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ABSTRACT

Backdoor attacks, which make Convolution Neural Networks (CNNs) exhibit
specific behaviors in the presence of a predefined trigger, bring risks to the usage of
CNNs. These threats should be also considered on Vision Transformers. However,
previous studies found that the existing backdoor attacks are powerful enough in
ViTs to bypass common backdoor defenses, i.e., these defenses either fail to reduce
the attack success rate or cause a significant accuracy drop. This study investigates
the existing backdoor attacks/defenses and finds that this kind of achievement
is over-optimistic, caused by inappropriate adaption of defenses from CNNs to
ViTs. Existing backdoor attacks can still be easily defended against with proper
inheritance from CNNs. Furthermore, we propose a more reliable attack: adding a
small perturbation on the trigger is enough to help existing attacks more persistent
against various defenses. We hope our contributions, including the finding that
existing attacks are still easy to defend with adaptations and the new backdoor
attack, will promote more in-depth research into the backdoor robustness of ViTs.

1 INTRODUCTION

Table 1: The performance
of FT against Badnets attack
for ResNet-18 and ViT-B on
CIFAR-10 (Wu et al., 2022).

ResNet18 ViT-B

ASR 1.48% 8.81%

ACC 89.96% 42.00%

Vision Transformers (ViTs) (Dosovitskiy et al., 2021; Liu et al.,
2021) have demonstrated outstanding performance in various tasks,
including image classification (Yuan et al., 2021; Touvron et al.,
2022), semantic segmentation (Strudel et al., 2021), and image
generation (Hirose et al., 2021; Bao et al., 2022), leading to their
widespread popularity. However, strong performance alone is in-
sufficient for ViT to be practically deployable. It must also exhibit
security and trustworthiness without posing severe security risks.
One of the most notable threats to the security of ViTs is backdoor
attacks (Gu et al., 2017; Chen et al., 2017), which implant unex-
pected behaviors inside models, making the victim model produce specific misclassification in the
presence of a predefined trigger while maintaining high performance on benign images. While
previous studies mainly focus on convolution neural networks (CNNs), there is a growing need for an
in-depth investigation of ViTs to help practitioners better understand the potential risks and deploy
them more reliably.

After a long arms race between backdoor attack and defense, for CNNs, a relatively simple defense
has the potential to make backdoor attacks fail, taking fine-tuning defense and Badnets attack as an
example in Table 1, we find that Badnets attack makes the attack success rate (ASR) on ResNet18
only have 1.48% while the benign accuracy (ACC) is 89.96%, which indicates a comprehensive
failure of the attack under defense. Contrastingly, ViTs, when subjected to the same attack, display
an increased ASR and decreased ACC, implying the success of the attack even under defense. Given
that Badnets is model-agnostic, this differential outcome piqued our interest, driving us to explore the
underlying disparities between CNNs and ViTs.

Drawing inspiration from Mo et al. (2022), we discerned a crucial observation: 1) CNNs are usually
trained by SGD and its fine-tuning defense is also trained by SGD; 2) ViTs are typically trained by
AdamW while its fine-tuning defense is trained by SGD (NOT AdamW, inheriting from earliest work
(Dosovitskiy et al., 2021), which first introduces optimizers to computer vision). This discrepancy
in optimizers raises the possibility that the perceived vulnerability of ViTs (with defense) might be
overstated, i.e., the success of attacks on ViTs with defense may be questionable. In this paper, we
first conduct a series of experiments to comprehensively investigate the above hypothesis, which
is further confirmed that the threat posed to ViTs with defense has been magnified. Upon minor
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modifications, ViTs with existing backdoor defense methods demonstrate clear resistance to attacks,
mirroring the robustness of CNNs.

To this end, we are wondering whether a more elusive attack exists that can seamlessly sidestep
current defenses. Therefore, we analyze backdoored models and further propose a simple yet effective
attack. We discover that it is easy for backdoor defenses to detect and utilize the differences in channel
activations due to the noticeable difference in the intermediate layers between the inputs with and
without triggers. However, we can reduce this difference by adding small perturbations to the triggers
during training while keeping triggers unchanged during testing, resulting in more reliable backdoor
attacks. Additionally, our method has transferability across different transformer architectures and is
effective for both small and large datasets.

In summary, our contributions are summarized as follows:

• We investigate the existing backdoor defenses on ViTs and find the outstanding performance
of the backdoor attacks to ViTs is over-estimated due to the inappropriate adaption from
CNNs to ViTs. Further, we provide a practical training recipe to improve the defense
performance of existing methods and show that existing attacks can not provide reliable
performances after defense.

• We propose to add small perturbations to the triggers during training to suppress the differ-
ence in the intermediate-level representations between the inputs with and without triggers,
resulting in a reliable attack. The proposed method can transfer across various architectures.

• Our contributions, including the finding of existing attacks to current defenses and the
development of a new attack, contribute to a reliable baseline for the backdoor robustness of
ViTs. We hope it can be a cornerstone of future studies in the backdoor robustness of ViTs.

2 RELATED WORK

2.1 BACKDOOR ATTACK

Backdoor attacks (Gu et al., 2017; Chen et al., 2017), also known as Trojan attacks, indicate the
behaviors of implanting specific malicious behavior into machine learning models, which make the
models perform well on benign data while leading to specific misclassifications on inputs containing
triggers (i.e., triggered inputs). The adversary usually poisons the training data (Zeng et al., 2021) or
controls the training process (Liu et al., 2018b) to achieve this. Typically, a trigger pattern is added to
the input image as follows,

xp = (1−m)⊙ x+m⊙ t, (1)
where t is the trigger pattern and mask m indicates the pixels affected by the trigger pattern. Usually,
the adversary re-labels the triggered input as the predefined target class (i.e. in a dirty-label setting).
Models trained on a mixture of these poisoned data and other benign data are implanted with an
unexpected correlation between the trigger pattern and the target class. To improve the stealthiness of
the attacks, some studies explored less noticeable trigger designs like the semi-transparent trigger
(Chen et al., 2017), the elastic transformed trigger (Nguyen & Tran, 2021), and the input-aware
trigger (Nguyen & Tran, 2020). Besides, since incorrect annotation might expose the existence of
triggered data, some studies focus on poisoning without re-labeling (clean-label settings) (Turner
et al., 2019; Barni et al., 2019; Shafahi et al., 2018). Although most previous backdoor attacks
focus on CNNs, researchers have started to focus on backdoor attacks on ViT since their increasing
popularity. Although ViTs are reported to be more robust against adversarial attacks (Aldahdooh
et al., 2021; Shao et al., 2021) and common corruption (Bai et al., 2021; Bhojanapalli et al., 2021),
they are still vulnerable to backdoor attacks (Lv et al., 2021; Subramanya et al., 2022a). Reliable
attacks are needed to help practitioners properly understand the risks of backdoor attacks and deploy
these models reliably.

