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ABSTRACT

Constrained by the sub-optimal dataset in offline reinforcement learning (RL),
the offline trained agent should be online finetuned before deployment. Due to the
conservative offline algorithms and unbalanced state distribution in offline dataset,
offline to online finetuning faces severe distribution shift. This shift will disturb
the policy improvement during online interaction, even a performance drop. A
natural yet unexplored idea is whether policy improvement can be decoupled from
distribution shift. In this work, we propose a decoupled offline to online finetuning
framework using the dynamics model from model-based methods. During online
interaction, only dynamics model is finetuned to overcome the distribution shift.
Then the policy is finetuned in offline manner with finetuned dynamics and with-
out further interaction. As a result, online stage only needs to deal with a simpler
supervised dynamics learning, rather than the complex policy improvement with
the interference from distribution shift. When finetuning the policy, we adopt the
offline approach, which ensures the conservatism of the algorithm and fundamen-
tally avoids the sudden performance crashes. We conduct extensive evaluation on
the classical datasets of offline RL, demonstrating the effective elimination of dis-
tribution shift, stable and superior policy finetuning performance, and exceptional
interaction efficiency within our decouple offline to online finetuning framework.

1 INTRODUCTION

As an approach closely aligned with data-driven paradigms, offline reinforcement learning (Levine
et al., 2020) has ignited the enthusiasm of the community. A large number of algorithms have
been developed with remarkable speed, encompassing not only traditional RL algorithms that are
designed to overcome overestimation on out-of-distribution (OOD) state-action pairs (Kumar et al.,
2020; Fujimoto & Gu, 2021; Zhuang et al., 2023), but also supervised paradigms such as sequence
modeling (Chen et al., 2021; Zhuang et al., 2024). Due to the limitations of data quality, the policies
obtained from offline learning may not be optimal and are challenging to directly deploy in real-
world scenarios. This has given rise to the problem of offline to online finetuning (Guo et al., 2023;
Nakamoto et al., 2024), which aims to further improve the performance through online interaction.

Offline to online finetuning faces the challenge of distribution shift, which is caused by the un-
balanced state distribution in the offline dataset (Fu et al., 2020) and the inherent conservatism of
offline algorithms (Kumar et al., 2020). Online finetuning pursues the superior performance than of-
fline pretrained policy and the exploration on out-of-distribution region that may yield high return is
unavoidable. Such exploration may be blind or even dangerous, such as sudden performance drops
(Nakamoto et al., 2024; Lyu et al., 2022), unless the distribution shift has been eliminated. That
is, offline to online finetuning is required to address two conflicting issues: policy optimization and
distribution shift elimination. Existing methods can be broadly categorized into two classes: Some
algorithms (Nakamoto et al., 2024; Wu et al., 2022; Lyu et al., 2022), less conservative in nature,
have been crafted in an attempt to mitigate the extent of distribution shift, yet they are powerless
against the inherently unbalanced distribution within the offline dataset. Other algorithms address
the distribution shift by imposing additional constraints (Lee et al., 2022; Li et al., 2023), making
the policy safer and more effective when exploring OOD regions. Regardless, the elimination of dis-
tribution shift and policy improvement are perpetually intertwined, with a compromise and trade-off
that must exist. A natural question thus arises:
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Can we decouple the elimination of distribution shift from policy improvement?

If so, we might first eliminate the distribution shift and then carry on the policy improvement. Such
an approach could fundamentally avoid conflicts and the associated compromises, maximizing the
capabilities of both distribution shift elimination algorithms and policy improvement.

Within the context of model-based offline algorithms (Janner et al., 2019; Yu et al., 2020), we pro-
pose a framework named Decoupled Offline to Online Finetuning (DOOF). DOOF has successfully
decouples the elimination of distribution shift from policy improvement. Specifically, during the
online interaction phase, we focus solely on the elimination of distribution shift by finetuning a
more accurate dynamics model. Subsequently, we utilize this finetuned dynamics model to assist
in the finetuning of the policy in an offline mode, without the need for further interaction with the
environment. In this way, the online phase only needs to address a simpler supervised dynamics
model learning, rather than more complex policy improvement affected by the distribution shift. In
addition, we leverage the model uncertainty from MOPO to encourage the data collection on OOD
regions where the distribution difference is significant and the dynamics prediction is inaccurate.
The policy is finetuned through offline algorithms, which indicates that the inherent conservatism is
retained and the algorithmic consistency is ensured, fundamentally avoiding sudden policy collapse.
We validate our algorithm on the classic datasets from D4RL (Fu et al., 2020) and find that with
only 10k online interaction steps and 300k offline training steps, DOOF achieves significant perfor-
mance improvements. In contrast, other baseline models fail to improve but have also experienced a
decline in performance in some cases. Such exceptionally high interaction efficiency is attributed to
the simplification of the online phase and efficient exploration guided by the dynamics uncertainty.

2 PRELIMINARY

2.1 OFFLINE REINFORCEMENT LEARNING

Reinforcement learning (RL) is typically formulated by a Markov Decision Process (MDP) M =
{S,A, r, PM, d0, γ}, with state space S, action space A, scalar reward function r(st, at), tran-
sition dynamics PM(st+1|st, at), initial state distribution d0(s0) and discount factor γ (Sutton
et al., 1998). The objective of RL is to optimize a policy π(at|st) that maximize the expec-
tation of discounted return J (π,M) = Eτ∼Pπ,M(τ)

[∑T
t=0 γ

tr(st, at)
]
, where Pπ,M (τ) =

d0(s0)
∏T

t=0 π (at|st)PM (st+1|st, at) is the distribution of trajectory τ generated from the in-
teraction between the policy π(at|st) and the environment M. The value function V π

M (s) =

Eτ∼Pπ,M(τ |s,a)

[∑T
t=0 γ

tr(st, at)|s0 = s
]

gives the expected discounted return under policy π

when starting from state s in environment M.

Offline reinforcement learning forbids (Levine et al., 2020) the interaction with the environment M
and only a fixed offline dataset D = {(st, at, rt, st+1)}Nt=1 is provided. This setting is more chal-
lenging since the agent is unable to explore the environment and collect additional feedback. This
will lead to overestimation on out-of-distribution state-action pairs, resulting in terrible performance.

2.2 MODEL-BASED OFFLINE RL ALGORITHMS

Existing model-based offline RL methods are designed based on model-based policy optimization
(MBPO) (Yu et al., 2020). MBPO can be divided into two stages, transition dynamics pretraining
and policy learning. During transition dynamics pretraining, MBPO estimates an dynamics model1
PM̂ from the online replay buffer or the offline dataset D using maximum likelihood estimation:

PM̂ = argmin
PM̂

E(st,at,st+1)∼D
[
− logPM̂ (st+1|st, at)

]
. (1)

Usually, the dynamics model is considered as a neural network that predicts a Gaussian distribution
PM̂ (st+1|st, at) = N (µθ (st, at) ,Σϕ (st, at)). Besides, this dynamics model is actually an en-

1Here we assume the reward function r is known. If not, the reward can be considered as part of the
dynamics model PM̂,r (st+1, rt|st, at). Besides, the following theoretical analysis can also applied to the
situation with unknown reward function (Yu et al., 2020).
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semble model when implementation {P k
M̂

= N (µk
θ ,Σ

k
ϕ)}Kk=1. With the learned dynamics model

PM̂, we can construct an estimated MDP M̂ = {S,A, r, PM̂, d0, γ}.

