
Under review as a conference paper at ICLR 2023

DREAM: DOMAIN-FREE REVERSE ENGINEERING AT-
TRIBUTES OF BLACK-BOX MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep learning models are usually black boxes when deployed on machine learning
platforms. Prior works have shown that the attributes (e.g., the number of con-
volutional layers) of a target black-box neural network can be exposed through
a sequence of queries. There is a crucial limitation that these works assume the
dataset used for training the target model to be known beforehand, and leverage
this dataset for model attribute attack. However, it is difficult to access the training
dataset of the target black-box model in reality. Therefore, whether the attributes of
a target black-box model could be still revealed in this case is doubtful. In this paper,
we investigate a new problem of Domain-free Reverse Engineering the Attributes
of a black-box target Model, called DREAM, without requiring the availability of
target model’s training dataset, and put forward a general and principled framework
by casting this problem as an out of distribution (OOD) generalization problem. At
the heart of our framework, we devise a multi-discriminator generative adversarial
network (MDGAN) to learn domain invariant features. Based on these features, we
can learn a domain-free model to inversely infer the attributes of a target black-box
model with unknown training data. This makes our method one of the kinds that
can gracefully apply to an arbitrary domain for model attribute reverse engineering
with strong generalization ability. Extensive experimental studies are conducted
and the results validate the superiority of our proposed method over the baselines.

1 INTRODUCTION

With its commercialization, machine learning as a service (MLaaS) is becoming more and more
popular, and providers are paying more attention to the privacy of models and the protection of
intellectual property. Generally speaking, the machine learning service deployed on the cloud platform
is a black box, where users can only obtain outputs by providing inputs to the model. The attributes
of the model such as architecture, training set, training method, are concealed by provider. However,
if such a deployment is safe? Once the attributes of the model are revealed, it will be beneficial to
many downstream attacking tasks, e.g., adversarial example generation (Moosavi-Dezfooli et al.,
2016), model inversion (He et al., 2019), etc.

(Oh et al., 2018) has conducted model reverse engineering to reveal model attributes, as shown in
the left of Figure 1. They first collect a large set of white-box models which are trained based on
the same datasets as the target black-box model, e.g., the MNIST hand-written dataset (Lecun et al.,
1998). Given a sequence of input queries, the outputs of white-box models can be obtained. After
that, a meta-classifier is trained to learn a mapping between model outputs and model attributes. For
inference, outputs of the target black-box model are fed into the meta-classifier to predict model
attributes. The promising results demonstrate the feasibility of model reverse engineering.

However, a crucial limitation in (Oh et al., 2018) is that they assume the dataset used for training
the target model to be known in advance, and leverage this dataset for meta-classifier learning. In
most application cases, the training data of a target black-box model is unknown. When the domain
of training data of the target black-box model is inconsistent with that of the set of constructed
white-box models, the meta-classifier is usually unable to generalize well on the target black-box
model. To verify this point, we train three black-box models with the same architecture on three
different datasets, Photo, Cartoon and Sketch(Li et al., 2017), respectively. We use the method in
(Oh et al., 2018) to train a meta-classifier on the white-box models which are trained on the Cartoon

1



Under review as a conference paper at ICLR 2023

White boxes MNIST Meta

(outputs, labels)

train

Black box

Training

query
outputs

Trained MetaMNIST
Inference

Attributes

(Multi‐domain outputs, labels)

train

Training

query
outputs

Black boxUnknown dataset
Inference

Other digit datasets

MDGAN

Trained
MDGAN

Previous work Our DREAM framework

train

train

train

train

Meta

Trained Meta

White boxes 

Attributes

Figure 1: Previous work (left) assumes the dataset used to train the target black-box model is given
beforehand, and requires to use the same dataset to train white-box models. Our DREAM framework
(right) relaxes the condition that training data of black-box model is no longer required to be available,
and proposes a domain-free method to infer attributes of a black-box model. Our idea is casting the
problem into an out-of-distribution learning problem, and designing a GAN (Goodfellow et al., 2014)
based network (MDGAN) to learn domain invariant features for black-box model attribute inference.

dataset. After that, we use the trained meta-classifier to infer attributes of three black-box models,
respectively. As shown in Figure 2, when the training dataset of black-box models and white-box
models are the same (i.e., Cartoon), the performance reaches about 80%, otherwise, it sharply drops
to about 40%, close to random guess. The huge gap shows that it is not trivial to investigate model
reverse engineering with the assumption of the training dataset of black-box model not available.
Furthermore, if the training set for black-box model changes, (Oh et al., 2018) needs to retrain the
whole set of white-box models to obtain a promising result, which is extremely time-consuming.

Random Sketch Photo Cartoon
Training set of black box

0

10

20

30

40

50

60

70

80

A
ve

ra
ge

 A
cc

ur
ac

y

Figure 2: The performance of (Oh et al.,
2018) on three datasets.

In this paper, we investigate the problem of black-box
model attribute reverse engineering, no longer requiring
training data of the target model is available, as shown in
the right of Figure 1. Obviously, when feeding the same
input queries to models with the same architecture but
training data of different domains, the output distributions
of these models are usually different. Thus, in our problem
setting, a key point is how to bridge the gap between the
output distributions of white-box and target black-box
models, due to the lack of the target model’s training data.
An ideal meta-classifier should be well trained based on
outputs of white-box models, and predict well on outputs
of the target black-box model, even if white-box and black-
box models are trained using data of different domains.

In light of this, we cast such a problem as an out of distribution (OOD) generalization problem, and
propose a novel framework DREAM: Domain-free Reverse Engineering the Attributes of black-box
Model. In the field of computer vision, out of distribution generalization learning has been widely
studied in recent years (Shen et al., 2021), where its main goal is to learn a model on data of one
or multiple domains, and generalize well on data of another domain unseen during training. One
kind of mainstream OOD learning approaches is to extract domain invariant features from data of
multiple different domains, and utilize the domain invariant features for downstream tasks (Li et al.,
2018; Kim et al., 2021; Zhou et al., 2021b). These methods mainly focus on image or video data,
and have shown powerful performance. Back to our problem, the black-box models deployed on
cloud platform provide their functionality and which categories they can output. Therefore, we can
collect data with the same label but different distribution as domains to train white-box models and
obtain their probability outputs. since the data we concentrate on is related to the outputs of machine
learning models, e.g., probability value, how to design an effective OOD learning method over this
type of data has not been explored. To this end, we design a multi-discriminator generative adversarial
network (MDGAN) to learn domain invariant features from the outputs of white-box models trained
on multi-domain data. Based on learnt domain invariant features, we learn a domain-free reverse

2



Under review as a conference paper at ICLR 2023

model which can well infer the attributes of a target black-box model trained using data of an arbitrary
domain.

Our contributions are summarized as follows: 1) We provide the first study on the problem of domain-
free reverse engineering the attributes of black-box models, and cast it as an out of distribution
(OOD) generalization problem; 2) We propose a generalized framework, DREAM, which can address
the problem of inferring the attributes of a black-box model with an arbitrary training domain;
3) We constitute the first attempt to explore learning domain invariant features from probability
representations, in contrast to traditional image representations; 4) We perform extensive experiments
and analyze the results, demonstrating the effectiveness of our method.

