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Abstract

Large Visual Language Models (LVLMs) have001
demonstrated impressive capabilities across002
tasks. However, their trustworthiness is often003
challenged by hallucinations. We attribute this004
issue to modality misalignment and the inher-005
ent hallucinations of Large Language Models006
(LLMs), which serve as the “brain” of LVLMs.007
Multimodal human preference alignment is a008
widely used approach to mitigate LVLM hal-009
lucinations. However, existing methods focus010
on response-level alignment while neglecting011
alignment at the image and instruction levels,012
leading to modality misalignment. For this, we013
propose Entity-centric Multimodal Preference014
Optimization (EMPO), which achieves better015
modality alignment than existing human prefer-016
ence alignment methods. Besides, to overcome017
the scarcity of high-quality multimodal prefer-018
ence data and help LVLMs mitigate hallucina-019
tions, we introduce a fine-grained multimodal020
preference data construction process that labels021
preferences at the entity level—all without re-022
quiring manual annotations. Experiments on023
two human preference datasets and five multi-024
modal hallucination benchmarks demonstrate025
the effectiveness of EMPO, reducing hallucina-026
tion rates by 80.4% on Object HalBench and027
52.6% on MM HalBench, thereby enhancing028
the trustworthiness of LVLMs.029

1 Introduction030

Large Vision-Language Models (LVLMs) have re-031

cently demonstrated impressive capabilities in un-032

derstanding and answering multimodal questions033

(Chen et al., 2023; Liu et al., 2023c, 2024b; Bai034

et al., 2023; Lu et al., 2024; Li et al., 2023a). An035

LVLM typically consists of a visual encoder that036

extracts image features and a large language model037

(LLM) that processes textual questions related to038

the image, generating accurate answers based on039

the provided visual context. To enhance LVLMs040

performance, most studies (Li et al., 2023a; Du041

Figure 1: Causes of hallucinations. 1) Modality mis-
alignment: the LVLM confuses entity semantics and
provides the same answer for semantically conflicting
questions. 2) LLM inherent hallucination: the response
generated by the LVLM is entirely dependent on textual
context, disregarding the image content.

et al., 2022; Lin et al., 2024) follow a two-step 042

learning paradigm: (1) pretraining on large-scale 043

image-text pairs to learn basic multimodal knowl- 044

edge, and (2) fine-tuning on high-quality instruc- 045

tion datasets to improve responsiveness to user in- 046

structions (Liu et al., 2023c; Chen et al., 2024b; 047

Wang et al., 2024c; Bai et al., 2023; Wang et al., 048

2024a). After that, LVLMs can learn to align large 049

language models with visual encoders, enhancing 050

their ability to comprehend and respond to user 051

instructions involving multimodal inputs. 052

Following the well-known hallucination problem 053

in LLMs (Zhang et al., 2023; Li et al., 2023b; Dhu- 054

liawala et al., 2023), recent studies have also identi- 055

fied hallucinations in LVLMs (Li et al., 2023d; Liu 056

et al., 2024a; Gunjal et al., 2024; Guan et al., 2024; 057

Jiang et al., 2024b,a). Specifically, there are usually 058

two causes of LVLM hallucinations. The first type 059

is modality misalignment (Liu et al., 2024a; Lan 060

et al., 2024), which arises from the modality gap 061

between the visual encoder and the LLM in LVLM, 062

resulting in mismatches between image content 063

and semantic concepts. For instance, as shown in 064

Figure 1, the LVLM (Liu et al., 2023c) identifies 065
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the sign on the farmland LVLM (Liu et al., 2023c)066