2.2 BACKDOOR DEFENSE

To mitigate the potential risks caused by backdoor attacks, numerous studies proposed various defense
methods, mainly categorized into defense during training and defense after training based on the
stages at which they are applied. Defense during training attempts to mitigate the impact of poisoned
data in the training set. Some methods detect and remove poisoned data by treating them as outliers
(Chou et al., 2018; Udeshi et al., 2022; Gao et al., 2019), some employ semi-supervised learning
to bypass the incorrect correlations (Huang et al., 2022), and others utilize differential privacy to
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ensure that a poisoned portion of training data is unable to cause severe results (Miao et al., 2022).
Meanwhile, the defense after training directly removes the backdoor behavior inside DNNs. This can
be accomplished by fine-tuning the model using a small amount of clean data (Sha et al., 2022) and it
can be further enhanced by first pruning the inactivated neuron (Liu et al., 2018a) or encouraging
the alignment of attentions (Li et al., 2021) between the student and the teacher network. Since the
performances of fine-tuning are easy to suffer a substantial decrease when the data is limited, another
popular method is selectively removing neurons related to the backdoor behaviors (Wu & Wang,
2021; Chai & Chen, 2022; Wang et al., 2019): Built upon the observation that the backdoor behavior
can be revealed by the adversarial neuron perturbation, ANP (Wu & Wang, 2021) formulates the
following min-max problem to expose the malicious neuron:

min
m∈[0,1]n

[
αLDv

(m⊙w,b) + (1− α) max
δ,ξ∈[−ϵ,ϵ]n

LDv
((m+ δ)⊙w, (1 + ξ)b)

]
, (2)

where δ and ξ are the perturbations to maximize the cross-entropy loss LDv and m is the mask
which adversarially preserves the clean accuracy and covers up the backdoor behavior. Then the
neurons corresponding to low mask values are pruned to purify the backdoor model. As an improved
approach based on ANP, AWM in (Chai & Chen, 2022) proposes to adopt the element-wise weight
masking strategies and perturb the input data instead of the neurons to gain better performances on
small networks. This paper primarily focuses on defense after training. Because ViTs demand a large
amount of data and extensive training resources, it has become impractical for most practitioners to
train ViTs from scratch, making defense after training a more realistic scenario. Previous studies (Wu
et al., 2022; Yuan et al., 2023) suggested that directly applying defenses from CNNs to ViTs fails.
For example, fine-tuning decreases natural accuracy from 94.58% to 42.00% against the Badnets
attack and fine-pruning totally collapses in Yuan et al. (2023). At the meantime, only a few defense
methods specially designed for ViT are proposed (Doan et al., 2022; Subramanya et al., 2022b) and
their performance is lagging far behind the state-of-the-art defense on CNNs: The adaptive defense
proposed in (Zheng et al., 2022) only decreases the ASR of TrojViT (a ViT-specific attack) to 77.13%
and the patch processing method in (Doan et al., 2022) fails to detect 33.2% backdoor examples on
CIFAR-10. It seems that existing attacks can already obtain outstanding performances on resisting
defense for ViTs. However, in this paper, after re-investigating various backdoor defenses with ViTs,
we reveal that the achievement obtained by previous attacks is not reliable. Furthermore, we provide
a reliable attack, based on the empirical observation of the channel activations of ViTs. It might help
future research on backdoor robustness with ViTs.

3 THE VULNERABILITY OF VITS (WITH DEFENSE) TO EXISTING ATTACKS

In this section, we reevaluate the perceived susceptibility of ViTs to prevailing backdoor attacks
when equipped with potential defenses. We primarily consider two categories of defenses: one
is fine-tuning-based, including Fine-Tuning (FT) (Sha et al., 2022), Fine-Pruning (FP) (Liu et al.,
2018a), and Neural Attention Distillation (NAD) (Li et al., 2021), and the other is pruning-based,
including Adversarial Neuron Pruning (ANP) (Wu & Wang, 2021) and Adversarial Weight Masking
(AWM) (Chai & Chen, 2022).

3.1 BASIC SETTINGS

Here, we train a backdoored ViT-B (Dosovitskiy et al., 2021) with various attack methods. Specifically,
we initialize the model with a pre-trained weight (Wightman, 2019) on the ImageNet-1k (Deng et al.,
2009) and then fine-tune it on CIFAR-101 (Krizhevsky et al., 2009). Note that a portion of CIFAR-10
training data is contaminated to implant the backdoor behavior, i.e., some images are added with the
trigger pattern and are re-labeled as the target class if expected. We apply four commonly-used attack
methods: 1) Badnets (Gu et al., 2019), 2) Blend (Chen et al., 2017), 3) CLB (Turner et al., 2019), and
4) SIG (Barni et al., 2019). Their trigger design and poisoning method in the original paper are kept.
To accommodate the input size of ViT, we first add triggers to CIFAR-10 images (32× 32) and then
resize them to a larger size (224× 224). For detailed information, please refer to Appendix A. Here,
we use accuracy (ACC) to indicate the classification performance on benign data, and attack success
rate (ASR), the percentage of triggered input being classified as the target class, to indicate the attack
performance. Note that we will remove the inputs whose ground-truth label is the target class, and
thus, a successful defense should make ASR as low as 0.

1Ony 95% of the original training data on CIFAR-10 are used to train the backdoored model, and the
remaining data are kept for defense.
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Table 2: The comparison between SGD and AdamW optimizer on FT. Here, AvgDrop represents the
average drop of four attacks on ASR/ACC after performing FT.