Thereafter, MBPO utilizes a standard actor-critic RL algorithm SAC (Haarnoja et al., 2018) to re-
cover optimal policy with the help of the estimated MDP M̂. An augmented dataset D ∪ DM̂ is
used to train the policy, where DM̂ is synthetic data generated by performing h-step rollouts in M̂
starting from states in D. During policy training, mini-batches are drawn from D∪DM̂, where each
datapoint is sampled from the real data D with the probability p, and from DM̂ with probability
1 − p. Model-based offline policy optimization (MOPO) Yu et al. (2020) proposes to penalize the
reward function by the uncertainty u(s, a) of the learned dynamics models:

r̂t(s, a) = rt(s, a)− λu(s, a), (2)
where penalty coefficient λ is a hyperparameter and the uncertainty u(s, a) is usually empirically
and lacks theoretical guarantee (Yu et al., 2020; Lu et al., 2021). While MOBILE (Sun et al., 2023)
theoretically conducts uncertainty quantification through the inconsistency of Bellman estimations.

2.3 OFFLINE TO ONLINE FINETUNING

In this paper, we only consider offline RL with datasets that comprise sub-optimal trajectories rather
than optimal ones. If optimal, naive supervised methods such as behavior cloning (Pomerleau, 1988)
would sufficient to learn an optimal policy, which is not the issue that offline RL aims to address.

Definition 2.1 (Offline to Online Finetuning) Assume the offline dataset D is sub-optimal and the
offline pretrained policy πoff still sub-optimal. Offline to Online Finetuning aims to further improve
the performance of πoff through the interaction with environment M.

Challenges The entire state-action space (s, a) can be divided into three distinct segments based
on the alignment of state and action distributions with those from the offline dataset: a) in-
distribution (ID) state-action pairs (sD, aD) with s ∼ D, a ∼ D, b) in-distribution (ID) state but
out-of-distribution (OOD) action pairs (sD, a¬D) with s ∼ D, a ̸∼ D, c) totally out-of-distribution
(OOD) state-action pairs (s¬D, a) with s ̸∼ D, a ∼ A.

To guarantee the performance of πoff, offline algorithms enforce the conservative Q-value on ID state
but OOD action pairs (sD, a¬D) to prevent choosing the OOD action a¬D given ID state sD (Zhuang
et al., 2023; Kumar et al., 2020). Besides, the state distribution of offline dataset D is usually
unbalanced (Fu et al., 2020). As a result, offline to online finetuning faces severe distribution shift
(Lee et al., 2022). Online finetuning should simultaneously improve the policy while eliminate the
distribution shift. This entangled issue may lead to a sudden collapse in performance.

3 DOOF: DECOUPLED OFFLINE TO ONLINE FINETUNING FRAMEWORK

Previous offline to online finetuning methods directly finetune πoff through online interaction (Nair
et al., 2020; Nakamoto et al., 2024; Beeson & Montana, 2022). These approaches aim to eliminate
distribution shift while simultaneously improve policy performance. However, there may be poten-
tial conflicts between these two objectives. Unlike previous work, our key insight lies in decoupling
the elimination of distribution shift from the policy improvement within the model-based frame-
work. concretely, our framework first eliminates the distribution shift through the online finetuning
of dynamics PM̂ and then finetunes the policy πoff in offline manner without online interaction.

We first theoretically decouple the offline to online finetuning into two stages and then reveal the
relation between online dynamics finetuning and distribution shift elimination. Subsequently, we
develop our algorithm Dcoupled Offline to Online Finetuning (DOOF) based on the MOPO and its
uncertainty estimation. Last but not least, we discuss the advantages of this decoupled framework,
especially on the interaction efficiency.

3.1 FINETUNING DYNAMICS MODEL THROUGH ONLINE INTERACTION

Within the context of model-based approaches, offline to online finetuning should minimize the gap
between the J

(
πoff,M̂

)
and J (π∗,M). This gap encompasses not only a standard RL problem,

3
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policy improvement, but also the error introduced by the inaccuracy of the dynamics model PM̂:

J
(
πoff,M̂

)
− J (π∗,M) =

[
J
(
πoff,M̂

)
− J (πoff,M)

]

︸ ︷︷ ︸
error of the dynamics model

+
[
J (πoff,M)− J (π∗,M)

]

︸ ︷︷ ︸
policy optimization

. (3)

According to the above formulation, our model-based offline to online finetuning algorithm is di-
vided into two phases. First, we aim to reduce the error of the dynamics model that can be viewed as
the distributional shift in the context of offline to online finetuning. The relation between this error
reduction (also the elimination of the distributional shift) and learning a more accurate PM̂ during
online interaction will be revealed. Secondly, we leverage this refined dynamics model to improve
the performance of πoff in offline manner without further interaction with the environment.

Step I: Elimination of distributional shift The relation between the first performance difference
J
(
πoff,M̂

)
−J (πoff,M) and the dynamics distance dTV

(
PM̂, PM

)
can be formulated as follows:

Theorem 3.1 Assume M and M̂ are the MDPs with different transition dynamics PM and PM̂ but

the same reward function r. Then the performance difference J
(
πoff,M̂

)
− J (πoff,M) holds:

∣∣∣J
(
πoff,M̂

)
− J (πoff,M)

∣∣∣ ≤ γ · rmax

1− γ
E

(s,a)∼ρ
πoff
M̂

[
dTV

(
PM̂, PM

)]
. (4)

The discounted unnormalized visitation frequencies ρπoff

M̂
(s, a) = πoff (a|s) ·

∑T
t=0 γ

tP (st = s|πoff)

and P (st = s|πoff) represents the probability of the t-th state equals to s in trajectories generated by
policy πoff and transition dynamics PM̂. The distance dTV

(
PM̂, PM

)
is the total variation distance

and |r| ≤ rmax. More details about this theorem can be found in Appendix A.1.

Furthermore, the dynamics distance dTV
(
PM̂, PM

)
can be bounded by the state-action frequency:

Theorem 3.2 Assume P = {PM : S ×A → S} and |P| < ∞. Given an exact state-action pair
(s, a) exists in D with Ds,a = {st, at, st+1}st=s,at=a and n(s, a) = |Ds,a|. For δ ∈ (0, 1) the
dynamics model PM̂ learned by Equation 1 satisfies

dTV
(
PM̂, PM

)
≤

√
2 log (|P|/δ)

n (s, a)
, (5)

with the probability at least 1− δ. More details about this theorem can be found in Appendix A.2.

Discussion of Theorem 3.1 and Theorem 3.2 Directly combining the two aforementioned theo-
rems, we can derive the following inequality with the constant C = γ·rmax

1−γ

√
2 log (|P|/δ):

1

C

∣∣∣J
(
πoff,M̂

)
− J (πoff,M)

∣∣∣≤ E
(s,a)∼ρ

πoff
M̂

[
1√

n (s, a)

]

≤ E
(sD,aD)

[
1√

n (s, a)

]

︸ ︷︷ ︸
a) offline dataset

+ E
(sD,a¬D)

[
1√

n (s, a)

]

︸ ︷︷ ︸
b) conservatism on OOD actions

+ E
(s¬D,a)

[
1√

n (s, a)

]

︸ ︷︷ ︸
c) unbalanced state distribution

. (6)

On the right-hand side of the inequality, the entire state-action space is divided into three parts based
on whether the state or action belongs to the offline dataset D. Obviously, for the estimated dy-
namics model PM̂ trained using the offline dataset D, the inequality n (sD, aD) ≪ n (sD, a¬D) ≪
n (s¬D, a) holds. This implies that the first term in 6 will be relatively small, while the latter two
terms are comparatively larger, especially the third term. During the online interaction, we aim
to collect more data to reduce this performance gap caused by the distributional shift. The more
efficient approach is to collect b) (sD, a¬D) and c) (s¬D, a), rather than a) (sD, aD).