correctly, but it mistakes its meanings as "no park-067

ing", instead of "no motor vehicles allowed". The068

second type is LLM inherent hallucinations (Lan069

et al., 2024). When the LLM inherent knowledge070

is either incorrect or conflicts with visual inputs,071

hallucinations manifest as entity co-occurrence phe-072

nomena (Lan et al., 2024). For example, as shown073

in Figure 1, "car" and "road" frequently co-occur074

in the LLM’s pretraining corpus. As a result, the075

LVLM erroneously infers that whenever a "road" is076

present, a "car" must also be present, disregarding077

the image content. To address these issues, some078

recent approaches focus on reducing hallucinations079

through data denoising (Liu et al., 2023d; Yu et al.,080

2024a; Liu et al., 2023a; Hu et al., 2023), but this081

typically requires costly annotations. Some other082

studies (Yu et al., 2024c,b; Sun et al., 2023; Zhou083

et al., 2024; Wang et al., 2024b; Li et al., 2023c)084

try to align responses with human preferences, yet085

neglecting modality alignment between images and086

questions, which usually leads to mismatches be-087

tween entity features and semantic concepts.088

In this paper, we propose to mitigate the modal-089

ity misalignment of LVLMs in two aspects: (1) At090

the method level, we propose Entity-centric Multi-091

modal Preference Optimization (EMPO), a variant092

of DPO (Rafailov et al., 2024), which is an efficient093

human preference optimization method for LLMs.094

EMPO mitigates modality misalignment in LVLM095

by aligning human preferences across image, in-096

struction, and response modalities. In addition,097

EMPO helps LVLM efficiently align image enti-098

ties with semantic concepts through entity-grained099

preference weighting. (2) At the data level, we100

construct a fine-grained multimodal human prefer-101

ence dataset. As shown in Figure 2, we construct102

rejected examples that are similar to but different103

from the original data in three modalities: images,104

questions, and responses. These preference ex-105

amples disrupt the co-occurrence relationships of106

entities with the original data, helping LVLM over-107

come LLM inherent hallucinations. Notably, our108

dataset expansion process does not rely on costly109

manual annotations and offers excellent scalabil-110

ity. The experimental results show that EMPO111

reduce hallucination rates by 80.4% on Object Hal-112

Bench (Rohrbach et al., 2018) and by 52.6% on113

MM HalBench (Sun et al., 2023).114

Our contributions are tri-fold: (1) We propose115

EMPO, the entity-centric multimodal preference116

optimization framework to mitigate the hallucina-117

tion of LVLMs by aligning entity features with 118

semantic concepts. (2) We introduce a multimodal 119

fine-grained human preference dataset construc- 120

tion process that requires no manual annotation to 121

overcome the scarcity of high-quality multimodal 122

preference data. (3) Comprehensive experiments 123

conducted on five widely-used benchmarks vali- 124

date the effectiveness of the EMPO. 125

2 Related Work 126

Large Vision Language Model. Inspired by the 127

success of LLMs (Achiam et al., 2023; Wu et al., 128

2023a; Touvron et al., 2023; Dao and Gu, 2024), 129

recent research on LVLMs (Zhu et al., 2023; Chen 130

et al., 2023; Liu et al., 2023c, 2024b; Bai et al., 131

2023; Liu et al., 2023b; Lu et al., 2024; Zhang et al., 132

2024; Li et al., 2023a) construct LVLMs by align- 133

ing LLMs with visual models, demonstrating su- 134

perior performance across various visual-language 135

tasks compared to earlier studies (Jia et al., 2021; 136

Radford et al., 2021; Ju et al., 2022; Alayrac et al., 137

2022). These recent LVLMs typically adopt a two- 138

stage training strategy. (1) Pretraining on large- 139

scale image-text pairs to learn fundamental multi- 140

modal knowledge (Li et al., 2023a; Du et al., 2022; 141

Lin et al., 2024; Bai et al., 2023). (2) Instruc- 142

tion fine-tuning by using instruction datasets to 143

improve its instruction-following abilities (Chen 144

et al., 2024b; Wang et al., 2024c; Bai et al., 2023; 145

Wang et al., 2024a; Li et al., 2023a, 2024). For in- 146

stance, LLaVA (Li et al., 2024) introduces synthetic 147

instructions to fine-tune an instruction-following 148

LVLM; MiniGPT-v2 (Chen et al., 2023) employs 149

unique task identifiers during fine-tuning to reduce 150

instruction ambiguity. 151

Hallucination in LVLMs. Hallucinations in 152

LVLMs refer to model outputs conflict with the 153

images, instructions, or context (Du et al., 2022; 154

Sun et al., 2023; Jiang et al., 2024c). Recent re- 155

searches (Jiang et al., 2024b; Yin et al., 2023; Yu 156

et al., 2024a; Liu et al., 2023a; Hu et al., 2023) 157

typically classify hallucinations from two aspects, 158

modality misalignment and LLM inherent hallu- 159

cination. To mitigate the hallucinations, some 160

work (Liu et al., 2023d; Yu et al., 2024a; Hu et al., 161

2023; Liu et al., 2023a) tries to filter long-tail and 162

entity co-occurrence data, while usually suffers 163

from the expensive labeling cost. Li et al. (2023e); 164

Jiang et al. (2023); Tong et al. (2024); Cao et al. 165

(2024); Jiang et al. (2024d,b) has recognized that 166

modal misalignment is a significant cause of hal- 167
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lucinations but ignores the LLM inherent halluci-168