Attack ACC ASR

No defense SGD AdamW No defense SGD AdamW

Badnets 97.85 58.74 93.79 100.00 3.40 2.51
Blend 97.85 94.33 93.30 100.00 13.49 4.91
CLB 97.83 94.60 94.06 96.23 10.49 1.33
SIG 97.50 51.56 93.51 90.57 2.23 1.40

AvgDrop - 22.95 4.10↓ - 89.30 94.16↑
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Figure 1: The Effects of various epochs on ViT-B and ConvNeXt-B for FT.

3.2 VITS WITH FINE-TUNING-BASED DEFENSE

Fine-tuning is one of the most basic and model-agnostic defenses. However, as discussed in Section 1,
directly inheriting fine-tuning-based defense strategies from CNNs can potentially lead to suboptimal
outcomes. Here, we investigate several factors, including optimizers and training epochs, which may
impact defense performance.

Optimizers. SGD is the commonly used optimizer for both training and fine-tuning for CNNs, while
for ViTs, the first work (Dosovitskiy et al., 2021) introducing Transformers to computer vision, adopts
AdamW for pre-training and SGD for fine-tuning. Notably, prior work (Wu et al., 2022) on backdoor
defense naturally inherit this strategy and observes notably diminished accuracy across multiple
backdoor attacks. This discrepancy in optimizers motivates us to study the potential influence of
optimizers on backdoor defense. The initial learning rates for SGD and AdamW are set to 0.02 and
3e-4, respectively. For the other parameters in AdamW, we use the common settings of the original
ViTs (refer to Appendix B for details). Table 2 illustrates the experimental fine-tuning (FT) results
against various backdoor attacks. For the results on FP and NAD, please refer to Appendix C. We
find that SGD exhibited significant instability on ViTs. Even for the same model, when defending
against Blend and CLB, it achieves more than 90% of ACC. However, for BadNet and SIG, ACC
decreases to less than 60%. In contrast, AdamW consistently achieves high ACC and low ASR using
the same hyper-parameter configuration. Therefore, simply using SGD for backdoor defense on ViTs
will yield highly unstable performance. We recommend employing AdamW for defense purposes.

Fine-tuning Epochs. Typically, ViTs require more epochs to train from scratch, which leads us to
explore whether the number of epochs would have different effects on the defense with CNNs and
ViTs. Here, we fine-tune a backdoored ViT-B for either 20 or 100 epochs. As a comparison, we
simultaneously fine-tune a backdoored ConvNeXt-B (Liu et al., 2022), which has a similar number
of parameters. In Figure 1, we find that, for ConvNeXt-B, fine-tuning for more epochs reduces ASR
notably while slightly decreasing ACC. However, for ViT-B, more epochs cause a significant ACC
drop, making the model unusable. Due to ViT’s sensitivity to the number of training epochs when we
only have a limited amount of clean data for defense, we recommend using fewer epochs. For the
final ACC and ASR for all fine-tuning-based defenses, please refer to Appendix D.

3.3 VITS WITH PRUNING-BASED DEFENSE

Pruning is also a typical defense approach, which attempts to remove backdoor-related neu-
rons/channels and is severely impacted by the architectures. In previous studies, pruning-based
methods have achieved excellent robustness against backdoor attacks with CNNs (Wu & Wang, 2021;
Chai & Chen, 2022). However, when we directly apply these methods to ViTs, we find that they
are unable to effectively defend as shown in Table 3. Specifically, ANP fails to reduce ASR and
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Table 3: The Performance of ANP and AWM with or without ViTs adaptation.

Metric Setting Before ANP ANP (ViTs adapted) AWM AWM (ViTs adapted)

ACC

Badnets 97.85 97.85 94.26 85.98 95.02
Blend 97.85 97.85 92.70 83.29 95.08
CLB 97.83 97.83 95.71 85.67 95.60
SIG 97.50 97.50 92.60 87.22 94.58

ASR

Badnets 100.00 100.00 1.34 1.24 0.71
Blend 100.00 100.00 23.7 2.03 1.70
CLB 96.23 96.23 12.71 3.48 1.52
SIG 90.57 90.57 1.48 1.16 3.87

cannot remove the backdoor-related neurons. Besides, although AWM reduces ASR, it also severely
decreases ACC, making the model unusable. To explore the potential reason, we look deeply at the
implementation of ANP and find that ANP actually prunes channels inside norm layers rather than
neurons inside convolutional layers. This is because, in CNNs, each neuron is typically surrounded
by at least one norm layer2. However, in ViT, many norm layers are removed, and norm-layer-based
pruning only influences part of neurons and limits the defense performance. Meanwhile, AWM
utilizes element-wise masks for optimization, whose number of parameters is the same as the total
number of parameters of ViT. Since ViTs are typically larger, AWM encounters the severe overfitting
issue, leading to low accuracy. Therefore, to make pruning methods applicable to ViTs, selecting
appropriate granularity and pruning locations is necessary. Here, we recommend directly pruning all
channels of linear projection inside both attention and MLP layers, which provides better coverage
than ANP and requires fewer parameters compared to AWM. This modification decreases ASR
notably and keeps ACC high.

4 PROPOSED BACKDOOR ATTACKS

Following the above analysis, existing defense methods (ViTs adapted) successfully defend against
backdoor attacks in ViTs, just as they do in CNNs. Here, we want to explore whether there exist new
backdoor attacks to beat the newly adapted defense on ViTs.

To obtain a better insight into why defense methods can detect and remove backdoor behaviors,
we investigate the per-channel activations before the MLP layers in ViT. We illustrate the average
activations of all channels for a backdoored ViT-B on triggered and benign inputs from the CIFAR-10
test set, respectively. For clarity, we reorganize the channels based on their average activations,
arranging them from largest to smallest with respect to average activations on benign data. In
Figure 2, we find a significant activation difference between benign and triggered inputs, which
is easy to capture. Further, we compare the average activation of all channels for models purified
by FT and AWM, and find that benign and triggered inputs have similar average activation after
defense. This suggests that the naive trigger design (usually predefined universal patterns) for current
backdoor attacks results in a significant difference between benign and triggered data, revealing attack
information to possible defenders. Next, we will study whether we could improve the trigger design
to escape defenses. The general process of our attack is summarized in Figure 3 and we term it as the
Channel Activation attack in ViT (CAT).

