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Abstract

Due to the ease of training, ability to scale, and high sample quality, diffusion models
(DMs) have become the preferred option for generative modeling, with numerous
pre-trained models available for a wide variety of datasets. Containing intricate infor-
mation about data distributions, pre-trained DMs are valuable assets for downstream
applications. In this work, we consider learning from pre-trained DMs and transfer-
ring their knowledge to other generative models in a data-free fashion. Specifically,
we propose a general framework called Diff-Instruct to instruct the training of
arbitrary generative models as long as the generated samples are differentiable with
respect to the model parameters. Our proposed Diff-Instruct is built on a rigorous
mathematical foundation where the instruction process directly corresponds to
minimizing a novel divergence we call Integral Kullback-Leibler (IKL) divergence.
IKL is tailored for DMs by calculating the integral of the KL divergence along a
diffusion process, which we show to be more robust in comparing distributions with
misaligned supports. We also reveal non-trivial connections of our method to existing
works such as DreamFusion [54], and generative adversarial training. To demon-
strate the effectiveness and universality of Diff-Instruct, we consider two scenarios:
distilling pre-trained diffusion models and refining existing GAN models. The
experiments on distilling pre-trained diffusion models show that Diff-Instruct results
in state-of-the-art single-step diffusion-based models. The experiments on refining
GAN models show that the Diff-Instruct can consistently improve the pre-trained
generators of GAN models across various settings. Our official code is released
through https://github.com/pkulwj1994/diff_instruct.

1 Introduction

Over the last decade, the field of deep generative models has made significant strides across
various domains such as data generation [30, 32, 51, 53, 24, 54, 25, 34], density estimation [35, 7],
image-editing [46, 8] and others. Notably, recent advancements in text-driven high-resolution image
generation [60, 59, 58] have pushed the limits of using generative models for Artificial Intelligence
Generated Content (AIGC). Behind the empirical success are fruitful developments of a wide variety
of deep generative models, among which, diffusion models (DMs) are the most prominent. DMs
leverage the diffusion processes and model the data across a wide spectrum of noise levels. Their ease
of training, ability to scale, and high sample quality have made DMs the preferred option for generative
modeling, with numerous pre-trained models available for a wide variety of datasets and applications.
The trained DMs contain intricate information about the data distribution, making them valuable assets
for downstream applications.
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Compared with training from scratch, extracting knowledge from a zoo of pre-trained models enables
us to learn more efficiently. For instance, [15] employed a variety of pre-trained feature extractors and
significantly boosted the state-of-the-art performance on domain generalization benchmarks. [9, 52, 16]
exploited the rich multi-modal information stored in off-the-shelf CLIP models [55] for efficient text-
guided image generation. Currently, we are witnessing a rising trend of learning from models, especially
when accessing large amounts of high-quality data is difficult. Such a model-driven learning scheme can
be particularly appealing for handling new tasks by providing a solid base model, which can be further
improved by additional training data. While this research direction has been extensively investigated for
discriminative models and supervised learning tasks [71, 38, 3, 72, 57, 56], its application to generative
models remains largely unexplored. To this end, we are motivated to study the following question.

(Q1): Can we transfer knowledge from pre-trained DMs to other generative models instead of learning
from original training data?

The seminal work DreamFusion [54] demonstrated the feasibility of such a quest for text-to-3D
generation. Without a large text-labeled 3D dataset, [54] took advantage of the rich text-to-image
knowledge stored in a large-scale diffusion model, the Imagen [23], to learn the 3D Neural Radiance
Fields (NeRF) and achieved surprisingly good performance without using any 3D data. DreamFusion
is a rare success and for general scenarios, the task can be difficult due to the vast difference among
generative models. DMs represent a class of explicit generative models wherein the data’s score
function is modeled. Conversely, in various downstream applications, implicit generative models
are favored due to their inherent flexibility and efficiency. An implicit model typically learns a neural
transformation (i.e., a generator) that maps from a latent space to the data space, such as in generative
adversarial networks (GANs), thereby enabling expeditious generation.

By exploring diverse architectural designs and latent space configurations, implicit models can readily
adapt to structural constraints (e.g., molecules must be chemically valid, etc. [14, 10, 63]), assimilate
prior knowledge [6, 13, 76, 45], and exhibit other advantageous properties. For implicit models that
lack explicit score information, how to receive supervision from DM’s multi-level score network is
technically challenging, which greatly limits the potential use cases of pre-trained DMs. Therefore,
we would like to further address the following question:

(Q2): Can we tackle this challenge so that knowledge from DMs can be more broadly transferred?

In this work, we give affirmative answers to (Q2) and propose a universal framework, Diff-Instruct
(DI), to leverage pre-trained DMs to instruct the training of arbitrary implicit generative models as long
as the generated samples from the implicit model are differentiable with respect to model parameters.
When applied to single-step generation models such as GANs, Diff-Instruct provides an alternative
non-adversarial training scheme. When the student model is a U-Net (with a fixed time), our method
enters as a strong contender in the diffusion distillation literature [43, 61, 66], providing extreme
acceleration for sampling from DMs with even one single step.

Our proposed Diff-Instruct is built on a rigorous mathematical foundation where the instruction
process directly corresponds to minimizing a novel divergence we call Integral Kullback-Leibler
(IKL) divergence. IKL is tailored for DMs by calculating the integral of the KL divergence along
a diffusion process, which we show to be more robust in comparing distributions with misaligned
supports (Section 3.2). We also reveal non-trivial connections of our method to existing works such
as DreamFusion (Section 3.3.1) and generative adversarial training (Section 3.3.2). Interestingly, we
show that the SDS objective can be seen as a special case of our Diff-Instruct on the scenario that the
generator outputs a Dirac’s Delta distribution.

To demonstrate the effectiveness and universality of Diff-Instruct, we consider two scenarios mentioned
earlier: distilling pre-trained diffusion models to single step (Section 4.1) and improving pre-trained
GAN generators (Section 4.2). The experiments on distilling pre-trained diffusion models on the
ImageNet dataset of a resolution of 64×64 show that Diff-Instruct results in state-of-the-art single-step
diffusion-based models over both diffusion distillation, such as the consistency distillation [66] and
direct training methods [66, 83, 73]. The experiments on improving GAN generators show that the
Diff-Instruct can consistently improve the pre-trained generators across various settings.
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2 Preliminary

Assume we observe data from the underlying distribution pd(x). In generative modeling, we want to
generate new samples x∼pd(x), where there are mainly two approaches, explicit and implicit. Cur-
rently, DMs are the most powerful explicit models while GANs are the most powerful implicit models.

Diffusion models. The forward diffusion process of DM transforms any initial distribution p(0)

towards some simple noise distribution,

dxt=F (xt,t)dt+G(t)dwt, (2.1)

where F is a pre-defined drift function, G(t) is a pre-defined scalar-value diffusion coefficient, and wt

denotes an independent Wiener process. A multiple-level or continuous-indexed score network sϕ(x,t)
is usually employed in order to approximate marginal score functions of the forward diffusion process
(2.1). The learning of marginal score functions is achieved by minimizing a weighted denoising score
matching objective [69, 65],

LDSM (ϕ)=

∫ T

t=0

w(t)Ex0∼p(0),xt|x0∼pt(xt|x0)∥sϕ(xt,t)−∇xt
logpt(xt|x0)∥22dt. (2.2)

Here the weighting function w(t) controls the importance of the learning at different time levels and
pt(xt|x0) denotes the conditional transition of the forward diffusion (2.1). High-quality samples from
a DM can be drawn by simulating SDE which is implemented by learned score network [65]. However,
the simulation of an SDE is significantly slower than that of other models such as implicit models.