nations. Some research effectively reduces halluci-169

nations by using post-processing methods, such as170

optimizing decoding strategies (Gao et al., 2024b;171

Huang et al., 2024; Yang et al., 2024; Gao et al.,172

2024a; Leng et al., 2024) and applying post-hoc173

corrections (Lee et al., 2023; Zhou et al., 2023;174

Yin et al., 2023) but introducing additional infer-175

ence cost. In contrast, our EMPO leverages entity-176

level semantic alignment to help LVLM overcome177

LLM’s inherent hallucinations, without requiring178

expensive manual annotations or additional infer-179

ence costs.180

Human Preference Alignment. Human pref-181

erence alignment has been shown to be an ef-182

fective method for mitigating hallucinations in183

LLMs (Naseem et al., 2024; Jiang et al., 2024c;184

Huang et al., 2023; Ji et al., 2024). In the LVLM185

area, LLaVA-RLHF (Sun et al., 2023) firstly pro-186

pose to apply human preference alignment to re-187

duce hallucinations in LVLMs, and establishes188

a foundational framework for multimodal pref-189

erence data construction. RLHF-V (Yu et al.,190

2024b) demonstrates that fine-grained human pref-191

erence alignment can improve the visual localiza-192

tion capabilities of LVLMs. RLAIF-V (Yu et al.,193

2024c) scores individual text segments and utilizes194

open-source LVLM for preference construction.195

POVID (Zhou et al., 2024) uses images with Gaus-196

sian noise to induce LVLMs to generate rejected197

preference examples. However, these methods fo-198

cus solely on preferences at the response level, ne-199

glecting preferences related to the visual and ques-200

tion conditions. The recent work MDPO (Wang201

et al., 2024b) try to address image-conditional pref-202

erence alignment, but it overlooks the instruction203

modality preference and only makes a preliminary204

attempt to address image modality preference. In205

contrast, our proposed EMPO incorporates prefer-206

ences across all three modalities—image, instruc-207

tion, and response—and leverages entity-centric208

preferences to enable LVLMs to align image con-209

tent and semantic concepts more efficiently.210

3 Method211

This work includes multimodal preference align-212

ment and fine-grained dataset construction. In213

Section 3.1, we introduce the preliminaries of hu-214

man preference alignment and the response pref-215

erence form of Direct Preference Optimization216

(DPO) (Rafailov et al., 2024) in the multimodal217

domain. In Section 3.2, we elaborate on how our 218

EMPO framework aligns entity features with se- 219

mantic concepts to address the modality misalign- 220

ment issue. Section 3.3 details the construction of 221

the high-quality, fine-grained preference dataset, 222

designed to help LVLMs overcome the inherent 223

hallucination issues of LLMs. 224

3.1 Preliminaries 225

To ensure LVLMs effectively focus on multi- 226

ple modalities while aligning with human prefer- 227

ences, we adopt the Direct Preference Optimization 228

(DPO) (Rafailov et al., 2024) for training. In the 229

context of LLMs, human preference alignment in- 230

volves two parts: the instruction and the response. 231

Given an instruction q, LLM generates multiple 232

candidate responses, and a reward model identi- 233

fies the chosen response yw that is superior to the 234

rejected one yl. DPO is one of the primary meth- 235

ods to achieve human preference alignment. It 236

implicitly models the reward function in Reinforce- 237

ment Learning from Human Feedback (RLHF) (Yu 238

et al., 2024b) and directly optimizes the model pa- 239

rameters to maximize the difference between the 240

reward r(q, yw) for the chosen response and the 241

reward r(q, yl) for the rejected response. Specifi- 242

cally, given a policy model πθ and a reward model 243

πref , DPO formulate the reward function as 244

r(q, y) = β log
πθ(y | q)
πref(y | q)

+ Z(q), (1) 245

where Z(q) is a partition function and β is a hy- 246

perparameter that controls the deviation from the 247

reference model. DPO directly optimizes the pol- 248

icy model based on this implicit reward model to 249

align with preference data, 250

LDPO = − log σ(r(q, yw)− r(q, yl))

= − log σ(β log
πθ (yw | q)
πref (yw | q) − β log

πθ (yl | q)
πref (yl | q)

).
(2) 251

In the context of multimodal, aligning human pref- 252

erence always includes three modalities (image, 253

instruction, response) (Yu et al., 2024c,b; Sun et al., 254

2023; Zhou et al., 2024; Wang et al., 2024b; Li 255

et al., 2023c). DPO minimizes a new objective 256

conditioned on the image v and instruction q, 257

Lresponse = − log σ(β log
πθ (yw | v, q)
πref (yw | v, q)

− β log
πθ (yl | v, q)
πref (yl | v, q)

).

(3) 258

3



Where are the man 

and his dog located in 

this image?

Where are the man 

and the lion located 

in this image?

The man and the lion

are located on the 

beach, near the ocean.

The man and his dog

are located on the 

beach, near the ocean.

Entity-centric Multimodal 

Preference Optimization (EMPO)

Final LVLM

(1) Multimodal Preference Construction (2) Multimodal Preference Alignment

Rejected Image Preference Rejected Instruction Preference Rejected Response Preference

Chosen Preference

Collected Multimodal Preference

Figure 2: Illustration of our framework. (1) At the data level, we construct a fine-grained preference alignment
dataset across three modalities: image, instruction, and response. (2) At the method level, we propose entity-centric
multimodal preference optimization for aligning image contents with semantic concepts.

3.2 Entity-centric Multimodal Preference259

Optimization260

To assess the severity of hallucinations in LVLMs,261

we conducted a pilot experiment, evaluating in-262

ference performance on 200 preference examples263

from the POVID dataset (Zhou et al., 2024). Based264

on the results, we identified two types of errors265

in LVLM responses. (1) Conceptual confusion.266

Owing to modality misalignment, LVLMs may267

misinterpret semantic relationships between en-268

tities, leading to identical responses for conflict-269

ing user instructions. (2) Visual neglect. Consis-270

tent with PAI’s findings (Liu et al., 2024c), when271

provided only textual context, LVLMs generated272

image-agnostic responses, indicating insufficient273

attention to visual content and over-reliance on tex-274

tual cues due to LLM inherent hallucinations. De-275

tailed examples are provided in Appendix A. Based276

on these observations, we propose the optimization277

objective for aligning the image and instruction278

modality preferences:279

Limage = − log σ(β log
πθ (y | vw, q)
πref (y | vw, q)

− β log
πθ (y | vl, q)
πref (y | vl, q)

),

(4)280

281

Linstruction = − log σ(β log
πθ (y | v, qw)
πref (y | v, qw)

− β log
πθ (y | v, ql)
πref (y | v, ql)

),

(5)282

283
Lall = Limage + Linstruction + Lresponse, (6)284

where w represent chosen preference, l represent285

rejected preference, and v, q, y equal to vw, qw, yw.286

Limage is the image preference loss, Linstruction 287

is the instruction preference loss, Lresponse is the 288

response preference loss from Equation 3. 289

In addition, to improve LVLMs’ focus on entity 290

features and address annotation ambiguity and low 291

learning efficiency in the original DPO method (Wu 292

et al., 2023b; Yu et al., 2024b), we assign higher 293

weights to key entities in the image, instruction, 294

and response modalities: 295

log π(y | v, q) = (1− α)
∑

yi /∈ye

log p (yi | v, q, y<i)