4
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Figure 1: The distribution of total variation
distance on WK-m dataset. Here we adopt the
log on the distance due to the wide range.

We train a dynamics model on WK-m dataset2 and
plot the distribution of the total variation distance
across a) (sD, aD), b) (sD, a¬D), c) (s¬D, a) in Fig-
ure 1. It is evident that the distance satisfies the in-
equality dF,(sD,aD) ≪ dF,(sD,a¬D) ≪ dF,(s¬D,a),
which aligns with our intuitive deductions. It is also
important to note that the horizontal axis represents
the log of the distance, indicating that the significant
distance differences across different state-action re-
gions, with even orders of magnitude gaps. This sug-
gests that to reduce the expected dynamics distance,
online interaction should make the second and third
become smaller.

Step II: Offline policy improvement After online
dynamics finetuning, one more accurate dynamics
model P ∗

M̂
is obtained. Then we finetune the policy πoff to get the final policy π∗

off in offline man-
ner, the same as the way of getting the offline pretrained policy πoff. Concretely, the offline manner
represents optimizing the policy π in conservative MDP

M̂u = {S,A, r − λoff · u, PM̂, d0, γ}, (7)

where the uncertainty u (s, a) ≥ dTV
(
PM̂ (s, a) , PM (s, a)

)
for all s ∈ S, a ∈ A, is the upper

bound of the dynamics distance. The performance of policy π obtained from the offline policy
optimization can be described using the following theorem.

Theorem 3.3 The performance of π, optimized in M̂u = {S,A, r − λoff · u, PM̂, d0, γ}, satisfies

J (π,M) ≥ J (π∗,M)− 2λoff · E
(s,a)∼ρπ∗

M̂

[u(s, a)] . (8)

Here π∗ is the optimal policy and more details about this theorem can be found in Appendix A.3.

Discussion of Theorem 3.3 The performance J (π,M) is affected by the uncertainty u (s, a),
also the distance between the true and estimated dynamics dF

(
PM̂ (s, a) , PM (s, a)

)
. After online

dynamics pretraining, this distance becomes smaller. As a result, the offline finetuning policy π∗
off is

better J (π∗
off,M) ≥ J (πoff,M).

3.2 PRACTICAL IMPLEMENTATION

Now we design a practical model-based offline to online finetuning framework called DOOF moti-
vated by the above analysis. The framework has been summarized in Algorithm 1.

Offline pretraining We first learn an ensemble dynamics
{
P k
M̂

}K

k=1
using Equation (1). All

the uncertainty-based offline algorithms are applicable within our decoupled framework, such as
MOPO (Yu et al., 2020), count-MORL (Kim & Oh, 2023) and MOBILE (Sun et al., 2023). We
choose MOPO to verify our DOOF due to its simplicity and universality. Specifically, the un-
certainty estimator is the maximum standard deviation of the learned dynamics models u(s, a) =

maxKk=1

∥∥∥Σk
ϕ(s, a)

∥∥∥
F
. We denote the the policy obtained from offline pretraining as πoff.

Online finetuning According to above analysis, finetuning dynamics model requires data,
(sD, a¬D) and (s¬D, a), that is out of the offline dataset distribution. If we interact with envi-
ronment through offline pretrained policy πoff, the collected data mainly belongs to the distribution
(sD, aD), which contributes little to learn a more accurate dynamics model. What we required is a
more exploratory and optimistic policy, even if its performance is a little worse than πoff.

2Abbreviations of the datasets from D4RL are as follows: halfcheetah → HC, hopper → HP,
walker2d → WK, Pen → P,random → r, medium → m, medium-replay → mr, medium-expert
→ me, cloned→ c, human→ h.

5
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Algorithm 1 Decoupled Offline to Online Finetuning (DOOF)

Require: Offline dataset D; penalty coefficient λoff; exploration coefficient λon.
(Offline pretraining) Obtain the offline pretrained policy πoff and offline dynamics model PM̂.
(Online finetuning)
1. Train uncertainty policy πu with modified reward rt + λon · u (st, at).
2. Collect data with πu in environment to get the real buffer Don.
3. Finetune dynamics model PM̂ on dataset D ∪Don.
4. Finetune πoff on dataset D ∪Don with finetuned dynamics model P ∗

M̂
.

&

uncertainty on 
uncertainty on 

distance on 
distance on 

Figure 2: The distribution of total variation dis-
tance and uncertainty on WK-m dataset. The rea-
son for the concentration of the uncertainty distri-
bution on the right side is the clipping operation
in the implementation.

MOPO penalizes OOD state-action pairs using
uncertainty u(s, a). In Figure 2, we observe
that the state-action region with greater distance
dTV

(
PM̂, PM

)
also exhibits higher uncertainty

u(s, a). This implies that the uncertainty can
assist in identifying which data points are more
critical to be collected through online interac-
tion. Therefore, we choose to use the uncer-
tainty from MOPO as an extrinsic reward to
train the policy πoff:

rut (st, at) = rt + λon · u (st, at), (9)

here λon is the exploration coefficient which
determines the degree of uncertainty guidance.
The selection of λon is proportionally related to
the offline penalty coefficient, where the ratio
is λon : λoff = 0.25, 0.5, 1, 2. We denote this
modified policy as uncertainty policy πu and,
for example, use πu(0.25) to represent the policy is trained with λon : λoff = 0.25. Interacting with
the environment, the uncertainty policy πu collects the online buffer Don. And similarly, Don (0.25)
indicates this online buffer is collected by πu(0.25). Then we finetune the dynamics model on data
D ∪Don:

P ∗
M̂ = argmin

PM̂

ED∪Don

[
− logPM̂ (st+1|st, at)

]
. (10)

Finally, we run MOPO on dataset D ∪ Don with the help of the finetuned dynamics model P ∗
M̂

to
finetune the offline pretrained policy πoff without the need of further online interaction.

3.3 DISCUSSION AND ADVANTAGES

The online finetuning stage of DOOF is actually the supervised dynamics model learning, which is
significantly more straightforward than RL. To recover to the true transition dynamics on (st, at),
the dynamics model PM̂ only requires data on (st, at). In contrast, RL problem naturally relies on
more diverse data distribution. Taking the Q-function as an example, to learn the optimal Q(st, at),
it is not only data on (st, at) is required, but also (st+1, at+1, st+2, at+2, · · · ). This is one of the
reasons why our framework boasts high interaction efficiency. Besides,the online buffer collected
by the uncertainty policy tends to include state-action pairs with large uncertainty. This data distri-
bution is precisely the region where the dynamics is less accurate, and also greatly contributes to the
elimination of distribution shift.

Our policy finetuning is conducted in an offline manner without online interaction. If the dynamics
is accurate enough, the policy is also equivalent to interacting with the environment. This is the
inherent advantage of a model-based framework, which can generate a broader distribution with a
small amount of training data. And this property further enhances the data efficiency. Moreover, the
policy training stage remains conservative, which can prevent sudden performance drop.

