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Abstract

Goal-conditioned sequence-based supervised learning with transformers has shown promise
in offline reinforcement learning (RL) for single-agent settings. However, extending these
methods to offline multi-agent RL (MARL) remains challenging. Existing transformer-
based MARL approaches either train agents independently, neglecting multi-agent system
dynamics, or rely on centralized transformer models, which face scalability issues. Moreover,
transformers inherently struggle with long-term dependencies and computational efficiency.
Building on the recent success of Structured State Space Sequence (S4) models, known for
their parameter efficiency, faster inference, and superior handling of long context lengths,
we propose a novel application of S4-based models to offline MARL tasks. Our method
utilizes S4’s efficient convolutional view for offline training and its recurrent dynamics for
fast on-policy fine-tuning. To foster scalable cooperation between agents, we sequentially
expand the decision-making process, allowing agents to act one after another at each time
step. This design promotes bi-directional cooperation, enabling agents to share information
via their S4 latent states or memory with minimal communication. Gradients also flow
backward through this shared information, linking the current agent’s learning to its prede-
cessor. Experiments on challenging MARL benchmarks, including Multi-Robot Warehouse
(RWARE) and StarCraft Multi-Agent Challenge (SMAC), demonstrate that our approach
significantly outperforms state-of-the-art offline RL and transformer-based MARL baselines
across most tasks.

1 Introduction

Multi-agent reinforcement learning (MARL) has demonstrated significant success in learning complex policies
that require coordination among multiple agents to maximize a shared objective (Cao et al., 2012; Berner
et al., 2019; Ye et al., 2015). However, this success often relies on a substantial number of interactions with
the environment, which can be computationally expensive in high-fidelity simulations or prohibitively risky
in real-world applications. To enhance sample efficiency, offline reinforcement learning (RL) algorithms (Lee
et al., 2021; Fujimoto et al., 2019; Kumar et al., 2019; 2020; Kostrikov et al., 2021; Xu et al., 2022a; Li
et al., 2022; Xu et al., 2023) have been developed, enabling learning from pre-collected offline datasets, thus
reducing the need for extensive online interactions.

Offline RL is plagued by the well-known issue of distribution shift, which leads to extrapolation errors when
encountering out-of-distribution (OOD) samples during policy training. This occurs when the learned policy
deviates from the unknown behavior policy used to collect the training data. To mitigate this, various forms
of regularization (Kumar et al., 2019) are introduced to ensure that the learned policy remains close to
the behavior policy (Kumar et al., 2020; Xu et al., 2023; 2022a). In multi-agent settings, the joint state-
action space expands exponentially as the number of agents increases. This makes it challenging to apply
these regularization techniques globally on the joint state-action space, leading to sparse and less effective
regularization constraints, especially when working with a limited and less diverse offline dataset.

Sequence-based supervised learning has been concurrently applied to address offline MARL, leveraging the
significant success of supervised learning in capturing complex patterns from large offline datasets. This
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approach, first introduced by the Decision Transformer (DT) (Chen et al., 2021), has demonstrated its
ability to learn policies in an autoregressive fashion by predicting the next action based on the current state,
previous action and the desired return-to-go. While efforts have been made to extend DT-based architectures
to offline MARL (Meng et al., 2021; Tseng et al., 2022), certain limitations persist. MADT (Meng et al., 2021)
adapts DT independently for each agent in the multi-agent settings, failing to explicitly model cooperation
between agents. (Tseng et al., 2022) adopts a similar approach and trains a centralized teacher policy to
capture agent interactions, with individual agents learning through policy distillation. However, centralized
transformers face scalability issues, requiring training on information from all agents. Additionally, these
approaches inherit the inherent limitations of transformers, such as large model sizes, inefficient runtime
inference, and restricted ability to capture long-range dependencies due to fixed window size constraints.

Structured State Space Sequence (S4) models (Gu et al., 2022) have recently been shown to outperform
transformer-based models in single-agent offline RL tasks (Bar-David et al., 2023). Building on this success,
we propose a sequence-learning-based offline MARL algorithm leveraging S4 variants. These models pro-
vide superior parameter efficiency compared to transformers, effectively capture longer temporal contexts,
and enable constant-time inference over the quadratic time complexity of transformers with respect to the
sequence length. Unlike previous works, such as MADT, which trains agents independently, our method
explicitly models cooperation through a Sequentially Expanded MDP (SE-MDP) paradigm. In this frame-
work, recently used in online MARL settings (Li et al., 2023), each decision step is divided into mini-steps,
with agents acting sequentially based on their predecessors’ actions. Unlike (Li et al., 2023), we enable
limited communication, requiring each agent to access only its immediate predecessor’s information, shared
through the latent state representation of the S4 model. Utilizing this hidden state of the S4 module of the
current agent, information on all its prior agents is efficiently passed down to the next agent, and gradients
flow backward from the current agent through this shared memory to the previous agents during training.
This design enables scalable training with constant memory communication overhead, unlike traditional
communication-based MARL algorithms, where memory overhead increases quadratically with the number
of agents. Additionally, this streamlined information-sharing mechanism helps mitigate non-stationarity is-
sues during online fine-tuning. This form of training also shares similarities with the way information is
passed between segments of long sequences in Recurrent Memory Transformer (RMT) (Bulatov et al., 2022).

The S4-based agents are trained directly on sequences or trajectories from the offline dataset in an efficient
convolutional manner. The offline pre-trained models can be further used for sample-efficient online fine-
tuning based on individual tuples instead of sequences leveraging the recurrent view of S4. We evaluate the
performance of our developed algorithm, called Multi-Agent Decision S4 (MADS4), on the challenging offline
MARL benchmarks of Multi-Robot Warehouse (RWARE) (Papoudakis et al., 2020) and StarCraft2 Multi-
Agent Challenge (SMAC) (Samvelyan et al., 2019), where MADS4 achieves superior performance across
many tasks over state-of-the-art offline RL-based and transformer-based baselines.