+α
∑

yi∈ye

log p (yi | v, q, y<i) ,
(7) 296

where α is a weighting hyperparameter, yi is the i- 297

th token of the response y. Larger α indicates that 298

the corresponding token has a greater influence 299

on preference. In this way, hallucination-related 300

entities are emphasized, helping the LVLM receive 301

stronger human preference feedback and ensuring 302

its factual accuracy. The computation of entity 303

weights is detailed in Section 3.3. 304

Overall, the LVLM optimized with our proposed 305

EMPO can fully align entity features and semantic 306

concepts, thereby mitigating hallucinations. As 307

shown in Figure 3, the inference attention more 308

effectively focuses on key information in the image 309

and instruction tokens after training. 310

3.3 Fine-grained Preference Dataset 311

Construction 312

As shown in Figure 1, the LVLM is affected by 313

the LLM inherent hallucination, and outputs fre- 314

quently co-occurring entities while overlooking the 315
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actual content of the image. Moreover, most ex-316

isting multimodal preference datasets contain only317

the response modality, which does not satisfy our318

EMPO optimization needs.319

To fill this gap, we propose a fine-grained pref-320

erence data construction method that compels321

LVLMs to focus on entity semantic. As shown322

in Figure 2, we remove and replace entities in three323

modalities to construct rejected preference sam-324

ples. These preference examples disrupt the co-325

occurrence relationships of entities in pretraining326

corpus, helping LVLM learn fine-grained differ-327

ences between chosen and rejected samples.328

Image Preference Data Inspired by the phe-329

nomenon that LVLMs may generate non-existent330

objects, we introduce two strategies to construct im-331

age preference rejected samples ql: entity cropping332

and entity replacement. Specifically, we first em-333

ploy GPT4o-mini (Achiam et al., 2023) to identify334

entities in both the instruction and response. Next,335

we use an object detection model to locate these en-336

tities and classify them with GPT4o-mini. Finally,337

we apply a diffusion model (Rombach et al., 2022)338

to either remove 30% of the entities or substitute339

them with visually plausible alternatives, thereby340

generating an edited image as rejected image sam-341

ple vl. These selected entities will be weighted342

as described in Section 3.2. (1) Entity Cropping:343

Use a diffusion model to delete the chosen entities.344

The images with deleted entities serve as rejected345

preference samples to reduce the occurrence of346

non-existent entities generated by the LVLM. (2)347

Entity Replacement: Use a diffusion model to348

replace the chosen entities with incorrect but high-349

frequency entities, helping the LVLM overcome350

entity co-occurrence hallucinations. The prompts351

used for entity identification via GPT4o-mini are352

described in Appendix C.353

Instruction Preference Data We employ354

GPT4o-mini (Achiam et al., 2023) to adapt the355

original instructions in terms of the selected356

entities in Section 3.3, thereby constructing357

rejected instructions ql. We observe that the358

distribution of GPT-modified instructions differs359

from that of the original instructions, resulting in360

a decline in performance (Zhao et al., 2023). To361

address this problem, we also use GPT4o-mini362

to rewrite the chosen instructions, ensuring the363

rewritten instructions qw retain the same meaning.364

The prompts used for constructing both chosen and365

rejected samples are described in the Appendix C.366

Response Preference Data Our response pref- 367

erence data are constructed based on two existing 368

datasets. The first is POVID (Zhou et al., 2024). 369

We collect the rejected image preference sample 370

vl and the rejected instruction preference sample 371

ql from the two paragraphs above and use them as 372

LVLM input to generate incorrect responses as the 373

rejected response preference sample yl. However, 374

the final response preference triple still consists 375

of yw, qw, and yl. The second dataset is RLAIF- 376

V (Yu et al., 2024c), in which we use MiniCPM- 377

V2.5 (Yao et al., 2024) to compare two candidate 378

answers generated by LLaVA-1.5 (Li et al., 2024), 379

thereby establishing preference rankings. Notably, 380

the complete preference construction process for 381

RLAIF-V requires four iterations, whereas POVID 382

achieves this in a single iteration. 383

4 Experiments 384

4.1 Experimental setups 385

Datasets. We conduct experiments on two 386

datasets to demonstrate the generalizability of our 387

method. These datasets differ in their construction 388

methods, data volume, and data distribution. 389

(1) POVID (Zhou et al., 2024) dataset incorpo- 390

rates 17,000 examples randomly sampled from the 391

LLaVA-Instruct-150K dataset (Liu et al., 2023c). 392

Covering various types of tasks such as image 393

captioning, simple Visual instruction responseing 394

(VQA), and logical reasoning, POVID generates 395

preferred responses by modifying the original re- 396

sponses using GPT-4V (OpenAI, 2023). These 397

hallucinated responses introduce potential errors 398

in areas like object co-occurrence, logical relation- 399

ships between entities, and attribute descriptions. 400

(2) RLAIF-V (Yu et al., 2024c) dataset is an 401

open-source feedback dataset created to improve 402

the reliability of Multimodal Large Language Mod- 403

els (MLLMs). It includes high-quality instruc- 404

tions from various sources, such as MSCOCO (Lin 405

et al., 2014a), ShareGPT-4V (Chen et al., 2024a), 406

MovieNet (Huang et al., 2020), Google Land- 407

mark v2 (Weyand et al., 2020), VQA v2 (Goyal 408

et al., 2017), OKVQA (Marino et al., 2019), and 409

TextVQA (Singh et al., 2019), collecting about 410

4,000 instructions in each training round to ensure 411

comprehensive data coverage. Each instruction is 412

paired with different candidate responses generated 413

by open-source LVLMs and is detail-scored. 414

Metrics. We evaluate the methods from two per- 415

spectives: trustworthiness and helpfulness. The 416
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Table 1: Main experimental results. We present our experimental results from two perspectives: trustworthiness and
helpfulness. To demonstrate the scalability of our proposed method, we conduct the experiments on two datasets
(POVID and RLAIF-V). "Annotation" represents model reliance on preference data annotation. "-" means unknown.
The best and second best results are shown in bold and underlined respectively. The experimental data of general
baselines hallucination baselines refer to RLAIF-V (Yu et al., 2024c).