2 RELATED WORK

Reverse Engineering of Model Attribute. Its goal is to reveal attribute values of a target model,
such as model structure, optimization method, hyperparameters, etc. Current research efforts focus
on two aspects, hardware (Yan et al., 2020; Hua et al., 2018) and software (Oh et al., 2018; Wang &
Gong, 2019). The hardware-based methods utilize information leaks from side-channel (Hua et al.,
2018; Yan et al., 2020) or unencrypted PCIe buses (Zhu et al., 2021) to invert the structure of deep
neural networks. Software-based methods reveal model attributes by machine learning. (Wang &
Gong, 2019) steals the trade-off weight of loss function and the regularization term. They derive
over-determined linear equations and solve the hyperparameters by least-square method. KENNEN
(Oh et al., 2018) prepares a set of white-box models, and then trains a meta-classifier to build a
mapping between model outputs and their attributes. It is the most related work to ours. However,
a significant difference is that, Oh et al. (2018) requires the data used to train the target black-box
model to be given beforehand, while our method relaxes this condition, i.e., we no longer require the
training data of target model to be available. Thus, we attempt to solve a more practical problem.

Model Functionality Extraction. It aims to train a clone model that has similar model functionality
to that of the target model. To achieve this goal, many works have been proposed in recent years
(Orekondy et al., 2019; Truong et al., 2021; Papernot et al., 2017). (Orekondy et al., 2019) uses an
alternative dataset collected from Internet to query the target model. (Papernot et al., 2017) assumes
part of dataset is known, and then presents a dataset augmentation method to construct the dataset for
querying the target model. Moreover, data-free extraction methods (Kariyappa et al., 2021; Truong
et al., 2021) query a target model through data generated by a generator, and use zero-order gradient
approximation to approximate the gradient of the target model. Different from the methods mentioned
above, our goal is to infer the attributes of a black-box model, rather than stealing the model function.

Membership Inference. Its goal is to determine whether a sample belongs to the training set of
a model (He et al., 2020; Choquette-Choo et al., 2021; Rezaei & Liu, 2021). Although inferring
model attribute is different from the task of membership inference, the technique in Oh et al. (2018)
is actually similar to those of membership inference attack. However, as stated aforementioned,
when the domain of training data of the target black-box model is inconsistent with that of the set of
white-box models, the method is usually unable to generalize well because of the OOD problem.

OOD Generalization. The goal of OOD Generalization is to deal with the inevitable shifts from
a training distribution to an unknown testing distribution (Shen et al., 2021). Existing methods
mainly fall into three categories: domain generalization(Kim et al., 2021; Li et al., 2018; Zhou et al.,
2021b;a; Hu et al., 2020), causal learning (Arjovsky et al., 2019; Creager et al., 2021; Krueger et al.,
2021; Mahajan et al., 2021) and stable learning (Shen et al., 2020; Kuang et al., 2020; Zhang et al.,
2021; Kuang et al., 2018). Domain generalization attempts to learn invariant representations among
different domains. The work closest to us is ADA (Ganin et al., 2016) which uses an adversarial
strategy between a feature extractor and a discriminator to learn domain invariant features. ADA
is designed for domain adaptation task (only two domain). However, we aim to solve a domain
generalization problem that handle more than two domains, single discriminator cannot learn domain
invariant feature between multiple domains. Causal learning and stable learning aim to search for
causal features to ground-truth labels from data and filter out label-unrelated features. The former
makes existing causal features invariant, while the later focuses on the effective features strongly
related to labels by reweighting attentions. The above methods mainly focus on image or video. How
to design an effective OOD learning method for attribute inference of black-box model has not been
explored so far.

3



Under review as a conference paper at ICLR 2023

Generator Reverse Model

Embedding

output3

Act
Drop
Pool
Ks

Conv
Fc

Opt
Bs
BN

prob
cartoon

photo

sketch

Cartoon models 

Photo models 

Sketch models

pretrain

multi-domain 
query

output2

output1

Fake 
or 

Realdomain1

domain2

domain3

Discriminator

fake: domain2&3

real: domain1

Discriminator

fake: domain1&3

real: domain2

Discriminator

fake: domain1&2

real: domain3

real
fake

Fake 
or 

Real

Fake 
or 

Real

Generator

Generator

Shared

Figure 3: An illustration of our DREAM framework. 1) In the left part, we prepare a large number of
white-box models from different domains. In each domain, models have various combinations of
attributes, then we input multi-domain queries into each white-box model to obtain a multi-domain
model output. 2) In the right part, the core idea is designing a multiple-discriminator GAN network
(MDGAN) to learn domain invariant features from the outputs of white-box models trained on
multi-domain data. After that, a domain-free reverse model is learnt based on domain invariant
embeddings, and is used to infer the attributes of black-box model with arbitrary domains.

3 PROPOSED METHOD

3.1 PRELIMINARIES

KENNEN (Oh et al., 2018). Given a black-box model B, model attribute reverse engineering in
(Oh et al., 2018) aims to build a meta-classifier Φ : B → A, where A is the set of model attributes
including model architecture, optimizer and training hyperparameters, etc. Concretely, they firstly
collect a large set of white-box models F containing different attributes combination, and train these
white-box model based on the same training data D as that of the target black-box model. Then
outputs O is obtained by querying these white-box models with a sequence of input images. Finally
they build a mapping Φ from outputs O to model attributes A, realized as a meta-classifier Φ. At
the inference phase, the meta-classifier takes outputs from target model as input and predicts the
corresponding attributes.

Problem Formulation. As aforementioned, there is a strict constraint in (Oh et al., 2018) that they
assume the training dataset D of the target model to be given in advance, and leverage D for learning
meta-classifier Φ. In most scenarios, especially on public machine learning platforms, it is difficult
to access the training data of a target black-box model, which significantly limits the applications
of (Oh et al., 2018). To mitigate this problem, we provide a new problem setting by relaxing the
above constraint, i.e., we no longer require the training data D of the target black-box model to
be available. Thus, our goal is to learn a domain-free reverse classifier Φ that is trained based on
outputs of white-box models F , and predict well for the target black-box model, even if white-box
and black-box models are built based on training data of different domains.

3.2 DREAM FRAMEWORK

To perform domain-free black-box model attribute reverse engineering, we cast this problem into an
out-of-distribution (OOD) generalization learning problem, and propose a novel framework DREAM,
as shown in Figure 3. Our DREAM framework consists of two parts: In the left part of Figure 3, we
train a number of white-box models with training sets from different domains. Models of each domain
are enumerated with various model attributes. All of these models constitute a model set covering
different domains (please refer to Sect. 4.1 for more details). Next, we prepare queries as input
to these models. For each domain, we sample an equal number of images from the corresponding
dataset, and concatenate them as a batch of queries. These queries are sent to each model, and outputs
of the model are fed into the other module of our DREAM framework, as shown in the right part of
Figure 3. The core idea is to design a multi-discriminator generative adversarial network (MDGAN)
to learn domain invariant features, where MDGAN consists of multiple discriminators corresponding
to different domains and one generator across multiple domains. The generator aims to learn domain
invariant features, and each discriminator intends to make the learnt feature distributions of other
domains to fit that of the domain itself. In this way, the generator is capable of learning domain
invariant features. Based on the learnt domain invariant features, we can learn a domain-free reverse
model to infer the attributes of a black-box model with an arbitrary domain.

4



Under review as a conference paper at ICLR 2023

3.3 MULTI-DOMAIN OUTPUT PREPARATION

The multi-domain output can be taken as a representation of a white-box model, and is fed into
MDGAN to learn domain invariant features. Specifically, we sample an equal number of images
from the dataset of each domain to obtain a query set Q = {qj}Nj=1, where N is the number of
queries. We denote training model set from each domain as F = [f1,f2, ...,fm], where f i consists
of K models of ith domain. Then, we input each query qj ∈ Q into models f i of ith domain
to get an output Oi

j ∈ RK×C , where Oi
j represents K outputs of ith domain for a query. We

obtain Oi ∈ RK×CN by concatenating N outputs. Finally, we derive multi-domain outputs as
O = [O1, ..., Om] ∈ Rm×K×CN .