Generative adversarial networks. GANs are representative implicit generative models
[30, 75, 67, 77]. They leverage neural networks (generators) to map an easy-to-sample latent vector
to generate a sample. Therefore they are efficient. However, the training of GANs is challenging,
particularly because of the reliance on adversarial training. To train a GAN model, a neural
discriminator h is optimized to distinguish the data and generated samples. This leads to the creation
of a surrogate probability metric Dh(·,·) between pg(x) and pd(x). The generator is updated based on
this metric, with the aim of improving the quality of the generated samples [19, 2, 44]. The objective
of a most commonly used GAN [19] can be written as

Lh=−Ex∼pd
[log h(x)]−Ez∼pz

[log(1−h(g(z)))], Lg=−Ez∼pz
[log h(g(z))],

where the training alternates between minimizing Lh and Lg with the other part fixed. For a fixed
g, the optimal h should recover the density ratio pd(x)/(pd(x) + pg(x)), and in turn, Dh is the
Jensen-Shannon divergence. There are variants of objectives that minimize other divergences. For
instance, if the L(KL)

g = Ez∼pz [log
1−h(g(z))
h(g(z)) ], the objective aims to minimize the KL divergence

between generator and data distribution. In Section 3.3.2, we establish the equivalence of our
Diff-Instruct with the adversarial training that aims to minimize the KL divergence.

Neural radiance fields. The neural radius field (NeRF) [48] is a kind of 3D object model that uses a
multi-layer-perceptron (MLP) to map coordinates of a mesh grid to volume properties such as color and
density. Given the camera parameters, a rendering algorithm can output a 2D image that is a view projec-
tion of the 3D NeRF. The rendering algorithm is usually differentiable to learnable parameters of NeRF’s
MLP, this makes the NeRF can be updated through proper instructions on the rendered 2D image.

3 Diff-Instruct

The main goal of Diff-Instruct is to transfer the knowledge of a pre-trained DM to other generative
models. To demonstrate the universality of our approach, we consider the more general case where
the student model is an implicit model, i.e., a generator.

Problem setup. Recall our setting that we have a pre-trained diffusion model with the multi-level
score net denoted as sp(t)(xt) :=∇xt

logp(t)(xt) where p(t)(xt)’s are the underlying distributions
diffused at time t according to (2.1). Assume the pre-trained diffusion model provides a sufficiently
good approximation of data distribution, i.e., p(0)≈pd. For ease of mathematical treatment, we use
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Figure 1: Illustration of our Diff-Instruct pipeline. The generator accepts instructions from all diffusion
time levels to calculate the gradient of the Integral KL divergence. The gradient is used to update
its parameters. This data-free learning scheme enables us to employ pre-trained DMs as teachers to
instruct a wide variety of generative models.

p(0),pd interchangeably. The goal of our Diff-Instruct is to train an implicit model gθ without any
training data, such that the distribution of the generated samples, denoted as pg, matches that of the
pre-trained DM. The instruction process involves minimizing certain probability divergences between
the implicit distribution and the data distribution.

Instruction criterion. In order to receive supervision from the multi-level score functions sp(t)(xt),
introducing the same diffusion process to the generated samples seems inevitable. Consider diffusing
pg along the same forward process as the instructor DM and let q(t) be the corresponding densities
at time t. Let sq(t)(xt) :=∇xt

logq(t)(xt) be the marginal score functions. At each time level, how
to design the instruction criterion and how to combine different time levels are of critical importance.
To this end, we consider integrating the Kullback-Leibler divergence along the forward diffusion
process with a proper weighting function, such as in (2.2). The resulting Integral Kullback-Leibler
(IKL) divergence is a valid probability divergence with two important properties: 1) IKL is more robust
than KL in comparing distributions with misaligned supports; 2) The gradient of IKL with respect to
the generator’s parameters only requires the marginal score functions of the diffusion process, making
it a suitable divergence for incorporating the scoring network of pre-trained diffusion models.

In the following sections, we first formally define the IKL and then go into detail about the mathematical
ground of our Diff-Instruct algorithms. We then establish the connections of Diff-Instruct to existing
methods and discuss in detail a novel application of Diff-Instruct on data-free diffusion distillation,
together with a comparison to existing diffusion distillation approaches.

3.1 Integral Kullback-Leibler divergence

The IKL is tailored to incorporate knowledge of pre-trained DMs in multiple time levels. It generalizes
the concept of KL divergence to involve all time levels of the diffusion process.
Definition 3.1 (Integral KL divergence). Given a diffusion process (2.1) and a proper weighting
function w(t)>0, t∈ [0,T ], the IKL divergence between two distributions p,q is defined as

D[0,T ]
IKL(q,p) :=

∫ T

t=0

w(t)DKL(q
(t),p(t))dt :=

∫ T

t=0

w(t)Ext∼q(t)
[
log

q(t)(xt)

p(t)(xt)

]
dt, (3.1)

where q(t) and p(t) denote the marginal densities of the diffusion process (2.1) at time t initialized
with q(0)=q and p(0)=p respectively.

The IKL divergence integrates the KL divergence along a diffusion process, which enables us to
amalgamate knowledge from pre-trained DM at multiple diffusion times. For simplicity, we use
the notation DIKL(p,q) to represent D[0,∞)

IKL (p,q) if the integral exists. Since the KL divergence is
well-defined, the proposed IKL divergence, as the integral of KL divergence, is also well-defined.
Proposition 3.2. The DIKL(q,p) satisfies that DIKL(q,p)≥0, ∀q,p. Furthermore, the equality holds
if and only if q=p, almost everywhere under measure p.
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Algorithm 1: Diff-Instruct Algorithm
Input: pre-trained DM sp(t) , generator gθ, prior distribution pz , DM sϕ; forward diffusion (2.1).
while not converge do

update ϕ using SGD with gradient

Grad(ϕ)=
∂

∂ϕ

∫ T

t=0

w(t)E z∼pz,x0=gθ(z),

xt|x0∼pt(xt|x0)

∥sϕ(xt,t)−∇xt logpt(xt|x0)∥22dt.

update θ using SGD with the gradient

Grad(θ)=

∫ T

t=0

w(t)E z∼pz,x0=gθ(z),

xt|x0∼pt(xt|x0)

[
sϕ(xt,t)−sp(t)(xt)

]∂xt

∂θ
dt.

end
return θ,ϕ.

One of the advantages of using IKL instead of KL is its robustness. For instance, with proper weighting
function, the IKL is well-defined even when the vanilla KL divergence degenerates to infinity. This
demonstrates that the IKL divergence is more robust than the KL divergence for two distributions
with misaligned supports. We consider a famous example in [2] where the generator distribution pg
and target distribution pd have disjoint support. In this case, the KL divergence between pg and pd
degenerates to positive infinity, while the IKL divergence has a finite value for all generator parameters
and unique minima that match the generator and data distribution. Check Appendix A.1 for details.