2 Related Work

Offline Reinforcement Learning Offline RL allows for policy learning based on pre-collected datasets
without having access to active interactions with the environment (Levine et al., 2020), which is then directly
used as the final policy or is used as a starting point for further improvement (Uchendu et al., 2023).
This learning paradigm however results in severe distribution shift and extrapolation errors during policy
evaluation on OOD samples not present in the offline dataset (Kumar et al., 2019; Fujimoto et al., 2019).
Several approaches have been developed to mitigate this issue which typically involves various types of
regularizations to be near the offline data distribution. Policy-based regularizations implicitly or explicitly
constrain the policy to be close to the behavior policy of the dataset (Wu et al., 2019; Xu et al., 2021; Cheng
et al., 2024; Li et al., 2022). Value-based regularizations aim to learn conservative value functions on OOD
samples (Kumar et al., 2020; Kostrikov et al., 2021; Xu et al., 2022b). Other approaches involve including
uncertainty (Wu et al., 2021; Bai et al., 2022) or penalizing OOD rewards (Yu et al., 2020).

In contrast to these regularization-based methods, Decision Transformer (DT) (Chen et al., 2021) takes
a goal-conditioned supervised learning (GCSL) approach to formulate offline RL as a sequence modeling
task and outperforms many state-of-the-art offline RL algorithms. Following the success of this training
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Figure 1: Multi-Agent MDP (MMDP) is restructured into a Sequentially-Expanded MDP (SE-MDP) where
the multi-agent state transition at each timestep is decomposed into n intermediate states. In this framework,
in the forward pass (black lines), each agent processes its input alongside information received from its
preceding agent, then takes an action and passes updated information to the next agent in the sequence.
During training, the gradient flows backward (green lines), enabling earlier agents to receive updates based
on the information passed by later agents.

regime, Decision S4 (Bar-David et al., 2023) proposes using S4 model variants for higher parameter efficiency,
capturing longer sequences and faster inference.

Offline MARL Extending single-agent RL methods to multi-agent settings presents significant challenges
due to the exponential growth of the joint state-action space. Most MARL algorithms adopt the Centralized
Training with Decentralized Execution (CTDE) paradigm. In CTDE, global information is shared during
training, and local, decoupled policies are used for execution (Oliehoek et al., 2008; Sunehag et al., 2017;
Rashid et al., 2020; Son et al., 2019; Wang et al., 2020; Foerster et al., 2017; Lowe et al., 2017; Yu et al.,
2021). Recently, offline RL-based MARL algorithms have emerged, typically applying regularizations on
local policies or value functions (Yang et al., 2021; Jiang & Lu, 2023; Pan et al., 2022). On the other hand,
(Meng et al., 2021) extends the Decision Transformer (DT) (Chen et al., 2021) to a multi-agent setting,
where agents are trained independently by sharing weights within a goal-conditioned supervised learning
framework. However, these algorithms do not provide guarantees of global-level regularizations and fail
to explicitly or implicitly learn cooperative behavior. Only a few recent works have tried to tackle these
limitations. For example, (Wang et al., 2024) uses an implicit global to-local regularization, and (Tseng
et al., 2022) uses knowledge distillation to distill cooperation in the local policies.

S4 S4(Gu et al., 2022; 2021) and their variants (Gupta et al., 2022; Smith et al., 2022), which are developed
on time-invariant linear state space layers, have outperformed transformers in capturing long-range contexts.
These models require far fewer parameters and have constant time inference; hence, they have been suitably
utilized in reinforcement learning domains in single-agent learning (Bar-David et al., 2023) and in-context
learning (Lu et al., 2024). Commonly, the model uses the convolutional mode for efficient parallelizable
training (where the whole input sequence is seen ahead of time) and switched into a recurrent mode for
efficient autoregressive inference (where the inputs are seen one timestep at a time).
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3 Methodology

3.1 Problem Formulation

In this section, we present our cooperative multi-agent decision-making approach based on sequence learning
with state-space layers. We design our approach based on the Multi-agent Markov Decision Process (MMDP)
framework (Littman, 1994). An MMDP over n agents is defined by the tuple G = ⟨S,A, P, r, γ⟩, where S is
the set of global states, and A = A1 × · · · ×An is the joint action space. At each timestep, the environment
transitions from state s ∈ S to s′ ∈ S under the joint action a = [a1, . . . , an], following the transition function
P (s′ | s, a), and returns a global reward r(s, a). The goal is to learn a joint policy π(a | s) that maximizes
the expected return Eπ [

∑∞
t=0 γtr(st, at)].

3.2 Sequentially Expanded MDP

In this work, the Multi-agent Markov Decision Process (MMDP) is transformed into a Sequentially Expanded
Markov Decision Process (SE-MDP), where each timestep is divided into n mini timesteps and a multi-agent
decision by n agents is expanded into a sequence of n individual decisions, with only one agent acting during
each mini-timestep. Thus, a single-step transition in the original MMDP (st, at, st+1) resulting in a shared
reward r(st, at) is composed of a sequence of n intermediate transitions, which in turn result in the same
shared reward r(st, at), as shown in Figure 1.

(st, at, st+1) = {(st, at
1, st

a1
), (st

a1
, at

2, st
a1:2

), ..., (st
a1:n−1

, at
n, st

a1:n
= st+1)} (1)

Within this framework, at each timestep, an agent’s action is based on information passed by the immediately
preceding agent in the sequence. This creates a bidirectional dependency between the agents as shown in
Figure 1: in the forward direction, an agent’s action is influenced by the actions of its predecessors, while in
the backward direction, gradients can propagate from the current agent back to the previous agents.

3.3 Sequence-based Reinforcement Learning

Our approach follows the offline RL paradigm using sequence modeling, where the RL problem is reframed
as a supervised learning task by predicting actions in an autoregressive manner—typically conditioned on
the current state, past actions, and a target return-to-go. The return-to-go at timestep t, denoted Rt, is
defined as the cumulative future reward from that point until the end of the decision horizon T : Rt =∑T

i=t ri. Conditioning on return-to-go rather than immediate rewards enables the model to associate state-
action sequences with desirable long-term outcomes (Chen et al., 2021). We extend this framework to
the multi-agent setting, where the state, action, and reward of the ith agent at each timestep are denoted
as si, ai, ri, and its trajectories τ : (s0, a0, r0, s1, a1, r1, ..., sT , aT , rT ) consist of sequences of state, action,
and reward tuples. To align with return-conditioned learning, these trajectories are restructured as τ =
(R0, s0, a0, R1, s1, a1, . . . , RT , sT , aT ), where Ri is the return-to-go from timestep i onward.