The core idea of MDGAN is to learn embeddings for each domain by a parameter sharing generator,
and make the distributions of different domains as close as possible by multiple discriminators.

3.4 MULTI-DISCRIMINATOR GAN (MDGAN)

After preparing multi-domain outputs, we devised a GAN based network, MDGAN, to learn domain
invariant features from the outputs of white-box models trained on multi-domain representation.

𝑂

𝑂

G

z

𝑧

𝐷

𝐷

real or fake

real or fake

Figure 4: An example to illustrate the idea behind
MDGAN.

To better present, we take Figure 4 to illustrate
the idea behind MDGAN. Assume there are two
kinds of inputs, O1 and O2, from two domains.
When feed them into the generator G, we can
obtain the corresponding embeddings z1 and z2,
respectively. After that, we feed z1 and z2 to
the discriminator D1, where D1 is expected to
output a “real" label for z1 and output a “fake"
label for z2. By jointly training G and D1 based
on a minmax optimization, the distribution of z2 is expected to move towards that of z1. In the
meantime, we also feed z1 and z2 to the discriminator D2. Differently, D2 is expected to output a
“real" label for z2 and output a “fake" label for z1. By jointly training G and D2, the distribution
of z1 is expected to move towards that of z2. In this way, z1 and z2 generated by the generator G
become domain invariant representations.

Formally, we define G(O; θg) : O → z. The generator G sharing with parameter θg across
domains maps multi-domain outputs O into the latent feature z. We also define m discriminators
{Di(z; θid)}mi=1. Each discriminator Di(z) : z → [0, 1] outputs a scalar representing the probability
that z comes from the ith domain rather than others. For Di(z), we treat the correct label of an
embedding in the ith domain, i.e., Oi, as True, while others as False. Then we divide multi-domain
outputs into two groups, {Oi

T } and {Oi
F }, which are defined as:

{Oi
T } = {Oi}; {Oj

F } = {Oj |j ̸= i};
⋃
j ̸=i

{Oj
F } ∪ {Oi

T } = O. (1)

The training goal of Di is to maximize the probability of assigning the correct label to features both
from the ith domain and other domains, while the generator G is trained against the discriminator to
minimize log(1−D(G(x))). In other words, it is a min-max game between the ith discriminator Di

and generator G with a value function V , formulated as:

min
G

max
Di

V (Di, G) = Ex∼{Oi
T }[logD

i(G(x))] +
∑
j ̸=i

Ex∼{Oj
F }[log(1−Di(G(x)))]. (2)

During optimizing the min-max adversarial loss for G and Di, the distributions of model outputs
from the ith domain and other domains become closer. After G and all D are well trained, G will
embed multi-domain model outputs into an invariant feature space, where each discriminator cannot
figure out which domain the outputs of white-box models are from.

3.5 DOMAIN-FREE REVERSE MODEL

Then, we use the domain-free reverse classifier to classify the domain invariant features produced by
the generator. We denote features z produced by G(O; θg) as

z = [G(O1);G(O2); ...;G(Om)] ∈ Rm×K×d′
. (3)

5



Under review as a conference paper at ICLR 2023

Where d′ is the number of feature dimensions. We define the domain-free reverse classifier as Φ(z; θc)
parameterized by θc. We obtain probability p(zi) for each possible model attribute as:

p(zi) = softmax(Φ(zi)) =
exp{Φ(zi)}∑m
i=1 exp{Φ(zj)}

. (4)

The target is to minimize the cross entropy between the predicted p(zi) and ground-truth of model
attribute values y:

min
Φ

Ez∼G(O)

[
C∑
i=1

−yilog(p(zi))

]
= min

Φ
Ez∼G(O)

[
−yT log(p(z))

]
. (5)

At inference phase, given the same queries as the white-box model, the outputs of a black-box model
from an unknown domain are fed into the generator G, and then the output of G is fed into the reverse
classifier Φ, achieving domain-free prediction of black-box model attributes.

3.6 OVERALL MODEL AND TRAINING STRATEGY

After introducing all the components, we give the final loss function based on Eq. 2 and 5 as:

min
G,Φ

max
Di,1≤i≤m

V (Di, G) = Ex∼{Oi
T }

[
logDi(G(x))

]
+
∑

j ̸=i
Ex∼{Oj

F }
[
log(1−Di(G(x)))

]
+ λ Ez∼G(O)

[
−yT log(p(z))

]
.

where λ is a trade-off parameter. We observe if we firstly train MDGAN, and then optimize domain-
free reverse classifier, the generator of MDGAN will converge to a trivial solution. In other words, it
tends to produce identical features, resulting in a reverse model which cannot predict model attributes
correctly. Thus, we design a training strategy: we first optimize all discriminators Di, and then jointly
optimize the generator and the domain-free reverse classifier. We repeat the above processes, until the
algorithm converges. The proposed training strategy is represented in Algorithm 1 of Appendix A.3.

4 EXPERIMENTS

4.1 DATASET CONSTRUCTION

Following (Oh et al., 2018), we train a number of models which are constructed by enumerating all
possible attribute values. The details of the attributes and their values are shown in Table 1. The
number of models with all possible combinations of the attributes is 5, 184. We also initialize each
model with random seeds from 0 and 999, yielding 5,184,000 unique white-box models. For each
domain, we randomly sample and train 10,000 white-box models from 5,184,000 models. Then we
also sample 5000, 1000, 1000 from 10,000 white-box models as the training set, validation set, and
testing set. Next, we introduce the details of our datasets.

Table 1: Attributes and the corresponding values.

Attribute Values
#Activation ReLU, PReLU, ELU, Tanh
#Dropout Yes, No
#Max pooling Yes, No
#Batchnorm Yes, No
#Kernel size 3, 5
#Conv layers 2, 3, 4
#FC layers 2, 3, 4
#Optimizer SGD, ADAM, RMSprop
#Batch size 32, 64, 128

PACS-modelset. PACS is an image dataset that
has been widely used for OOD learning (Li et al.,
2017). In this experiment, we use it for evalu-
ating our domain-free black-box model attribute
inference framework DREAM. We utilize three
domains, including Photo (1,670 images), Car-
toon (2,344 images) and Sketch (3,929 images),
to construct our dataset. In our dataset, each do-
main contains 7 categories. For each domain we
train 10,000 models and we combine them as
PACS-modelset (30,000 models in total).

MEDU-modelset. MEDU is a set of hand-written
digit recognition dataset, with 4 domains col-
lected from MNIST (Lecun et al., 1998), USPS
(Hull, 1994), DIDA (Kusetogullari et al.) and
EMNIST (Cohen et al., 2017). Each domain contains different styles of hand-written digit from 0 to
9. We train 40,000 models as MEDU-modelset and each domain contains 10,000 models.

6



Under review as a conference paper at ICLR 2023

Table 2: Model attribute classification accuracy (%) on PACS-modelset. Red and blue indicate the
best and second best performance, respectively.