Model Size Annotation
Object MMHal AMBER LLaVA MMEHalBench Bench Bench

CHAIRs ↓ CHAIRi ↓ Score Hall.↓ Acc. F1. Overall Per. Cog.

GPT-4V (OpenAI, 2023) - - 13.6 7.3 3.42 28.1 83.4 87.4 93.1 1459.4 426.8

QWEN-VL (Bai et al., 2023) 10B × 40.4 20.7 2.76 38.5 81.9 86.4 71.9 1487.6 331.6
LLaVA-NeXT (Liu et al., 2024b) 34B × 12.6 6.4 3.31 34.4 81.4 85.4 77.7 1531.1 295.6

VCD (Leng et al., 2024) 7B × 48.8 24.3 2.12 54.2 71.8 74.9 65.8 1512.4 289.6
Silkie (Li et al., 2023c) 10B × 27.1 13.4 3.19 32.3 82.2 87.6 73.2 1539.6 397.1
LLaVA-RLHF (Sun et al., 2023) 13B Human 38.1 18.9 2.02 62.5 79.7 83.9 61.5 - -

HA-DPO (Zhao et al., 2023) 7B 1-iter 39.9 19.9 1.98 60.4 75.2 79.9 67.2 - -
POVID (Zhou et al., 2024) 7B Human 40.4 19.1 2.08 56.2 82.9 87.4 62.2 1478.5 235.4
RLHF-V (Yu et al., 2024b) 7B Human 12.2 7.5 2.45 51.0 72.6 75.0 51.4 1340.9 292.2
RLAIF-V (Yu et al., 2024c) 7B 4-iter 8.5 4.3 2.93 32.3 81.6 86.4 64.9 1366.3 297.5
MDPO (Wang et al., 2024b) 7B 1-iter 35.7 9.8 2.39 54.0 73.4 74.7 - - -

LLaVA 1.5 (Li et al., 2024) 7B × 52.3 25.5 2.36 52.7 73.5 77.7 60.6 1496.7 297.5
+ DPO (POVID DataSet) 7B 1-iter 48.9 22.4 2.15 56.0 75.1 78.9 65.0 1494.0 300.0
+ Ours (POVID DataSet) 7B 1-iter 38.1 19.3 2.58 49.1 82.7 87.1 67.0 1483.9 296.8
+ DPO (RLAIF-V DataSet) 7B 4-iter 19.13 9.32 2.70 36.6 76.8 81.5 66.4 1356.7 299.3
+ Ours (RLAIF-V DataSet) 7B 4-iter 10.0 5.2 3.14 25.0 82.2 87.5 69.3 1365.8 286.8

former reflects the degree of hallucination, and the417

latter reflects the general ability of the method.418

For trustworthiness, we evaluate on three bench-419

marks: (1) CHAIR (Rohrbach et al., 2018) is a420

widely adopted benchmark for evaluating entity421

hallucination in image captioning. It identifies hal-422

lucinations by comparing the entities mentioned423

in the model’s output with the entities manually424

annotated in the COCO dataset (Lin et al., 2014b).425

However, CHAIR is a metric designed for tradi-426

tional image captioning tasks and performs poorly427

when assessing LVLM tasks that include instruc-428

tions. To enhance the stability of the evaluation,429

we follow (Yu et al., 2024b) and sample 300 exam-430

ples from the CHAIR dataset, using eight different431

prompts to improve evaluation consistency. We432

report the sentence-level hallucination rate (i.e.,433

the percentage of hallucinated sentences) and the434

entity-level hallucination rate (i.e., the percentage435

of hallucinated entities). (2) MMHal-Bench (Sun436

et al., 2023) evaluates model outputs from two437

aspects: hallucination rate and information rich-438

ness. This benchmark uses GPT-4 to compare the439

model’s outputs with human responses and multi-440

ple entity labels, providing five-level scores. (3)441

AMBER (Wang et al., 2023) is a multi-dimensional442

hallucination benchmark. We report the accuracy443

and F1 metric on discriminative tasks.444

For helpfulness, we use two benchmarks: (1)445

LLaVA Bench (Liu et al., 2023c; Li et al., 2024) is446

a widely adopted benchmark for evaluating multi- 447

modal dialogue, detailed description, and complex 448

reasoning capabilities. (2) MME (Fu et al., 2023) is 449

a comprehensive benchmark specifically designed 450

to evaluate LVLMs across ten perception subtasks 451

and four cognition subtasks. 452

Baselines. We compared our model with state- 453

of-the-art baselines of different types, including 454

general baselines with strong performance, base- 455

lines that mitigate hallucinations, baselines that 456

train LLaVA with human preference optimization, 457

and a proprietary baseline. The primary baseline is 458

training LLaVA with vanilla DPO. 459

(1) General baselines. We use LLaVA 1.5 (Li 460

et al., 2024), Qwen-VL (Bai et al., 2023), and 461

LLaVA-Next (Liu et al., 2024b) as general base- 462

line representatives. These models have been pre- 463

trained on large-scale multimodal data and fine- 464

tuned on instruction datasets, demonstrating strong 465

multimodal understanding capabilities. Moreover, 466

We chose GPT-4V (OpenAI, 2023) as a reference to 467

compare the performance gap between open-source 468

models and closed-source commercial models. 469

(2) Hallucination baselines. Silkie et al. (Li 470

et al., 2023c) construct a feedback dataset using 471

GPT-4V, featuring various instructions and feed- 472

back sources. VCD (Leng et al., 2024)mitigates 473

statistical bias in LVLMs by comparing probabil- 474

ity distributions between the original and halluci- 475

nated inputs during decoding. LLaVA-RLHF (Sun 476
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et al., 2023) transfers human feedback reinforce-477