3.2 Instruct algorithm

Let gθ be the generator of the implicit model. Let q(0) denote the implicit distribution for samples
which are obtained by x0=gθ(z),z∼pz and denote q(t) as the marginal distribution of the forward
SDE ((2.1)) initialized with q(0). Let {p(t)}t∈[0,∞] and {sp(t)(.)}t∈[0,∞] represent the marginal
densities and score functions of the pre-trained diffusion model. Our Diff-Instruct aims to minimize
the IKL between q(0) and p(0) so as to update the generator’s parameters. Following the notations
of definition (3.1), we give a non-trivial gradient formula for minimizing the IKL in Theorem 3.3 that
includes only the score functions.

Theorem 3.3. The gradient of the IKL in (3.1) between q(0) and p(0) is

Grad(θ)=

∫ T

t=0

w(t)E z∼pz,x0=gθ(z),

xt|x0∼pt(xt|x0)

[
sϕ(xt,t)−sp(t)(xt)

]∂xt

∂θ
dt. (3.2)

Theorem 3.3 gives an explicit gradient to minimize the IKL divergence w.r.t. the parameter of the
generator. Note that the gradient estimation only requires the marginal score functions sp(t) and sq(t) .
If the marginal score functions of the implicit distribution can be approximated by another diffusion
model sϕ(xt,t), we can utilize the gradient formula (3.2) to update the generator’s parameter θ.

Now we formally propose Diff-Instruct as in Algorithm 1, which trains the implicit model through two
alternative phases between learning the marginal score functions sϕ, and updating the implicit model
with gradient (3.2). The former phase follows the standard DM learning procedure, i.e., minimizing
loss function (2.2), with a slight change that the data is generated from the generator. The resulting
sϕ(xt,t) provides an estimation of sq(t)(xt). The latter phase updates the generator’s parameter θ
using gradient from (3.2), where two needed functions are provided by pre-trained DM sp(t)(xt) and
learned DM sϕ(xt,t). When the algorithm converges, sϕ(xt,t)≈ sp(t)(xt), and the gradient (3.2)
is approximately zero.

3.3 Connections to existing methods

In this section, we establish the connections of Diff-Instruct to two typical methods, the score
distillation sampling proposed in DreamFusion [54], and the generative adversarial training in
Goodfellow et al. [19].
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3.3.1 Connection to score distillation sampling

The score distillation sampling (SDS) algorithm was proposed by Poole et al. [54] to distill the
knowledge of a large-scale text-to-image diffusion model into a 3D NeRF model. The idea of SDS
has been applied in various contexts, including the text-to-3D NeRF generation based on text-to-2D
diffusion models [54, 39, 47], and the text-guided image editing [20].

It turns out that the SDS algorithm is a special case of our Diff-Instruct when the generator’s output
is a Dirac’s Delta distribution with learnable parameters. More precisely, we find that Diff-Instruct’s
gradient formula (3.2) will degenerate to the gradient formula of SDS under the assumption that the
generator outputs a Delta distribution.
Corollary 3.4. If the generator’s output is a Dirac’s Delta distribution with learnable parameters, i.e.
q(x0)=δg(θ)(x0)

3. Then the gradient formula (3.2) becomes

Grad(θ)=

∫ T

t=0

w(t)E x0=g(θ),

xt|x0∼pt(xt|x0)

[
∇xt

logpt(xt|x0)−sp(t)(xt)
]∂xt

∂θ
dt. (3.3)

(3.3) does not depends on another diffusion model sq(t) as in (3.2). So under the assumption of
Corollary 3.4, there is no need for using another DM to estimate the generator’s marginal score
functions. This is because when the generator outputs a Delta distribution, there is no randomness in
x0. So the marginal score functions are only determined by pt(xt|x0). The gradient (3.3) is equivalent
to the score distillation sampling proposed in DreamFusion [54].

The fact that SDS is a special case of Diff-Instruct is not a coincidence, as in DreamFusion, the
rendered image of a NeRF model from a certain camera view is a 2D image that is differentiable to
NeRF’s parameters. Therefore, using SDS to learn a NeRF model is essentially an application of using
Diff-Instruct to distill a pre-trained text-to-2D diffusion model in order to obtain a 3D NeRF object.
However, the path we obtain (3.3) is totally different from that in DreamFusion. In DreamFusion,
the authors obtained (3.3) by taking the data gradient of the diffusion model’s loss function (2.2) and
empirically omitted the Jacobian term of the pre-trained score network. However, in this work, we first
propose the general formulation of Diff-Instruct and then specialize it to obtain SDS in a natural way.

3.3.2 Connection to GANs

Our proposed Diff-Instruct without integral on time is equivalent to the adversarial training [19] that
aims to minimize the KL divergence. Following the same notation as in Section 2, the adversarial
training uses a discriminator h(.) to learn the density ratio to construct the objective for the generator.

Corollary 3.5. If the discriminator h learns the perfect density ratio, i.e. h(x) = pd(x)
pd(x)+pg(x)

,

then updating the generator to minimize the KL divergence (L(KL)
g in Section 2) is equivalent to

Diff-Instruct with a weighting function w(0)=1 and w(t)=0,∀t>0.

The Diff-Instruct is essentially a different method from adversarial training in three aspects. First,
the adversarial training relies on a discriminator network to learn the density ratio between the model
distribution and data distribution. However, Diff-Instruct employs DMs instead of discriminators
to instruct the generator updates. Second, in scenarios where only a pre-trained diffusion model is
available without any real data samples, Diff-Instruct can distill knowledge from the pre-trained model
to the implicit generative model, which is not achievable with adversarial training. Third, Diff-Instruct
uses the IKL as the minimization divergence, which overcomes the degeneration problem of the KL
divergence via a novel use of diffusion processes and can potentially overcome the drawbacks such
as mode-drop issues of adversarial training.

3.4 Related works

The pre-trained diffusion models on large-scale datasets contain rich knowledge of the data
distribution. There is a growing interest in distilling this knowledge to other models [43] that are more
sampling-efficient, such as implicit generators [50, 26] and neural radiance fields models [48, 54].