Method Attributes Avg#act #drop #pool #ks #conv #fc #opt #bs #bn
Random 25.00 50.00 50.00 50.00 33.33 33.33 33.33 33.33 50.00 39.81

P

SVM 37.80 50.30 54.80 53.60 34.00 36.60 37.00 45.70 58.80 45.40
KENNEN* 39.07 50.68 59.42 61.31 36.18 39.33 37.88 44.16 59.74 47.53

SelfReg 25.58 52.26 54.98 50.18 34.12 35.25 34.61 33.78 50.76 41.28
MixStyle 39.63 53.23 61.83 59.44 35.66 38.75 37.89 43.75 57.09 47.47

MMD 38.88 54.70 60.46 56.54 35.38 36.66 35.66 40.50 61.04 46.65
DREAM 43.84 59.19 66.09 64.24 39.59 42.04 40.49 47.83 68.12 52.38

C

SVM 25.80 49.20 50.70 55.80 37.20 38.10 30.80 42.30 65.30 43.91
KENNEN* 32.99 52.50 54.23 56.57 37.19 40.53 33.47 37.17 68.39 45.89

SelfReg 25.97 51.42 56.20 50.03 35.04 35.52 36.09 35.58 56.17 42.44
MixStyle 32.10 50.76 55.44 54.18 36.18 37.87 34.65 38.69 60.26 44.46

MMD 29.56 53.02 54.70 53.82 35.38 36.36 35.98 37.24 57.58 43.75
DREAM 37.53 55.89 61.18 57.32 38.58 39.60 38.32 45.01 65.16 48.73

S

SVM 23.80 47.60 47.40 45.80 33.80 34.50 31.80 34.30 53.10 39.12
KENNEN* 34.64 50.10 53.07 52.01 34.61 37.11 35.78 37.04 55.27 43.29

SelfReg 27.07 54.32 51.39 53.07 36.99 36.82 35.47 34.17 61.80 43.46
MixStyle 37.78 51.71 54.16 53.60 34.53 36.16 36.36 36.02 59.42 44.42

MMD 31.96 52.94 56.84 52.78 38.18 38.20 36.20 35.92 57.56 44.51
DREAM 42.24 55.68 61.82 58.34 39.55 38.39 38.51 41.39 74.39 50.03

In the experiment, we set the number of queries N to 100. We use Adam (Kingma & Ba, 2014) as
the optimizer, where the learning rate α is set to 10−5 for the generator and discriminators, and the
learning rate β is set to 10−4 for the reverse model. The batch size b is set as 100. The trade-off
parameter λ is tuned from {0.001, 0.01, 0.1, 1, 10} based on the validation set. Parameter sensitive
analysis can be found in Appendix. In addition, the generator and discriminators are implemented
as a two-layer MLP, respectively, where ReLU is used as the non-linear activation function. All
experiments are conducted on 4 NVIDIA RTX 3090 GPUs, PyTorch 1.11.0 platform.

We compare our DREAM with 6 baselines including Random choice, SVM, KENNEN (Oh et al.,
2018), SelfReg (Kim et al., 2021), MixStyle (Zhou et al., 2021b), MMD (Li et al., 2018). To compare
fairly, we select a variant of KENNEN (denoted as KENNEN*) taking fixed queries as input, which
is the same as ours. Moreover, we also take three typical OOD generalization methods, SelfReg,
MixStyle and MMD, as baselines to verify the effectiveness of our proposed MDGAN network for
learning domain invariant features. SelfReg aims to draw samples of similar categories between all
domains closer and samples of different categories farther; MixStyle captures style information of
images by the CNN layer, and it performs style mixing at the layer; MMD adopts maximum mean
discrepancy loss between two domains. To apply OOD baselines, we first take probabilities as input
to learn invariant features by them, and then adopt a MLP on these features to predict model attributes.
In addition, we take SVM as a basic baseline without considering different domain outputs.

We adopt the “leave-one-domain-out" scheme to split the source and target domains. For each dataset,
we in turn take one domain as the target domain and the rest domains as source domains. We run the
experiment 10 trials and report the average accuracy on each split.

4.2 EXPERIMENTAL RESULTS AND ANALYSIS

Overall Performance. Table 2 and 3 report the overall performance of different methods on the
PACS-modelset and MEDU-modelset, respectively. The left-most column in each table indicates
the target domain (the rest ones are source domains). The performance achieved by our proposed
DREAM is better than that of all baselines in terms of the average result of models attributes. For
individual attribute, our method outperforms other methods in most of the cases. Our method is
better than KENNEN, which illustrates our method benefits from learning domain invariant features
and learning domain-free reverse model. Moreover, our method achieves better performance than
the three OOD learning methods, which indicates it is necessary to design new methods to extract
domain invariant features for model attribute inference of black-box models.

7



Under review as a conference paper at ICLR 2023

Table 3: Model attribute classification accuracy (%) on MEDU-modelset. Red and blue indicate the
best and second best performance, respectively.

Method Attributes Avg#act #drop #pool #ks #conv #fc #opt #bs #bn
Random 25.00 50.00 50.00 50.00 33.33 33.33 33.33 33.33 50.00 39.81

M

SVM 45.60 49.40 62.90 59.20 38.80 40.10 35.50 35.00 75.30 49.09
KENNEN* 51.18 50.67 62.99 57.36 38.32 35.84 41.57 35.75 77.87 50.17

SelfReg 28.00 53.57 53.43 50.78 35.97 36.39 35.98 36.23 53.96 42.70
MixStyle 50.27 51.72 62.66 57.32 37.88 36.34 43.11 38.00 82.61 51.10

MMD 44.57 59.67 66.37 57.27 39.63 37.27 42.10 37.60 81.37 51.76
DREAM 51.01 62.32 64.28 58.39 40.96 38.11 45.37 38.96 81.99 53.49

E

SVM 40.00 48.70 69.20 51.60 40.20 36.90 35.80 30.10 79.90 48.04
KENNEN* 45.66 51.01 65.26 53.25 40.28 36.35 41.96 36.16 81.30 50.14

SelfReg 27.29 52.83 53.32 52.85 33.68 35.05 35.26 35.32 53.74 42.15
MixStyle 43.68 51.35 67.87 57.15 42.50 39.30 42.10 38.79 82.46 51.69

MMD 42.03 58.43 66.27 60.80 40.80 38.67 40.00 39.97 84.00 52.33
DREAM 45.55 64.98 74.16 60.71 44.45 42.45 47.37 41.03 91.00 56.86

D

SVM 45.00 47.80 54.60 45.50 29.40 37.60 43.30 36.50 63.70 44.82
KENNEN* 42.73 52.06 55.27 52.02 34.89 38.90 38.98 36.27 54.97 45.12

SelfReg 26.31 54.29 53.23 52.33 34.96 35.72 36.49 35.39 59.11 43.09
MixStyle 45.26 52.32 55.91 51.39 34.22 38.70 38.31 38.03 57.44 45.73

MMD 39.00 59.20 59.63 55.93 35.93 38.33 37.93 37.50 54.40 46.43
DREAM 49.63 64.50 59.30 57.13 39.52 44.59 42.09 40.19 59.68 50.74

U

SVM 43.40 50.50 47.60 52.50 30.30 32.30 41.00 36.60 49.40 42.62
KENNEN* 43.38 50.88 51.41 53.19 36.35 35.59 36.66 34.56 55.62 44.18

SelfReg 26.81 52.16 55.46 52.47 36.18 36.43 36.53 35.90 55.34 43.03
MixStyle 41.05 53.80 50.49 52.93 35.26 33.68 36.92 34.75 59.34 44.25

MMD 39.33 55.87 52.67 53.23 39.20 34.33 35.90 36.90 60.73 45.35
DREAM 42.34 58.72 58.58 54.41 37.90 37.81 40.42 38.36 63.39 47.99

What is more, we observe that DREAM cannot outperform other baselines in some cases. The
reasons might be: 1) DREAM vs. OOD learning baselines. As we have mentioned, the OOD learning
methods aim to learn a domain invariant space from different domains. Once features of different
domains are excessively pulled close, the classification accuracy would be influenced. Thus, the
trade-off between invariant space learning and classification learning is vital for the performance of
reverse engineering. Moreover, the trade-off for each attribute is not identical. Taking MMD in Table
3 E as an example, the best trade-off hyperparameter conduces to predict attribute #ks better than
other attributes. Similarly, the best trade-off hyperparameter of DREAM conduces to better predict
attributes except for #ks. 2) DREAM vs. KENNEN and SVM. Our proposed DREAM has stronger
ability to fit complicated data, while SVM and KENNEN (only a shallow MLP) are weaker in the
scenery of complicated data. In the scenery of easier cases, e.g., #act, #ks, #fc in M of MEDU (shown
in Table 3), DREAM is more likely to overfit due to more parameters, degrading the performance of
our method. However, our method generally performs better than SVM and KENNEN in most cases.