ment learning from the text domain to the multi-478

modal domain to align modal information.479

(3) Human Preference Learning based base-480

lines HA-DPO (Zhao et al., 2023) is the first481

work to apply DPO in the multimodal domain.482

mDPO (Wang et al., 2024b) avoids the problem of483

over-optimizing language preferences by optimiz-484

ing image preferences. POVID (Zhou et al., 2023)485

proposes a method to adjust the image and text486

modalities in VLLMs using AI-generated prefer-487

ence differences.. RLHF-V (Yu et al., 2024b) uses488

high-quality, detailed human feedback to help large489

models learn precise behavior boundaries and elimi-490

nate hallucinations. RLAIF-V (Yu et al., 2024c) uti-491

lizes open-source models to generate high-quality492

preference data and resolves the offline issues of493

the DPO (Qi et al., 2024) algorithm by producing494

preferences through multiple iterative cycles.495

Implementation Details. We implement EMPO496

based on the LLaVA-v1.5-7B framework (Li et al.,497

2024). The model uses CLIP-ViT (Radford et al.,498

2021) as the vision module and Vicuna (Zheng499

et al., 2023) (fine-tuned from LLaMA (Touvron500

et al., 2023)) as the LLM backbone. We trained501

the model for 4 epochs using deepspeed, which is502

an open-source library by Microsoft for efficient503

distributed training. We set a hyperparameter α504

of 0.9 and β of 0.5, an image resolution of 336, a505

learning rate of 5e-7, and a batch size of 8. The506

training was conducted on 8 A100 GPUs, taking 4507

hours on the POVID dataset and approximately 12508

hours on the RLAIF-V dataset.509

4.2 Experimental Results510

The main experimental results are reported in Ta-511

ble 1, from which we observe that: (1) EMPO512

is comparable to state-of-the-art performance in513

trustworthiness among open-source models, even514

outperforming commercial models like GPT-4V on515

some metrics. Using either POVID or RLAIF-V516

data, EMPO reduces the object hallucination rate517

of LLaVA 1.5 on Object HalBench by 26.2% and518

80.4%, respectively. The reduction in hallucina-519

tion rates is consistent across multiple benchmarks,520

including Object HalBench, MMHal-Bench, and521

AMBER. (2) EMPO reduces the trustworthiness of522

LVLM without significantly impairing its helpful-523

ness. Specifically, EMPO results in a performance524

decrease of 7.9% on MME but an increase of 14.4%525

on LLaVA-Bench. (3) EMPO can reduce baseline526

Table 2: Ablation Studies on RLAIF-V datasets. “w/o
image/instruction /response” indicates removing modal-
ity preferences for image, instruction, and response re-
spectively. “w/o weighting” indicates removing the
weights on key entities.

Model Object HalBench MMHalBench

CHAIRs ↓ CHAIRi ↓ Score Hall.↓

Ours 10.0 5.2 3.14 25.0
w/o visual 10.8 5.4 2.78 34.4
w/o instruction 8.7 4.2 2.96 31.2
w/o response 9.7 4.9 2.91 31.0
w/o weighting 8.9 4.6 3.05 28.1

hallucinations in both the POVID and RLAIFV 527

datasets, which are entirely different, indicating 528

that EMPO has excellent scalability. 529

4.3 Detailed Analysis 530

We analyze the following research questions: (1) 531

How different components contribute to the per- 532

formance of EMPO and illustrate how EMPO en- 533

hances overall performance. (2) Can EMPO align 534

different modalities, enabling LVLM to align im- 535

age content with semantic concepts, focusing on 536

the correct entities? (3) Can EMPO help LVLM 537

overcome the LLM inherent hallucinations? (4) 538

Does EMPO achieve better performance across dif- 539

ferent preference datasets? 540

Ablation Studies As shown in Table 2, we con- 541

duct ablation studies to evaluate the effectiveness 542

of different components in our approach, includ- 543

ing the fine-grained preference dataset and entity- 544

centric preference alignment. We report the av- 545

erage changes across four hallucination evalua- 546

tion metrics to comprehensively validate the ef- 547

fects of the ablation experiments, rather than rely- 548

ing on a single metric. (1) we test the necessity 549

of aligning with human preferences across three 550

modalities: image, instruction, and response. Re- 551

moving the image/instruction/response modality 552

significantly increases the hallucination rate by 553

22.9%/9.5%/11.9%. The complete three-modal 554

preference alignment exhibits the best performance, 555

indicating that integrating image, instruction, and 556

response enables a more comprehensive capture 557

of human preferences. (2) We also examine the 558

function of fine-grained preferences. Removing 559

the weight of the key entities increased the hallu- 560

cination rate by 2.6%. Therefore, We highlight 561

that fine-grained preferences can help LVLM better 562

locate entities. 563
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Question: What is the gender of the 

person riding the motorcycle in the image?

LLaVA-1.5: The person riding the 

motorcycle in the image is a woman.

EDPO (ours): In the image, there is a 

motorcycle present, but there is no person 

riding it. Therefore, it is not possible to 

determine the gender of the person who 

would be riding the motorcycle if they 

were present in the image.

VQA Task

LLaVA-1.5: Attention heatmap (left);  Attention weights per output token (right)

EDPO (ours): Attention heatmap (left);  Attention weights per output token (right)

Captioning Task

Question: Describe the image in detail.

