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Abstract

Large Visual Language Models (LVLMs) have
demonstrated impressive capabilities across
tasks. However, their trustworthiness is often
challenged by hallucinations. We attribute this
issue to modality misalignment and the inher-
ent hallucinations of Large Language Models
(LLMs), which serve as the “brain” of LVLMs.
Multimodal human preference alignment is a
widely used approach to mitigate LVLM hal-
lucinations. However, existing methods focus
on response-level alignment while neglecting
alignment at the image and instruction levels,
leading to modality misalignment. For this, we
propose Entity-centric Multimodal Preference
Optimization (EMPO), which achieves better
modality alignment than existing human prefer-
ence alignment methods. Besides, to overcome
the scarcity of high-quality multimodal prefer-
ence data and help LVLMs mitigate hallucina-
tions, we introduce a fine-grained multimodal
preference data construction process that labels
preferences at the entity level—all without re-
quiring manual annotations. Experiments on
two human preference datasets and five multi-
modal hallucination benchmarks demonstrate
the effectiveness of EMPO, reducing hallucina-
tion rates by 80.4% on Object HalBench and
52.6% on MM HalBench, thereby enhancing
the trustworthiness of LVLMs.

1 Introduction

Large Vision-Language Models (LVLMs) have re-
cently demonstrated impressive capabilities in un-
derstanding and answering multimodal questions
(Chen et al., 2023; Liu et al., 2023c, 2024b; Bai
et al., 2023; Lu et al., 2024; Li et al., 2023a). An
LVLM typically consists of a visual encoder that
extracts image features and a large language model
(LLM) that processes textual questions related to
the image, generating accurate answers based on
the provided visual context. To enhance LVLMs
performance, most studies (Li et al., 2023a; Du

Modality Misalignment

User: Please describe this image.
LLaVA: A no-parking sign is

posted on the farmland ...

@ Ground Truth: A no motor vehicles
sign is posted on the farmland ...

LLM Inherent Hallucination

User: Is there a car on the road?

@ LLaVA: Yes, there is a car

§ driving on the road.

Ground Truth: No, there is not a
car driving on the road.

Figure 1: Causes of hallucinations. 1) Modality mis-
alignment: the LVLM confuses entity semantics and
provides the same answer for semantically conflicting
questions. 2) LLM inherent hallucination: the response
generated by the LVLM is entirely dependent on textual
context, disregarding the image content.

et al., 2022; Lin et al., 2024) follow a two-step
learning paradigm: (1) pretraining on large-scale
image-text pairs to learn basic multimodal knowl-
edge, and (2) fine-tuning on high-quality instruc-
tion datasets to improve responsiveness to user in-
structions (Liu et al., 2023c; Chen et al., 2024b;
Wang et al., 2024c; Bai et al., 2023; Wang et al.,
2024a). After that, LVLMs can learn to align large
language models with visual encoders, enhancing
their ability to comprehend and respond to user
instructions involving multimodal inputs.

Following the well-known hallucination problem
in LLMs (Zhang et al., 2023; Li et al., 2023b; Dhu-
liawala et al., 2023), recent studies have also identi-
fied hallucinations in LVLMs (Li et al., 2023d; Liu
et al., 2024a; Gunjal et al., 2024; Guan et al., 2024;
Jiang et al., 2024b,a). Specifically, there are usually
two causes of LVLM hallucinations. The first type
is modality misalignment (Liu et al., 2024a; Lan
et al., 2024), which arises from the modality gap
between the visual encoder and the LLM in LVLM,
resulting in mismatches between image content
and semantic concepts. For instance, as shown in
Figure 1, the LVLM (Liu et al., 2023c) identifies



the sign on the farmland LVLM (Liu et al., 2023c)
correctly, but it mistakes its meanings as "no park-
ing", instead of "no motor vehicles allowed". The
second type is LLM inherent hallucinations (Lan
et al., 2024). When the LLM inherent knowledge
is either incorrect or conflicts with visual inputs,
hallucinations manifest as entity co-occurrence phe-
nomena (Lan et al., 2024). For example, as shown
in Figure 1, "car"” and "road" frequently co-occur
in the LLM’s pretraining corpus. As a result, the
LVLM erroneously infers that whenever a "road" is
present, a "car"” must also be present, disregarding
the image content. To address these issues, some
recent approaches focus on reducing hallucinations
through data denoising (Liu et al., 2023d; Yu et al.,
2024a; Liu et al., 2023a; Hu et al., 2023), but this
typically requires costly annotations. Some other
studies (Yu et al., 2024c¢,b; Sun et al., 2023; Zhou
et al., 2024; Wang et al., 2024b; Li et al., 2023c)
try to align responses with human preferences, yet
neglecting modality alignment between images and
questions, which usually leads to mismatches be-
tween entity features and semantic concepts.