Adversarial Loss. Based on our observation, a good trigger design is expected to avoid noticeable
channel activation differences between benign and triggered inputs. Therefore, we require additional
backdoor discriminators (BD) to clarify whether the training input has the predefined trigger during
the training. Specifically, we denote the feature extractor of the backdoored model as g(·)3, and
the backdoor discriminator di(g(x)) uses the intermediate feature of the i-th layer to discriminate
whether the input x has the trigger pattern. During backdoor training, we also train these backdoor
discriminators of the last n layers, i.e., di(g(x)), i = L − n + 1, · · · , L. After training, we could
use these backdoor discriminators to generate adversarial perturbations on the trigger pattern to
minimize the activation difference between benign and triggered inputs. Meanwhile, naive difference
minimization might make the model classify triggered inputs as a non-target label, leading to
the failure of backdoor attacks. To address this issue, we introduce additional target classifiers

2Specifically, for Preact-ResNet, the norm layer is always located before the neuron; for ResNet, it is located
after the neuron

3In our method, the extractor will return intermediate features from all layers.
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(a) Activation after poisoning
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(b) Activation for FT
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(c) Activation for AWM

Figure 2: The average activations for different channels before (a) and after the backdoor defense
(b)-(c). The activations are sorted in descending order of the activations on natural samples.

fi(g(x)) (TC), which uses the intermediate feature of the i-th layer to make classification between
benign samples, i.e., classifying the benign input as the ground-truth label. Similar to the backdoor
discriminator, we also train these clean classifiers of the last n layers, i.e., fi(g(x)), i = L −
n+ 1, · · · , L during training. In conclusion, we craft adversarial perturbation via maximizing the
following loss,

L(δ) =
L∑

i=L−n+1

(1− γ) · ℓ
(
di(g(x+m⊙ δ)), ybd

)
− γ · ℓ

(
fi(g(x+m⊙ δ)), ytc

)
, (3)

where ybd is the label for the backdoor discriminator, i.e., 1 for triggered data and 0 for benign data.
ytc is the label for the target classifier as the adversary expects, i.e., the ground-truth label for benign
input, and the target label for triggered input. Here γ is a trade-off coefficient to balance the effect
between TC and BD.

Generation Steps. Since the nonlinearity of ViTs, it is mathematically infeasible to obtain the exact
solution for Equation 3. However, we can use the projected gradient descent (PGD) (Madry et al.,
2018) from the normal adversarial attacks to craft the perturbations on the trigger pattern as follows:

δ ←m⊙Πϵ

(
δ + α · sign(∇δL(δ))

)
, (4)

where m is the mask for triggers, ⊙ is the Hadamard product, and Πϵ(·) is the projection function,

Πϵ(δ) =
ϵ

∥δ∥2
δ. (5)

Random Masking of Perturbation. In practical situations, the adversary has no access to model
architecture and its parameters. Usually, the adversary expects to craft these perturbations from
models with known parameters and structure (source model) to attack these unknown models (target
model). The generated perturbations in this situation are expected to be effective across various
architectures. Unfortunately, different ViTs could have various patch sizes for splitting, leading to
differences in the scale of sensitive features. This might cause low transferability across architectures.
Therefore, we propose a method termed Random Masking of Perturbation (RMP). In each step during
crafting adversarial perturbations, we first split perturbation with k patches and randomly drop a
predefined percentage of perturbation patches. This can create features of varying scales manually
and make the perturbations effective for kinds of ViTs with different patch-splitting approaches.

5 EXPERIMENTS

5.1 MAIN RESULTS

Settings: We evaluate the performances of our methods in two scenarios. 1) White-box: the target
model and source models have the same architectures and backdoor training from the same pre-trained
model. 2) Black-box: the architectures of the target model and the source model are different. We
choose ViT-B as the source model and five ViT variants, including ViT-B, DeiT-S (Touvron et al.,
2021a), Swin-B (Liu et al., 2021), Cait-S (Touvron et al., 2021b) and XciT-S (Ali et al., 2021) as
our target models. In our experiments, we choose the last two layers (i.e., n = 2) to add BD and
TC modules. For the perturbation generation step, the adversarial attack is l2 bounded PGD-10 with
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Figure 3: The illustration of our proposed attack. We illustrate our attack by taking ViT-B as an
example. left: Using the existing poisoned dataset, we also train the BD and TC simultaneously
during backdoor training (Step 1). right: When the training is over, we perform adversarial attacks
on the BD and TC modules to generate adversarial perturbation (Step 2). In each step during crafting
adversarial perturbations, we manually mask some patches of perturbation to better poisoned ViTs
(Step 3).

budget 16/255, step size 4/255, and the trade-off parameter γ is set to 0.6. For random masking of
perturbation, we split the perturbation into multiple small pieces, each of which has the shape of 2×2.
The percentage of dropped patches is set to 0.1 and 0.05 for the whole-image patch and trigger-based
path, respectively. For other hyperparameters, we keep in line with Section 3. All experiments are
performed on CIFAR-10. The performances of our methods CAT on ASR are summarized in Table 4.
For ACC, please refer to Appendix E.

Results: First, when no defenses are performed, CAT will obtain a comparable ASR compared to
the vanilla settings. In most cases, it even can gain better performance. For example, our method
increases the ASR of SIG attacks from 90.57% to 91.19% on ViT-B. Second, for the post-defense
situation, CAT can achieve higher ASR in a novel margin. For example, under the white-box setting,
it increases the ASR from 2.51% to 66.72% against the badnets attack for FT. In the black-box
settings, the ASR of SIG attacks increases from 3.30% to 13.81% on DeiT-S for the AWM defenses.
As for ACC, the results in Appendix E show that CAT will obtain comparable ACC compared to the
vanilla attack. It indicates that our method will only enhance the ASR without compromising the
performance of the benign image classification. When comparing the results across architectures, we
notice that almost all defenses obtain worse performances on Cait-S and XciT-S. We conjecture the
reason may be that both architectures adopt the multi-head class attention layers as their components
which will more efficiently extract backdoor information from the input data. It increases the difficulty
of performing defense and our attacks can further improve the attack performances.