Visualization of Generated Feature Space. To further verify the effectiveness of our proposed
method, we utilize t-SNE (Van der Maaten & Hinton, 2008) to visualize samples in the domain
invariant feature space learnt by the generator G in MDGAN. The visualization is carried out on
PACS-modelset. We take C (cartoon) and P (photo) as source domains to train white-box models,
and use S (sketch) as the unseen target domain to train black-box model. As shown in Figure 5 a),
samples from the three different domains are grouped into individual clusters at the 1st epoch. This
illustrates their distributions are indeed different in the beginning. Distributions of source domains (C
and P) become closer from epoch 1 to 5. Then, our method embeds features from the unseen domain
(S) and the samples from the target domain also become closer to the source domains at the 10th
epoch, indicating that our generator is able to generalize an unseen domain into the feature space
where the source domains are in. Finally, both source and target domains are transformed into an
invariant feature space. For MMD and Mixstyle in Figure 5 b) and Figure 5 c), the distributions of
features does not become closer as the training proceeds. For SelfReg in Figure 5 d), the features are
pulled closer to some extent from epoch #1 to epoch #10, and part of samples from the unseen target

8



Under review as a conference paper at ICLR 2023

a)

10 5 0 5 10 15
20
15
10

5
0
5

10
15

Epoch #1
cartoon
photo
sketch_test

10 5 0 5
20

10

0

10

20
Epoch #5

cartoon
photo
sketch_test

10 5 0 5 10
30

20

10

0

10

20

30 Epoch #10
cartoon
photo
sketch_test

20 10 0 10 20

5

0

5

10

15
Epoch #100

cartoon
photo
sketch_test

b)

10 5 0 5 10
20
15
10

5
0
5

10
15

Epoch #1
cartoon
photo
sketch_test

20 15 10 5 0 5 10 15
15

10

5

0

5

10
Epoch #5

cartoon
photo
sketch_test

20 15 10 5 0 5 10 15
15
10

5
0
5

10
15

Epoch #10
cartoon
photo
sketch_test

15 10 5 0 5 10 15

10
5
0
5

10
15
20

Epoch #100
cartoon
photo
sketch_test

c)

15 10 5 0 5 10 15
15
10

5
0
5

10
15
20

Epoch #1
cartoon
photo
sketch_test

15 10 5 0 5 10
15
10

5
0
5

10
15
20

Epoch #5
cartoon
photo
sketch_test

15 10 5 0 5 10 15

15
10

5
0
5

10
15

Epoch #10
cartoon
photo
sketch_test

15 10 5 0 5 10
20
15
10

5
0
5

10
15

Epoch #100
cartoon
photo
sketch_test

d)

10 5 0 5 10 15
15
10

5
0
5

10
15

Epoch #1
cartoon
photo
sketch_test

10 5 0 5
8
6
4
2
0
2
4
6
8

Epoch #5
cartoon
photo
sketch_test

10 5 0 5 10
8
6
4
2
0
2
4
6
8

Epoch #10
cartoon
photo
sketch_test

10.07.5 5.0 2.50.0 2.5 5.0 7.510.0
10

8
6
4
2
0
2
4

Epoch #100
cartoon
photo
sketch_test

Figure 5: T-SNE visualization of features of different domains produced by a) DREAM, b) MMD, c)
MisStyle and d) SelfReg on PACS-modelset.

0 50 100 150 200 250
Epoch

0.80

0.85

0.90

To
ta

l L
os

s

0 50 100 150 200 250
Epoch

0.800

0.825

0.850

0.875

0.900

0.925

To
ta

l L
os

s

0 50 100 150 200 250
Epoch

0.825

0.850

0.875

0.900

0.925

To
ta

l L
os

s

Figure 6: Convergence analysis. Loss curves of meta-classifier (Eq. 5) in the training phase on the
three splits P, C, and S (from left to right) demonstrate the convergence of our method.

domain S indeed become closer to the source domains at the 100th epoch. However, these feature
distributions are not sufficiently tight.

Convergence Analysis We study the convergence of our algorithm on the PACS-modelset. The
curves of the meta-classifier’s loss in the training phase are shown in Figure 6. For all the three splits
of domains (left to right), the loss decreases as the training proceeds and finally levels off.

5 CONCLUSION

In this paper, we studied the problem of domain-free reverse engineering towards the attributes of
black-box model with unknown domain data, and cast it as an OOD generalization problem. We
proposed a new framework, DREAM, which can predict the attributes of a black-box model with an
arbitrary training domain, and devised a new GAN based network to learn domain invariant features
in the scenario of attribute inference of black-box mode. Extensive experimental results demonstrated
the effectiveness of our method.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2019.

Christopher A Choquette-Choo, Florian Tramer, Nicholas Carlini, and Nicolas Papernot. Label-only
membership inference attacks. In International conference on machine learning, pp. 1964–1974.
PMLR, 2021.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. EMNIST: an extension of
MNIST to handwritten letters. arXiv:1702.05373 [cs], February 2017. URL http://arxiv.
org/abs/1702.05373. arXiv: 1702.05373 version: 1.

Elliot Creager, Jörn-Henrik Jacobsen, and Richard Zemel. Environment inference for invariant
learning. In International Conference on Machine Learning, pp. 2189–2200. PMLR, 2021.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks.
The journal of machine learning research, 17(1):2096–2030, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Yang He, Shadi Rahimian, Bernt Schiele, and Mario Fritz. Segmentations-leak: Membership
inference attacks and defenses in semantic image segmentation. In European Conference on
Computer Vision, pp. 519–535. Springer, 2020.

Zecheng He, Tianwei Zhang, and Ruby B Lee. Model inversion attacks against collaborative inference.
In Proceedings of the 35th Annual Computer Security Applications Conference, pp. 148–162,
2019.

Shoubo Hu, Kun Zhang, Zhitang Chen, and Laiwan Chan. Domain Generalization via Multidomain
Discriminant Analysis. In Proceedings of The 35th Uncertainty in Artificial Intelligence Conference,
pp. 292–302. PMLR, August 2020. URL https://proceedings.mlr.press/v115/
hu20a.html. ISSN: 2640-3498.

Weizhe Hua, Zhiru Zhang, and G. Edward Suh. Reverse Engineering Convolutional Neural Networks
Through Side-channel Information Leaks. In 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC), pp. 1–6, June 2018. doi: 10.1109/DAC.2018.8465773.

J.J. Hull. A database for handwritten text recognition research. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 16(5):550–554, May 1994. ISSN 1939-3539. doi: 10.1109/34.291440.
Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence.

Sanjay Kariyappa, Atul Prakash, and Moinuddin K Qureshi. MAZE: Data-Free Model Stealing Attack
Using Zeroth-Order Gradient Estimation. In 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 13809–13818, Nashville, TN, USA, June 2021. IEEE. ISBN
978-1-66544-509-2. doi: 10.1109/CVPR46437.2021.01360. URL https://ieeexplore.
ieee.org/document/9577631/.

Daehee Kim, Youngjun Yoo, Seunghyun Park, Jinkyu Kim, and Jaekoo Lee. Selfreg: Self-supervised
contrastive regularization for domain generalization. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 9619–9628, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapola-
tion (rex). In International Conference on Machine Learning, pp. 5815–5826. PMLR, 2021.