6
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4 RELATED WORK

Offline reinforcement learning Mainstream offline model-free methods mainly contains two cat-
egories. One is policy constraint, which constrains the learned policy close to the behavior policy
based on different “closeness” such as batch constrained (Fujimoto et al., 2019), KL divergence (Wu
et al., 2019), MMD distance (Kumar et al., 2019), MSE constraint (Fujimoto & Gu, 2021) and TV
distance (Zhuang et al., 2023). The other is value regularization, which regularizes the value func-
tion from overestimation on OOD state-action pairs (Kumar et al., 2020; Kostrikov et al., 2021a; Bai
et al., 2022). Besides, Decision Transformer (DT) (Chen et al., 2021) directly maximizes the action
likelihood, which opens up a new paradigm called sequence modeling. And Reinformer (Zhuang
et al., 2024) further propose the max-return sequence modeling. Based on the conservatism on dif-
ferent components, offline model-based RL methods derived from MBPO (Janner et al., 2019) are
divided into the following three categories: MOPO (Yu et al., 2020; Lu et al., 2021) and MOReL
(Kidambi et al., 2020) propose to penalize the reward function by the uncertainty of the learned
dynamics models and MOBILE (Sun et al., 2023) theoretically conducts uncertainty quantification
through the inconsistency of Bellman estimations. COMBO (Yu et al., 2021) trains a conserva-
tive Q-function based on CQL (Kumar et al., 2020). RAMBO (Rigter et al., 2022) and ARMOR
(Bhardwaj et al., 2024) incorporates conservatism by modifying the transition dynamics.

Offline to online finetuning Offline to online finetuning aims to further improve the policy using
the offline pretrained policy as initialization. Offline to online finetuning encompasses two issues
to be solved: distribution shift elimination (DSE) and policy improvement (PI). The approaches to
dealing with the distribution shift can be roughly divided into two classes. One class tries to design
less conservative algorithms (Lyu et al., 2022; Nakamoto et al., 2024; Kostrikov et al., 2021b; Wu
et al., 2022), aiming to weaken the impact of distribution shift when online finetuning. Another
class applies additional constraint (Beeson & Montana, 2022; Lee et al., 2022; Nair et al., 2020) to
solve the distribution shift. Although MOORe (Mao et al., 2022), MOTO (Rafailov et al., 2023),
and FOWM (Feng et al., 2023) are online finetuning algorithms within the model-based framework,
they also directly finetunes the policy rather than decouples the dynamics learning from policy im-
provement like DOOF. A comparative analysis between DOOF and other offline to online finetuning
methods, including the model-free algorithms (IQL (Kostrikov et al., 2021b), Cal-QL (Nakamoto
et al., 2024), CQL (Kumar et al., 2020), SPOT (Wu et al., 2022), PEX (Zhang et al., 2023)) and
model-based baselines such as MOORe (Mao et al., 2022) and FOWM (Feng et al., 2023), was con-
ducted as listed in Table 1. The table 1 outlines the problems each algorithm attempts to address at
each phase. Only DOOF achieves decoupling of these two issues, while the others simultaneously
tackle the intertwined issues of distribution shift elimination and policy improvement.

Table 1: Problem to solve at each phase

Methods Online Finetuning Offline Finetuning
IQL, Cal-QL, CQL, SPOT, PEX Distribution Shift + Policy Improvement No

MOORe Distribution Shift + Policy Improvement No
FOWM Distribution Shift + Policy Improvement No

DOOF (ours) Distribution Shift Policy Improvement

5 EXPERIMENTS

We conduct an extensive and rigorous evaluation on our DOOF: Dodel-based Offline to Online
Finetuning using classical offline datasets from D4RL (Fu et al., 2020). Our experiments are orga-
nized in accordance with the algorithmic workflow:

• Uncertainty policy training: We evaluate the performance of uncertainty policy πu and il-
lustrate the distribution of the collected online buffer Don (πu). The impact of exploration
coefficient λon on dynamics finetuning and policy finetuning is reserved for the latter sections.

• Online dynamics finetuning: We focus on the total variational distance between the finetuned
dynamics model P ∗

M̂
and the actual environment, and the distance change before and after

finetuning. We also analyze the influence of different λon on above distance challenge.
• Offline policy finetuning: We plot the typical training curves to analyze the characteristics of

DOOF and the impact of λon. We also demonstrate the exceptional interactive efficiency.
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5.1 UNCERTAINTY POLICY TRAINING
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Figure 3: This figure depicts the percentage
change on performance of the uncertainty policy
πu compared to the offline pretrained policy πoff,
where πu is trained with different exploration
coefficients λon : λoff = 0.25, 0.5, 1, 2. These
datasets are HC-r, HC-m, HC-mr, HP-r, HP-m,
HP-mr, WK-r, WK-m, WK-mr, P-c, P-h.

The uncertainty policy πu determines the dis-
tribution of collected online buffer Don (πu),
which directly affects the online dynamics fine-
tuning and offline policy finetuning. When train-
ing πu, we adopt four exploration coefficients
λon with ratio λon : λoff = 0.25, 0.5, 1, 2. We
first compare the performance between the of-
fline pretrained policy πoff and πu.

In Figure 3, we illustrate the percentage of per-
formance change

(
J(πu)
J(πoff)

− 1
)
× 100% on ratio

0.25, 0.5, 1, 2. Some datasets, such as HP-m, ex-
hibits a noticeable performance decline. This is
attributed to the uncertainty policy training that
alters the inherent conservatism. But surpris-
ingly, the P-c dataset achieves performance im-
provement through simple uncertainty training.

Next, we evaluate the distribution of online buffer Don(πu) collected by the uncertainty policy πu.
Ideally, the collected data distribution should consist of state-action regions unseen by the offline
pretrained dynamics PM̂, that is, the distance dTV

(
PM̂, PM

)
on online buffer Don(πu) should be

larger. In the left two figures from Figure 4,it can be observed that the distance on D is indeed
minimal, while the distance of Don(πu) is substantially large. This suggests that the dynamics
training of on Don(πu) could eliminate the distribution shift effectively.
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Figure 4: The left two figures illustrate the distribution of log
[
dTV

(
PM̂, PM

)]
on the offline dataset

D and the online buffer Don collected by the uncertainty policy πu(1) trained with λon = λoff, across
datasets HC-r and WK-r. The third figure depicts the distance distribution on online buffer collected
by the offline pretrained policy πoff and uncertainty policy πu(0.25) trained with λon = 0.25λoff on
WK-mr. While the last one is similar but the uncertainty policy is πu(0.25) on WK-mr.

In the right two figures from Figure 4, the distribution on online buffer collected by the offline
pretrained policy πoff and the uncertainty policy πu are almost overlap. This is because the πu

is finetuned based on πoff. But these subtle differences actually have a significant impact on the
performance of the final offline policy finetuning. We will further discuss in detail in Section 5.3.

5.2 ONLINE DYNAMICS FINETUNING

Table 2: The total variation distance between the true and estimated dynamics on state-action pairs
uniformly sampled from the true MDP. dTV

(
PM̂, PM

)
represents the distance before online dy-

namics finetuning, also the offline pretrained dynamics model. d
(ratio)
TV

(
P ∗
M̂
, PM

)
is the distance

after finetuning, using the online buffer collected by the πu trained with λon : λoff = 0.25, 0.5, 1, 2.