5.2 PERFORMANCE ON IMAGENET WITH COMPARISONS WITH VIT-SPECIFIC METHODS

Attribute to the highly flexible multi-head self-attention mechanism, ViTs can outperform CNNs
when millions of data are provided. Thus in this section, we not only evaluate the performance of
our attack on ImageNet (Deng et al., 2009) but also compare it with existing ViT-specific attacks to
illustrate its superiority. Here we only report the results after combining badnets and blend attacks
because the clean-label attacks will fail for only at-most poisoning 0.1% of training data. More details
of our experimental setup are summarized in Appendix F. Because of the huge computational costs,
both the source model and the target model are selected as ViT-B. In addition to the model-agnostic
attacks mentioned in the previous sections, we also include two ViT-specific attacks: the Trojan
Insertion attack in ViT (TrojViT) (Zheng et al., 2022) and the Data-free Backdoor Injection Attack
(DBIA) (Lv et al., 2021) as baselines. In addition to studying ViT-specific attacks, we also want to
investigate whether our methods can better evade the ViT-specific defense, such as Attention Blocking
(AB) (Subramanya et al., 2022b). AB identifies the triggers through the attention roll-out (Abnar &
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Table 4: ASR (%) of our proposed attack with different ViT variants on the CIFAR-10 dataset. The
best results are in bold.

Defense Attack Vanilla CAT

ViT-B DeiT-S Swin-B Cait-S XciT-S ViT-B DeiT-S Swin-B Cait-S XciT-S

No defense

BadNets 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Blend 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
CLB 96.23 95.28 84.86 85.71 100.00 94.57 94.04 90.23 92.21 100.00
SIG 90.57 84.77 94.99 80.93 94.21 91.19 88.28 97.77 82.26 96.17

FT

BadNets 2.51 86.57 33.27 85.21 81.89 66.72 96.30 57.53 99.79 90.11
Blend 4.91 13.06 73.32 93.60 86.34 38.53 49.14 95.96 99.79 98.57
CLB 1.33 33.61 7.89 34.73 89.74 12.32 70.53 10.11 53.73 93.73
SIG 1.40 25.83 46.90 20.47 58.91 10.99 42.14 50.57 36.77 77.34

FP

BadNets 0.91 33.98 11.49 15.80 6.37 27.90 45.09 19.52 19.96 14.39
Blend 0.73 3.82 2.48 43.09 23.82 12.49 14.73 22.67 90.27 29.50
CLB 1.70 3.87 2.54 1.59 13.99 26.88 16.52 5.56 6.12 20.49
SIG 0.81 2.26 3.81 8.96 13.22 9.68 14.79 5.49 19.23 16.43

NAD

BadNets 1.57 84.21 47.56 95.09 86.08 86.50 97.88 73.37 97.87 98.48
Blend 8.94 57.01 85.31 97.68 91.78 61.93 64.64 98.90 98.27 93.12
CLB 7.27 52.12 13.83 95.09 86.08 13.30 65.93 16.48 97.87 98.48
SIG 3.60 25.81 41.10 19.01 11.30 9.07 36.87 53.47 24.62 58.21

ANP

BadNets 1.34 92.62 47.62 91.6 75.48 51.09 93.97 48.80 98.81 96.40
Blend 23.70 92.82 97.04 99.97 98.77 92.23 96.71 100.00 100.00 99.01
CLB 12.71 75.76 4.10 1.01 88.10 14.01 81.01 1.81 19.40 90.51
SIG 1.48 67.61 79.61 64.17 10.89 67.57 72.51 83.18 71.24 43.39

AWM

BadNets 0.71 2.71 4.79 0.90 2.31 6.78 6.64 12.76 10.57 16.11
Blend 1.70 1.27 0.32 36.00 88.43 26.22 5.12 27.62 57.72 94.56
CLB 1.52 2.19 3.16 0.91 26.84 4.40 5.42 6.74 2.66 40.71
SIG 3.87 3.30 29.83 16.79 35.99 38.59 13.81 59.82 23.22 96.05

Table 5: ASR (%) of our attack on ImageNet dataset. The higher ASR is in bold.

Attack Before FT FP NAD ANP AWM AB

TrojViT 91.08 0.14 0.11 0.16 0.46 0.18 -

DBIA 99.58 0.09 0.07 0.10 0.10 0.05 -

Badnets 100.00 27.75 3.67 26.82 18.30 24.32 3.84
Badnets+CAT 100.00 51.35 14.17 28.75 44.36 81.98 12.76

Blend 100.00 18.44 1.01 6.71 19.79 39.63 100.00
Blend+CAT 100.00 27.83 3.17 13.44 48.49 71.29 100.00

Zuidema, 2020) and masks them with a 30× 30 patches. The hyperparameter settings of ViT-specific
attacks or defenses are exactly the same as those in the original paper (Please refer to Appendix F
for details). The ASR and ACC of our experiments on ImageNet are summarized in Table 5 and
Appendix G, respectively.

First, similar to the results on CIFAR-10, the results reveal that CAT can help existing attacks better
bypass the adapted defenses. For example, our approach boosts the ASR of Badnets from 24.32% to
81.98% after applying AWM. In addition, compared to the existing ViT-specific backdoor attacks, our
method also shows its superior performance: Both TrojViT and DBIA only obtain less than < 1%
ASR after performing fine-tuning-based or pruning-based defense which is quite lower than those for
our attack. In addition, for ViT-specific defense, our method also obtains better performance: the
gains on ASR are observed after combining Badnets with CAT. We conjecture this is because our
attack reduces the anomalous behavior of backdoor samples on ViTs by introducing benign features.
This increases the difficulty of detecting them from the poison dataset. AB totally fails to defend
Blend or CAT+Blend because it only masks a patch of images which will be less effective when
encountering the whole-image attack, i.e. Blend.

5.3 ABLATION STUDY

For our proposed method CAT, there are two key components: one is to perform adversarial attacks
on triggers (PA), and the other is to randomly mask patches of perturbation (RMP). To evaluate
the contribution of each component, we test the performances under three combinations: 1) the
vanilla backdoor attacks, 2) backdoor attacks with PA, 3) backdoor attacks with both PA and RMP.
Considering both white-box and black-box settings, we select ViT-B and Swin-B as the target models.
We select FP and AWM to evaluate the performances of backdoor attacks since they show the most
promising performances in Table 4. Other configurations are the same as those in section 5.1. We
summarize the ASR for all combinations in Table 6. It reveals that PA can improve the ASR for both
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Table 6: The ASR for different combinations of our technique. The better result is in bold.