One significant advantage of our Diff-Instruct framework is its ability to update the generator without
real data x∼pd. Instead, the knowledge of the data distribution to update the generator is contained

3We switch the notation from gθ(z) to g(θ) since under the assumptions the generator has no randomness.
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in the marginal score function sp(t) as in (3.2). This enables our Diff-Instruct to distill knowledge from
pre-trained DMs into flexible generators in a data-free manner and provides a major advantage over
other diffusion distillation methods that require either the real data or synthetic data from pre-trained
DMs. More precisely, There are three kinds of diffusion distillation methods depending on how to use
the data for distillation. The first is the data synthetic distillation, which requires using the pre-trained
DM to synthesize data from random noises. The student model then learns the mechanism between
random noise and synthetic data in order to enhance the efficiency of data generation. Representative
methods of data-synthetic distillation are Knowledge Distillation (KD [42]), Rectified Flow (ReFlow
[40]) and DFNO ([82]). The second method does not require synthetic data from diffusion models
but involves real data when distilling. The consistency distillation (CD [66]) is a representative method.
The third method is pure data-free distillation, which requires neither real data nor synthetic data. The
Diff-Instruct and the Propgressive Distillation (PD [61]) are representative pure data-free distillation.
Generally, we use the word "data-free distillation" to include both data-synthetic distillation and
pure data-free distillation. To give a comprehensive comparison of diffusion distillation methods, we
summarize three main features of diffusion distillation methods in Table 6. The efficiency represents the
computational cost of the distillation method. Methods that require synthesizing dataset is inefficient.
The data-synthetic distillation requires simulations with pre-trained DMs, thus is inefficient. The
flexibility represents whether the distillation approach is capable of distilling knowledge of pre-trained
DM to flexible generator architectures, for example, the generator whose input and output dimension
is different. Diff-Instruct is the only method that can apply to a wide variety of downstream generators.

Furthermore, Diff-Instruct offers very high flexibility to the generator, distinguishing it from traditional
diffusion distillation methods that impose strict constraints on the generator selection. For instance,
the generator can be a convolutional neural network (CNN)-based or a Transformer-based image
generator such as StyleGAN [28, 30, 31, 37], or an UNet-based generator [73] adapted from pre-trained
diffusion models [32, 65, 22]. The versatility of Diff-Instruct allows it to be adapted to different types
of generators, expanding its applicability across a wide range of generative modeling tasks. In the
experiment sections, we show that Diff-Instruct is capable of transferring knowledge to generator
architectures including both UNet-based and GAN generators respectively. To the best of our
knowledge, the Diff-Instruct is the first approach to efficiently enable such a data-free knowledge
transfer from diffusion models to generic implicit generators.

4 Experiments

With the abundance of powerful pre-trained DMs with diverse expertise, our proposed Diff-Instruct
unlocks their potential as sources of knowledge to instruct a wide variety of models. To demonstrate,
we choose the state-of-the-art DMs from the seminal work by [32] (we denote as EDMs) as instructors
and consider transferring their knowledge to implicit generators. In this section, we evaluate the
efficacy of DI through two downstream applications: diffusion distillation and improvement of
GAN’s generator. These two experiments correspond to using UNet and GAN’s generator to absorb
the knowledge from DMs. In the diffusion distillation experiments, we use Diff-Instruct to distill
pre-trained DMs to single-step generative models. On the ImageNet 64×64 dataset, our Diff-Instruct
achieves state-of-the-art performance in terms of FID among all single-step diffusion-based generative
models. Furthermore, in the GAN-improving experiments, we use Diff-Instruct to improve existing
GAN models that are pre-trained to convergence with adversarial training. The Diff-Instruct is shown
to be able to consistently enhance the generative performance of pre-trained StyleGAN-2 models on
the CIFAR10 dataset by incorporating knowledge of pre-trained DMs.

4.1 Single-step diffusion distillation

Diffusion distillation is a hot research area that aims to accelerate the generation speed of diffusion
models. In our experiments, we utilize our Diff-Instruct framework to train single-step generators
on CIFAR-10 [36] and ImageNet 64×64 [11] from pre-trained EDM [32] models. We evaluate the
performance of the trained generator via Frechet Inception Distance (FID) [21], the lower the better, and
Inception Score (IS) [62]), the higher the better. For additional details about the generator’s architecture,
pre-trained models, and the hyper-parameters on our experimental setup, please refer to Appendix B.1.

Performances. Table 1 and 2 summarize the FID and IS of the single-step generator that we trained
with Diff-Instruct from pre-trained EDMs on the CIFAR10 datasets (unconditional without labels)

7



Figure 2: Generated samples from one-step generators that are distilled from pre-trained diffusion
models on different datasets. Left: FFHQ-64 (unconditional); Mid: ImageNet-64 (conditional); Right:
CIFAR-10 (unconditional).

Table 1: Unconditional sample quality on CIFAR-
10 through diffusion generations. ∗Methods that
require synthetic data construction for distillation.
†Methods that require real data for distillation.

METHOD NFE (↓) FID (↓) IS (↑)

Multiple Steps (include Diffusion Distillation)
DDPM [22] 1000 3.17 9.46
LSGM [68] 147 2.10
PFGM [74] 110 2.35 9.68
EDM [32] 35 1.97
DDIM [64] 50 4.67
DDIM [64] 10 8.23
DPM-solver-2 [41] 12 5.28
DPM-solver-3 [41] 12 6.03
3-DEIS [78] 10 4.17
UniPC [80] 8 5.10
UniPC [80] 5 23.22
Denoise Diffusion GAN(T=2) [73] 2 4.08 9.80
PD [61] 2 5.58 9.05
CT [66] 2 5.83 8.85
CD† [66] 2 2.93 9.75

Single Step
Denoise Diffusion GAN(T=1) [73] 1 14.6 8.93
KD∗ [42] 1 9.36
TDPM [83] 1 8.91 8.65
1-ReFlow [40] 1 378 1.13
CT [66] 1 8.70 8.49
1-ReFlow (+distill)∗ [40] 1 6.18 9.08
2-ReFlow (+distill)∗ [40] 1 4.85 9.01
3-ReFlow (+distill)∗ [40] 1 5.21 8.79
PD [61] 1 8.34 8.69
CD-L2† [66] 1 7.90
CD-LPIPS† [66] 1 3.55 9.48
Diff-Instruct 1 4.53 9.89

Table 2: Class-conditional sample quality on
CIFAR-10 and ImageNet 64×64 through diffu-
sion generations. ∗Methods that require synthetic
data construction for distillation. †Methods that
require real data for distillation.

METHOD NFE (↓) FID (↓)

Multiple Steps (include Diffusion Distillation)
EDM [32] 35 1.79
EDM-Heun [32] 20 2.54
EDM-Euler [32] 20 6.23
EDM-Heun [32] 10 15.56

Single Step
EDM [32] 1 314.81
Diff-Instruct 1 4.19

Class-conditional ImageNet 64×64.†Distillation techniques.
METHOD NFE (↓) FID (↓)

Multiple Steps
ADM [12] 250 2.07
SN-DDIM [4] 100 17.53
EDM [32] 79 2.44
EDM-Heun[32] 10 17.25
GGDM [70] 25 18.4
CT [66] 2 11.1
PD† [61] 2 8.95
CD† [66] 2 4.70
Single Steps
EDM[32] 1 154.78
PD† [61] 1 15.39
CT [66] 1 13.00
CD-L2† [66] 1 12.10
CD-LPIPS† [66] 1 6.20
Diff-Instruct 1 5.57

and the conditional generation on the ImageNet 64×64 data. Diff-Instruct performs competitively
across all datasets among single-step and multiple-step diffusion-based generative models, which
involve both models from diffusion distillation or direct training.