In this paper, we propose to mitigate the modal-
ity misalignment of LVLMs in two aspects: (1) At
the method level, we propose Entity-centric Multi-
modal Preference Optimization (EMPO), a variant
of DPO (Rafailov et al., 2024), which is an efficient
human preference optimization method for LLMs.
EMPO mitigates modality misalignment in LVLM
by aligning human preferences across image, in-
struction, and response modalities. In addition,
EMPO helps LVLM efficiently align image enti-
ties with semantic concepts through entity-grained
preference weighting. (2) At the data level, we
construct a fine-grained multimodal human prefer-
ence dataset. As shown in Figure 2, we construct
rejected examples that are similar to but different
from the original data in three modalities: images,
questions, and responses. These preference ex-
amples disrupt the co-occurrence relationships of
entities with the original data, helping LVLM over-
come LLM inherent hallucinations. Notably, our
dataset expansion process does not rely on costly
manual annotations and offers excellent scalabil-
ity. The experimental results show that EMPO
reduce hallucination rates by 80.4% on Object Hal-
Bench (Rohrbach et al., 2018) and by 52.6% on
MM HalBench (Sun et al., 2023).

Our contributions are tri-fold: (1) We propose
EMPO, the entity-centric multimodal preference
optimization framework to mitigate the hallucina-

tion of LVLMs by aligning entity features with
semantic concepts. (2) We introduce a multimodal
fine-grained human preference dataset construc-
tion process that requires no manual annotation to
overcome the scarcity of high-quality multimodal
preference data. (3) Comprehensive experiments
conducted on five widely-used benchmarks vali-
date the effectiveness of the EMPO.

2 Related Work

Large Vision Language Model. Inspired by the
success of LLMs (Achiam et al., 2023; Wu et al.,
2023a; Touvron et al., 2023; Dao and Gu, 2024),
recent research on LVLMs (Zhu et al., 2023; Chen
et al., 2023; Liu et al., 2023c, 2024b; Bai et al.,
2023; Liu et al., 2023b; Lu et al., 2024; Zhang et al.,
2024; Li et al., 2023a) construct LVLMs by align-
ing LLMs with visual models, demonstrating su-
perior performance across various visual-language
tasks compared to earlier studies (Jia et al., 2021;
Radford et al., 2021; Ju et al., 2022; Alayrac et al.,
2022). These recent LVLMs typically adopt a two-
stage training strategy. (1) Pretraining on large-
scale image-text pairs to learn fundamental multi-
modal knowledge (Li et al., 2023a; Du et al., 2022;
Lin et al., 2024; Bai et al., 2023). (2) Instruc-
tion fine-tuning by using instruction datasets to
improve its instruction-following abilities (Chen
et al., 2024b; Wang et al., 2024c; Bai et al., 2023;
Wang et al., 2024a; Li et al., 2023a, 2024). For in-
stance, LLaVA (Li et al., 2024) introduces synthetic
instructions to fine-tune an instruction-following
LVLM; MiniGPT-v2 (Chen et al., 2023) employs
unique task identifiers during fine-tuning to reduce
instruction ambiguity.

Hallucination in LVLMs. Hallucinations in
LVLMs refer to model outputs conflict with the
images, instructions, or context (Du et al., 2022;
Sun et al., 2023; Jiang et al., 2024c). Recent re-
searches (Jiang et al., 2024b; Yin et al., 2023; Yu
et al., 2024a; Liu et al., 2023a; Hu et al., 2023)
typically classify hallucinations from two aspects,
modality misalignment and LLM inherent hallu-
cination. To mitigate the hallucinations, some
work (Liu et al., 2023d; Yu et al., 2024a; Hu et al.,
2023; Liu et al., 2023a) tries to filter long-tail and
entity co-occurrence data, while usually suffers
from the expensive labeling cost. Li et al. (2023e);
Jiang et al. (2023); Tong et al. (2024); Cao et al.
(2024); Jiang et al. (2024d,b) has recognized that
modal misalignment is a significant cause of hal-



lucinations but ignores the LLM inherent halluci-
nations. Some research effectively reduces halluci-
nations by using post-processing methods, such as
optimizing decoding strategies (Gao et al., 2024b;
Huang et al., 2024; Yang et al., 2024; Gao et al.,
2024a; Leng et al., 2024) and applying post-hoc
corrections (Lee et al., 2023; Zhou et al., 2023;
Yin et al., 2023) but introducing additional infer-
ence cost. In contrast, our EMPO leverages entity-
level semantic alignment to help LVLM overcome
LLM’s inherent hallucinations, without requiring
expensive manual annotations or additional infer-
ence costs.

Human Preference Alignment. Human pref-
erence alignment has been shown to be an ef-
fective method for mitigating hallucinations in
LLMs (Naseem et al., 2024; Jiang et al., 2024c;
Huang et al., 2023; Ji et al., 2024). In the LVLM
area, LLaVA-RLHF (Sun et al., 2023) firstly pro-
pose to apply human preference alignment to re-
duce hallucinations in LVLMs, and establishes
a foundational framework for multimodal pref-
erence data construction. RLHF-V (Yu et al.,
2024b) demonstrates that fine-grained human pref-
erence alignment can improve the visual localiza-
tion capabilities of LVLMs. RLAIF-V (Yu et al.,
2024c) scores individual text segments and utilizes
open-source LVLM for preference construction.
POVID (Zhou et al., 2024) uses images with Gaus-
sian noise to induce LVLMs to generate rejected
preference examples. However, these methods fo-
cus solely on preferences at the response level, ne-
glecting preferences related to the visual and ques-
tion conditions. The recent work MDPO (Wang
et al., 2024b) try to address image-conditional pref-
erence alignment, but it overlooks the instruction
modality preference and only makes a preliminary
attempt to address image modality preference. In
contrast, our proposed EMPO incorporates prefer-
ences across all three modalities—image, instruc-
tion, and response—and leverages entity-centric
preferences to enable LVLMs to align image con-
tent and semantic concepts more efficiently.