Attack ViT-B Swin-B

Badnets Blend CLB SIG Badnets Blend CLB SIG

FP
Vanilla 0.91 0.73 1.70 0.81 11.49 2.48 2.54 3.81

+PA 14.54 6.52 7.50 7.04 15.19 14.97 3.40 3.82
+PA+RMP 27.90 12.49 26.88 9.68 19.52 22.67 5.56 5.49

AWM
Vanilla 0.71 1.70 1.52 3.87 4.97 0.32 3.16 29.83

+PA 4.78 23.26 2.48 21.52 11.32 26.32 4.39 47.87
+PA+RMP 6.78 26.22 4.40 38.59 12.76 27.62 6.74 59.82
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Figure 4: The effect of hyperparameters to the performances of our method.

ViT-B and Swin-B. Applying PA and RDP together can gain higher ASR, e.g., for the white-box
setting, the gain of PA for FP on badnets attack is 13.63%, performing PA and RMP both can further
improve the ASR for 26.99%. Similar results are also observed for the black-box settings.

5.4 HYPERPARAMETER ANALYSIS

In this section, we test the effect of hyperparameters on our proposed methods. Taking Badnets
attacks as an example, we report the ASR after performing fine-tuning (FT) for ViT-B and Swin-B.

Attack budget: Recalling that in Section 4, we craft the adversarial samples to reduce the differences
in features between the backdoor and benign data. The previous works reveal that the strength of
the attacks plays a vital significance in the adversarial region. Therefore, we first investigate the
effect of the attack strength ϵ on the performance of our method. As shown in Figure 4 (a), the ASR
of our method increases when we increase the budget. This is because more and more features on
the triggers that mismatches the benign data are removed. However, when the attack is too strong
(ϵ > 16/255), the performance of our method will decrease because it makes it too hard for the
network to learn backdoor information from the data.

Trade-off coefficient: γ is another important hyperparameter for our method. As shown in Figure 4
(b), the results illustrate that the adversarial information from both additional modules: the backdoor
discriminator and the target classifier can improve the ASR (γ = 0 or 1.0). However, mixing the
information from both modules can gain better performance. When γ = 0.6, our method achieves the
best performance by simultaneously enhancing the information of the target class while eliminating
the irrelevant features on the triggers.

6 CONCLUSION

In this paper, we conduct a comprehensive evaluation of backdoor methods on ViTs and show that
the illustration of success achieved by current attacks to ViTs is due to inappropriate adaption of
defense from CNNs to ViTs. We further provide some training recipes to correctly evaluate the attack,
including using AdamW rather than SGD, using fewer epochs, and selecting appropriate granularity
for pruning. Our results demonstrate that existing attacks can not provide reliable performance after
defense. Therefore, we investigate why the defense method easily removes backdoor behavior and find
a huge difference in channel activation in intermediate layers with commonly used predefined triggers.
Inspired by this, we propose a more reliable attack by adding special adversarial perturbations into
the trigger pattern to avoid noticeable channel activation differences between benign and triggered
input. We hope our method, including the proposed recipes in ViTs and the new attack method, could
be a cornerstone of future studies on the backdoor robustness of ViTs.
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A DETAILED SETTINGS FOR BACKDOOR ATTACK

(a) Benign (b) Badnets (c) Blend (d) CLB (e) SIG

Figure 5: Examples for the benign and backdoor images in the poisoned training set.

(a) Benign (b) Badnets (c) Blend (d) CLB (e) SIG

Figure 6: Examples for the benign and backdoor images in the poisoned test set.

This section provides detailed information about the settings for the backdoor attacks. As demon-
strated in Section 3.1, we first pre-train the ViT-B on ImageNet-1k and finetune the network on the
poisoned dataset using AdamW optimizer for 20 epochs with a learning rate of 0.0001. Simple
data augmentations, including random crop with padding and horizontal flipping, are adopted for
backdoor training. We assign the Class 0 (”airplane”) of the CIFAR-10 dataset as the target class for
backdoor attacks. Examples of benign and backdoor images in the training set and poisoned test set
are shown in Figure 5 and Figure 6. All experiments are performed on the NVIDIA 3090 GPUs. The
implementation details of each attack are summarized as follows:

Badnets: Following the original paper (Gu et al., 2019), we take a 3×3 checkerboard as the trigger.
As shown in Figure 5(b), the trigger is placed at the bottom right corner of the original image. Given
the target class, 5% of images from the other classes are attached with the trigger and re-labeled as
the target class. For ViT-B, we obtain the ACC of 97.85% and ASR of 100.00%.

Blend: For Blend attack, we take the Gaussian noise (t) as the trigger. In particular, the trigger has
the same size as the original image. For the benign image x, the poisoned image can be given as
xp = (1− α) · x+ α · t. In contrast to the definition shown in Section 2.1, α ∈ [0, 1] denotes as the
blending rate between the benign image and the trigger pattern. Following the original paper (Chen
et al., 2017), α is set to 0.2. Examples of poisoned images in the training and test set are shown in
Figure 5(c) and Figure 6(c). Same as Badnets attack, 5% images from the other classes are attached
with the trigger pattern and relabeled as Class 0. For ViT-B, we achieve the ACC of 97.85% and ASR
of 100.00%.

CLB: We select 80% benign images from the target class for data poisoning. Next, we perform a 100-
step PGD attack on the selected images using a pre-trained robust model 4. For the hyperparameter
settings, we follow the original paper with the budget 16/255 and the step size of 2.4/255. As shown
in Figure 5(d), we attach the trigger, a four-corner 3× 3 checkerboard, on these selected images. The
poisoned training set combines these poisoned images and the remaining benign images from all
classes. For ViT-B, we obtain the ACC of 97.83% and ASR of 96.23%.

SIG: We follow the original work in (Barni et al., 2019), which adopts the sinusoidal signal as the
trigger. We also select 80% benign images from the target class for data poisoning. The strength ∆
and frequency f for SIG attack are set to 40 and 6 respectively following previous studies (Wu et al.,
2022; Barni et al., 2019). Examples of the poisoned images are shown in Figure 5(e) and Figure 6(e).
For ViT-B, we obtain the ACC of 97.50% and ASR of 90.57%.