LLaVA-1.5: The image features a yellow 

school bus parked on the side of a street. 

A man is riding a bicycle next to the bus, 

and he appears to be wearing a backpack. 

The bus is parked in front of a tattoo shop, 

which is visible in the background. There 

are a few other people in the scene, one 

standing near the bus and another person 

further away. Additionally, there is a stop 

sign located near the bus, indicating that 

the bus is parked at a stop.

EDPO (ours): In the image, a yellow school 

bus is parked on the side of a city street, with a 

man on a bicycle nearby. It seems that the 

cyclist is reaching out to the bus driver, 

possibly to interact or communicate with him. 

The scene takes place in front of a tattoo shop, 

adding to the urban atmosphere. The bicycle 

can be seen close to the bus, and the overall 

setting gives off a sense of interaction or 

connection between the bus driver and the 

cyclist. The presence of the school bus and the 

bicycle together on the city street creates an 

interesting and relatable moment for viewers.

LLaVA-1.5: Attention heatmap (left);  Attention weights per output token (right)

EDPO (ours): Attention heatmap (left);  Attention weights per output token (right)

Figure 3: Illustration of hallucination correction by our proposed EMPO at different tasks. Hallucinated tokens
from LVLM’s regular decoding are highlighted in red. The red box region in the attention heatmap is labeled with
the hallucination entity removed by EMPO. The blue line represents the total attention from each output token to
the image tokens, while the orange line represents the total attention from each output token to the question tokens.

Modality Alignment Analysis As shown in Fig-564

ure 3, We compare the performance of EMPO and565

LLaVA 1.5 on the tasks of Image Captioning and566

Visual Question Answering (VQA). The visual at-567

tention heatmap and blue line show the variation in568

the image attention weights assigned to output to-569

kens during LVLM inference, while the orange line570

shows the variation in the attention weights given571

to the instruction. The image captioning example572

demonstrates that LLaVA 1.5 focused on an incor-573

rect image feature (the red region in the attention574

heatmap), resulting in the output of a non-existent575

entity (a few other people). Our EMPO corrects576

this, indicating a strong consistency between the577

image content and semantic concepts. The VQA578

example shows that LLaVA 1.5 was influenced by579

the prompt and produced an affirmative answer580

even when the corresponding image feature was581

absent. In contrast, EMPO overcomes the inherent582

hallucination of the LLM. Furthermore, our EMPO583

assigns higher attention weights to both the im-584

age and the instruction, suggesting that it focuses585

on these inputs better than LLaVA 1.5. One pos-586

sible explanation is that by comparing real data587

with generated negative data and mitigating the in-588

ternal hallucination patterns, EMPO redirects the589

LVLM’s attention, causing it to pay more attention590

to the image and question tokens. Due to space con-591

straints, more inference examples for captioning592

and VQA tasks will be presented in Appendix B.593

Scalabiliy As shown in Table 1, EMPO signifi- 594

cantly reduces baseline hallucinations across both 595

the POVID and RLAIFV datasets, which differ 596

fundamentally in structure and content. This clear 597

ability to perform effectively on datasets with dis- 598

tinct characteristics highlights the strong adaptabil- 599

ity and scalability of EMPO. Moreover, as shown 600

in Figure 3, its consistent performance on real test 601

samples suggests that it can address real-world chal- 602

lenges involving heterogeneous data. The ability to 603

generalize its performance to diverse datasets fur- 604

ther underscores its potential applicability across 605

a wide range of domains, proving its robustness in 606

handling varied data distributions. 607

5 Conclusion 608

This paper addresses the LVLM hallucination prob- 609

lem from two perspectives: modality misalignment 610

and LLM inherent hallucination. At the method 611

level, we propose an entity-centric multimodal pref- 612

erence optimization method to help LVLM align 613

entity features with semantic concepts, enhancing 614

its trustworthiness. On the data side, we construct 615

fine-grained preference data to assist LVLM in 616

overcoming the inherent hallucination of LLMs. 617

Extensive experiments across multiple benchmarks 618

demonstrate that our method effectively reduces 619

LVLM hallucinations while preserving its compre- 620

hensive capabilities. For future work, we plan to 621

further explore the construction of preferences that 622

involve more complex interconnected entities. 623
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Limitations624

The limitation of this study is that its investigation625

into hallucination issues is confined to entities. Cur-626

rently, our dataset is constructed solely by deleting627

and replacing entities; we have not delved into en-628

tity attributes or inter-entity relationships, nor have629

we explored hallucinations caused by non-entity630

factors. We propose the following directions for fu-631

ture research: (1) Explore the construction of pref-632

erences based on entity attributes and inter-entity633

relationships. (2) Investigate hallucinations caused634

by non-entity factors and construct corresponding635

preference samples.636

Ethics Statement637

This study focuses on mitigating hallucination phe-638

nomena in LVLMs to enhance their reliability and639

trustworthiness. We have carefully considered the640

ethical implications of the research and do not ex-641

pect any major ethical issues to arise. This study is642

based on publicly available and widely used data643

and models; therefore, our findings may inherit the644

biases and limitations present in these resources.645
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A Experimental Supplement1065