Datasets dTV
(
PM̂, PM

)
d
(0.25)
TV

(
P ∗
M̂
, PM

)
d
(0.5)
TV

(
P ∗
M̂
, PM

)
d
(1)
TV

(
P ∗
M̂
, PM

)
d
(2)
TV

(
P ∗
M̂
, PM

)

mean max mean max mean max mean max mean max
HC-r 118.123 1223.240 119.155 1294.893 109.950 1170.111 120.915 2076.364 119.825 1456.900
HC-m 82.339 910.501 63.708 969.096 67.705 1169.591 67.813 1029.322 67.565 1116.883
HC-mr 121.772 2445.304 93.484 1951.653 78.373 1500.777 89.847 1894.1079 89.317 1641.784
HP-r 39.970 319.989 44.888 425.438 56.680 547.203 56.527 629.646 56.668 672.624
HP-m 874.378 5567.265 1156.229 6678.457 950.298 5421.856 766.162 5719.151 765.820 5757.906
HP-mr 135.835 824.546 116.199 864.601 112.370 688.462 105.852 1401.446 105.176 1177.113
WK-r 211.203 2073.774 118.911 1149.800 92.696 793.019 145.021 1156.193 144.939 1234.787
WK-m 173.784 1018.120 156.550 973.955 157.137 909.678 149.325 988.611 148.906 997.185
WK-mr 164.754 1505.594 137.658 892.306 148.490 910.916 131.005 1104.575 130.517 1765.076
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finetuned dynamics

offline dynamics

Figure 5: This figure presents the distance dis-
tribution of the dynamics model pretrained by
dataset HC-r on dataset HC-me before and after
online dynamics finetuning. The dynamics model
is finetuned using online buffer Don(πu(0.25)).

Online dynamics finetuning aims to eliminate
distribution shift by learning a more accurate
dynamics model P ∗

M̂
. The total variation dis-

tance of the dynamics model from the true en-
vironment on a relatively uniform state-action
distribution can reflect the extent of distribution
shift. The results are summarized in Table 2.

From the Table 2, we observe that the online dy-
namics finetuning significantly reduces the dis-
tance dTV

(
PM̂, PM

)
between the real environ-

ment on the fake buffer, except for HP-r with
severely biased distribution. Moreover, dynam-
ics finetuning demonstrates relative robustness
with respect to the exploration coefficient λon.

In figure 5, we observe that distance distribu-
tion dTV

(
PM̂, PM

)
, where PM̂ is pretrained

on HC-r, exhibit long-tail effect on HC-me.
This may be attributed to that the dynamics

model learned from low-quality datasets is blind on the high-return regions. Through finetuning,
not only the distance has been significantly reduced, but the long-tail distribution is also mitigated.

5.3 OFFLINE POLICY FINETUNING

We first demonstrate the superior finetuning performance and exceptional data efficiency of our
framework DOOF. All the offline-to-online algorithms directly finetune the policy during the online
interaction, hence they plot the policy training curves for comparison. In DOOF, the online interac-
tion and policy finetuning are two decoupled stages, making this comparison method inapplicable.
As a result, we compare our proposed DOOF with baselines using the following approaches:
• DOOF first online interacts 10k steps to finetune the dynamics model and then use this online

finetuned dynamics to finetune the policy with 300k gradient steps in offline manner (OFF-300K);
• For baselines, including model-free IQL (Kostrikov et al., 2021b), Cal-QL (Nakamoto et al.,

2024), CQL (Kumar et al., 2020), SPOT (Wu et al., 2022), PEX (Zhang et al., 2023) and model-
based FOWM (Feng et al., 2023), they first finetune the policy using 10k online interaction steps
(ON-10K) and then finetune the policy 300k gradient steps without online interaction (OFF-300K).

Table 3: The online (ON-10K) and offline (OFF-300K) finetuning results over 3 seeds. The gray
results means the performance has declined after finetuning and the bold results represent the best.

DOOF IQL CaL-QL CQL
OFF-300K ON-10K OFF-300K ON-10K OFF-300K ON-10K OFF-300K

HC-r 37.5 54.9(+17.4) 14.9 14.2(−0.6) 8.9(−6.0) 25.1 11.2(−14.0) 2.3(−22.9) 23.7 12.3(−11.4) 2.2(−21.5)
HC-m 70.5 92.5(+22.0) 48.5 48.3(−0.2) 49.2(+0.8) 47.6 48.6(+ 1.0) 49.1(+ 1.5) 46.6 46.9(+ 0.2) 47.7(+ 1.1)
HC-mr 69.2 88.3(+19.1) 44.3 44.2(−0.0) 45.3(+1.0) 46.5 47.4(+ 0.9) 47.4(+ 1.0) 44.9 45.1(+ 0.2) 46.0(+ 1.2)
HP-r 32.0 32.4(+ 0.5) 7.6 7.6(−0.0) 8.17(+0.6) 7.3 4.7(− 2.6) 2.0(− 5.3) 7.8 6.9(− 1.0) 8.6(+ 0.8)
HP-m 68.3 108.4(+40.1) 57.3 58.8(+1.4) 59.0(+1.6) 56.8 72.7(+15.9) 73.5(+16.7) 62.3 65.4(+ 3.1) 63.0(+ 0.7)
HP-mr 82.6 107.3(+24.7) 97.2 95.7(−1.5) 99.4(+2.2) 97.7 97.3(− 0.5) 97.7(− 0.1) 94.1 95.0(+ 0.9) 99.7(+ 5.7)
WK-r 4.1 16.9(+12.8) 3.7 3.7(+0.0) 4.2(+0.6) 3.9 1.5(− 2.4) 0.2(− 3.7) −0.3 −0.2(+ 0.0) 1.6(+ 1.9)
WK-m 77.7 93.8(+16.1) 83.2 80.8(−2.4) 79.0(−4.2) 83.6 83.6(+ 0.0) 83.3(− 0.3) 81.3 83.6(+ 2.3) 80.5(− 0.8)
WK-mr 69.6 97.8(+28.2) 77.1 78.1(+1.0) 84.2(+7.1) 79.4 87.2(+ 7.8) 89.2(+ 9.8) 72.1 82.2(+10.2) 87.6(+15.5)
P-c 48.9 54.2(+ 5.3) 69.5 67.9(−1.6) 68.9(−0.6) −3.5 −4.0(− 0.6) −4.8(− 1.3) −3.4 −3.8(− 0.4) −4.8(− 1.4)
P-h 38.7 62.0(+23.3) 56.4 57.6(+1.2) 60.2(+3.8) 7.7 −4.0(−11.6) −3.4(−11.1) −3.4 −3.5(− 0.2) −4.4(− 1.1)