3 Method

This work includes multimodal preference align-
ment and fine-grained dataset construction. In
Section 3.1, we introduce the preliminaries of hu-
man preference alignment and the response pref-
erence form of Direct Preference Optimization
(DPO) (Rafailov et al., 2024) in the multimodal

domain. In Section 3.2, we elaborate on how our
EMPO framework aligns entity features with se-
mantic concepts to address the modality misalign-
ment issue. Section 3.3 details the construction of
the high-quality, fine-grained preference dataset,
designed to help LVLMs overcome the inherent
hallucination issues of LLMs.

3.1 Preliminaries

To ensure LVLMs effectively focus on multi-
ple modalities while aligning with human prefer-
ences, we adopt the Direct Preference Optimization
(DPO) (Rafailov et al., 2024) for training. In the
context of LLMs, human preference alignment in-
volves two parts: the instruction and the response.
Given an instruction ¢, LLM generates multiple
candidate responses, and a reward model identi-
fies the chosen response ,, that is superior to the
rejected one y;. DPO is one of the primary meth-
ods to achieve human preference alignment. It
implicitly models the reward function in Reinforce-
ment Learning from Human Feedback (RLHF) (Yu
et al., 2024b) and directly optimizes the model pa-
rameters to maximize the difference between the
reward r(q, y,,) for the chosen response and the
reward r(q, y;) for the rejected response. Specifi-
cally, given a policy model 7y and a reward model
Tref, DPO formulate the reward function as
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where Z(q) is a partition function and /3 is a hy-
perparameter that controls the deviation from the
reference model. DPO directly optimizes the pol-
icy model based on this implicit reward model to
align with preference data,
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In the context of multimodal, aligning human pref-
erence always includes three modalities (image,
instruction, response) (Yu et al., 2024¢,b; Sun et al.,
2023; Zhou et al., 2024; Wang et al., 2024b; Li
et al., 2023c). DPO minimizes a new objective
conditioned on the image v and instruction g,
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Figure 2: Illustration of our framework. (1) At the data level, we construct a fine-grained preference alignment
dataset across three modalities: image, instruction, and response. (2) At the method level, we propose entity-centric
multimodal preference optimization for aligning image contents with semantic concepts.

3.2 Entity-centric Multimodal Preference
Optimization

To assess the severity of hallucinations in LVLMs,
we conducted a pilot experiment, evaluating in-
ference performance on 200 preference examples
from the POVID dataset (Zhou et al., 2024). Based
on the results, we identified two types of errors
in LVLM responses. (1) Conceptual confusion.
Owing to modality misalignment, LVLMs may
misinterpret semantic relationships between en-
tities, leading to identical responses for conflict-
ing user instructions. (2) Visual neglect. Consis-
tent with PAI’s findings (Liu et al., 2024c), when
provided only textual context, LVLMs generated
image-agnostic responses, indicating insufficient
attention to visual content and over-reliance on tex-
tual cues due to LLM inherent hallucinations. De-
tailed examples are provided in Appendix A. Based
on these observations, we propose the optimization
objective for aligning the image and instruction
modality preferences:
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where w represent chosen preference, [ represent
rejected preference, and v, q, y equal to vy, qu, Yw-

Limage 18 the image preference loss, Linstruction
is the instruction preference 10ss, Lresponse 1S the
response preference loss from Equation 3.

In addition, to improve LVLMs’ focus on entity
features and address annotation ambiguity and low
learning efficiency in the original DPO method (Wu
et al., 2023b; Yu et al., 2024b), we assign higher
weights to key entities in the image, instruction,
and response modalities:

logm(y | v,q) = (L—a) Y logp(yi | v,q,y<i)
Yi¢ye %)
+a Y logp (yi | v,q,y<i)
Yi EYe

where « is a weighting hyperparameter, y; is the -
th token of the response y. Larger « indicates that
the corresponding token has a greater influence
on preference. In this way, hallucination-related
entities are emphasized, helping the LVLM receive
stronger human preference feedback and ensuring
its factual accuracy. The computation of entity
weights is detailed in Section 3.3.

Overall, the LVLM optimized with our proposed
EMPO can fully align entity features and semantic
concepts, thereby mitigating hallucinations. As
shown in Figure 3, the inference attention more
effectively focuses on key information in the image
and instruction tokens after training.

3.3 Fine-grained Preference Dataset
Construction

As shown in Figure 1, the LVLM is affected by
the LLM inherent hallucination, and outputs fre-
quently co-occurring entities while overlooking the



actual content of the image. Moreover, most ex-
isting multimodal preference datasets contain only
the response modality, which does not satisfy our
EMPO optimization needs.