3.4 S4-based Agent

This section provides background on State Space Models (SSMs) and Structured State Space Models (S4),
which form the basis for designing individual agents in our framework.

SSMs are a classical framework for modeling sequential data through latent dynamical systems. At each
timestep t, the model receives an input u(t), updates an internal memory or hidden state x(t), and generates
an output y(t) using a first-order linear time-invariant differential equation:

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(2)
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SSMs typically operate on continuous time sequences where A, B, C, D are parameter matrices of appro-
priate dimensions. To apply SSMs in discrete-time domains, such as typical reinforcement learning settings,
the continuous-time formulation is discretized with a fixed step size ∆ using schemes like the bilinear trans-
form (Tustin, 1947), yielding the discretized linear recurrence:

xk = Āxk−1 + B̄uk

yk = C̄xk + D̄uk

(3)

where the discretized matrices Ā, B̄, C̄, D̄ are functions of the continuous-time parameters and the step size
∆.

S4 models (Gu et al., 2022) build upon this formulation by introducing efficient parameterizations to en-
able stable and scalable modeling of long sequences. S4 leverages special initialization strategies such as
HiPPO (Gu et al., 2020) to preserve long-range dependencies, and its structured formulation allows it to
be integrated effectively with deep learning models for sequence modeling tasks. Various techniques have
since been developed to improve the model’s performance, stability, and training efficiency (Gu et al., 2021;
Gupta et al., 2022). Similar to these works, D is represented here by a skip connection.

Importantly, since Eq. 3 is linear and time-invariant, the output sequence y can be computed directly in
parallel based on the input sequence u via non-circular convolution with a kernel K̄:

yk = C̄ĀkB̄u0 + C̄Āk−1B̄u1 + · · ·+ C̄ĀB̄uk−1 + C̄B̄uk

y = K̄ ∗ u
(4)

where K̄ is a function of Ā, B̄, C̄, D̄ and context length L which is pre-fixed during training. This convolution
can be computed efficiently across all time steps, allowing for parallelizable training. The recurrent view of
the SSM also allows for faster inference with low memory. This is a key advantage over transformers, which
makes the use of SSMs very effective in reinforcement learning settings, which require faster inference for
the collection of online interactions with the environment. Additional details can be found in Appendix A.

In this work, each agent is modeled using an S4-based architecture that processes sequences of past infor-
mation and target returns-to-go to predict the next action. We then extend this design to the multi-agent
setting by enabling cooperation through information sharing, as detailed below.

3.5 Information Sharing with Limited Communication

To facilitate scalable cooperation among S4-based agents, we introduce a communication mechanism re-
stricted to consecutive agents within the SE-MDP sequence. Specifically, each agent’s memory informa-
tion—captured by the hidden state of its S4 module—is passed to the next agent in the sequence. As a
result, the hidden state of an agent in the sequence implicitly encodes information from all preceding agents.
This design induces a bidirectional flow of information and dependency across agents. At each timestep t,
a projection of the previous agent’s latent state, ht

i−1, is provided as an additional input to the next agent,
alongside its own input ût

i, thereby influencing both its action at
i and updated memory state ht

i:

at
i, ht

i = πi(ût
i, ht

i−1; θi) (5)

During training, gradients flow backward through the shared latent states, enabling the entire system to
learn cooperative strategies:

∂J

∂θi
= ∂J

∂at
i

· ∂at
i

∂θi
+ ∂J

∂at
i+1
·

∂at
i+1

∂ht
i

· ∂ht
i

∂θi
. (6)
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where J represents the supervised loss function computed across all agents in the system. This sequential flow
of information eliminates the need for an agent to communicate with more than one peer or identify useful
collaborators, a challenge that grows with the number of agents. In contrast to typical communication-based
MARL algorithms, which scale poorly due to the quadratic growth in memory requirements during training
and execution, our mechanism is highly efficient, requiring only constant memory per agent.

We first adapt Decision S4 (DS4) for each agent with parameter sharing, similar to the Multi-Agent Decision
Transformer (MADT) (Meng et al., 2021). Unlike MADT, however, the Multi-Agent Decision S4 (MADS4)
is trained in a sequentially dependent manner, where agents can share accumulated memory information
with the next agent in the sequence. The offline version of MADS4, trained on pre-collected trajectories,
is detailed in the next section. These pre-trained models can be further fine-tuned in an on-policy setting
using MAPPO (Yu et al., 2021).

4 Multi-Agent Decision S4 (MADS4)

4.1 MADS4: Offline Training
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Figure 2: MADS4 Actor Network. In addition
to encoding the state, action, and reward, the
memory state from the previous agent (Hn−1) is
processed through a memory encoder. The up-
dated S4 states and outputs are then projected
via separate heads.

Input formulation In the offline training setup of
MADS4, each agent is trained over trajectories consisting
of sequences of previously seen observations, its own pre-
viously executed actions, the latent state representation
of its preceding agent, and returns to go from the cur-
rent time step. Similar to MADT, the state of each agent
at each time step st

i is composed of global environment
state st

gi and its local observation ot
i. However, our model

performs very similarly without using the global state in-
formation in the input, as shown in Appendix C.2. Thus,
a trajectory for the ith agent, which is taken as input to
the S4-based model, consists of the following:

τi = (u1, u2, ..., uT ) where ut = {Rt, st
gi, ot

i, at−1
i , ht

i−1}
(7)

where Rt is the returns-to-go from current time step t, st
gi

is the current shared global state, ot
i is the current local

observation, at−1
i is the previously executed action of the

ith agent, ht
i−1 is the current hidden state representation of the preceding agent. The model is trained to

predict actions (action logits) at time step t in an autoregressive manner based on the data seen so far. The
output of the S4-based model is used as the action probabilities which are sampled after applying the action
availability masks.