DOOF SPOT PEX FOWM
OFF-300K ON-10K OFF-300K ON-10K OFF-300K ON-10K OFF-300K

HC-r 37.5 54.9(+17.4) 8.0 7.8(− 0.2) 5.1(− 2.8) 15.7 16.4(+ 0.7) 8.6(− 7.1) 15.4 20.4(+ 5.0) 20.3(+ 4.9)
HC-m 70.5 92.5(+22.0) 45.4 46.2(+ 0.8) 45.1(− 0.3) 48.3 49.5(+ 1.2) 46.0(− 2.3) 44.0 45.4(+ 1.4) 42.9(− 1.1)
HC-mr 69.2 88.3(+19.1) 43.8 43.1(− 0.7) 43.2(− 0.6) 44.7 45.7(+ 1.0) 44.2(− 0.5) 47.3 49.8(+ 2.5) 49.7(+ 2.3)
HP-r 31.9 32.4(+ 0.5) 8.5 9.9(+ 1.4) 32.3(+23.8) 8.4 7.7(− 0.7) 7.8(− 0.6) 9.2 9.5(+ 0.3) 9.5(+ 0.3)
HP-m 68.3 108.4(+40.1) 57.8 59.0(+ 1.2) 60.9(+ 3.1) 59.2 19.4(−39.8) 56.6(− 2.6) 48.5 64.5(+16.0) 52.5(+ 4.0)
HP-mr 82.6 107.3(+24.7) 74.2 47.9(−26.4) 85.5(+11.2) 78.3 102.3(+24.0) 73.1(− 5.2) 93.0 88.0(− 5.0) 99.3(+ 6.3)
WK-r 4.1 16.9(+12.8) 1.5 6.1(+ 4.6) 5.7(+ 4.2) 8.8 8.6(− 0.2) 9.1(+ 0.3) 4.2 5.6(+ 1.4) 5.5(+ 1.2)
WK-m 77.7 93.8(+16.1) 81.7 81.0(− 0.8) 82.5(+ 0.8) 72.1 56.8(−15.3) 81.9(+ 9.8) 0.6 40.0(+39.4) 27.3(+26.8)
WK-mr 69.6 97.8(+28.2) 81.1 81.0(− 0.0) 81.8(+ 0.8) 71.3 61.8(− 9.5) 59.7(−11.6) 36.0 54.7(+18.7) 45.3(+ 9.3)
P-c 48.9 54.2(+ 5.3) 2.5 15.5(+13.0) 22.5(+20.0) 33.8 29.8(− 4.0) 46.7(+12.9) −2.8 51.0(+53.8) 57.3(+60.1)
P-h 38.7 62.0(+23.3) 25.9 13.7(−12.2) 18.2(− 7.6) 50.1 59.0(+ 8.9) 70.6(+20.5) −0.0 1.9(+ 1.9) 8.3(+ 8.3)
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Our performance improvement is highly significant, approaching and even achieving optimal policy
levels. What’s more notable is the interaction efficiency; we have achieved remarkable effects with
only 10k online interaction steps. In addition to the model-based approach, the decoupled framework
and the uncertainty guided data collection to quickly eliminate distribution shift are also crucial.

We further plot several representative curves to illustrate the stable training performance and the
relationship between performance and the dynamics distance. In Figure 6a, if we set the policy
that collects the online buffer as πoff (the blue bold curve), the offline finetuning performance may
decline. While the performance with uncertainty policy πu(2) is best. This suggests that the policy
guided by uncertainty is more conducive to collecting data that is effective for finetuning the dy-
namics model. In the third figure from Figure 4, the distance distribution is similar, which means
the minor distribution differences can have a significant impact on the final policy finetuning perfor-
mance. In Figure 6b, the stability of offline finetuning curves obtained by different data collection
policy varies. The offline pretrained policy is πoff is relatively poor, while other uncertainty policy
is more stable. This indicates the distribution difference in Figure 4 affects the stability heavily.
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Figure 6: Figure 6a and 6b illustrate the performance curves during policy finetuning on HC-m and
WK-m. Note that the horizontal axis represents the training steps, rather than the interaction steps.
Different curves represents different exploration coefficient λon. The blue bold curve with label ‘0’
is based on the offline pretrained policy πoff rather than uncertainty policy. Figure 6c shows the curve
that carries on twice online finetuning. The curve before the green dashed line represents the policy
finetuning under finetuned dynamics model P ∗

M̂
, while the other is the policy finetuning curves with

P ∗∗
M̂

, the dynamics further finetuned based on the P ∗
M̂

. The two small plots in the lower right corner
respectively illustrate the distribution of distances of three different dynamics PM̂, P ∗

M̂
, P ∗∗

M̂
, as well

as the curve of distance mean. The distance is also calculated on its offline fake buffer.

In Figure 6c, we conduct another finetuning process after the the policy has been finetuned. Dynam-
ics model P ∗

M̂
is obtained form the first online dynamics finetuning while P ∗∗

M̂
is further finetuned

based on P ∗
M̂

. The distance distributions of these two dynamics models between the true envi-
ronment are shown in the lower right corner. It can be observed that after the first finetuning, the
distance increases, which means this finetuning is a failure that corresponds to a decline in perfor-
mance and severe fluctuations. After the second finetuning, the distance becomes lower than the
offline pretrained dynamics PM̂, resulting in a noticeable improvement in performance.

6 CONCLUSION AND FUTURE WORK

In this work, we propose a decoupled model-based offline to online finetuning framework called
DOOF. DOOF decouples the distribution shift elimination from the policy optimization in offline
to online finetuning. Specifically, DOOF finetunes the dynamics model during online interaction
to eliminate the distribution shift using the online buffer collected by the uncertainty guided policy.
And then the policy is finetuned with the help of the finetuned dynamics in offline manner without
further interaction. This decoupled framework not only ensures superior and stable performance but
also boasts exceptional interaction efficiency. Overall, model-based offline algorithms lag behind
model-free counterparts in terms of performance. Therefore, we intend to explore how to extend
this decoupled offline to online finetuning framework to model-free algorithms by incorporating an
additional trained dynamics model. This integration approach may be more conducive to unlocking
the full potential of the decoupled framework.
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A PROOF

A.1 PROOF OF THEOREM 3.1 (YU ET AL., 2020)

Assume M and M̂ are the MDPs with different transition dynamics PM and PM̂ but the same
reward function |r| ≤ rmax. According to telescoping lemma from Luo et al. (2018), the performance
difference J

(
πoff,M̂

)
− J (πoff,M) holds:

∣∣∣J
(
πoff,M̂

)
− J (πoff,M)

∣∣∣ ≤ γ E
(s,a)∼ρ

πoff
M̂

[
dF

(
PM̂(s, a), PM(s, a)

)]
. (11)

Here the state-action pairs comes from the discounted unnormalized visitation frequencies
ρπoff

M̂
(s, a) = πoff (a|s) ·

∑T
t=0 γ

tP (st = s|πoff) and P (st = s|πoff) represents the probability of
the t-th state equals to s in trajectories generated by policy πoff and transition dynamics PM̂. The

distance dF
(
PM̂(s, a), PM(s, a)

)
= supf∈F

∣∣∣∣ E
s′∼PM̂(s,a)

[f (s′)]− E
s′∼PM(s,a)

[f (s′)]

∣∣∣∣ with dF is

the is the integral probability metric (IPM) (Müller, 1997). IPMs are quite general (Sriperumbudur
et al., 2009) and one special case is the total variational distance.