To fill this gap, we propose a fine-grained pref-
erence data construction method that compels
LVLMs to focus on entity semantic. As shown
in Figure 2, we remove and replace entities in three
modalities to construct rejected preference sam-
ples. These preference examples disrupt the co-
occurrence relationships of entities in pretraining
corpus, helping LVLM learn fine-grained differ-
ences between chosen and rejected samples.

Image Preference Data Inspired by the phe-
nomenon that LVLMs may generate non-existent
objects, we introduce two strategies to construct im-
age preference rejected samples g;: entity cropping
and entity replacement. Specifically, we first em-
ploy GPT40-mini (Achiam et al., 2023) to identify
entities in both the instruction and response. Next,
we use an object detection model to locate these en-
tities and classify them with GPT40-mini. Finally,
we apply a diffusion model (Rombach et al., 2022)
to either remove 30% of the entities or substitute
them with visually plausible alternatives, thereby
generating an edited image as rejected image sam-
ple v;. These selected entities will be weighted
as described in Section 3.2. (1) Entity Cropping:
Use a diffusion model to delete the chosen entities.
The images with deleted entities serve as rejected
preference samples to reduce the occurrence of
non-existent entities generated by the LVLM. (2)
Entity Replacement: Use a diffusion model to
replace the chosen entities with incorrect but high-
frequency entities, helping the LVLM overcome
entity co-occurrence hallucinations. The prompts
used for entity identification via GPT40-mini are
described in Appendix C.

Instruction Preference Data We employ
GPT40-mini (Achiam et al., 2023) to adapt the
original instructions in terms of the selected
entities in Section 3.3, thereby constructing
rejected instructions ¢;. We observe that the
distribution of GPT-modified instructions differs
from that of the original instructions, resulting in
a decline in performance (Zhao et al., 2023). To
address this problem, we also use GPT4o-mini
to rewrite the chosen instructions, ensuring the
rewritten instructions q,, retain the same meaning.
The prompts used for constructing both chosen and
rejected samples are described in the Appendix C.

Response Preference Data Our response pref-
erence data are constructed based on two existing
datasets. The first is POVID (Zhou et al., 2024).
We collect the rejected image preference sample
v; and the rejected instruction preference sample
q; from the two paragraphs above and use them as
LVLM input to generate incorrect responses as the
rejected response preference sample y;. However,
the final response preference triple still consists
of yu, qu, and 7;. The second dataset is RLAIF-
V (Yu et al., 2024c), in which we use MiniCPM-
V2.5 (Yao et al., 2024) to compare two candidate
answers generated by LLaVA-1.5 (Li et al., 2024),
thereby establishing preference rankings. Notably,
the complete preference construction process for
RLAIF-V requires four iterations, whereas POVID
achieves this in a single iteration.

4 Experiments

4.1 Experimental setups

Datasets. We conduct experiments on two
datasets to demonstrate the generalizability of our
method. These datasets differ in their construction
methods, data volume, and data distribution.

(1) POVID (Zhou et al., 2024) dataset incorpo-
rates 17,000 examples randomly sampled from the
LLaVA-Instruct-150K dataset (Liu et al., 2023c).
Covering various types of tasks such as image
captioning, simple Visual instruction responseing
(VQA), and logical reasoning, POVID generates
preferred responses by modifying the original re-
sponses using GPT-4V (OpenAl, 2023). These
hallucinated responses introduce potential errors
in areas like object co-occurrence, logical relation-
ships between entities, and attribute descriptions.

(2) RLAIF-V (Yu et al., 2024c¢) dataset is an
open-source feedback dataset created to improve
the reliability of Multimodal Large Language Mod-
els (MLLMs). It includes high-quality instruc-
tions from various sources, such as MSCOCO (Lin
et al., 2014a), ShareGPT-4V (Chen et al., 2024a),
MovieNet (Huang et al., 2020), Google Land-
mark v2 (Weyand et al., 2020), VQA v2 (Goyal
et al., 2017), OKVQA (Marino et al., 2019), and
TextVQA (Singh et al., 2019), collecting about
4,000 instructions in each training round to ensure
comprehensive data coverage. Each instruction is
paired with different candidate responses generated
by open-source LVLMs and is detail-scored.

Metrics. We evaluate the methods from two per-
spectives: trustworthiness and helpfulness. The



Table 1: Main experimental results. We present our experimental results from two perspectives: trustworthiness and
helpfulness. To demonstrate the scalability of our proposed method, we conduct the experiments on two datasets

(POVID and RLAIF-V). "Annotation" represents model reliance on preference data annotation.

means unknown.

The best and second best results are shown in bold and underlined respectively. The experimental data of general
baselines hallucination baselines refer to RLAIF-V (Yu et al., 2024c¢).