Kun Kuang, Peng Cui, Susan Athey, Ruoxuan Xiong, and Bo Li. Stable prediction across unknown
environments. In Proceedings of the 24th ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 1617–1626, 2018.

10

http://arxiv.org/abs/1702.05373
http://arxiv.org/abs/1702.05373
https://proceedings.mlr.press/v115/hu20a.html
https://proceedings.mlr.press/v115/hu20a.html
https://ieeexplore.ieee.org/document/9577631/
https://ieeexplore.ieee.org/document/9577631/


Under review as a conference paper at ICLR 2023

Kun Kuang, Ruoxuan Xiong, Peng Cui, Susan Athey, and Bo Li. Stable prediction with model
misspecification and agnostic distribution shift. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 4485–4492, 2020.

Huseyin Kusetogullari, Amir Yavariabdi, Johan Hall, and Niklas Lavesson. Dida: The largest his-
torical handwritten digit dataset with 250k digits. https://github.com/didadataset/
DIDA/. Accessed: 2021-06-13.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain
generalization. In Proceedings of the IEEE international conference on computer vision, pp.
5542–5550, 2017.

Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C. Kot. Domain Generalization With
Adversarial Feature Learning. pp. 5400–5409, 2018. URL https://openaccess.thecvf.
com/content_cvpr_2018/html/Li_Domain_Generalization_With_CVPR_
2018_paper.html.

Divyat Mahajan, Shruti Tople, and Amit Sharma. Domain generalization using causal matching. In
International Conference on Machine Learning, pp. 7313–7324. PMLR, 2021.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and
accurate method to fool deep neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2574–2582, 2016.

Seong Joon Oh, Max Augustin, Bernt Schiele, and Mario Fritz. Towards reverse-engineering
black-box neural networks. In 6th International Conference on Learning Representations, 2018.

Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Knockoff Nets: Stealing Functionality of
Black-Box Models. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 4949–4958, Long Beach, CA, USA, June 2019. IEEE. ISBN 978-1-72813-293-8.
doi: 10.1109/CVPR.2019.00509. URL https://ieeexplore.ieee.org/document/
8953839/.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Celik, and Ananthram
Swami. Practical Black-Box Attacks against Machine Learning. In Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications Security, pp. 506–519, Abu Dhabi United
Arab Emirates, April 2017. ACM. ISBN 978-1-4503-4944-4. doi: 10.1145/3052973.3053009.
URL https://dl.acm.org/doi/10.1145/3052973.3053009.

Shahbaz Rezaei and Xin Liu. On the difficulty of membership inference attacks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7892–7900, 2021.

Zheyan Shen, Peng Cui, Tong Zhang, and Kun Kunag. Stable learning via sample reweighting. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 5692–5699, 2020.

Zheyan Shen, Jiashuo Liu, Yue He, Xingxuan Zhang, Renzhe Xu, Han Yu, and Peng Cui. Towards
out-of-distribution generalization: A survey. arXiv preprint arXiv:2108.13624, 2021.

Jean-Baptiste Truong, Pratyush Maini, Robert J. Walls, and Nicolas Papernot. Data-Free Model
Extraction. arXiv:2011.14779 [cs], March 2021. URL http://arxiv.org/abs/2011.
14779. arXiv: 2011.14779.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Binghui Wang and Neil Zhenqiang Gong. Stealing Hyperparameters in Machine Learning.
arXiv:1802.05351 [cs, stat], September 2019. URL http://arxiv.org/abs/1802.
05351. arXiv: 1802.05351.

11

https://github.com/didadataset/DIDA/
https://github.com/didadataset/DIDA/
https://openaccess.thecvf.com/content_cvpr_2018/html/Li_Domain_Generalization_With_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Li_Domain_Generalization_With_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Li_Domain_Generalization_With_CVPR_2018_paper.html
https://ieeexplore.ieee.org/document/8953839/
https://ieeexplore.ieee.org/document/8953839/
https://dl.acm.org/doi/10.1145/3052973.3053009
http://arxiv.org/abs/2011.14779
http://arxiv.org/abs/2011.14779
http://arxiv.org/abs/1802.05351
http://arxiv.org/abs/1802.05351


Under review as a conference paper at ICLR 2023

Mengjia Yan, Christopher W. Fletcher, and Josep Torrellas. Cache Telepathy: Leveraging
Shared Resource Attacks to Learn {DNN} Architectures. pp. 2003–2020, 2020. ISBN 978-1-
939133-17-5. URL https://www.usenix.org/conference/usenixsecurity20/
presentation/yan.

Xingxuan Zhang, Peng Cui, Renzhe Xu, Linjun Zhou, Yue He, and Zheyan Shen. Deep stable
learning for out-of-distribution generalization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 5372–5382, 2021.

Fan Zhou, Zhuqing Jiang, Changjian Shui, Boyu Wang, and Brahim Chaib-draa. Domain Gen-
eralization via Optimal Transport with Metric Similarity Learning. Neurocomputing, 456:
469–480, October 2021a. ISSN 09252312. doi: 10.1016/j.neucom.2020.09.091. URL
http://arxiv.org/abs/2007.10573. arXiv: 2007.10573.

Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Domain generalization with mixstyle. In
ICLR, 2021b.

Yuankun Zhu, Yueqiang Cheng, Husheng Zhou, and Yantao Lu. Hermes Attack: Steal {DNN}
Models with Lossless Inference Accuracy. 2021. ISBN 978-1-939133-24-3. URL https:
//www.usenix.org/conference/usenixsecurity21/presentation/zhu.

A APPENDIX

A.1 DETAILS OF CONSTRUCTED MODELSET

We construct two modelsets (PACS-modelset and MEDU-modelset) by enumerating combinations of
attribute values. The architecture of each model in modelsets follows the scheme: N convolution
layers, M fully-connected layers and a linear classifier. Each convolution layer contains a k × k
convolution, an optional batch normalization, an optional max-pooling and a non-linear activation
function in sequence, where k is the kernel size. Each fully-connected layer consists of a linear
transformation, a non-linear activation and an optional dropout in sequence. We set the dropout
ratio to 0.1 in our experiments. When training models, optimizers are selected from {SGD, ADAM,
RMSprop} with a batch size 32, 64 or 128, respectively.

A.2 DETAILED IMPLEMENTATION OF MDGAN AND META-CLASSIFIER

The MDGAN is composed of a generator and multiple discriminators. The generator consists of two
linear layers with ReLU activation. The dimension of the input layer of the generator is determined
by the query number N and class category number C. In the experiment of recognizing handwritten
digits, the input dimension is 1000 (N = 100, C = 10). In the case of PACS dataset, the input
dimension is 700 (N = 100, C = 7), and the output dimension of the successive two layers is
respectively 500 and 128. Each discriminator consists of three linear layer, with ReLU activation and
a final Sigmoid activation. The output dimension of layers are 512, 256, 1 respectively. There are 9
meta-classifiers as total. Each meta-classifier is composed of two layer MLP with dimension of 128,
64, and the length of attribute values.

A.3 TRAINING STRATEGY ALGORITHM

The training strategy of DREAM is shown in Algorithm 1.

A.4 EXPERIMENTS ON DIFFERENT TRAINING AND TESTING ATTRIBUTES

We study the case that the white-box model and the black-box model to be inferred have completely
different attributes. As we mentioned in Section 4.1, there are 5, 184 combinations of model attributes
in total. We randomly sample 3000, 1000, 1000 as training, validation and testing sets. None of
the models has identical attributes. As shown in Table 4, DREAM consistently outperforms other
baselines on the above setting.