As shown in Table 2, on the ImageNet dataset of the resolution of 64×64, Diff-Instruct outperforms
diffusion-based single-step generative models in terms of FID, including both distillation methods that
require real data or synthetic data, and even models that are trained from scratch. On the unconditional
generation of the CIFAR10 dataset, Diff-Instruct achieves the state-of-the-art IS among diffusion-based
single-step generative models but achieves the second-best FID, only worse than the consistency
distillation (CD) [66] which requires both real data for distillation and the learned neural image
metric (e.g. LPIPS [79]). The conditional generation experiment on the CIFAR10 dataset shows
that the Diff-Instruct performs better than a 20-NFE diffusion sampling from EDM model [32] with
Euler–Maruyama discretization but worse than a 20-NEF Heun discretization.
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Figure 3: Comparison of FID convergence on diffusion distillation of CIFAR10 unconditional EDM
model [32]. The FID value of consistency distillation is obtained from its original paper [66].

Figure 2 shows some non-cherry-picked generated samples from a single-step generator trained with
Diff-Instruct on the FFHQ [28], ImageNet [11], and the CIFAR10 [36] datasets of the resolution of
64×64. In conclusion, our Diff-Instruct can achieve competitive distillation performance under the
most challenging conditions with no synthetic or real datasets. We put more discussions and analyses
in the Appendix B.1.

Remark 4.1. In Table 1 and Table 2, PD, CD, and Diff-Instruct all use the EDM teacher, and the same
UNet student with the same architecture as the teacher model (The author of consistency distillation
re-implemented the PD for EDM, so the reported FID for PD is lower than that in PD’s original paper).
The Diff-Instruct generator uses the same UNet architecture as the teacher diffusion model, so the
number of sampling steps (NFE) represents its inference time costs. As we show in the upper part
of Table 2, sampling from our learned one-step generator with 1 NFE results in an FID of 4.19, which
is significantly better than its teachers with 10 NFEs with an FID of 15.56. So we conclude that the
one-step generator trained with Diff-Instruct achieves at least 10+ times acceleration (more efficient)
than its teacher diffusion model.

Fast convergence speed. Another advantage of applying Diff-Instruct for diffusion distillation is
the fast convergence speed. We empirically find that Diff-Instruct has a much faster convergence speed
than other distillation methods and has a tolerance for a large learning rate for optimization. In Figure
3, we show the convergence of FID with respect to the optimization iterations of the generator trained
on an unconditional DM on the CIFAR10 dataset. We set the optimization step size of Diff-Instruct
to be 1e−4 and the FID of the generator trained with Diff-Instruct converges fast within 7k iterations.
However, the FID of the distilled diffusion model with consistency distillation algorithms does not
converge with less than 7k iterations. One possible reason for the fast convergence speed is that
Diff-Instruct’s student model is a one-step generator that does not need to take multiple-time indexes
in contrast to student models of other distillation methods such as CD and PD. This makes Diff-Instruct
efficient when distillation without the need for learning at multiple time levels.

4.2 Improving generative adversarial networks

Another application of Diff-Instruct is to improve the generator of GAN models that are pre-trained
with adversarial training 3.3.2.

Experiement settings. We take the pre-trained EDM model [32] on the CIFAR10 datasets as the
instructor and the pre-trained StyleGAN-2 [29] models that are assumed to converge with adversarial
training under different settings (conditional or unconditional with different data augmentation
strategies). Our goal is to use pre-trained DMs to further improve pre-trained generators. We initialize
the generator in the Diff-Instruct algorithm with the pre-trained StyleGAN-2 generator and initialize
DMs for implicit distributions with the pre-trained EDM models. We then use Diff-Instruct to update
the generator. We put more details in Appendix B.2.

Performance. As shown in Table 3 and 4, our Diff-Instruct can consistently improve the pre-trained
generator’s performance in terms of FID. More precisely, the FID of the pre-trained StyleGAN-2 with
Adaptive Data Augmentation (ADA) is improved from 2.42 to 2.27 for the conditional setting and
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Table 3: Class-conditional sample quality on
CIFAR10 through GAN models. † Models that
we implemented.

METHOD FID (↓) IS (↑)

BigGAN [5] 14.73 9.22
BigGAN+Tune [5] 8.47 9.07 ± 0.13
MultiHinge [33] 6.40 9.58 ± 0.09
FQ-GAN [81] 5.59 8.48 ± 0.09
Stylegan2 [30] 6.96 9.53 ± 0.06
Stylegan2† 7.01 9.23 ± 0.07
Stylegan2† + DI 6.62 9.40 ± 0.06
Stylegan2+ADA [29] 3.49 10.24 ± 0.07
Stylegan2+ADA+Tune [29] 2.42 10.14 ± 0.09
Stylegan2+ADA+Tune + DI 2.27 10.11 ± 0.10

Table 4: Unconditional sample quality on
CIFAR10 through GAN models. † Models that
we implemented.

METHOD FID (↓) IS (↑)

SNGAN [49] 21.70 8.22
ProGAN [17] 15.52 8.56 ± 0.06
AutoGAN [18] 12.42 8.55 ± 0.10
SNGAN+DGflow [1] 9.35 9.62
TransGAN [27] 9.02 9.26
StyleGAN2 [30] 8.32 9.21 ± 0.09
StyleGAN2† 8.21 9.09 ± 0.09
StyleGAN2† + DI 7.56 9.16 ± 0.09
StyleGAN2+ADA [29] 5.33 10.02 ± 0.07
StyleGAN2+ADA+Tune [29] 2.92 9.83 ± 0.04
StyleGAN2+ADA+Tune + DI 2.71 9.86 ± 0.04

from 2.92 to 2.71 for the unconditional setting. The experiment shows that Diff-Instruct is able to
inject the knowledge of pre-trained diffusion models to enhance the generators further.

The results demonstrate that Diff-Instruct is a powerful method capable of improving existing GAN
models that are supposed to converge with adversarial training. There are two possible reasons for
such improvements. First, our Diff-Instruct utilizes well-trained diffusion models to supervise the
generator. For instance, on the CIFAR10 dataset with conditional labels, the teacher EDM model can
achieve the FID of 1.79, which is significantly better than StyleGAN2 with an FID of 2.42. Second,
Diff-Instruct takes diffused data into account when minimizing the IKL, overcoming the potential
degeneration issues of the divergences that adversarial training intends to minimize.

5 Discussion

This work presents a novel learning paradigm, Diff-Instruct, which is to our best knowledge, the first
method that enables knowledge transfer from pre-trained diffusion models into generic generators
in a data-free manner. The theoretical foundations and practical methods introduced in this work
hold promise for advancing the utilization of diffusion generative models and implicit models across
various domains and applications.