ât
i = arg max

a
P (at

i|τ<=t
i ; θ) (8)

where θ are the parameters of the MADS4. In this work, parameter sharing is allowed across the agents for
training stability, and thus, essentially, a single model is trained, which takes into account different inputs
for different agents along with their specific one-hot agent IDs.

Network architecture and training The MADS4 architecture consists of three key components, as
illustrated in Figure 2: (i) Input, state, and output projection layers: each of these consists of a fully
connected layer followed by ReLU activations; (ii) Input encoder layers: These layers handle states, actions,
and rewards/returns, each implemented as fully connected linear layers; (iii) Sequence modeling component:
This component consists of stacked S4 blocks, where each block consists of Batch Normalization layer followed
by S4 layer, linear mixing layer with GELU activation, and a dropout layer. We employed various kernels
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Algorithm 1 MADS4-Offline Training
Input: Offline dataset D : {τi : ⟨st

gi, ot
i, at

i, vt
i , dt

i, Rt
i⟩Tt=1}n

i=1, where n is the number of agents, and vt
i

denotes the available actions for the ith agent at time t; dt
i denotes the done signal for an episode

Initialize α as the learning rate, K as the context length
Initialize θ for the S4 models based on HIPPO initialization

1: for i = 1 : n do ▷ Iterate over each agent
2: From τi and ht

i−1, create Xi : {Rt
i, st

gi, ot
i, at−1

i , ht
i−1}T

t=1, where ht
i−1 is the latent state representation

of the previous agent, assuming ht
−1 = 0

3: Zero-pad the trajectory to a constant length K when dt
i is true ▷ Pad when the agent is done

4: Compute action output sequence âi = {â1
i , . . . , âT

i } and latent state projections hi = {h1
i , . . . , hT

i }
5: for t = 1 : T do ▷ Loss calculation over time steps
6: Mask illegal actions via P (ât

ij |τ<t
i ; θ) = 0 if vt

ij is False, where j is the unavailable action index
7: Predict the action ât

i = arg maxj P (âij |τ<t
i ; θ)

8: Update θ:

θ ← arg max
θ

1
K

K∑
t=1

P (at
i) log P (ât

i|τ<t
i ; θ)

9: end for
10: end for
Return: θ

for S4, with the "Normal Plus Low Rank" kernel initialized using HIPPO, achieving the best performance.
In all experiments, we set the input channel size to H = 96 and the S4 state size to N = 96. The effect of
varying state and input sizes is shown in Section 5.4.

In the offline setting, the S4 model is trained efficiently using the convolutional view on entire trajectories
sampled randomly from the offline dataset. The trajectories are zero-padded to a constant context length.
Unlike transformers, which face limitations on context length due to the expensive quadratic time and space
complexity of self-attention, S4-based models can be trained on complete trajectories that are often much
longer than those typically used for transformers in most environments. The impact of truncating trajectory
lengths has significant implications for model performance, as shown in Section 5.4. Actions are predicted
based on the action logit outputs of the model, and the model is trained based on loss computed using
cross-entropy between the true action labels and the predicted actions.

4.2 MADS4: On-policy Fine-tuning

For online fine-tuning, the offline pre-trained agent is used to interact with the online environment and is
further updated based on an on-policy training scheme. The agent interacts with the environment while
creating the buffer, which stores the local observations and actions of the individual agents, shared global
states of the environment, rewards, returns-to-go, and also the latent states of the S4 modules of the agents.
Within the well-known MAPPO-based (Yu et al., 2021) actor-critic framework, the offline-pretrained S4-
based model is used as actor networks of the agents which predict actions via the recurrent view based on
latent states and other inputs as used in the pretraining stage. The critic network is conditioned on both the
global states of the environment as well as the encoded latent S4 states to evaluate the state value function.

Network architecture and training The pre-trained model is loaded as the actor network, which pre-
dicts action probabilities and next states as:

pt
i, ht

i = π(ut
i, ht−1

i ; θ) where ut
i = {Rt

i, st
gi, ot

i, at−1
i , ht

i−1} (9)

The critic network is parameterized by fully connected layers with ReLU activations, which take the shared
global state of the environment and encoded latent states and evaluate the value function, which is used to
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Algorithm 2 MADS4: On-policy Fine-tuning
1: Copy the model weights θ to the actor or policy network π : π(ui), where ui = {Rt

i, st
gi, ot

i, at−1
i , ht

i−1};
Initialize ϕ, the parameters for critic V

2: Set learning rates απ, αV for actor and critic
3: for iterations = 1, M do
4: Set data buffer D = {}
5: for i = 1 to batch_size do
6: τ = [] ▷ Empty list
7: Initialize h

(1)
0 , . . . , h

(n)
0 actor S4 states

8: for each timestep t in the environment do
9: for agent = 1 : n do

10: pt
i, ht

i = π(ut
i, ht

i−1; θ)
11: Sample at

i ∼ pt
i

12: end for
13: Execute actions at, observe rt, st+1

g , ot+1

14: τ+ = [st, ot, ht, at, rt, Rt, st+1, ot+1]
15: end for
16: Calculate advantage At via GAE on τ and store τ with At in the buffer D
17: end for
18: for k = 1, . . . , K training steps do
19: Sample batch from replay-buffer B = {(st

g, ot, at−1, Rt−1, ht−1, st+1
g , ot+1, at, ht, rt, Rt, At)} ⊂ D

for each agent
20: Calculate Bellman target estimate: y = rt + γV (st+1, ht)
21: Update critic: ϕV = ϕV − αV∇ϕV

(V (st, ht−1)− y)2

22: If actor freezing is over, update actor:

θπ ← arg max
θπ

Es∼ρθold ,a∼πθold

[
clip(w, 1− ϵ, 1 + ϵ)At

]
where the importance weight w = πθ(ai|oi)

πθold (ai|oi)
23: end for
24: end for

update the S4-based actor parameters (θ) using the policy gradient theorem. For more stable training. the
actor network is kept frozen initially, and the critic is solely trained on the recorded data collected using
the pre-trained actor. After sufficient training of the critic, the actor and critics are simultaneously trained.
During exploration, the desired returns-to-go is set at 10% higher than the current model’s highest return.
Additional details on the experimental setup and training are provided in Appendix A.4.