12

https://www.usenix.org/conference/usenixsecurity20/presentation/yan
https://www.usenix.org/conference/usenixsecurity20/presentation/yan
http://arxiv.org/abs/2007.10573
https://www.usenix.org/conference/usenixsecurity21/presentation/zhu
https://www.usenix.org/conference/usenixsecurity21/presentation/zhu


Under review as a conference paper at ICLR 2023

Algorithm 1: Training Strategy
Input: Batch size b, learning rate α, β, multi-domain model outputs O, trade-off scalar λ
Output: Generator G, meta-classifier Φ, discriminators {Di}mi=1
Initialize: Initialize parameter θg of generator G, parameter θid of discriminators {Di}mi=1 and
parameter θc of domain-free meta-classifier Φ with normal distribution
while classifier Φ not converges do

Random sample b samples Oi
b from outputs Oi in each domain

for i = 1, ...,m do
Take samples in the ith domain as True samples X = Oi

b = {x1, x2, ..., xb}
for j = 1, ...,m and j ̸= i do

Take samples in the jth domain as False samples X̄j = Oj
b = {x̄1

j , x̄
2
j , ..., x̄

b
j}

end
Update the discriminator Di by gradient descent:
θid := θid − α∇θi

d

{∑b
k=1

[
logD(G(xk)

]
+
∑

j ̸=i

[∑b
k=1 log(1−D(G(x̄k

j )))
]}

end
Construct Xall = X ∪ X̄ = {x1

all, x
2
all, ..., x

bm
all } and Zall = G(Xall) = {z1all, z2all, ..., zbmall }

Set the corresponding labels as Yall = {y1all, y2all, ..., ybmall }
Calculate gradient of θc and θg by:

gradc = ∇θc

∑bm
k=1

[
−ykall

T
log(p(zkall))

]
gradg = ∇θg,θc

{∑
j ̸=i

∑b
k=1

[
log(1−D(G(x̄k

j )))
]
− λ

∑bm
k=1

[
ykall

T
log(p(zkall))

]}
Update the classifier Φ and generator G together:
θc := θc − β · gradc and θg := θg − α · gradg

end

Table 4: Model attribute classification accuracy (%) on P of PACS-modelset. Red and blue indicate
the best and second best performance, respectively.

Method Attributes Avg#act #drop #pool #ks #conv #fc #opt #bs #bn

Random 25.00 50.00 50.00 50.00 33.33 33.33 33.33 33.33 50.00 39.81

P

SVM 34.20 51.70 48.50 56.10 35.70 36.50 37.60 40.50 64.60 45.04
KENNEN* 37.36 53.12 57.79 59.66 38.94 35.93 37.92 41.71 63.91 47.37

SelfReg 26.08 52.35 53.89 52.70 35.11 33.84 37.46 36.42 50.99 42.09
MixStyle 35.98 54.31 57.35 57.43 37.14 35.51 39.31 42.07 57.84 46.33

MMD 38.67 57.16 61.49 58.73 40.65 39.14 38.69 41.06 71.48 49.67
DREAM 39.68 57.61 64.48 60.79 40.78 40.10 43.54 43.80 72.42 51.47

13



Under review as a conference paper at ICLR 2023

0.01
0.1

1
10

0.01
0.1

1
10

0.01
0.1

1
10

0.01
0.1

1
10

0.01
0.1

1
10

0.01
0.1

1
10

0.01
0.1

1
10

0.01
0.1

1
10

0.01
0.1

1
10

Attri
butes

bnbnbnbnpoolpoolpoolpoolksksksksdropdropdropdropactactactactbsbsbsbsconvconvconvconvfcfcfcfcoptoptoptopt

0
20
40
60
80

 A
cc

ur
ac

y

0.01
0.1

1
10

0.01
0.1

1
10

0.01
0.1

1
10

0.01
0.1

1
10

0.01
0.1

1
10

0.01
0.1

1
10

0.01
0.1

1
10

0.01
0.1

1
10

0.01
0.1

1
10

Attri
butes

bnbnbnbnpoolpoolpoolpoolksksksksdropdropdropdropactactactactbsbsbsbsconvconvconvconvfcfcfcfcoptoptoptopt

0
20
40
60
80

 A
cc

ur
ac

y

0.01
0.1

1
10

0.01
0.1

1
10

0.01
0.1

1
10

0.01
0.1

1
10

0.01
0.1

1
10

0.01
0.1

1
10

0.01
0.1

1
10

0.01
0.1

1
10

0.01
0.1

1
10

Attri
butes

bnbnbnbnpoolpoolpoolpoolksksksksdropdropdropdropactactactactbsbsbsbsconvconvconvconvfcfcfcfcoptoptoptopt

 A
cc

ur
ac

y

0
20
40
60
80

Figure 7: Sensitivity analysis of parameter λ on PACS-modelset. From left to right, the results in the
P split, C split and S split are shown, respectively.

100 150 200 250 300 350 400
Query Num

0

15

30

45

60

No
rm

al
iz

ed
 A

cc
ur

ac
y

100 150 200 250 300 350 400
Query Num

0

15

30

45

60
No

rm
al

iz
ed

 A
cc

ur
ac

y

100 150 200 250 300 350 400
Query Num

0

15

30

45

60

No
rm

al
iz

ed
 A

cc
ur

ac
y

#act
#drop
#pool
#ks
#conv
#fc
#opt
#bs
#bn
Avg100 150 200 250 300 350 400

Size of Training set
0

15

30

45

60

No
rm

al
ise

d 
Ac

cu
ra

cy

#act
#drop
#pool
#ks
#conv
#fc
#opt
#bs
#bn
Avg

Figure 8: Performance against query number on PACS-modelset. From left to right, normalized
accuracies in the P split, C split and S split are shown, respectively.

A.5 SENSITIVITY ANALYSIS

We study the sensitivity of the trade-off parameter λ in our final loss function on the PACS-modelset.
As shown in Figure 7, the results for each model attribute do not show evident fluctuation when
changing λ, suggesting that our proposed method is not sensitive to the choices of λ in a wide range.

A.6 QUERY NUMBER AND SIZE OF TRAINING SET ANALYSIS

Query Number Analysis. Moreover, we study the performance of DREAM against the number
of queries on PACS-modelset. Following (Oh et al., 2018), we use the normalized accuracy that
is linearly scaled according to random choice. As shown in Figure 8, with the increase of query
numbers, the average performance does not improve but fluctuate, which means more queries do not
necessarily provide more information for our DREAM framework.

Size of Training Set Analysis. We further study the performance of our method against the size
of training set on PACS-modelset. As shown in Figure 9, we observe that the performance slightly
fluctuates from size of 1K to 5K, and does not consistently increase when the size increases. We
suspect it can be attributed to the difficulty of our problem for domain-free attribute inference of
black-box model, and the nature of OOD problem, i.e., the noise level increases as the size of training
set grows. It is worth studying further.

1k 2k 3k 4k 5k 6k 7k 8k 9k
Size of Training set

0

15

30

45

60

No
rm

al
iz

ed
 A

cc
ur

ac
y

1k 2k 3k 4k 5k 6k 7k 8k 9k
Size of Training set

0

15

30

45

60

No
rm

al
iz

ed
 A

cc
ur

ac
y

#act
#drop
#pool
#ks
#conv
#fc
#opt
#bs
#bn
Avg
1k 2k 3k 4k 5k 6k 7k 8k 9k

Size of Training set
0

15

30

45

60

No
rm

al
iz

ed
 A

cc
ur

ac
y

#act
#drop
#pool
#ks
#conv
#fc
#opt
#bs
#bn
Avg

1k 2k 3k 4k 5k 6k 7k 8k 9k
Size of Training set

0

15

30

45

60

No
rm

al
ise

d 
Ac

cu
ra

cy

#act
#drop
#pool
#ks
#conv
#fc
#opt
#bs
#bn
Avg

Figure 9: Performance against size of training set on PACS-modelset. From left to right, normalized
accuracies in the P split, C split and S split are shown, respectively.