Object MMHal LLaVA
Model Size Annotation HalBench Bench AMBER Bench MME
CHAIR; | CHAIR;| Score Hall.] Acc. FIl. Overall Per. Cog.
GPT-4V (OpenAl, 2023) - - 13.6 7.3 342 28.1 834 874 931 1459.4 426.8
QWEN-VL (Bai et al., 2023) 10B X 40.4 20.7 2.76 38,5 819 864 719 1487.6 331.6
LLaVA-NeXT (Liu et al., 2024b)  34B X 12.6 6.4 3.31 344 814 854 717 1531.1 295.6
VCD (Leng et al., 2024) 7B X 48.8 24.3 2.12 542 71.8 749 65.8 1512.4 289.6
Silkie (Li et al., 2023c) 10B X 27.1 134 3.19 323 822 876 732 1539.6 397.1
LLaVA-RLHF (Sun et al., 2023)  13B Human 38.1 18.9 2.02 625 79.7 839 61.5 - -
HA-DPO (Zhao et al., 2023) 7B 1-iter 39.9 19.9 1.98 604 752 799 67.2 - -
POVID (Zhou et al., 2024) 7B Human 40.4 19.1 2.08 562 829 874 622 1478.5 2354
RLHF-V (Yu et al., 2024b) 7B Human 12.2 7.5 245 51.0 726 750 514 13409 2922
RLAIF-V (Yu et al., 2024¢) 7B 4-iter 8.5 4.3 2.93 323 81.6 864 649 1366.3 297.5
MDPO (Wang et al., 2024b) 7B 1-iter 35.7 9.8 2.39 540 734 747 - - -
LLaVA 1.5 (Li et al., 2024) 7B X 52.3 25.5 2.36 527 735 777 60.6 1496.7 297.5
+ DPO (POVID DataSet) 7B 1-iter 48.9 224 2.15 56.0 75.1 789 65.0 1494.0 300.0
+ Ours (POVID DataSet) 7B 1-iter 38.1 19.3 2.58 49.1 827 87.1 67.0 14839 296.8
+ DPO (RLAIF-V DataSet) 7B 4-iter 19.13 9.32 2.70 36.6 76.8 81.5 66.4 1356.7 299.3
+ Ours (RLAIF-V DataSet) 7B 4-iter 10.0 52 3.14 250 822 875 69.3 1365.8 286.8

former reflects the degree of hallucination, and the
latter reflects the general ability of the method.

For trustworthiness, we evaluate on three bench-
marks: (1) CHAIR (Rohrbach et al., 2018) is a
widely adopted benchmark for evaluating entity
hallucination in image captioning. It identifies hal-
lucinations by comparing the entities mentioned
in the model’s output with the entities manually
annotated in the COCO dataset (Lin et al., 2014b).
However, CHAIR is a metric designed for tradi-
tional image captioning tasks and performs poorly
when assessing LVLM tasks that include instruc-
tions. To enhance the stability of the evaluation,
we follow (Yu et al., 2024b) and sample 300 exam-
ples from the CHAIR dataset, using eight different
prompts to improve evaluation consistency. We
report the sentence-level hallucination rate (i.e.,
the percentage of hallucinated sentences) and the
entity-level hallucination rate (i.e., the percentage
of hallucinated entities). (2) MMHal-Bench (Sun
et al., 2023) evaluates model outputs from two
aspects: hallucination rate and information rich-
ness. This benchmark uses GPT-4 to compare the
model’s outputs with human responses and multi-
ple entity labels, providing five-level scores. (3)
AMBER (Wang et al., 2023) is a multi-dimensional
hallucination benchmark. We report the accuracy
and F1 metric on discriminative tasks.

For helpfulness, we use two benchmarks: (1)
LLaVA Bench (Liu et al., 2023c; Li et al., 2024) is

a widely adopted benchmark for evaluating multi-
modal dialogue, detailed description, and complex
reasoning capabilities. (2) MME (Fu et al., 2023) is
a comprehensive benchmark specifically designed
to evaluate LVLMs across ten perception subtasks
and four cognition subtasks.

Baselines. We compared our model with state-
of-the-art baselines of different types, including
general baselines with strong performance, base-
lines that mitigate hallucinations, baselines that
train LLaVA with human preference optimization,
and a proprietary baseline. The primary baseline is
training LLaVA with vanilla DPO.

(1) General baselines. We use LLaVA 1.5 (Li
et al., 2024), Qwen-VL (Bai et al., 2023), and
LLaVA-Next (Liu et al., 2024b) as general base-
line representatives. These models have been pre-
trained on large-scale multimodal data and fine-
tuned on instruction datasets, demonstrating strong
multimodal understanding capabilities. Moreover,
We chose GPT-4V (OpenAl, 2023) as a reference to
compare the performance gap between open-source
models and closed-source commercial models.

(2) Hallucination baselines. Silkie et al. (Li
et al., 2023c) construct a feedback dataset using
GPT-4V, featuring various instructions and feed-
back sources. VCD (Leng et al., 2024)mitigates
statistical bias in LVLMs by comparing probabil-
ity distributions between the original and halluci-
nated inputs during decoding. LLaVA-RLHF (Sun



et al., 2023) transfers human feedback reinforce-
ment learning from the text domain to the multi-
modal domain to align modal information.

(3) Human Preference Learning based base-
lines HA-DPO (Zhao et al., 2023) is the first
work to apply DPO in the multimodal domain.
mDPO (Wang et al., 2024b) avoids the problem of
over-optimizing language preferences by optimiz-
ing image preferences. POVID (Zhou et al., 2023)
proposes a method to adjust the image and text
modalities in VLLMs using Al-generated prefer-
ence differences.. RLHF-V (Yu et al., 2024b) uses
high-quality, detailed human feedback to help large
models learn precise behavior boundaries and elimi-
nate hallucinations. RLAIF-V (Yu et al., 2024c) uti-
lizes open-source models to generate high-quality
preference data and resolves the offline issues of
the DPO (Qi et al., 2024) algorithm by producing
preferences through multiple iterative cycles.