4https://github.com/yaircarmon/semisup-adv
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Table 7: The effect of optimizer on FP and NAD. AdamW gains higher ACC and lower ASR than
SGD.

(a) ACC

Attack SGD AdamW

No defense FP NAD FP NAD

Badnets 97.85 93.17 57.59 93.52 93.77
Blend 97.85 93.41 94.27 92.59 94.09
CLB 97.83 27.20 94.31 93.22 93.88
SIG 97.50 77.34 94.31 93.88 93.86

AvgDrop - 24.98 12.91 4.46↓ 3.86↓

(b) ASR

Attack SGD AdamW

No defense FP NAD FP NAD

Badnets 100.00 0.90 4.24 0.91 1.57
Blend 100.00 9.67 48.57 0.73 8.94
CLB 96.23 8.21 10.15 1.70 7.27
SIG 90.57 1.93 5.00 0.81 3.60

AvgDrop - 91.53 79.71 95.66↑ 91.36↑

B DETAILED SETTINGS FOR BACKDOOR DEFENSE

This section provides detailed information on the backdoor defenses applied in this paper. The
settings of each defense are summarized as follows:

FT: We use AdamW (Loshchilov & Hutter, 2018) optimizer, the most popular optimizer for ViTs,
to fine-tune the backdoor ViTs for 20 epochs with a learning rate of 3e-4 and a weight decay of 0.2.
In addition, we adopt the cosine learning rate schedule. Same as backdoor training, only simple
data augmentations, including random crop with padding and horizontal flipping, are used to retain
the clean accuracy better and avoid the increasing ASR of whole-image backdoor attacks caused by
strong data augmentation as discussed in section 3.

FP: FP (Liu et al., 2018a) first prunes the last layer of CNNs by a predefined pruning threshold and
then fine-tune the network on the clean subset of data. Similarly, we prune the last linear projection
layer of transformer encoder blocks in ViTs. For the pruning partition threshold, we use the tolerance
of clean accuracy reduction to limit the maximum drop of the benign accuracy following (Wu et al.,
2022). In this paper, we set it to 0.9. The other settings are the same as the original paper (Liu et al.,
2018a).

NAD: NAD (Li et al., 2021) first makes two copies of the original backdoor models, referred to as
the teacher model and student model respectively. Next, NAD fine-tunes the teacher model with the
vanilla FT. Finally, the finetuning of the student model is guided through neural attention transfer
from the teacher model. For the hyperparameter setting, we mainly keep in line with (Wu et al., 2022)
except for two differences: we train the student network for 20 epochs using the AdamW optimizer
instead of hundreds of epochs with SGD optimizer. The above changes are made because of the
observation shown in Appendix C and Appendix D.

ANP: Wu et al. (Wu et al., 2020) observe that backdoor models are prone to output the target labels
when the neurons are perturbed by the adversarial perturbations. Inspired by this, they propose to
optimize the mask of each neuron, a continuous value in [0, 1], under adversarial neuron perturbations
and then prune neurons whose mask values are lower than the threshold, i.e., hardening the continuous
mask values as binary masks. In this paper, we use the same settings as the original paper except
for applying 4000 iterations to avoid under-convergence of large models like ViTs (longer than the
2000 iterations for CNNs in the original paper). Compared to the hardened masks (pruned) applied in
their original paper, we find that soft masks, continuous mask values without hardening, can preserve
ACC better and decrease ASR further. Thus, we apply soft masks in this paper, and these masks are
applied to the channels of linear projection.

AWM: Compared to ANP, AWM (Chai & Chen, 2022) makes two improvements on CNNs. The
authors apply soft element-wise weight masking instead of neuron pruning (hardened mask values)
to avoid over-cutting beneficial information. Besides, they perturb the data instead of the neurons to
utilize the training data more efficiently. When applied to ViTs, we mask the channel of the linear
projection, similar to ANP. The other hyperparameters are the same as the original paper (Chai &
Chen, 2022) without turning.

C THE EFFECT OF OPTIMIZER ON FP AND NAD

In this section, we compare the performance of SGD and AdamW on the other two fine-tuning-based
methods, FP and NAD, following the settings in section 3.2. As shown in Table 7, the results
demonstrate that, compared to SGD, AdamW always performs better on FP and NAD. For example,
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Table 9: ACC (%) of our attacks with different ViT variants on the benchmark dataset. The best
results are in bold.

Defense Attack Vanilla Ours

ViT-B DeiT-S Swin-B Cait-S XciT-S ViT-B DeiT-S Swin-B Cait-S XciT-S

No defense

BadNets 97.85 97.67 98.53 98.47 97.83 98.18 97.75 98.69 98.35 97.90
Blend 97.85 97.98 98.90 98.62 98.39 98.04 97.86 98.75 98.47 98.34
CLB 97.83 97.70 98.41 98.27 97.65 97.88 97.83 98.49 98.27 97.72
SIG 97.50 97.44 98.56 98.21 98.05 97.88 97.36 98.67 98.14 97.89

FT

BadNets 93.79 94.29 96.64 96.09 95.82 94.03 94.16 96.86 96.66 95.52
Blend 93.30 94.07 95.96 96.83 96.06 94.00 93.99 96.83 96.59 95.89
CLB 94.06 94.28 96.67 96.39 95.53 94.20 94.01 96.24 96.50 95.92
SIG 93.51 93.98 96.78 96.52 95.84 93.45 93.79 97.14 96.59 95.96

FP

BadNets 93.52 93.40 95.84 95.18 94.57 93.67 93.41 95.98 95.29 93.59
Blend 92.59 94.06 95.94 94.69 94.37 93.05 93.96 96.11 95.43 94.79
CLB 93.22 93.99 95.91 95.36 94.55 93.15 94.17 95.48 95.42 94.36
SIG 93.88 93.36 95.97 95.50 94.54 93.75 93.84 96.24 95.20 94.37

NAD

BadNets 93.77 95.39 97.03 97.00 95.76 93.82 95.19 97.12 96.91 95.85
Blend 94.09 95.85 97.12 96.77 95.93 94.12 95.57 97.08 96.51 95.92
CLB 93.88 95.38 96.89 96.98 95.87 94.02 95.09 96.75 96.57 96.52
SIG 93.86 95.51 97.20 96.95 96.23 93.95 95.22 97.52 96.95 95.62

