the game

Why we limit user input? We deliberately limited user input to only a prompt, as opposed to giving users access to the
random seed or other model hyperparameters. This was done for a few reasons:
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Figure 11. Game instructions

1. We wanted all users who enter the same prompt for a given image to see the same output.

2. We wanted to limit the complexity of the task for users less/unfamiliar with text-to-image models.

3. We wanted users to generate new prompts and not just resample new seeds until getting lucky. While users could still
employ a version of this “random resampling” strategy by making small changes to their prompts, we did not want to
encourage this practice through a seed parameter. This random resampling strategy, while useful in practice, is not such
an interesting result for research purposes as it is easy to simulate random resampling strategies without any user input.

Additional Technical Details For the generative model, we use SD v2.1 (Rombach et al., 2022b) with the DPM Multi-step
Scheduler (Lu et al., 2022) and run the model for 20 iterations. AI-generated target images use the same parameters but run
for 50 iterations. 20 iterations was selected to limit latency for players to 1-3 seconds depending on the player’s internet
connection. All images are generated at size 512 × 512.

Game instructions Game instructions are provided in Figure 11. Here we show the main instructions provided on how to
play (top), as well as the tool-tips given for positive prompts (lower left) and negative prompts (lower right).

Crowd workers Crowd workers are adults from the US. They were paid at a rate of $12.00 per hour for roughly 20
minutes of time. Additionally, they were provided bonus payment of between $0.10 − $0.50 per image they received a
perfect score on (depending on the image difficulty). In total, we paid about 600 for recruiting the crowd workers.

A.6. Additional Stats

In Figure 12, we plot the distribution of user scores across target images. The left plot shows the initial and final scores. The
shift in score to the right indicates the improvement in generated image similarity to target image. The average initial score
is 56.7 (median is 57.0), and the average final score is 73.0 (median is 75.0). On the left, we plot the distribution of score
improvement (the difference between the final and initial scores). The large density of 0 or close to 0 improvement is due to
the “easiest” target images that users were able to generated similar examples of on their initial attempt (for example, see the
first two rows of Figure 19). Most interactions result in a score difference of at most 50 points, as most users score above 50
points on their initial attempt, limiting the amount of improvement possible (the median initial score is 57.0).

In Figure 13, we plot how often a user’s score decreases, increases, or remains constant between prompts. Each point
represents a series of user interactions to a generate a single target image. We note that the ratio of score increases to score
decreases is similar, with the number of score increases being slightly higher. This indicates that score improvement (and so,
an increase in the similarity of the generated to target image) may be effectively represented by a stochastic process with a
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Figure 12. On the left: distribution of initial and final scores (across users and targets). Average initial score is 56.7; average final score is
73.0. On the right: distribution of image improvement (difference between final and initial score). Average score improvement is 16.3.
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Figure 13. How score changes between queries. Each circle represents a series of user interactions to a generate a single target image. In
blue, we plot the number of times a user’s score decreases over that interaction (between two queries); similarly, in orange and green we
plot the number of times the user’s score increases or stays constant between prompts. We also plot best fit lines (fit using linear least
squares).

slight bias towards score increases. This observation is the basis on which we construct our proposed steerability metric (i.e.,
representing score change as a stochastic process).

A.7. ArtWhisperer-Validation Statistics

In Table 3, we provide general statistics about the ArtWhisperer-Validation Dataset. This information mirrors that statistics
provided in Table 1 for the ArtWhisperer-Validation dataset. We also provide demographic information collected through
Prolific in Figure 14. Users were sampled through Prolific to guarantee an even split of male and female users.

A.8. Results for Alternative Text Embeddings

In Figure 15, we replicate the analysis from Figure 6 but using a BERT (Devlin et al., 2018) embedding rather than a CLIP
embedding. We note similar findings and significance to the CLIP embedding analysis. We also repeated this analysis using
the GLOVE (Pennington et al., 2014) text embedding and again see similar results. This indicates that our analysis is robust
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Figure 14. Demographic information for the paid crowd workers in the ArtWhisperer-Validation dataset.
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Table 3. ArtWhisperer-Validation Dataset Overview. Each row contains summary data for a different subset of the dataset. Subsets may
overlap.