Implementation Details. We implement EMPO
based on the LLaVA-v1.5-7B framework (Li et al.,
2024). The model uses CLIP-ViT (Radford et al.,
2021) as the vision module and Vicuna (Zheng
et al., 2023) (fine-tuned from LLaMA (Touvron
et al., 2023)) as the LLM backbone. We trained
the model for 4 epochs using deepspeed, which is
an open-source library by Microsoft for efficient
distributed training. We set a hyperparameter «
of 0.9 and g of 0.5, an image resolution of 336, a
learning rate of 5e-7, and a batch size of 8. The
training was conducted on 8 A100 GPUs, taking 4
hours on the POVID dataset and approximately 12
hours on the RLAIF-V dataset.

4.2 Experimental Results

The main experimental results are reported in Ta-
ble 1, from which we observe that: (1) EMPO
is comparable to state-of-the-art performance in
trustworthiness among open-source models, even
outperforming commercial models like GPT-4V on
some metrics. Using either POVID or RLAIF-V
data, EMPO reduces the object hallucination rate
of LLaVA 1.5 on Object HalBench by 26.2% and
80.4%, respectively. The reduction in hallucina-
tion rates is consistent across multiple benchmarks,
including Object HalBench, MMHal-Bench, and
AMBER. (2) EMPO reduces the trustworthiness of
LVLM without significantly impairing its helpful-
ness. Specifically, EMPO results in a performance
decrease of 7.9% on MME but an increase of 14.4%
on LLaVA-Bench. (3) EMPO can reduce baseline

Table 2: Ablation Studies on RLAIF-V datasets. “w/o
image/instruction /response” indicates removing modal-
ity preferences for image, instruction, and response re-
spectively. “w/o weighting” indicates removing the
weights on key entities.

Object HalBench MMHalBench
Model
CHAIR; | CHAIR; | Score Hall.|
Ours 10.0 5.2 3.14 25.0
w/o visual 10.8 54 2.78 34.4
w/0 instruction 8.7 4.2 2.96 31.2
w/o response 9.7 4.9 291 31.0
w/o weighting 8.9 4.6 3.05 28.1

hallucinations in both the POVID and RLAIFV
datasets, which are entirely different, indicating
that EMPO has excellent scalability.

4.3 Detailed Analysis

We analyze the following research questions: (1)
How different components contribute to the per-
formance of EMPO and illustrate how EMPO en-
hances overall performance. (2) Can EMPO align
different modalities, enabling LVLM to align im-
age content with semantic concepts, focusing on
the correct entities? (3) Can EMPO help LVLM
overcome the LLLM inherent hallucinations? (4)
Does EMPO achieve better performance across dif-
ferent preference datasets?

Ablation Studies As shown in Table 2, we con-
duct ablation studies to evaluate the effectiveness
of different components in our approach, includ-
ing the fine-grained preference dataset and entity-
centric preference alignment. We report the av-
erage changes across four hallucination evalua-
tion metrics to comprehensively validate the ef-
fects of the ablation experiments, rather than rely-
ing on a single metric. (1) we test the necessity
of aligning with human preferences across three
modalities: image, instruction, and response. Re-
moving the image/instruction/response modality
significantly increases the hallucination rate by
22.9%/9.5%/11.9%. The complete three-modal
preference alignment exhibits the best performance,
indicating that integrating image, instruction, and
response enables a more comprehensive capture
of human preferences. (2) We also examine the
function of fine-grained preferences. Removing
the weight of the key entities increased the hallu-
cination rate by 2.6%. Therefore, We highlight
that fine-grained preferences can help LVLM better
locate entities.



Captioning Task

Question: Describe the image in detail .

LLaVA-1.5: The image features a yellow
school bus parked on the side of a street.
A man is riding a bicycle next to the bus,
and he appears to be wearing a backpack.
The bus is parked in front of atattoo shop,
which is visible in the background. There
are a few other people in the scene, one
standing near the bus and another person
further away. Additionally, there is a stop
sign located near the bus, indicating that
the bus is parked at a stop.

LLaVA-1.5: Attention heatmap (left); Attention weights per output token (right)

EDPO (ours): In the image, a yellow school
bus is parked on the side of a city street, with a
man on abicycle nearby. It seems that the
cyclist is reaching out to the bus driver,
possibly to interact or communicate with him.
The scene takes place in front of a tattoo shop,
adding to the urban atmosphere. The bicycle
can be seen close to the bus, and the overall
setting gives off a sense of interaction or
connection between the bus driver and the
cyclist. The presence of the school bus and the
bicycle together on the city street creates an
interesting and relatable moment for viewers.

Attention Weight

Output Token
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VQA Task

Question: What is the gender of the
person riding the motorcycle in the image?

LLaVA-1.5: The personriding the
motorcycle in the image is a woman.