Nonetheless, Diff-Instruct has its limitations that call for further research along this line. First, with the
abundance of powerful pre-trained DMs with diverse expertise, levering multiple models as instructors
is another promising direction that is not investigated in this work. Second, even though data-free is
a feature of our method, utilizing real data can potentially boost the learning process. The potential
benefits of incorporating both Diff-Instruct and training data have not been explored yet. Lastly, in the
extreme case where we have only data and no pre-trained DMs, our DI framework can still be adapted.
Potentially we can train a teacher diffusion model with data, and concurrently, use it to instruct the
student model. This indirect way of training may enable other generative models such as GANs, to
enjoy the benefits of diffusion models, e.g., ease of training, ability to scale, and high sample quality, etc.
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A Technical details

A.1 Robustness of Integral KL divergence

One of the benefits of using the Integral KL divergence over the traditional KL divergence is its robust-
ness to misaligned density support. To illustrate this advantage, we consider a well-known example in
[2]. Letz be a random variable following the uniform distribution on the unit interval [0,1]. ConsiderP0

to be the distribution of (0,z)∈R2. Now let gθ(z)=(θ,z), where θ is a single real parameter. The den-
sity of P0 and Pθ are p0(x,z)= Ix=0(x)I[0,1](z) and pθ(x,z)= Iθ(x)I[0,1](z). Since for each θ ̸=0,
the support of pθ and p0 does not intersect, the KL divergence between Pθ and P0 is ill-defined with

DKL(Pθ,P0)=

{
+∞ θ ̸=0;

0 θ=0.
(A.1)

The same is also true for the Jensen-Shannon divergence where

DJS(Pθ,P0)=

{
log2 θ ̸=0;

0 θ=0.
(A.2)

So minimizing the KL divergence with a gradient-based algorithm does not lead the generator to
converge to the correct parameter θ= 0. However, IKL provides a finite and reliable objective for
training the generator. More precisely, considering a simple diffusion

dxt=dwt. (A.3)

The marginal distribution of (x,z) under diffusion (A.3) initialized with P0 and Pθ writes

p
(t)
0 (x,z)=N (x;0,t)

∫ 1

0

N (z;s,t)ds,

p
(t)
θ (x,z)=N (x;θ,t)

∫ 1

0

N (z;s,t)ds,

which are defined on (x,z)∈R2. The notation N (x;µ,σ2) represents the density function of Gaussian
distribution with mean µ and variance σ2. The IKL divergence with weight function w(t) thus has
the expression

DIKL(Pθ,P0)=

∫ ∞

t=0

w(t)

[
E
(x,z)∼p

(t)
θ (x,z)

log
p
(t)
θ (x,z)

p
(0)
θ (x,z)

]
dt

=

∫ ∞

t=0

w(t)

[
E
(x,z)∼p

(t)
θ (x,z)

log
N (x;θ,t)

N (x;0,t)

]
dt

=

∫ ∞

t=0

w(t)

[
Ex∼N (x;θ,t)log

N (x;θ,t)

N (x;0,t)

]
dt (A.4)

=

∫ ∞

t=0

w(t)

[
Ex∼N (x;θ,t)

1

2t

[
x2−(x−θ)2

]]
dt

=

∫ ∞

t=0

w(t)

[
Ex∼N (x;θ,t)

1

2t

[
2θx−θ2

]]
dt

=θ2
[∫ ∞

0

w(t)

2t
dt
]
, θ∈R.

By properly choosing the weighting function w(t), DIKL is finite as long as
∫ T

0
w(t)
2t dt is finite. For

instance, w(t)=1/t if t≥ 1 and w(t)= t if t≤ 1 as a simple choice 4. The IKL divergence in (A.4)
is a differentiable quadratic function of parameter θ with a single minima θ = 0 which lead to the
DIKL(Pθ,P0)=0.

Table 5 shows a summary of the comparison among IKL divergence, KL divergence and the
Wasserstein distance between Pθ and P0. Our IKL is more suitable for learning θ with gradient-based
optimization algorithms.

4In practice when distilling from pre-trained diffusion models, we use the same weighting function for training
pre-trained diffusion models for Diff-Instruct, which is also inverted U-shaped.
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Table 5: Comparison of divergence property against IKL.

Divergence distance smooth

IKL (ours) ∝θ2 ✓
KL +∞(A.1) ✗

Wasserstein ∝|θ| [2] ✗
Jensen-Shannon log2 (A.2) ✗

A.2 Proof of Theorem 3.3

Proof. Recall the definition of q(t), the sample is obtained by x0 = gθ(z), z ∼ pz , and
xt|x0∼pt(xt|x0) according to forward SDE (2.1). Since the solution of forward, SDE is uniquely
determined by the initial point x0 and a trajectory of Wiener process wt∈[0,T ], we slightly abuse
the notation and let xt=F(gθ(z),w) to represent the solution of xt generated by x0 and w. We let
w[0,1]∼Pw to demonstrate a trajectory from the Wiener process wherePw represents the path measure
of Weiner process on t∈ [0,T ]. There are two terms that contain the generator’s parameter θ. The term
xt contains parameter through x0=gθ(z),z∼pz . The marginal density q(t) also contains parameter
θ implicitly since q(t) is initialized with q(0) which is generated by the generator. To demonstrate the
parameter dependence, we may use q(t)θ to represent q(t).

The p(t) is defined through the pre-trained diffusion models with score functions sp(t) . The IKL
divergence between q(t) and p(t) is defined with,

D[0,T ]
IKL(q

(0)
θ ,p(0)) :=

∫ T

t=0

w(t)DKL(q
(t)
θ ,p(t))dt

=

∫ T

t=0

w(t)E
xt∼q

(t)
θ

[
log

q
(t)
θ (xt)

p(t)(xt)

]
dt

=

∫ T

t=0

w(t)E z∼pz,
w∼Pw

[
log

q
(t)
θ (F(gθ(z),w))

p(t)(F(gθ(z),w)))

]
dt (A.5)

Taking the θ gradient of IKL (A.5), we have

∂

∂θ
D[0,T ]

IKL(q
(t)
θ ,p(t))

=
∂

∂θ

∫ T

t=0

w(t)E z∼pz,
w∼Pw

[
log

q
(t)
θ (F(gθ(z),w))

p(t)(F(gθ(z),w)))

]
=

∫ T

t=0

w(t)E z∼pz,
w∼Pw

∂

∂θ

[
log

q
(t)
θ (F(gθ(z),w))

p(t)(F(gθ(z),w)))

]
=

∫ T

t=0

w(t)E z∼pz,
w∼Pw

∇xt

[
log

q
(t)
θ (F(gθ(z),w))

p(t)(F(gθ(z),w)))

]∂F(gθ(z),w)

∂θ

+

∫ T

t=0

w(t)E z∼pz,
w∼Pw

∂

∂θ
logq

(t)
θ (xt)|xt=F(gθ(z),w)

=

∫ T

t=0

w(t)E z∼pz,w∼Pw,x0=gθ(z)

xt=F(x0,w)

∇xt

[
log

q
(t)
θ (xt)

p(t)(xt))

]∂xt

∂θ
+

∫ T

t=0

w(t)E
xt∼p

(t)
θ

∂

∂θ
logq

(t)
θ (xt)

=A+B. (A.6)

The term A in equation (A.6) writes

A=

∫ T

t=0

w(t)Ext∼q(t)
[
sq(t)(xt)−sp(t)(xt)

]∂xt

∂θ
(A.7)
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We show that the term B in equation (A.6) vanishes.