When F = {f : ∥f∥∞ ≤ 1}, dF becomes the total variational distance dTV
(
PM̂, PM

)
. Due to the

bounded reward function |r| ≤ rmax, the ∥V π∥ ≤ ∑∞
t=0 γ

trmax = rmax
1−γ holds. Then we have

∣∣∣J
(
πoff,M̂

)
− J (πoff,M)

∣∣∣ ≤ γ · rmax

1− γ
E

(s,a)∼ρ
πoff
M̂

[
dTV

(
PM̂, PM

)]
. (12)

A.2 PROOF OF THEOREM 3.2 (KIM & OH, 2023)

Assume P = {PM : S ×A → S} and |P| < ∞. Given an exact state-action pair (s, a) exists in
D with Ds,a = {st, at, st+1}st=s,at=a and n(s, a) = |Ds,a|. By theorem 21 from Agarwal et al.
(2020), the dynamics model PM̂ learned by Equation 1 satisfies

E(st,at)∼Ds,a

[
dTV

(
PM̂(s, a), PM(s, a)

)2] ≤ 2 log (M/δ)

n (s, a)
(13)

with the probability at least 1 − δ. We can directly bound the total variation distance between the
estimated transition dynamics PM̂ and the true transition dynamics PM due to the subset Ds,a =

{(s, a, st+1)}n(s,a)t=0 . Thus,

dTV
(
PM̂, PM

)
≤

√
2 log (M/δ)

n (s, a)
, (14)

A.3 PROOF OF THEOREM 3.3 (YU ET AL., 2020)

According to Theorem 4.3 from Yu et al. (2020), the policy optimized with uncertainty-based offline
model-based algorithm M̂u = {S,A, r − λoff · u, PM̂, d0, γ} satisfies

J (π,M) ≥ sup
π̂

[
J (π̂,M)− 2λoff · E

(s,a)∼ρπ̂

M̂

[u(s, a)]

]
. (15)

Assume π∗ is the optimal policy π∗ = argmax
π̂

J (π̂,M), then we directly have

J (π,M) ≥ J (π∗,M)− 2λoff · E
(s,a)∼ρπ∗

M̂

[u(s, a)] . (16)
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B IMPLEMENT DETAILS

B.1 OFFLINE TRAINING

we firstly run MOPO on the environments to get offline trained dynamics model and policy. During
this stage, We train an ensemble of 7 dynamics models, each model in the ensemble is represented as
a 5-layer feedforward neural network with 400 hidden units on Adroit domain, but 4-layer feedfor-
ward neural network with 200 hidden units on other Gym domain. Once dynamics model training
finished , we use it to rollout for generating data and helping training the policy. During model
rollouts, we randomly pick 5 dynamics model from the 7 models. Finally, the mix batch consists
of 5% from an offline dataset and the rest from dynamic rollouts, which is used to train the policy
optimized by SAC.

B.2 UNCERTAINTY POLICY TRAINING

We initialize the uncertainty policy as former offline pretrained policy. The uncertainty policy opti-
mization is based on SAC, we sample a uncertainty dataset of 10000 transitions from offline dataset
and modify the reward by adding the uncertainty which is determined by our online exploration co-
efficient and uncertainty value evaluated by offline trained dynamics model back to reward. For each
update, we sample a mix batch of 256 transitions where 2.5% of them is from the offline dataset,
2.5% of them is from the modified uncertainty dataset, and 95% is from the synthetic dataset gen-
erated by the offline trained dynamics model. During dynamics model rollouts, half of the obser-
vations required for dynamics rollout comes from offline dataset and another half comes from the
modified uncertainty dataset. We expect this training stage on the uncertainty policy will enhance
its exploration.

B.3 ONLINE DATA COLLECTING

we just utilize the trained uncertainty policy to act in environment for collecting online interacting
data which was only used for finetuning the dynamics later without any further training. It finds out
that very small interact steps setup on this stage can make significant impact on dynamics finetuning.
Actually we just collect 10 000 online transitions, which is of great help to finetune the dynamics
and enormously improve the policy performance.

B.4 DYNAMICS FINETUNING

After online data collecting finished, we finetune the offline trained dynamics in original offline
mode on both offline dataset and online collected dataset, for each update, the mix batch consists of
half from offline dataset and another half from online collected dataset is used to train the dynamics
model.

B.5 POLICY FINETUNING

The policy to finetune was initialized offline pretrained policy. Once dynamics finetuning finished,
it’s used to assist in finetuning the policy in original offline mode with no need to interact with
environment further, which fundamentally avoid sudden policy collapse because the inherent con-
servatism is retained and the algorithmic consistency is ensured. while finetuning the policy, for
each update, we sample a mix batch size of 256 transitions consists of 2.5% from offline dataset
and 97.5% from the synthetic dataset which is generated by the finetuned dynamics model. During
dynamics models rollouts, half of the observations required to generate this synthetic dataset comes
from offline dataset and another half comes from the online collected dataset.
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C EXPERIMENT DETAILS

Our experiments is conducted based on the open source code base https://github.com/
yihaosun1124/OfflineRL-Kit. we add four additional parts of code as described in section
B. The code has been submitted as supplementary material. A single experiment requires approx-
imately 40 hours of training on V100 during the offline pretraining phase, while the online phase
only requires 4 to 5 hours.

C.1 BENCHMARKS

we conduct experiments on D4RL benchmark, including Gym tasks(V2) and some Adroit tasks
(V1), we choose several representative algorithms as baselines to show the priority of our algorithm,
and implement the baseline experiments using flowing repositories:

• IQL, CQL, CAL-QL, and SPOT: https://github.com/tinkoff-ai/CORL
• PEX: https://github.com/Haichao-Zhang/PEX
• FOWM:https://github.com/fyhMer/fowm

we keep the origin code style of every code base, and just change the online finetuning steps and
offline finetuning steps to keep the same as ours, we set the online interaction steps as 10 000 for
all the baselines, and we modify the baselines based on their original code to conduct offline policy
finetuning after online finetuning , and we set the offline finetuning steps as 300 000 on all baseline
algorithms.

C.2 HYPERPARAMETERS

Now we list the hyperparameters we have tuned for DOOF as follow.

Exploratory coefficient λon. we tune the λon in the range of λon : λoff = {0.25, 0.5, 1, 2}. This
hyperparameter has been discussed in section 5. we have listed this hyperparameter of different task
in Table 5.

C.3 TUNING FOR MOPO

All code parameters are default parameters in the code repository https://github.com/
yihaosun1124/OfflineRL-Kit. While there are tasks that are not implemented in the repos-
itory, therefore we implemented these tasks and tuned these hyperparameters. Most of hyperparam-
eters for MOPO are listed in Table 4.

Table 4: Hyperparameters of MOPO used in the D4RL datasets.

Hyparameters Value Description
lractor 1e-4 (3e-5 on Adroit) Learning rate of the actor network
lrcritic 3e-4 Learning rate of the critic network
lrdynamics 1e-3 (3e-4 on Adroit) Learning rate of the actor network
N 2(3 on Adroit) Number of hidden layers of actor and critic network
Ndynamics 4 Number of hidden layers of dynamics network
Nensemble 7 Dynamics model ensemble size
Optimizer Adam Type of optimizer
h 256 Number of hidden layer dimensions of actor and critic network
hdynamics 200(400 on Adroit) Number of hidden layer dimensions of dynamics network
γ 0.99 Discount return
K 3000 Number of training epochs

Rollout length L. We perform short-horizon branch rollouts in MOPO. We tune L in the range of
{1, 5, 10} for Adroit tasks, and also for Gym tasks of random dataset, as listed in Table 5.

Penalty coefficient λoff. we tune λoff in the range of {0.25, 0.5, 0.75, 2.5, 5.0} for Adroit tasks,
and also for Gym tasks of random dataset, as listed in Table 5.
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Table 5: Hyperparameters related to dynamics rollout of different tasks.