5 Experiments

5.1 Datasets and Baselines

We evaluate the performance of MADS4 on challenging cooperative MARL benchmarks of Multi-Robot
Warehouse (RWARE) (Papoudakis et al., 2020) and StarCraft2 Multi-Agent Challenge (SMAC) (Samvelyan
et al., 2019). The offline datasets in the RWARE domain are obtained from (Matsunaga et al., 2023), which
consists of diverse trajectories collected by training Multi-Agent Transformer (MAT) (Wen et al., 2022). The
RWARE datasets consist of expert policies trained on 2 maps (tiny and small) with different numbers of
agents. For the SMAC domain, the datasets provided by (Meng et al., 2021) have been used, which consists
of trajectories collected with online trained MAPPO agents. The datasets consist of three trained quality
levels of the agents, good, medium, and poor, tested on the different SMAC maps. For this work, we chose
four representative maps consisting of two hard (5m vs. 6m, 2c vs. 64zg) and two super hard (6h vs. 8z,
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Table 1: Average returns and standard deviations over 5 random seeds on the Warehouse domain.

Method Tiny (11x11) Small (11x20)
(N = 2) (N = 4) (N = 6) (N = 2) (N = 4) (N = 6)

BC 8.80 ± 0.25 11.12 ± 0.19 14.06 ± 0.32 5.54 ± 0.06 7.88 ± 0.14 8.90 ± 0.13
ICQ 9.38 ± 0.75 12.13 ± 0.44 14.59 ± 0.16 5.43 ± 0.19 7.93 ± 0.19 8.87 ± 0.22

OMAR 6.77 ± 0.64 14.39 ± 0.91 16.13 ± 1.21 4.40 ± 0.34 7.12 ± 0.38 8.41 ± 0.49
MADTKD 6.24 ± 0.60 9.90 ± 0.21 13.06 ± 0.19 3.65 ± 0.34 6.85 ± 0.36 7.85 ± 0.52
OptiDICE 8.70 ± 0.06 11.13 ± 0.44 14.02 ± 0.36 4.84 ± 0.32 7.68 ± 0.09 8.47 ± 0.26
AlberDICE 11.15 ± 0.35 13.11 ± 0.32 15.72 ± 0.36 5.97 ± 0.11 8.18 ± 0.19 9.65 ± 0.13

MADS4 (ours) 11.79 ± 0.61 15.52 ± 0.20 17.29 ± 0.76 6.58 ± 0.28 9.47 ± 0.15 10.87 ± 0.55

corridor) maps for evaluating MADS4. Additional statistics on the offline datasets can be found in Appendix
B.

For comparisons on both domains, we compare with several recent offline MARL algorithms from the
paradigms of both offline reinforcement learning and sequence-based supervised learning. The offline RL
baselines considered for comparison are Behaviour Cloning (BC) (Fujimoto et al., 2019), OptiDICE (Lee
et al., 2021), AlberDICE (Matsunaga et al., 2023), ICQ (Yang et al., 2021), OMAR(Pan et al., 2022) and
OMIGA(Wang et al., 2024). The sequence-based learning algorithms considered in this work include MADT
(Meng et al., 2021) and MADTKD (Tseng et al., 2022), which are based on transformers. MADT policies
do not involve any cooperation during learning, whereas MADTKD incorporates a degree of cooperation
distilled into the agents from the centralized teacher model.

5.2 Offline Training

Here, we compare the performance of offline trained MADS4, where the agents share information in the
form of their latent state projections. The trained agents are deployed on the online RWARE and StarCraft2
environments for evaluation. Tables 1 and 2 show the mean and standard deviation of average returns in
RWARE and SMAC domains, respectively, evaluated over 30 episodes and 5 different training seeds. During
evaluation, the desired returns-to-go is set at 10% higher than the highest returns encountered in the offline
datasets.

RWARE environment is a warehouse simulation consisting of agents moving and delivering goods to work-
stations in partially observable settings while avoiding collisions. This domain poses challenges due to
high-dimensional observations and the need for strong cooperation, especially in high-density settings where
agents must navigate narrow passages. In this domain, MADS4 outperforms all baselines across the maps,
with a larger performance gap on the small and tiny maps involving 6 agents, where tight coordination
is crucial to avoid collisions in confined spaces. MADS4 also outperforms transformer-based baselines like
MADTKD, likely due to the long trajectories in the RWARE datasets (up to 500 timesteps), which are often
truncated to reduce transformer training costs. In contrast, MADS4 processes full trajectories, capturing
longer contexts with fewer parameters.

In the SMAC domain, MADS4 demonstrates consistent performance that is similar to or better than the
considered baselines across all studied maps. Notably, the model outperforms all baselines in the hard and
superhard maps, specifically in the 2c vs. 64zg and 6h vs. 8z scenarios.

5.3 On-policy Fine-tuning

We evaluate whether the performance of offline pre-trained models can be enhanced through on-policy fine-
tuning. During this phase, MADS4 interacts with the environment, collecting trajectories that are stored in
a buffer and used to update the S4-based models via recurrence. As shown in Figure 3, on-policy training
builds upon and improves the offline pretraining results. Furthermore, on-policy training without pretraining
consistently results in sub-optimal performance across all tasks, underscoring the importance of pretraining
for achieving superior results.
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Table 2: Average returns and standard deviations over 5 random seeds on the SMAC domain.