EDPO (ours): In the image, thereis a
motorcycle present, but there is no person
riding it. Therefore, it is not possible to
determine the gender of the person who
would be riding the motorcycle if they
were present in the image.

—— Visual Attention
Question Attention

Output Token

EDPO (ours): Attention heatmap (left); Attention weights per output token (right)
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EDPO (ours): Attention heatmap (left); Attention weights per output token (right)
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Figure 3: Illustration of hallucination correction by our proposed EMPO at different tasks. Hallucinated tokens
from LVLM’s regular decoding are highlighted in red. The red box region in the attention heatmap is labeled with
the hallucination entity removed by EMPO. The blue line represents the total attention from each output token to
the image tokens, while the orange line represents the total attention from each output token to the question tokens.

Modality Alignment Analysis As shown in Fig-
ure 3, We compare the performance of EMPO and
LLaVA 1.5 on the tasks of Image Captioning and
Visual Question Answering (VQA). The visual at-
tention heatmap and blue line show the variation in
the image attention weights assigned to output to-
kens during LVLM inference, while the orange line
shows the variation in the attention weights given
to the instruction. The image captioning example
demonstrates that LLaVA 1.5 focused on an incor-
rect image feature (the red region in the attention
heatmap), resulting in the output of a non-existent
entity (a few other people). Our EMPO corrects
this, indicating a strong consistency between the
image content and semantic concepts. The VQA
example shows that LLaVA 1.5 was influenced by
the prompt and produced an affirmative answer
even when the corresponding image feature was
absent. In contrast, EMPO overcomes the inherent
hallucination of the LLM. Furthermore, our EMPO
assigns higher attention weights to both the im-
age and the instruction, suggesting that it focuses
on these inputs better than LLaVA 1.5. One pos-
sible explanation is that by comparing real data
with generated negative data and mitigating the in-
ternal hallucination patterns, EMPO redirects the
LVLM’s attention, causing it to pay more attention
to the image and question tokens. Due to space con-
straints, more inference examples for captioning
and VQA tasks will be presented in Appendix B.

Scalabiliy As shown in Table 1, EMPO signifi-
cantly reduces baseline hallucinations across both
the POVID and RLAIFV datasets, which differ
fundamentally in structure and content. This clear
ability to perform effectively on datasets with dis-
tinct characteristics highlights the strong adaptabil-
ity and scalability of EMPO. Moreover, as shown
in Figure 3, its consistent performance on real test
samples suggests that it can address real-world chal-
lenges involving heterogeneous data. The ability to
generalize its performance to diverse datasets fur-
ther underscores its potential applicability across
a wide range of domains, proving its robustness in
handling varied data distributions.

5 Conclusion

This paper addresses the LVLM hallucination prob-
lem from two perspectives: modality misalignment
and LLM inherent hallucination. At the method
level, we propose an entity-centric multimodal pref-
erence optimization method to help LVLM align
entity features with semantic concepts, enhancing
its trustworthiness. On the data side, we construct
fine-grained preference data to assist LVLM in
overcoming the inherent hallucination of LLMs.
Extensive experiments across multiple benchmarks
demonstrate that our method effectively reduces
LVLM hallucinations while preserving its compre-
hensive capabilities. For future work, we plan to
further explore the construction of preferences that
involve more complex interconnected entities.



Limitations

The limitation of this study is that its investigation
into hallucination issues is confined to entities. Cur-
rently, our dataset is constructed solely by deleting
and replacing entities; we have not delved into en-
tity attributes or inter-entity relationships, nor have
we explored hallucinations caused by non-entity
factors. We propose the following directions for fu-
ture research: (1) Explore the construction of pref-
erences based on entity attributes and inter-entity
relationships. (2) Investigate hallucinations caused
by non-entity factors and construct corresponding
preference samples.

Ethics Statement

This study focuses on mitigating hallucination phe-
nomena in LVLMs to enhance their reliability and
trustworthiness. We have carefully considered the
ethical implications of the research and do not ex-
pect any major ethical issues to arise. This study is
based on publicly available and widely used data
and models; therefore, our findings may inherit the
biases and limitations present in these resources.
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A Experimental Supplement

To better understand the severity of hallucinations
in LVLMs, we conducted a pilot experiment to eval-
uate their inference performance. Specifically, we
assessed the models on 200 preference examples se-
lected from the POVID dataset (Zhou et al., 2024).
Through this analysis, we identify two prominent
types of errors in LVLM responses, which high-
light critical limitations in their reasoning and mul-
timodal understanding capabilities.

1. Concept Confusion:We observe that LVLMs
often struggle to accurately interpret seman-
tic relationships between entities, leading to
concept confusion. For example, the models
frequently generated identical or highly sim-
ilar responses to user instructions that were
semantically conflicting or conceptually dis-
tinct. This suggests that LVLMs may fail
to fully grasp the fine-grained differences be-
tween related but distinct concepts, resulting
in responses that lack precision and contextual
appropriateness.