# Players # Target
Images

# Inter-
actions

Average #
Prompts

Average
Score

Median
Duration Category

140 51 4572 8.14 54.77 24 s Total

73 9 762 7.47 47.55 20 s Famous person?
134 42 3937 8.19 54.58 23 s Manmade?
124 26 2154 7.69 54.61 24 s Real image?
123 24 2424 9.32 50.96 24 s Art?
94 13 1044 7.05 57.93 25 s Famous landmark?
72 9 858 8.94 50.33 26 s Nature?
70 8 730 8.11 60.25 25 s Sci-fi or space?
94 16 1501 8.25 54.21 24 s People?
123 25 2418 8.57 54.90 24 s AI image?
75 9 786 7.42 59.11 23 s City?
75 9 808 8.16 57.56 26 s Fantasy?
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Figure 15. Same plot as Figure 6 but using the BERT (Devlin et al., 2018) text embedding instead of CLIP.

across text representations.

A.9. Additional example images

We provide additional examples of image trajectories and diverse images in Figures 16 and 17.

A.10. Algorithm for steerability

We describe the algorithm for assessing steerability in more detail in Algorithm 1. Here, we define three procedures.
EstimateStoppingTime estimates the steerability of a target image. We define a set of score bins; we chose 5 equally
sized bins so that there was sufficient data to cover each bin. We also use a regularizer, ϵ. What ϵ essentially does is encode
a prior that from any given score, the transition to a new score is uniformly random. Then for each target image, we find
the empirical score transition probabilities in EstimateMarkovChain and use Monte Carlo simulation to estimate the
stopping time in RunMonteCarloEstimation.

A.11. Steerability across models

In Figure 18, we plot the steerability across SDv2.1 and SDv1.5. As described in Section 4.2, images of nature, sci-fi or
space, and real images have the largest differences in steerability between the two models. “Nature” is the only image group
with a steerability difference greater than the standard deviation of the mean. Other image groups seem to have similar
performance across both SDv2.1 and SDv1.5. This suggests that SDv2.1 only makes minor improvement over SDv1.5
across most image categories.
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Figure 16. More examples of user trajectories, as in Figure 2.
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Figure 17. More examples of diverse, high-scoring prompts, as in Figure 4.
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Algorithm 1 Image Steerability Estimation
1: define function EstimateSteerability
2: Input: set of images, targetImages
3: Initialize array steerability to track stopping times
4: Initialize scoreBins← [[0, 20], [21, 40], [41, 60], [61, 80], [81, 100]]
5: Initialize ϵ← 1
6: for imagei ∈ targetImages do
7: markovi← EstimateMarkovChain(imagei, scoreBins, ϵ)
8: steerability[i]← RunMonteCarloEstimation(markovi)
9: endfor

10: Return: E[steerability]

1: define function EstimateMarkovChain
2: Input: targetImage, bins, ϵ
3: Initialize bin pair count as counts[(bini, binj)]← ϵ, using transitions from a dummy node to model the first prompt

submitted
4: for useri ← user1 to usern do
5: for scorei,j ← scorei,1 to scorei,d do
6: Convert scorei,j to bin number, bini,j
7: Increment counts[(bini−1,j , bini,j)] by 1
8: endfor
9: endfor

10: Normalize empirical transition counts to find empirical node transition probabilities
11: Define markovtargetImage using the node transition probabilities
12: Return: markovtargetImage

1: define function RunMonteCarloEstimation
2: Input: markovChain
3: Run Monte Carlo simulation to estimate time to reach the last bin for markovChain, starting from the dummy (initial)

node
4: Return: Estimated stopping time

A.12. Steerability scores for individual images

In Figure 19, we provide some example images along with their steerability scores. Note that more simple images with
well-defined content that likely has high presence in the model’s training data (e.g., the first two rows–a fly on a leaf; a
drawing of Barack Obama, well-known public figure) have smaller steerability values, indicating they are easier to steer.
However, more complex content that is also more ambiguous for users (e.g., the last three rows), have larger steerability
indicating greater difficulty in steering.