SMAC Map Data
RL-based Sequence-based

ICQ OMAR OMIGA MADT MADS4 (ours)

5m vs 6m (H)
G 7.87 ± 0.30 7.40 ± 0.63 8.25 ± 0.37 8.15 ± 0.63 8.00 ± 0.45
M 7.77 ± 0.30 7.08 ± 0.51 7.92 ± 0.57 7.80 ± 0.56 7.85 ± 0.57
P 7.26 ± 0.19 7.27 ± 0.42 7.52 ± 0.21 7.23 ± 0.48 7.67 ± 0.15

2c vs 64zg (H)
G 18.82 ± 0.17 17.27 ± 0.78 19.15 ± 0.32 18.90 ± 0.78 19.40 ± 0.55
M 15.57 ± 0.61 10.20 ± 0.20 16.03 ± 0.19 16.92 ± 0.20 17.27 ± 0.15
P 12.56 ± 0.18 11.33 ± 0.50 13.02 ± 0.66 13.33 ± 0.50 14.67 ± 0.32

6h vs 8z (SH)
G 11.81 ± 0.12 9.85 ± 0.28 12.54 ± 0.21 12.55 ± 0.67 12.75 ± 0.15
M 11.13 ± 0.33 10.36 ± 0.16 12.31 ± 0.22 12.36 ± 0.16 12.57 ± 0.25
P 10.55 ± 0.10 10.63 ± 0.25 11.67 ± 0.19 11.63 ± 0.25 11.89 ± 0.43

corridor (SH)
G 15.54 ± 1.12 6.74 ± 0.69 15.88 ± 0.89 17.81 ± 1.14 16.02 ± 0.97
M 11.30 ± 1.57 7.26 ± 0.71 11.66 ± 1.30 12.75 ± 1.18 12.80 ± 1.12
P 4.47 ± 0.33 4.28 ± 0.49 5.61 ± 0.35 8.76 ± 0.49 8.57 ± 0.54

RWARE small 6 agents RWARE tiny 6 agents SMAC 2c vs 64zg SMAC 6h vs 8z

Figure 3: Training curves of on-policy training of MADS4 with and without offline pretraining. Mean and
standard deviations of average returns are plotted over 5 independent runs.

However, prolonged on-policy training can sometimes degrade the performance of pre-trained models, as
shown in Appendix C.1. This degradation likely arises from the inherent instability of training S4 modules
in a recurrent setup, compared to the more stable convolution-based operations employed during offline
pretraining, leading to error accumulation. To address this, we mitigate the issue by freezing the S4 kernel
parameter A, which governs state-to-state transitions independent of inputs, and fine-tuning only the input-
dependent parameters B and C.

5.4 Ablation Study and Hyperparameter Analysis

Effect of sharing information The sharing of information between agents leads to significantly improved
cooperative behavior, as reflected in the higher average rewards shown in Figure 4. This performance boost is
particularly pronounced in more complex tasks that involve a greater number of agents and demand precise
coordination. Importantly, this method of sharing information is scalable, where an agent only needs to
communicate with the next agent, minimizing overhead while ensuring efficient coordination. Information
can be shared in multiple forms, namely by passing the action logit outputs from the S4 model, the latent
state representations, or a combination of both from the preceding agent. A more detailed analysis of how
different types of shared information impact performance is provided in Appendix A.2.

Effect of order of agents To assess the impact of agent ordering on MADS4’s performance, we compared
two training settings: (1) Random Order, where the agent order is randomly shuffled during training, and (2)
Fixed Order, where agents are trained in the same sorted order as in the offline dataset. Figure 5(a) shows
similar performance, demonstrating that MADS4 is robust to agent ordering within the SE-MDP framework.
Nonetheless, we recommend using a random order during training to avoid introducing potential biases into
the learning process. Notably, our approach only requires each agent to communicate with one unique peer
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RWARE small 6 agents RWARE tiny 4 agents SMAC 2c vs 64zg SMAC 6h vs 8z

Figure 4: Training curves of MADS4 with information sharing between consecutive agents and IDS4 where
agents are trained independently. Mean and standard deviations of average returns are plotted over 5
independent runs.

RWARE small 6 agents SMAC 2c vs 64zg RWARE small 6 agents SMAC 2c vs 64zg

(a) (b)

Figure 5: (a) The effect of having a shuffled random order vs. a fixed sorted order of the agents in the
SE-MDP framework on the RWARE domain in the small 6 agents scenario and SMAC domain in the 2c vs.
64zg map. (b) The comparison of the performance of MADS4 vs. MADS4-dec (decentralized MADS4) on
RWARE small map with 6 agents and SMAC map 2c vs 64 zg.

which can be selected randomly to ensure that every agent’s information is passed across the network without
the need for any centralized optimization or sophisticated coordination.

MADS4 in decentralized setting To adapt MADS4 for a decentralized setting, where agents act in
parallel, we leverage the hidden state information of each agent from the previous timestep as a proxy for
the current timestep. When decisions are made at the current timestep, all decisions from the previous
timestep will already be finalized. As a result, the memory information of all agents is readily available for
use. By utilizing the memory information from the previous timestep, agents can make decisions without
relying on sequential dependencies during the current timestep. Since memory accumulates over multiple
timesteps, relying on the previous timestep’s information does not compromise performance, as demonstrated
in Figure 5(b). This modification enables our algorithm to function effectively in decentralized policy settings
without performance degradation.

S4 model size parameters We analyze the impact of the S4 model size parameters, specifically the
number of input channels (H) and the latent state size (N), on the model performance, as shown in Table
3. We compare the total number of parameters against the 1.8 million parameters reported for MADTKD
in (Tseng et al., 2022). Our biggest model with N=96 and H=96 was used in all our experiments, which
consists of about 200k parameters.

Effect of context length The context length used for pretraining significantly impacts performance,
which is also evident for transformer-based models. In our experiments, we used the maximum trajectory
lengths encountered in the offline datasets for pretraining. Representative results are shown in Figure 6,
which illustrates the effects of truncating the trajectory lengths to various percentages of the maximum
length in the offline dataset for the SMAC map 2c vs 64zg.
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Table 3: Results of smaller models on the RWARE small map. Each of the smaller models is denoted by (i)
N , the S4 state size, and (ii) H, the number of input/output channels.