Visual Neglect: When provided with only
textual context (i.e., without accompanying
visual input), the models tended to generate
image-agnostic responses that disregarded the
potential relevance of visual information. This
behavior indicates an over-reliance on textual
cues and insufficient attention to visual con-
tent, which we attribute to the influence of
LLM-induced hallucinations. Such hallucina-
tions appear to bias the models toward text-
based reasoning, even in scenarios where vi-
sual understanding is critical. This is also in
line with the previous work PAI (Liu et al.,
2024c)

These findings highlight the challenges LVLMs
face in achieving robust multimodal understanding
and highlight the need for improved mechanisms
to mitigate hallucinations. Addressing these issues
is essential for enhancing the reliability and appli-
cability of LVLMs in real-world tasks that require
both textual and visual reasoning.

B Example Appendix

The section to show EMPO examples.

C Prompt Appendix

The section is to describe the prompt for identify-
ing entities and the prompt for rewriting chosen

instruction and rejected instruction.
The prompt for identifying entities:

14

# prompt for identifying entities
prompt =’’’

You are a selective entity replacement
engine. You need to perform entity
replacement on the original text.

Core Instructions:

1. Analyze the input text to identify
replaceable entities.

2. Randomly select approximately 50% of
the identified entities for substitution

3. Replace the chosen entities with
contextually appropriate alternatives.
4. Maintain grammatical correctness and
readability.

5. Output the modified version and a
summary of changes.

Workflow:

1. Entity Identification
- Named entities (people,
organizations)
- Common nouns
- Actions/verbs
- Descriptors/adjectives

places,

Replacement Rules:

- Maintain the original part of
speech.

- Preserve sentence structure.

- Ensure semantic coherence.

- Keep consistent tense and number.

- Replace only approximately 50% of
the identified entities to retain the
original context and flow.

3. Input Original Text:
{original_text}

Output Format:

- Modified Text:
[text with approximately
replaced entities]

30%

- Changes Summary:
- [Original Entity
Replacement Entity
- [Original Entity
Replacement Entity

1]
1]

_>[

_>[
2]

Additional Instructions:

- Entity Selection:
- After identifying all replaceable
entities, calculate 30% of the total
number .
- Randomly select the calculated
number of entities to replace.
- Ensure that the selection is random
to maintain variability across
different texts.

- Replacement Constraints:
- Do not replace entities that are




Captioning Task

Question: Describe the image in detail.

LLaVA-1.5: The image depicts a city street
with a storefront for Hawkins Bazaar, a
shop that sells Christmas decorations. The
store is located on the side of the street,
and there is a black and red sign on the
side of the building. Several people can be
seen walking along the sidewalk in front of
the store. Some of them are closer to the
storefront, while others are further away.
There is also a clock visible on the side of
the building, possibly indicating the time
for passersby. Overall, the scene captures
a lively city street with people going about
their day and the festive storefront of
Hawkins Bazaar.

EDPO (ours): The image captures a bustling
street lined with various shops and an
adjoining sidewalk. Several pedestrians are
present, with two individuals notably passing a
store with a green sign saying "Hawkin's
Bazaar". At this store's entrance, a man stands,
overseeing a spacious window display that
houses diverse items, highlighted by a red and
white sign. Interestingly, no trees or parked
cars are present in the street. The mood is
energetic, showcasing individuals engaged in
their daily routines and shopping pursuits.

VQA Task

Question: Is the man in the picture
indoors or outdoors?

LLaVA-1.5: The man in the picture is
indoors, specifically inside a boat.

EDPO (ours): It's not possible to
determine with certainty from the image
whether the man is indoors or outdoors.
However, what we can see is that there
are divers' gear and equipment present in
the image, which suggests that the man
might be in a location related to diving or
water activities.

Figure 4: More Examples

crucial for the understanding of the
text.

- Avoid replacing more than 30% to
prevent altering the original meaning
significantly.

- If the total number of replaceable
entities is small, adjust the
replacement percentage proportionally
to avoid replacing too many.

IEEI)

The prompt for rewriting chosen instruction:

# prompt for rewriting chosen
instruction

prompt = ’’’Task: Rephrase the following
question while maintaining its original
meaning:

Original question: {question}

Requirements:

1. If original question was a

declarative sentence, then keep
rewritten question as a declarative

sentence.

2. Ensure the rephrased question is

clear, concise, and maintains the

original inquiry intent.

3. You may adjust sentence structure or

wording, but do not change the essence

of the question.

4. If necessary,

question to improve clarity,
concise.

5. Use natural, fluent English in the
rephrased version.

slightly expand the
but keep it

Please only provide the rephrased
question that meets these criteria
without any additional explanation.

LRI

The prompt for rewriting rejected instruction:

# prompt for rewriting rejected
instruction
?’You are an expert in creative writing
and linguistic transformation. Your
task is to rewrite the given question so
that its meaning is significantly
different from the original, while
maintaining the same general structure
and format. Follow these guidelines:

1. Analyze the original question’s
structure, tone, and key elements.

2. Identify a different perspective or
context that could radically change the
question’s meaning.

3. Rewrite the question using the new
perspective, ensuring it has a
distinctly different meaning.

4. Maintain the original question’s
format, including any specific phrasing
or sentence structure.

5. Ensure the rewritten question is
coherent, grammatically correct, and
makes sense on its own.

Original question: {question}

Rewritten question:

Provide only the rewritten question
without any additional explanation.’’’

LIRS
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