We also find that image steerability is negatively correlated with image variance (across seeds for a fixed prompt). Consider
fixing a target prompt and sampling the model across many seeds. When the model outputs a wide variety of images, the
variance of the output increases (i.e., computed in the image embedding space). We find that target images that have higher
variance are also less steerable (indicated by a higher expected stopping time). In other words, if repeatedly sampling a
model with the same prompt can produce a wide range of outputs (high variance), then the model is likely less steerable for
the content in those generated images. We plot this result in Figure 20.

A.13. Content knowledge increases steerability

Knowledge of an image’s subject matter increases steerability. In Figure 21, we plot the steerability across two groups of
individuals – those who had subject matter knowledge and those would did not. To define this split, we only consider the
subset of images that contain either a famous person or landmark. Users were defined to have knowledge of the subject
matter when they referenced a key word (e.g., the famous person’s name) in at least one of their submitted prompts. We then
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Figure 18. Steerability across image groups, comparing between models using a subset of the images. ”Model 1“ is Stable Diffusion v2.1
and ”Model 2“ is Stable Diffusion v1.5. Note only a subset of the images are used to compare the two models, hence the differences
between ”Model 1“ and the results in Figure 7.

computed steerability across these two groups of users. As is indicated in the plot, users with subject matter knowledge
found the model to be significantly more steerable.

A.14. Additional discussion around human ratings

Here we provide plots for the analysis using human ratings. In Figure 22, we show a scatter plot of scores and human
ratings. We also plot a best fit line which has a correlation of 0.597, indicating that our score function produces values that
are indeed similar to the human ratings.

We also provide a plot comparing the steerability value calculated using our score function and calculated using the human
ratings in Figure 23. Error bars indicate the standard error. Images depicting sci-fi or space have the greatest difference
(humans seem to be harsher judges of their generated images’ similarity to the target. However, for most image groups, the
two steerability scores are quite close and generally exceed a 95% confidence interval.

A.14.1. ON OUR CHOICE OF SCORING METRIC AND ITS RELATION TO HUMAN RATINGS

These results validate our scoring metric based on CLIP. As is well known, embeddings extracted from deep models are
reasonable at assessing image similarity (Zhang et al., 2018). We chose to base our scoring metric using the CLIP embedding
in particular, however, for two reasons: (1) its recent usage in the literature for effectively representing semantic meaning in
images (Radford et al., 2021; Khandelwal et al., 2022) and (2) after testing a number of methods on a small subset of trial
data before launching our data collection, we found the CLIP embedding was comparable or better than any of the other
methods including ensemble-based approaches. (The methods we tested include embeddings extracted from other deep
learning architectures (including ResNet (He et al., 2016) and VGG (Simonyan & Zisserman, 2014)) as well as classical
image embeddings (like color histograms).)

Despite this, as is seen in Figure 22, the CLIP-based score does not perfectly correlate with the human ratings. There are
two reasons the Pearson correlation coefficient is not larger: (1) noise in the human rating responses and (2) deficiencies
in the CLIP embeddings. While improving the image similarity metric is desirable, it was not the focus of our paper. For
running ArtWhisperer, we only required a metric that worked reasonably well to generate a “reasonable score” (i.e., which
we define as showing at least moderate correlation with recorded human rating assessments). Any subsequent analysis can
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Figure 19. Steerability of individual target images. Each row is a different target image. The first four columns are examples of user
submitted prompts with the corresponding AI-generated images. Rightmost column shows the target image along with the steerability of
that image. A smaller steerability value corresponds to the model being easier to steer for the given target image.
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Figure 20. Steerability decreases (expected stopping time increases) when a model has higher variance given a target prompt.
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Figure 21. Steerability across familiarity with target image content. When a user is more familiar with the subject matter of the target
image, it is significantly easier to steer the model.
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Figure 22. Scatter plot of scores and human ratings. Best fit line (linear regression) is shown in black.

of course use specialized similarity metrics on our data as we release all target and generated images.