ANP

BadNets 94.26 95.86 98.18 97.59 97.14 94.40 96.26 98.12 97.56 96.68
Blend 92.70 96.47 98.18 98.00 97.14 95.67 96.70 98.14 98.47 96.68
CLB 95.71 96.45 97.89 97.61 97.33 95.83 96.68 98.12 97.71 96.97
SIG 92.60 96.55 97.87 97.73 97.91 94.62 96.55 98.01 97.69 97.47

AWM

BadNets 95.02 94.52 96.39 95.93 95.46 93.87 94.91 96.28 96.18 95.43
Blend 95.08 94.99 93.00 96.51 96.00 95.06 94.82 95.38 96.28 94.40
CLB 95.60 94.94 95.20 96.17 95.33 95.12 94.84 94.22 96.41 95.53
SIG 94.58 94.76 96.89 96.59 96.05 94.46 94.43 96.90 96.57 95.80

SGD results in an average ACC drop of 24% in FP, much larger than 4.46% caused by AdamW.
Besides, SGD also has a little worse defense performance.

D THE EFFECT OF FINE-TUNING EPOCHS ON FT, FP AND NAD

Table 8: The performance of Fine-tuning-based defenses for different fine-tuning epochs.

epoch=20 epoch=100

Metric Defense Badnets Blend CLB SIG Badnets Blend CLB SIG AvgDrop

ACC
FT 93.79 93.30 94.06 93.51 90.30 90.43 91.20 90.19 3.14

FP 93.52 92.59 93.22 93.88 89.86 90.01 89.56 89.45 3.58

NAD 93.77 94.09 93.88 93.86 90.62 91.22 90.87 91.14 2.94

ASR
FT 2.51 4.91 1.33 1.40 1.26 3.15 1.48 0.93 0.83

FP 0.91 0.73 1.70 0.81 1.08 1.01 2.13 0.80 -0.22

NAD 1.57 8.94 7.27 3.60 1.49 4.62 5.08 2.59 1.89

Here, we compare the performance of the fine-tuning-based methods for different fine-tuning epochs.
As shown in Table 8, a notable accuracy drop appears on all defenses when we fine-tune the models
for longer epochs, e.g., the average accuracy drop is 3.14% in FT, which hinders the use of the model.
With such a notable accuracy drop, ASR only decreases slightly, e.g., 0.83% in FT with more epochs.
Therefore, we recommend using fewer epochs to preserve the utility of the ViTs better.

E THE ACCURACY OF OUR ATTACK ON CIFAR-10 DATASET

We have discussed the attack performance of our proposed method as shown in Table 4 of Section
5.1. Here, we continue to explore the effect on the accuracy of our attacks. As shown in Table 9,
the backdoored models with our method have comparable accuracy to their baselines (without our
method), which indicates our method does not influence the utility of the backdoored model and
guarantees the stealthiness of backdoored models with our method.
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F THE SETTING OF OUR ATTACK ON IMAGENET DATASET

(a) Benign (b) Badnets (c) Blend

Figure 7: Examples for the benign and backdoor images on ImageNet dataset.

Attack: Since the huge computational cost, we fine-tune the pre-trained ViT-B on the poisoned
ImageNet with 512 batch size and 10 epochs to insert backdoors. Because ImageNet is a high-
resolution dataset, we increase the trigger size of badnets attacks to 21 × 21 for better poisoning.
For the Blend attack, we resize the image of gaussian noise to 224× 224 to accommodate the large
input size on ImageNet. In Figure 7, we show examples of benign and backdoor images. For other
settings of the vanilla poisoning, we keep the same with our experiments on CIFAR-10 (Please
refer to Appendix A for details.). For the settings of our proposed attack, we follow the settings of
CIFAR-10 except for the following two points: During the perturbation generation step, the budget
and step size are set to 8/255 and 2/255, respectively. Similar to the vanilla backdoor attack, the
patch size of RMP is enlarged to 16 because ImageNet is a high-resolution dataset. For ViT-specific
attacks, we choose DeiT-B (Touvron et al., 2022) which has the exact same architecture as ViT-B for
poisoning without any hyperparameter change.

Defense: First, for the defense methods unrelated to architectures, to achieve a better acceleration
of the experiments on ImageNet, we adopt a large batch size of images for defense. In detail, for
fine-tuning-based defense, the batch size is set to 512. For pruning-based defense, the batch size is
set to 128 to avoid the out-of-memory problem on 4 NVIDIA 3090 GPUs. Other settings are the
same as our experiment on CIFAR-10. Please refer to Appendix B for details. As for the ViT-specific
attack: attention blocking (AB), we adopt the default setting recommended by (Subramanya et al.,
2022b): during the inference stage, we block out the region of size 30× 30 which is highlighted by
Attention Rollout (Abnar & Zuidema, 2020).

G THE ACCURACY OF OUR ATTACK ON IMAGENET DATASET

Like the experiments on CIFAR-10, we also evaluate the effect of our method on ACC for large
datasets like ImageNet. The results in Table 10 show that our method does not influence the utility
of the backdoored models and the stealthiness of backdoored models on large datasets can also be
further guaranteed.

Table 10: ACC (%) of our attack on ImageNet dataset. The higher ACC is in bold.

Attack Before FT FP NAD ANP AWM AB

TrojViT 80.59 76.82 76.93 77.55 76.31 77.78 -

DBIA 79.52 78.3 75.2 77.18 76.49 78.94 -

Badnets 80.82 71.05 68.10 72.38 69.56 76.40 74.86
CAT+Badnets 81.01 71.41 68.31 72.69 69.79 76.62 74.51

Blend 80.82 71.03 68.43 72.60 69.69 76.77 74.72
CAT+Blend 81.03 71.12 68.39 72.62 69.96 76.36 74.73

H BROADER IMPACT

While our adaptation to backdoor defense eliminates backdoor behaviors inside backdoored ViTs, it
is important to avoid creating overconfidence among readers regarding the robustness of current ViTs.
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Note that there still may exist powerful attacks that can bypass these existing defenses, like the new
attack we proposed in this paper. Furthermore, the proposed method is a strong attack to existing
defense, thereby increasing potential risks in practical applications. However, we firmly believe that
comprehensive evaluations using stronger attacks and more revealed potential risks would encourage
practitioners to prioritize the security of their deployed models.
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