To better understand the severity of hallucinations1066

in LVLMs, we conducted a pilot experiment to eval-1067

uate their inference performance. Specifically, we1068

assessed the models on 200 preference examples se-1069

lected from the POVID dataset (Zhou et al., 2024).1070

Through this analysis, we identify two prominent1071

types of errors in LVLM responses, which high-1072

light critical limitations in their reasoning and mul-1073

timodal understanding capabilities.1074

1. Concept Confusion:We observe that LVLMs1075

often struggle to accurately interpret seman-1076

tic relationships between entities, leading to1077

concept confusion. For example, the models1078

frequently generated identical or highly sim-1079

ilar responses to user instructions that were1080

semantically conflicting or conceptually dis-1081

tinct. This suggests that LVLMs may fail1082

to fully grasp the fine-grained differences be-1083

tween related but distinct concepts, resulting1084

in responses that lack precision and contextual1085

appropriateness.1086

2. Visual Neglect: When provided with only1087

textual context (i.e., without accompanying1088

visual input), the models tended to generate1089

image-agnostic responses that disregarded the1090

potential relevance of visual information. This1091

behavior indicates an over-reliance on textual1092

cues and insufficient attention to visual con-1093

tent, which we attribute to the influence of1094

LLM-induced hallucinations. Such hallucina-1095

tions appear to bias the models toward text-1096

based reasoning, even in scenarios where vi-1097

sual understanding is critical. This is also in1098

line with the previous work PAI (Liu et al.,1099

2024c)1100

These findings highlight the challenges LVLMs1101

face in achieving robust multimodal understanding1102

and highlight the need for improved mechanisms1103

to mitigate hallucinations. Addressing these issues1104

is essential for enhancing the reliability and appli-1105

cability of LVLMs in real-world tasks that require1106

both textual and visual reasoning.1107

B Example Appendix1108

The section to show EMPO examples.1109

C Prompt Appendix1110

The section is to describe the prompt for identify-1111

ing entities and the prompt for rewriting chosen1112

instruction and rejected instruction. 1113

The prompt for identifying entities: 1114
1115

# prompt for identifying entities 1116
prompt = ’’’ 1117
You are a selective entity replacement 1118
engine. You need to perform entity 1119
replacement on the original text. 1120

1121
Core Instructions: 1122
1. Analyze the input text to identify 1123
replaceable entities. 1124
2. Randomly select approximately 50% of 1125
the identified entities for substitution 1126
. 1127
3. Replace the chosen entities with 1128
contextually appropriate alternatives. 1129
4. Maintain grammatical correctness and 1130
readability. 1131
5. Output the modified version and a 1132
summary of changes. 1133

1134
Workflow: 1135

1136
1. Entity Identification 1137

- Named entities (people , places , 1138
organizations) 1139
- Common nouns 1140
- Actions/verbs 1141
- Descriptors/adjectives 1142

1143
2. Replacement Rules: 1144

- Maintain the original part of 1145
speech. 1146
- Preserve sentence structure. 1147
- Ensure semantic coherence. 1148
- Keep consistent tense and number. 1149
- Replace only approximately 50% of 1150
the identified entities to retain the 1151
original context and flow. 1152

1153
3. Input Original Text: 1154

{original_text} 1155
1156

4. Output Format: 1157
- Modified Text: 1158

[text with approximately 30% 1159
replaced entities] 1160

1161
- Changes Summary: 1162

- [Original Entity 1] -> [ 1163
Replacement Entity 1] 1164
- [Original Entity 2] -> [ 1165
Replacement Entity 2] 1166
- ... 1167

1168
Additional Instructions: 1169

1170
- Entity Selection: 1171

- After identifying all replaceable 1172
entities , calculate 30% of the total 1173
number. 1174
- Randomly select the calculated 1175
number of entities to replace. 1176
- Ensure that the selection is random 1177
to maintain variability across 1178
different texts. 1179

1180
- Replacement Constraints: 1181

- Do not replace entities that are 1182

14



Figure 4: More Examples

crucial for the understanding of the1183
text.1184
- Avoid replacing more than 30% to1185
prevent altering the original meaning1186
significantly.1187
- If the total number of replaceable1188
entities is small , adjust the1189
replacement percentage proportionally1190
to avoid replacing too many.1191

’’’11921193

The prompt for rewriting chosen instruction:1194
1195

# prompt for rewriting chosen1196
instruction1197
prompt = ’’’Task: Rephrase the following1198
question while maintaining its original1199
meaning:1200

1201
Original question: {question}1202

1203
Requirements:1204
1. If original question was a1205
declarative sentence , then keep1206
rewritten question as a declarative1207
sentence.1208
2. Ensure the rephrased question is1209
clear , concise , and maintains the1210
original inquiry intent.1211
3. You may adjust sentence structure or1212
wording , but do not change the essence1213
of the question.1214
4. If necessary , slightly expand the1215
question to improve clarity , but keep it1216
concise.1217

5. Use natural , fluent English in the1218
rephrased version.1219

1220
Please only provide the rephrased1221
question that meets these criteria1222
without any additional explanation.1223
’’’12241225

The prompt for rewriting rejected instruction:1226
1227

# prompt for rewriting rejected1228
instruction1229
’’’You are an expert in creative writing1230
and linguistic transformation. Your1231

task is to rewrite the given question so1232
that its meaning is significantly1233

different from the original , while1234
maintaining the same general structure1235
and format. Follow these guidelines:1236

1237
1. Analyze the original question ’s 1238
structure , tone , and key elements. 1239
2. Identify a different perspective or 1240
context that could radically change the 1241
question ’s meaning. 1242
3. Rewrite the question using the new 1243
perspective , ensuring it has a 1244
distinctly different meaning. 1245
4. Maintain the original question ’s 1246
format , including any specific phrasing 1247
or sentence structure. 1248
5. Ensure the rewritten question is 1249
coherent , grammatically correct , and 1250
makes sense on its own. 1251

1252
Original question: {question} 1253

1254
Rewritten question: 1255

1256
Provide only the rewritten question 1257
without any additional explanation.’’’ 1258
’’’ 12591260
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