The results plotted in Figure 23 also affirm CLIP as a reasonable choice for a metric – the score (based on the CLIP
embedding) and human rating, while resulting in different steerability scores, offer similar conclusions across most image
categories (e.g., the images that are AI-generated are less steerable than real images).

A.15. Synthetic Prompters

In this section, we describe a proof-of-concept Synthetic prompter based on the ArtWhisperer dataset. We fine-tuned a
pretrained MT0-large model (Muennighoff et al., 2022) using the IA3 method (Liu et al., 2022), training for 30 epochs and
using a linearly decaying learning rate starting from 10−3 with the AdamW optimizer (Loshchilov & Hutter, 2017).

Our train dataset is based on the main ArtWhisperer dataset. We first randomly sampled 80% of the ArtWhisperer dataset
for training, with sampling taken over the target images (to ensure there are unseen images we can test on). For each user
trajectory in the training set, we sampled a sliding window of user prompts. This is done to ensure the total prompt length of
the model isn’t too long to enable efficient training. Recalling that 50% of the trajectories in the ArtWhisperer dataset have
≤ 5 total prompts, we select a window size of 6 as a reasonable cutoff (allowing a final prompt generation after seeing the 5
previous prompts).

Given that MT0-large is a text-only model, we need a way of encoding the image information for the model to simulate a
user prompting on the given image. We opt to simply provide the model with the target prompt; after fine-tuning, the model
uses the target prompt to condition its generation but does not repeat it verbatim. In addition to the target prompt, we also
provide the model with a history of user prompts and scores indicating how well the image generated by a given prompt
matches the target image. For training, we define a loss function on the next-prompt token probabilities to encourage the
model to learn to predict subsequent prompts given the prompt and score histories.

The prompt is shown in Figure 24. The “goal prompt” (the target prompt) conditions the model on the target image content.
The “user_score_i” values are set based on evaluating the distance between the target and generated image, though in
general, we could use any metric of our choosing; the “user_prompt_i” values are set based on previously generated prompts.
“user_score_N” is used to condition generation of a new prompt, and enables easy re-sampling by changing the “score” of
the new prompt. Note this score is entered pre-evaluation, so we can set it to any value we like; in our evaluations, we set it
to a randomly sampled value between 60 and 90.

This approach is similar to prior work like in Promptist (Hao et al., 2022), where the authors fine-tune models to generate
high-quality prompts given a human input through supervised learning and reinforcement learning approaches, or in (Zhu
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Figure 23. Comparing steerability across image groups when computing steerability using the score function and when using the human
rating function.

Figure 24. Prompt format for training and querying the synthetic prompter. N ≤ 6 in our training and evaluation.

et al., 2023), where the authors also use in-context learning approaches with demonstrations of the initial and final prompts
in human trajectories. In both works, the goal is to optimize a prompt. Here, however, we seek to generate a trajectory of
prompts that models how a human may behave. Thus while similar in principle, our objective function is different – we train
the model to generate the next prompt in a sequence rather than the best performing prompt from an initial prompt.

A.15.1. ANALYSIS OF SYNTHETIC PROMPTERS

Here we present an initial analysis that demonstrates the effectiveness of our dataset for training synthetic human prompters.
After fine-tuning, we evaluate the synthetic prompter on the held-out test set. The target images in this test set (39 images)
were excluded from all training data. For each image, we generate 10 sample trajectories. In Figure 25, we plot the average
best score for the synthetic prompter and the real human prompters on the same test data. Note that while the synthetic
prompter starts with a higher average, both approach a similar average score after 6 prompts. This suggests that the synthetic
prompter indeed shares some similarities with the human prompters.