B=

∫ T

t=0

w(t)E
xt∼q

(t)
θ

∂

∂θ
logq

(t)
θ (xt)

=

∫ T

t=0

w(t)

∫
1

p
(t)
θ (xt)

∂

∂θ
q
(t)
θ (xt)q

(t)
θ (xt)dxt

=

∫ T

t=0

w(t)

∫
∂

∂θ
q
(t)
θ (xt)dxt

=

∫ T

t=0

w(t)
∂

∂θ

∫
q
(t)
θ (xt)dxt (A.8)

=

∫ T

t=0

w(t)
∂

∂θ
1dxt

=0

(A.9)

The equality (A.8) holds if function q
(t)
θ (x) satisfies the conditions (1). q(t)θ (x) is Lebesgue integrable

for x with each θ; (2). For almost all x∈RD, the partial derivative ∂q(t)θ (x)/∂θ exists for all θ∈Θ.
(3) there exists an integrable function h(.) :RD→R, such that q(t)θ (x)≤h(x) for all x in its domain.
Then the derivative w.r.t θ can be exchanged with the integral over x, i.e.∫

∂

∂θ
q
(t)
θ (x)dx=

∂

∂θ

∫
q
(t)
θ (x)dx.

Remark A.1. In practice, most commonly used forward diffusion processes can be expressed as a
form of scale and noise addition:

xt=α(t)x0+β(t)ϵ, ϵ∼N (ϵ;0,I). (A.10)

So the term z ∼ pz, w ∼ Pw, xt = F(x0, w) in equation (A.5) can be instantiated as
z∼pz, ϵ∼N (ϵ;0,I), xt=α(t)x0+β(t)ϵ.

A.3 Proof of Corollary 3.4

Proof. Since the q(x0) = δg(θ)(x0), thus the conditional distribution and marginal distribution
coincides, i.e.

q(t)(xt)=

∫
pt(xt|x0)q

(0)(x0)dx0=pt(xt|x0)Ig(θ)(x0)=pt(xt|g(θ))

So the marginal score function writes

sq(t)(xt) :=∇xt
logq(t)(xt)=∇xt

logpt(xt|g(θ))

So the gradient formula (3.2) turns to

Grad(θ)=

∫ T

t=0

w(t)E x0=g(θ),

xt|x0∼pt(xt|x0)

[
∇xt

logpt(xt|x0)−sp(t)(xt)
]∂xt

∂θ
dt.

If we define a ϵ-network ϵp(x, t) := −sp(t)(xt)/σ(t) and consider the forward diffu-
sion pt(xt|x0) = N (xt; α(t)x0, σ(t)I), the forward diffusion can be implemented with
xt=α(t)x0+σ(t)ϵ, ϵ∼N (ϵ;0,I), then the objective turns to

Grad(SDS)(θ)=

∫ T

0

w(t)

σ(t)
Ex0=gθ(z0),ϵ∼N(0,I),

xt=α(t)x0+σ(t)ϵ

[
ϵp(xt,t)−ϵ

]
∂xt

∂θ
dt, (A.11)
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which recovers the SDS gradient estimation proposed in DreamFusion [54]. In summary, we have
shown that our Diff-Instruct’s gradient is equivalent to the gradient formula of score distillation
sampling (SDS) when the generator outputs a single data that is differentiable to the generator’s
parameters. This is not a coincidence, as a NeRF model can be viewed as a generator that outputs
a Dirac’s Delta distribution when the view direction is fixed. Therefore, using SDS to learn a
text-conditioned NeRF model is essentially an application of using an approximated version of
Diff-Instruct to distill a pre-trained text-to-2D diffusion model in order to obtain a NeRF.

A.4 Proof of Corollary 3.5

Proof. Following the same notation as in section 2, consider the adversarial training that minimizes
the KL divergence as we introduced in Section 2. The learning objective is

L(KL)(θ)=Ez∼pz [log
1−h(gθ(z))

h(gθ(z))
] (A.12)

Assume the discriminator h(.) is optimal, then

h(x)=
pd(x)

pd(x)+pg(x)
, and log

1−h(x)

h(x)
=log

pd(x)

pg(x)

Then gradient for the generator parameter θ turn to

∂

∂θ
L(KL)(θ)=Ez∼pz∇x(log

1−h(x)

h(x)
)|x=gθ(z)

∂gθ(z)

∂θ

=Ez∼pz
∇x(log

pd(x)

pg(x)
)|x=gθ(z)

∂gθ(z)

∂θ

=Ez∼pz

[
∇xlogpd(x)−∇xlogpg(x)

]
|x=gθ(z)

∂gθ(z)

∂θ

=E z∼pz,
x=gθ(z)

[
∇xlogpd(x)−∇xlogpg(x)

]
∂x

∂θ

=E z∼pz,
x=gθ(z)

[
sd(x)−sg(x)

]
∂x

∂θ
(A.13)

where sg(x)=∇xlogpg(x) and sd(x)=∇xlogpd(x) denote the score function of the generator and
the data distribution. The equation (A.13) shows that the adversarial training that minimizes the KL
divergence is equivalent to the gradient formula (3.2) with a special weight function w(0) = 1 and
w(t)>0 for all t>0, if the discriminator can be trained to be optimal.

A.4.1 Comparison of Distillation Methods

Table 6: Comparison of Diffusion Distillation Methods. The term efficiency represents the training effi-
ciency of DMs. flexibility means whether the student model needs to have the same in-out dimensions.

Method data-free flexibility efficiency

ReFlow[40] ✓ % low

DFNO[82] ✓ % low

KD[42] ✓ % low

CD[66] % % medium

PD[61] ✓ % low
DI (ours) ✓ ✓ high

B More on experiments

To demonstrate the efficacy of our proposed Diff-Instruct, we choose the state-of-the-art EDMs [32]
as instructors, which have achieved state-of-the-art generative performance on several benchmarks
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Table 7: Hyperparameters used for Diff-Instruct for Diffusion Distillation

Hyperparameter CIFAR-10 (Uncond) ImageNet 64×64 CIFAR-10 (Cond)
DM sϕ Generator gθ DM sϕ Generator gθ DM sϕ Generator gθ

Learning rate 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
Batch size 64 64 96 96 64 64
σ(t∗) 2.5 2.5 5.0 5.0 2.5 2.5
Adam β0 0.0 0.0 0.0 0.0 0.0 0.0
Adam β1 0.99 0.99 0.99 0.99 0.99 0.99
Training iterations 100k 100k 50k 50k 100k 100k
Number of GPUs 4 4 8 8 4 4

Figure 4: Left: Demonstration of the training process for Diff-Instruct for diffusion distillation.
Generated samples with the same latent vectors and different generator weights during training are
put from the top to the bottom. Right: generated samples from a one-step generative model distilled
from pre-trained class-conditional EMD model on the CIFAR10 dataset.

such as CIFAR10 and ImageNet 64×64. The EDM model depends on the diffusion process

dxt=G(t)dwt,t∈ [0,T ]. (B.1)

Samples from the forward process (B.1) can be generated by adding random noise to the output
of the generator function, i.e., xt = x0 + σ(t)ϵ where ϵ ∼ N (0, I) is a Gaussian vector and

σ(t) :=
√∫ t

0
G2(s)ds is a function with explicit expressions. We download the pre-trained model

checkpoints from the official website5 and consider transferring their knowledge to implicit generative
models, specifically UNet and StyleGAN as generators.

We calculate the FID and IS in the same way as the StyleGAN2-ADA6 codebase. For the ImageNet
64×64 dataset, we use the same pre-processing scripts as the EDM model on ImageNet 64×64 dataset.