Dataset rollout length L offline penalty coefficient λoff online exploratory coefficient λon
HC-r 1 0.25 {0.0625, 0.125, 0.25, 0.5}
HC-m 5 0.5 {0.125, 0.25, 0.5, 1.0}
HC-mr 5 0.5 {0.125, 0.25, 0.5, 1.0}
HP-r 1 5.0 {1.25, 2.5, 5.0, 10.0}
HP-m 5 5.0 {1.25, 2.5, 5.0, 10.0}
HP-mr 5 2.5 {0.625, 1.25, 2.5, 5.0}
WK-r 1 0.75 {0.1825, 0.375, 0.75, 1.5}
WK-m 5 0.5 {0.125, 0.25, 0.5, 1.0}
WK-mr 1 2.5 {0.625, 1.25, 2.5, 5.0}
P-c 1 2.5 {0.625, 1.25, 2.5, 5.0}
P-h 1 0.5 {0.125, 0.25, 0.5, 1.0}
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D DISTANCE AND UNCERTAINTY DISTRIBUTION RESULTS

D.1 UNCERTAINTY AND DISTANCE OF OFFLINE DYNAMICS

As discussed in subsection 3.1, the same phenomenon about distance between offline dynamics and
true environment dynamics was observed in other tasks under different dataset, as listed in Fig 7.The
distance satifies the inequality dF,(sD,aD) ≪ dF,(sD,a¬D) ≪ dF,(s¬D,a) on all tasks.
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Figure 7: The distribution of total variation distance on different dataset.

As discussed in subsection 3.2, the same phenomenon about distance and uncertainty in other tasks
under different dataset was observed. We have displayed the distribution of total variation distance
and uncertainty on different task and datasets in Fig 8. In all tasks under different dataset, the state-
action region with greater distance dTV

(
PM̂, PM

)
also exhibits higher uncertainty u(s, a) which

obviously implies that the uncertainty can assist in identifying which data points are more critical to
be collected through online interaction.
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Figure 8: The distribution of total variation distance and uncertainty on different dataset. The reason
for the concentration of the uncertainty distribution is the clipping operation in the implementation.
On the HP tasks, the scale ranges of uncertainty and distance differ significantly, so it’s displayed
separately.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D.2 DISTANCE OF FINETUNED DYNAMICS

Table 6: The total variation distance between the true environment and dynamics model on the fake
buffer. dTV

(
PM̂, PM

)
represents the distance before online dynamics finetuning, also the offline

pretrained dynamics model. d
(ratio)
TV

(
P ∗
M̂
, PM

)
is the distance after finetuning, using the online

buffer collected by the uncertainty policy πu trained with λon : λoff = 0.25, 0.5, 1, 2.

Datasets dTV
(
PM̂, PM

)
d
(0.25)
TV

(
P ∗
M̂
, PM

)
d
(0.5)
TV

(
P ∗
M̂
, PM

)
d
(1)
TV

(
P ∗
M̂
, PM

)
d
(2)
TV

(
P ∗
M̂
, PM

)

mean max mean max mean max mean max mean max
HC-r 19.705 93.315 2.911 29.336 2.962 29.864 2.618 32.465 2.817 36.587
HC-m 16.305 86.622 3.800 59.283 6.356 67.574 6.918 68.005 5.450 94.405
HC-mr 15.406 63.238 6.375 51.478 3.616 63.864 9.342 58.687 4.665 57.970
HP-r 0.893 6.359 0.199 31.883 0.231 3.719 1.477 62.536 0.064 2.563
HP-m 0.962 8.770 0.172 6.119 0.436 7.290 0.430 7.521 0.595 6.702
HP-mr 2.371 22.685 0.216 6.159 0.674 9.366 0.558 7.228 0.343 6.705
WK-r 25.833 244.954 11.848 195.372 11.390 180.553 12.553 218.340 12.511 114.747
WK-m 7.976 56.971 4.301 52.166 3.353 51.666 4.358 59.224 3.632 57.173
WK-mr 14.092 64.341 3.907 58.195 4.416 57.898 3.767 46.905 6.898 51.888

Online dynamics finetuning aims to eliminate distribution shift by learning a more accurate dy-
namics model. The total variation distance of the dynamics model from the true environment on a
relatively uniform state-action distribution can reflect the extent of distribution shift. We calculate
this distance on fake buffer before and after dynamics finetuning. The fake buffer is generateed
by the offline dynamics and policy during offline training. The results are summarized in Table 6.
From the Table 6, we observe that most of the online dynamics finetuning significantly reduces the
distance dTV

(
PM̂, PM

)
between the real environment on the fake buffer.

E AVERAGE IMPROVEMENT ACROSS ALL TASKS

In order to be more straightforward to compare the average improvement of our method DOOF
with other baselines, we compute average improvement across tasks (HC, HP, WK) under different
dataset qualities (r, m, mr) and task P under different datasets (c, h) in Table 7. As the results showed,
our method outperform other baselines on Gym tasks. While FOWM shows the best performance
on the Adroit tasks, our method shows better performance than other baselines except FOWM and
PEX.

Table 7: The aggregation of random quality dataset of HC, HP and WK environment is denoted as
R, similarly, the medium quality dataset aggregation is denoted as M and the medium-replay de-
noted as MR. The aggregation of pen-cloned and pen-human dataset is denoted as P. The average
performance of our method DOOF and other baseline methods across tasks(HC, HP, WK) under
aggregation of different dataset qualities(R, M, MR) and average performance of task P are com-
puted. The gray results means this finetuning does not improve the performance and the bold results
represent the best among these algorithms.

DOOF IQL CaL-QL CQL
OFF-300K ON-10K OFF-300K ON-10K OFF-300K ON-10K OFF-300K

R 24.5 34.7(+10.2) 8.7 8.5(− 0.2) 7.1(− 1.6) 12.1 5.8(− 6.3) 1.5(−10.6) 10.4 6.3(− 4.1) 4.1(− 6.3)
M 72.2 98.2(+26.0) 63.0 62.6(− 0.4) 62.4(− 0.6) 62.7 68.3(+ 5.6) 68.6(+ 5.9) 63.4 65.3(+ 1.9) 63.7(+ 0.3)
MR 73.8 97.8(+24.0) 72.9 72.7(− 0.2) 76.3(+ 3.4) 74.6 77.3(+ 2.7) 78.1(+ 3.5) 70.3 74.1(+ 3.8) 77.8(+ 7.5)
P 43.8 58.1(+14.3) 63.0 62.8(− 0.2) 64.6(+ 1.6) 2.1 −4.0(− 6.1) −4.1(− 6.2) −3.4 −3.7(− 0.3) −4.6(− 1.2)

DOOF SPOT PEX FOWM
OFF-300K ON-10K OFF-300K ON-10K OFF-300K ON-10K OFF-300K

R 24.5 34.7(+10.2) 6.0 7.9(+ 1.9) 14.4(+ 8.4) 11.0 10.9(− 1.0) 8.5(− 2.5) 9.6 11.8(+ 2.2) 11.8(+ 2.2)
M 72.2 98.2(+26.0) 61.6 62.0(+ 0.4) 62.8(+ 1.2) 59.9 41.9(−18.0) 61.5(+ 1.6) 31.0 50.0(+19.0) 40.9(+9.9)
MR 73.8 97.8(+24.0) 66.4 57.3(− 9.1) 70.2(+ 3.8) 64.8 69.9(+ 5.1) 59(− 5.8) 58.8 64.2(+ 5.4) 64.8(+ 6.0)
P 43.8 58.1(+14.3) 14.2 14.6(+ 0.4) 20.0(+ 5.8) 42.0 44.4(+ 2.4) 58.7(+16.7) −1.4 26.4(+27.8) 32.8(+34.2)
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F SOCIAL IMPACT

Our DOOF framework, by effectively decoupling policy optimization from distribution shift elimi-
nation, promises to enhance the reliability and efficiency of AI systems. This advancement not only
facilitates safer deployment in critical domains such as healthcare and autonomous vehicles but also
promotes equitable and sustainable development across various sectors by optimizing data usage
and reducing computational costs.
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