In Figure 26, we plot two sample trajectories generated by the synthetic prompter. Note that across images, the prompter
makes incremental changes; these changes are not restricted to appending phrases, but can involve substitutions and deletions
throughout the prompt; this is in contrast to other automated prompters that exclusively complete text (these methods are not
designed to simulate human behavior) (Hao et al., 2022).
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Figure 25. Comparing score progression for the synthetic prompter to real human users.

Figure 26. Example synthetic prompter trajectories. First 3 images show prompt progression for the synthetic prompter. The target image
is shown in the rightmost column.
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Figure 27. Comparison of additional prompting methods for GPT-4 playing the ArtWhisperer game.

A.16. Assessing VLMs for Feedback Utilization

In Figure 27, we evaluate several methods of prompting. This figure replicates the GPT-4 plots from Figure 8 and adds
two additional prompting methods – “No score” and “Chain-of-thought.” In “No score,” the model is provided feedback as
normal, but only the generated image and not the ArtWhisperer score as well. In “Chain-of-thought,” the model is provided
both the generated image and score feedback, but the VLM prompt used to update the old prompt used for SD uses a
chain-of-thought reasoning approach. While all forms of feedback beat the baseline of no feedback, using a score and not
chain-of-thought reasoning has the highest performance. Interestingly, chain-of-thought reasoning, which typically increases
model performance across a variety of tasks (Wei et al., 2022), has lower performance here. Noting that performance for
chain-of-thought only begins to diverge after 3 prompts have been submitted, we believe the decrease in performance may
be due to the increased context length resulting from chain-of-thought reasoning.

All the prompts used are included in Table 4.

27



ArtWhisperer: A Dataset for Characterizing Human-AI Interactions in Artistic Creations

Table 4. Prompts used to have vision language models play ArtWhisperer.

System Prompts
Purpose Prompt
System prompt (Default) You are playing a game using a text-to-image AI model.

In the game, you will be shown a target image. Your goal
is to write a prompt that, when input to the text-to-image
model, generates a similar image to the target. You will
be scored on the similarity between the generated image
and the target image on a scale from 0-100. Your goal is to
receive a 100/100.
You will first be shown the target image. The game will
then proceed in rounds. Each round, you must write a
prompt. You will then be shown the image generated by
the text-to-image model using your prompt, as well as a
score assessing its similarity to the target. You can use this
feedback to update your prompt in the next round.
Referencing NSFW content will result in a black image
and 0/100 score. Be descriptive yet concise. Each prompt
must describe the target image in less than 50 words.

System prompt (No score) You are playing a game using a text-to-image AI model.
In the game, you will be shown a target image. Your goal
is to write a prompt that, when input to the text-to-image
model, generates a similar image to the target.
You will first be shown the target image. The game will
then proceed in rounds. Each round, you must write a
prompt. You will then be shown the image generated by
the text-to-image model using your prompt. You can use
this feedback to update your prompt in the next round.
Referencing NSFW content will result in a black image.
Be descriptive yet concise. Each prompt must describe the
target image in less than 50 words.

User Prompts
Purpose Prompt
Initialization prompt (to get the first textual description of
the target for all prompting approaches)

Target image: <image_object>

Feedback and prompt updating (Feedback) Using this prompt, the AI generated the following im-
age: <image_object> You received a score of <ArtWhis-
perer_score>/100 for this image. Update your prompt to
make the generated image closer to the target image.

Feedback and prompt updating (No score) Using this prompt, the AI generated the following image:
<image_object> Update your prompt to make the generated
image closer to the target image.

Feedback and prompt updating (Chain-of-Thought) Using this prompt, the AI generated the following im-
age: <image_object> You received a score of <ArtWhis-
perer_score>/100 for this image. Update your prompt to
make the generated image closer to the target image. Rea-
son step-by-step. First determine what is different between
the generated and target images. Then update the prompt
to better align the generated image with the target. Delimit
the updated prompt with <prompt> tags.
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