Environments (N=96,H=96) (N=64,H=64) (N=32,H=32) (N=64,H=96) (N=96,H=64) (N=32,H=64) MADTKD
2 agents 6.58 6.21 5.53 6.53 6.25 5.87 3.65
4 agents 9.47 8.86 8.57 9.15 8.88 8.64 6.85
6 agents 10.87 10.31 9.55 10.76 9.97 9.85 7.85
% Parameters (Ours) 100 60 40 81 82 55 100
% Parameters (MADTKD) 12 7 5 8 8 6 100
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Figure 6: The effect of truncating the trajectory length during training. The average returns are normalized
with the maximum returns encountered in the offline dataset.

6 Conclusions

In this work, we demonstrate the effectiveness of S4-based models in outperforming transformer-based archi-
tectures for sequence-to-sequence offline multi-agent reinforcement learning (MARL) tasks. By structuring
agent interactions within the SE-MDP framework and limiting communication to the exchange of information
between unique, arbitrarily chosen agent pairs, MADS4 enables more scalable and efficient cooperation. This
contrasts with state-of-the-art offline RL and centralized transformer-based models, which require complete
access to all agents’ information during training, leading to scalability challenges. Additionally, MADS4 offers
a low-latency and lightweight model that can be trained more efficiently than transformers and fine-tuned
online using recurrent computations.
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A Additional Background, Experimental Setup and Training Details

A.1 S4 Layer

S4(Gu et al., 2022) layer is a variant of linear and time-invariant (LTI) state-space model (SSM)(Gu et al.,
2021) which adopts the HIPPO (Gu et al., 2020)-based initializations in order to better capture longer
contexts, and proposes efficient ways for kernel computations and parallel training.

A.1.1 Recurrent View

Given an input scalar function u(t) : R→ R, the continuous LTI SSM is defined by the following first-order
differential equation:

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t) (10)

The model maps the input stream u(t) to y(t). It was shown that initializing A by the HIPPO matrix (Gu
et al., 2020) grants the state-space model (SSM) the ability to capture long-range dependencies. Similar to
previous works (Gu et al., 2022; Gupta et al., 2022), D is replaced by parameter-based skip-connection and
is omitted from the SSM by assuming D = 0.

This SSM operates on continuous sequences, and it is discretized by a step size ∆ to operate on discrete
sequences. Let the discretization matrices be Ā, B̄, C̄:

Ā = (I −∆A/2)−1(I + ∆A/2), B̄ = (I −∆A/2)−1∆B, C̄ = C (11)

These matrices allow us to rewrite Eq. 10:

xk = Āxk−1 + B̄uk, yk = C̄xk (12)

Using the recurrent Eq.12, SSM asymptotically allows for constant O(1) time and memory inference for
each token/ timestep, as compared to O(L2) inference for transformers. SSM can be interpreted as a
linear RNN in which Ā is the state-transition matrix, and B̄, C̄ are the input and output matrices. Thus,
it essentially requires O(L) training, L being the sequence length, as compared to O(L2) (parallelizable)
training complexity for transformers.

A.1.2 Convolutional View

The recurrent SSM view is not practical for training over long sequences, as the training cannot be parallelized
across the sequence dimension and results in instabilities from vanishing gradient issues. However, the LTI
SSM can be rewritten as a convolution, which allows for efficient parallelizable training. The S4 convolutional
view is obtained as follows:

Given a sequence of scalars u = (u0, u1, ..., uL−1) of length L, the S4 recurrent view can be unrolled to the
following closed form:

∀i ∈ [L− 1] : xi ∈ RN , x0 = B̄u0, x1 = ĀB̄u0 + B̄u1, ..., xL−1 =
L−1∑
i=0

ĀL−1−iB̄ui

yi ∈ R, y0 = C̄B̄u0, y1 = C̄ĀB̄u0 + C̄B̄u1, ..., yL−1 =
L−1∑
i=0

C̄ĀL−1−iB̄ui

Where N is the state size. Inputs and outputs are scalars.
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Figure 7: Average Returns obtained in SMAC tasks by passing S4 output versus S4 latent states.

Since the recurrent rule is linear, it can be computed in closed form with matrix multiplication or non-circular
convolution:


y0
y1
...

yL−1

 =


C̄B̄ 0 0 0 0

C̄ĀB̄ C̄B̄ 0 0 0
C̄Ā2B̄ C̄ĀB̄ C̄B̄ 0 0

...
...

...
...

...
C̄ĀL−2B̄ C̄ĀL−3B̄ C̄ĀL−4B̄ ... C̄B̄




u0
u1
...

uL−1

 (13)

i.e., y = k̄∗u for some kernel k̄, which can be calculated by fixing the sequence length L before training. This
kernel can be efficiently computed using FFT operations; for example, (Gu et al., 2022) computes the kernel
via inverse FFT on the spectrum of k̄, which is calculated via Cauchy kernel and the Woodbury Identity.
This benefits from the "Normal Plus Low Rank" parameterization of the HIPPO-initialized state transition
matrix A, and other more efficient parameterizations are proposed in (Gupta et al., 2022).

The SSM, as represented above, operates on scalars or one channel of inputs. To handle vector inputs ∈ RH ,
H copies of the 1-D SSM layer are stacked, one for each input channel, and a linear mixing layer in the after
block of the S4 layer mixes the information from different channels to produce outputs ∈ RH .

A.2 Sharing Hidden State Representations

The raw outputs from the S4 layer consist of yk = C̄xk, where yk ∈ RH and the latent states xk ∈ RN×H

for H input channels. Since the outputs are linear projections and offer a compact representation of the
latent states (or, memory of the agent), this has been used as the message that is transmitted from one
agent to the next in the SE-MDP. This offers several advantages: i) results in better team performance;
ii) offers scalable cooperation between agents, which eliminates the need for a centralized transformer or a
critic, which requires access to information from all agents; one agent needs access to only its immediate
neighbor in the sequence; (iii) allows parallel training via convolution.