B.1 Detailed experimental settings of diffusion distillation

When the downstream generative model is a UNet generator, our DI provides another way for diffusion
distillation, directly competing with progressive distillation [61] or consistency distillation [66].

We initialize the diffusion model for the implicit distribution sϕ with the weight parameters of
pre-trained DM. The initialization of the generator is put in the following paragraph. With the
pre-trained DM, initialized generator, and the initialized DM for implicit distribution, we use our
Diff-Instruct algorithm 1 to update the DM for implicit distribution and the generator’s parameters.
We use the Adam optimizer for both the DM and the generator. For the generator, we use the same
exponential moving average (EMA) technique as the EDM model’s training scripts.

To make a fair comparison, we do not compare approaches that involve other components such as
classifier guidance or additional architectures for the generation as [82] because these models have
significantly larger model sizes for inference.

5https://github.com/NVlabs/edm
6https://github.com/NVlabs/stylegan2-ada-pytorch
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Table 8: Comparison of Memory Costs and Wall-Clock Timing of CD and Diff-Instruct. The Peak
GPU-Memo shows the Maximum observed GPU memory caused by the Tensor and Computational
Graph of the host GPU. Sec-per-K Iterations report the wall-clock time for each training iteration. For
Diff-Instruct, each iteration consists of two stages as in Algorithm 1 in the main text. Test environment:
PyTorch 1.12.1 and Torchvision 0.13.1, and Torch.distributed.parallel on 2 V100 GPUs.

Method Peak GPU-Memo(GB) Peak CPU-Memo(GB) Sec-per-K Iterations

CD 9.55 2.75 0.0489
Diff-Instruct 10.40 2.78 0.0728

Initialization of the generator. When the generator is chosen to have the same architecture as the
pre-trained diffusion models (i.e. UNet in most cases), we can initialize the generator with a special
method with the score network of the pre-trained DM. Taking the forward diffusion process (B.1)
as an instance. The time-indexed score functions explicitly define a data-prediction transform through
Tweedie’s formula

x̂0 :=xt+σ(t)2∇xt
logq(t)(xt) (B.2)

This formula tells that the marginal score functions can be converted to a data-prediction transform
which can transform noisy data to clean data. Motivated by this property, we initialize the implicit
generator gθ for Diff-Instruct in Algorithm 1 via a score network-induced data-prediction transform
of the teacher diffusion models at some fixed time t∗:

x=z+σ2(t∗)sp(t∗)(z). (B.3)

where z∼N (z;0,σ2(t∗)I) is the latent vector. This generator takes a Gaussian noise with the variance
σ(t∗) and zero mean as an input latent vector.

We find that each noise level σ(t∗) can give a comparable initialization, so we roughly selected an
σ(t∗) for different datasets. We put detailed hyper-parameters for distilling in Table 7. The left hand
of Figure 4 gives a demonstration of the samples with the same latent vectors from different generators
during training. The top line is the initialized generator (i.e. modified from pre-trained diffusion
models). During the training, the initialized generator is trained to generate high-quality samples. The
right hand of Figure 4 shows class-conditioned samples from a one-step model (generator) distilled
from a class-conditional EDM model on the CIFAR10 dataset.

Comparison of Computational Costs The Diff-Instruct algorithm involves training an additional
auxiliary diffusion model during the training phases. It is worth noting that although this auxiliary
diffusion model brings additional memory cost, this additional memory cost is very limited because
the memory bottleneck of training lies in the computational graph of the backpropagation, instead
of only saving one more model.

In the Diff-Instruct algorithm, the model and the generator are updated alternatively, which means
that the other model’s parameters are fixed and do not participate in back-propagation when one model
is being updated. So the memory cost for back-propagating through the computational graph is almost
the same as one model.

To quantitatively measure how much additional computational costs are brought in, we run an
experiment to compare the computational and memory costs of Diff-Instruct with our baseline method,
the Consistency Distillation, in 8. The test was run on 2 Nvidia V100 GPUs with 128 batch size and
PyTorch distributed data-parallel mechanism.

The result shows that Diff-Instruct brings in minor additional memory costs than CD (10.40 over 9.55).
This is because the Diff-Instruct only needs additional GPU memory to save the auxiliary model sϕ.
But the sϕ and generator gθ are updated alternatively, so their computational graph does not interact.
As a result, the memory bottleneck caused by computational graph and back-propagation does not
bring more costs to Diff-Instruct.

As for the wall-clock time for 1K iterations, we see that Diff-Instruct costs 0.0728 seconds, while the
CD costs 0.0489 seconds. This is because each iteration of Diff-Instruct consists of two alternate steps
as we show in Algorithm 1. Overall, the Diff-Instruct costs almost the same GPU and CPU memory
as the baseline CD, but about 1.5 times wall-clock time than the CD for each iteration.
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Table 9: Hyperparameters used for Diff-Instruct for GAN Improvement on CIFAR10 dataset under
different settings.

Hyperparameter StyleGAN-2 + Cond StyleGAN-2 + Uncond StyleGAN-2-ADA + Cond StyleGAN-2-ADA + Uncond
DM sϕ Generator gθ DM sϕ Generator gθ DM sϕ Generator gθ DM sϕ Generator gθ

Learning rate 2e-7 2e-7 1.5e-6 1.5e-6 1.5e-6 1.5e-6 1.5e-6 1.5e-6
Batch size 512 512 512 512 512 512 512 512
Adam β0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Adam β1 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Training iterations 16k 16k 6k 6k 9k 9k 10k 10k
Number of GPUs 4 4 4 4 4 4 4 4

Figure 5: Generated samples from improved generators with Diff-Instruct in Table 3 and 1. The FID
for generated samples from left to right is 2.27, 2.71, 6.62, and 7.56.

B.2 Detailed experimental settings of GAN improvement

This experiment aims to show the power of Diff-Instruct to improve GAN’s generator under different
settings by transferring knowledge from pre-trained DMs.

Experiment settings. The StyleGAN-2 model is a competitive GAN model on benchmarking
datasets such as the CIFAR10 dataset, so we take StyleGAN-2 as the representative GAN model.
We take the pre-trained EDM models with VP architecture 7 on the CIFAR10 datasets as pre-trained
diffusion models.

We download the checkpoint of the pre-trained StyleGAN-2 models with Adaptive Data Augmentation
(ADA)[29] from the official website8. We pre-train a StyleGAN-2 model [30] following the same
configuration of the original paper. All models converge with adversarial training under different
settings (conditional or unconditional with different data augmentation strategies). We initialize
the generator with the weights of pre-trained GAN generators. We initialize the DM sϕ for implicit
distribution with the same weights as the pre-trained DMs. We then use the Diff-Instruct with
pre-trained DMs to improve the generator. For both the implicit DM sϕ and the generator gθ, we use
the Adam optimizer to update the parameters. For the generator, we use the same exponential moving
average technique as the official implementation of StyleGAN-ADA with Pytorch. We put detailed
hyper-parameters for each experiment in Table 9.

7https://github.com/NVlabs/edm
8https://github.com/NVlabs/stylegan2-ada-pytorch
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