We also experimented with passing the raw hidden states xk ∈ RN×H from one agent to another. The
hidden states can be complex, depending on the parameterization of the S4 kernel. Therefore, before passing
the latent states directly, we first linearly mix the hidden states across the H channels to obtain xk ∈ CN .
Then, we linearly project the real and imaginary parts of xk after concatenation. This mode of information
transfer, however, has notable drawbacks: i) it requires computing the S4 hidden state at every timestep,
which requires recurrent rollouts of the S4 kernel, and ii) it fails to outperform the method of passing the S4
outputs; possibly due to errors accumulated during recurrent training. A comparison of performance using
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S4 output representation versus S4 latent state representation is shown in Figure7, where passing S4 outputs
resulted in better performance across all tasks.

It is, however, noted that hidden states at each timestep may be efficiently obtained utilizing the parallel (as-
sociate) scan operation as done in (Smith et al., 2022; Lu et al., 2024), but this requires JAX implementation
and is currently not supported by PyTorch.

A.3 Preliminary study using Mamba

We also explored Mamba as an alternative to LTI S4-based models. Mamba allows time-variant parameters
to be considered in the SSM equations. Though convolution cannot be applied here since the kernel cannot
be computed apriori since the parameters B, C are input-dependent, efficient parallel scan operation allows
for parallelizable O(log L) complexity. However, preliminary analysis utilizing Mamba resulted in suboptimal
performance, and it requires more extensive analysis.

A.4 Experimental Setup and Training

In all experiments, we set the input channel size to H = 96 and the S4 state size to N = 96. Offline training
is conducted on batches of 64 trajectories, with the maximum trajectory length in the offline dataset used
as the length for each batch. The shorter trajectories are zero-padded to a constant length. The training
was performed using Adam optimizer with a learning rate of 10−4.

The offline trained model is fine-tuned online using on-policy MAPPO. During the initial stage of fine-tuning,
the actor network is kept frozen, and the critic is first trained for the first 50,000 iterations. After this, both
the actor and critic are trained simultaneously, with a slower learning rate for the actor network (10−5)
compared to the critic (10−4). During on-policy fine-tuning, the returns-to-go is set at 10% higher than the
highest returns encountered during training. On-policy training is conducted in batches of 64. To mitigate
the issue of deteriorating performance with prolonged on-policy training, the S4 kernel A can be kept frozen.
All experiments were run on a single NVIDIA RTX 2080Ti GPU. Experiments on the RWARE domain take
less than 2 hrs to reach optimal performance, and experiments on the SMAC domain take less than 6hrs, 12
hrs, 12 hrs, and 30 hrs for maps 2c vs. 64zg, 5m vs. 6m, 6h vs. 8z and Corridor, respectively.

B Datasets and Baselines

B.1 Multi-RobotWarehouse (RWARE)

The offline dataset on RWARE (Papoudakis et al., 2020) is obtained from (Matsunaga et al., 2023), which
contains an expert dataset with diverse behaviors obtained by training MAT on small and tiny maps. The
dataset consists of 1000 trajectories, each trajectory consisting of 500 timesteps. The dataset statistics are
in Table 4. The longest trajectories consist of timesteps in the range of 500 in all the datasets.

The baseline results are obtained from (Matsunaga et al., 2023), which currently holds the state-of-the-art
results of the baselines listed on this dataset.

Map Name Maximum Minimum Average
small 2 agents 12.37 1.13 7.12
small 4 agents 12.08 3.93 9.49
small 6 agents 12.69 7.59 10.76
tiny 2 agents 16.81 1.97 12.77
tiny 4 agents 18.63 10.40 15.67
tiny 6 agents 19.97 11.88 17.45

Table 4: RWARE datasets
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B.2 SMAC

The offline SMAC (Samvelyan et al., 2019) dataset is obtained from (Wang et al., 2024). This dataset is
obtained by randomly sampling 1000 trajectories from the original dataset provided by (Meng et al., 2021).
We consider 4 representative battle maps, including 2 hard maps (5m vs 6m, 2c vs 64zg) and 2 super hard
maps (6h vs 8z, corridor), which are detailed in Table 5. The average returns for the dataset are listed in
Table 6. The longest trajectories are encountered in the Corridor map, which typically comprises about 100
timesteps.

Map Name Ally Units Enemy Units Type
5m_vs_6m 5 Marines 6 Marines homogeneous & asymmetric
2c_vs_64zg 2 Colossi 64 Zerglings micro-trick: positioning
6h_vs_8z 6 Hydralisks 8 Zealots micro-trick: focus fire
corridor 6 Zealots 24 Zerglings micro-trick: wall off

Table 5: SMAC maps for experiments.

Map Name Quality Average Return
5m_vs_6m good 20.00

medium 11.03
poor 8.50

2c_vs_64zg good 19.94
medium 13.00

poor 8.89
6h_vs_8z good 17.84

medium 11.96
poor 9.12

corridor good 19.88
medium 13.07

poor 4.93

Table 6: SMAC datasets.

The offline RL-based baseline results are obtained from (Wang et al., 2024), and MADT results are obtained
by running the code available with (Meng et al., 2021).

C Additional Analysis

C.1 Effect of freezing A during on-policy fine-tuning

The degrading effect on MADS4 performance during recurrent on-policy fine-tuning can be mitigated by
freezing the S4 kernel parameter A while updating only parameters B and C, as illustrated in Figure 8. A
similar observation has also been reported in (Bar-David et al., 2023).

C.2 Effect of global states as inputs

Building on prior work such as MADT, the proposed S4-based MADS4 agents utilize global states as inputs.
However, in certain environments, access to the global state may be restricted or unavailable. To address
this, we present an ablation study (Figure 9) evaluating the impact of using global state variables as inputs.
The results indicate that omitting the global state does not lead to a significant drop in performance.
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Figure 8: The effect of freezing S4 kernel parameter A in the SMAC 6h vs 8z map. Freezing A in the right
Figure results in more stable performance during the on-policy recurrent fine-tuning.

Figure 9: Performance comparison on RWARE small map with 6 agents (left) and SMAC map 2c vs 64
zg (right). The results demonstrate that excluding global states as inputs in MADS4 agents has minimal
impact on performance.
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