14



Under review as a conference paper at ICLR 2023

A.7 STATISTICS OF MODELSET

We represent the statistics of each attribute value in PACS-modelset (Table 5 to Table 7) and MEDU-
modelset (Table 8 to Table 11). The “Ratio” line represents the proportion of models with the attribute
value in the whole set of models. The next four lines represent maximal, median, mean and minimal
accuracy of models for the attribute value, respectively.

Table 5: Distribution of attributes in domain P (Photo) of PACS-modelset and classification accuracy
of our method on the Photo validation set.

act drop pool ks conv fc
ReLU ELU PReLU Tanh No Yes No Yes 3 5 2 3 4 2 3 4

Ratio 24.7 25.8 24.5 25.0 50.9 49.1 50.3 49.7 50.6 49.4 33.5 33.2 33.3 33.2 32.8 34.0
max 71.3 70.9 72.8 68.7 72.8 71.3 72.4 72.8 72.8 72.4 70.5 72.8 72.4 72.8 71.1 72.4

median 60.0 61.0 60.2 58.5 60.2 59.1 59.1 61.2 60.8 59.3 59.3 61.0 59.8 61.0 60.2 58.5
mean 58.0 59.7 58.4 55.7 58.2 57.7 57.9 58.0 58.6 57.3 58.2 58.6 57.0 59.6 58.3 56.1
min 26.0 26.2 26.2 25.6 25.6 26.0 25.6 25.8 26.2 25.6 26.0 25.8 25.6 26.0 25.8 25.6

alg bs bn
SGD ADAM RMSprop 32 64 128 Yes No

Ratio 32.4 34.0 33.7 33.6 33.9 32.6 49.8 50.2
max 72.4 70.9 72.8 71.3 72.8 72.4 68.3 72.8

median 56.5 60.6 61.0 61.2 60.0 57.9 56.3 63.6
mean 54.6 60.2 58.9 59.7 58.1 56.0 53.5 62.4
min 25.8 26.2 25.6 26.2 25.6 25.8 25.8 25.6

Table 6: Distribution of attributes in domain C (Cartoon) of PACS-modelset and classification
accuracy of our method on the Cartoon validation set.

act drop pool ks conv fc
ReLU ELU PReLU Tanh No Yes No Yes 3 5 2 3 4 2 3 4

Ratio 24.9 26.6 24.9 23.6 51.0 49.0 50.7 49.3 50.6 49.4 34.5 33.4 32.1 34.3 32.9 32.3
max 73.0 71.0 71.7 69.9 71.7 73.0 71.6 73.0 73.0 71.7 73.0 71.9 71.7 73.0 71.9 70.7

median 62.5 63.3 62.3 61.6 62.8 62.0 61.6 63.5 63.0 61.7 60.9 63.2 63.2 63.0 62.8 61.4
mean 60.5 61.7 61.1 59.4 61.2 60.2 60.6 60.8 61.5 60.1 60.1 61.2 61.0 61.8 60.9 59.4
min 25.7 25.1 26.2 25.8 25.1 25.8 26.2 25.1 25.8 25.1 25.1 25.7 27.0 25.7 25.8 25.1

alg bs bn
SGD ADAM RMSprop 32 64 128 Yes No

Ratio 30.5 36.1 33.4 34.4 34.0 31.6 46.4 53.5
max 71.6 71.9 73.0 73.0 71.7 71.7 70.9 73.0

median 61.0 62.8 62.9 63.0 62.3 61.6 59.9 64.5
mean 59.0 61.3 61.6 61.6 60.9 59.6 58.0 63.1
min 25.1 27.2 28.8 25.8 25.8 25.1 25.1 28.4

Table 7: Distribution of attributes in domain S (Sketch) of PACS-modelset and classification accuracy
of our method on the Sketch validation set.

act drop pool ks conv fc
ReLU ELU PReLU Tanh No Yes No Yes 3 5 2 3 4 2 3 4

Ratio 25.7 27.3 25.8 21.2 51.5 48.5 49.3 50.7 50.7 49.3 34.7 33.5 31.8 34.9 32.9 32.3
max 67.4 66.5 65.0 64.8 67.4 65.6 67.4 66.5 66.5 67.4 66.5 64.9 67.4 65.1 67.4 66.5

median 55.8 56.3 55.8 54.0 56.9 54.2 54.7 56.9 56.4 54.8 53.5 56.1 57.3 56.0 55.9 55.1
mean 53.9 54.4 53.8 52.0 54.9 52.2 52.5 54.7 54.6 52.6 52.0 53.9 55.1 56.0 53.7 52.8
min 25.1 25.2 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.5 25.1

alg bs bn
SGD ADAM RMSprop 32 64 128 Yes No

Ratio 32.0 35.8 32.2 34.3 33.6 32.1 46.0 54.0
max 63.5 67.4 66.5 67.4 65.7 65.8 64.8 67.4

median 54.0 56.9 55.6 57.1 54.9 54.7 55.1 56.3
mean 51.5 55.6 53.4 55.2 52.8 52.7 53.6 51.5
min 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1

15



Under review as a conference paper at ICLR 2023

Table 8: Distribution of attributes in domain M (MNIST) of MEDU-modelset and classification
accuracy of our method on the MNIST validation set.

act drop pool ks conv fc
ReLU ELU PReLU Tanh No Yes No Yes 3 5 2 3 4 2 3 4

Ratio 24.7 25.8 24.5 25.0 50.9 49.1 50.3 49.7 50.6 49.4 33.5 33.3 33.2 33.2 32.8 34.0
max 99.3 99.2 99.3 99.2 99.3 99.3 99.3 99.2 99.2 99.3 99.1 99.2 99.3 99.3 99.2 99.3

median 98.6 98.6 98.6 98.4 98.5 98.6 98.5 98.6 98.5 98.6 98.4 98.6 98.6 98.3 98.2 98.3
mean 98.4 98.5 98.4 98.3 98.3 98.5 98.3 98.4 98.3 98.5 98.4 98.6 98.6 98.6 98.5 98.5
min 91.6 94.3 36.9 73.5 36.9 63.8 63.8 36.9 63.8 36.9 63.8 91.6 36.9 92.8 63.8 36.9

alg bs bn
SGD ADAM RMSprop 32 64 128 Yes No

Ratio 32.4 34.0 33.6 33.5 33.9 32.5 49.7 50.3
max 99.2 99.3 99.2 99.3 99.3 99.2 99.1 99.3

median 98.4 98.6 98.5 98.6 98.5 98.5 98.4 98.7
mean 98.1 98.5 98.4 98.5 98.5 98.5 98.2 98.6
min 36.9 92.8 90.0 90.0 92.8 36.9 36.9 63.8

Table 9: Distribution of attributes in domain E (EMNIST) of MEDU-modelset and classification
accuracy of our method on the EMNIST validation set.

act drop pool ks conv fc
ReLU ELU PReLU Tanh No Yes No Yes 3 5 2 3 4 2 3 4

Ratio 24.7 25.9 24.5 25.0 51.0 49.0 50.3 49.7 50.6 49.4 33.6 33.2 33.2 33.2 32.8 34.0
max 99.6 99.6 99.5 99.4 99.5 99.6 99.6 99.6 99.6 99.6 99.5 99.6 99.6 99.5 99.6 99.6

median 99.1 99.1 99.1 98.9 99.1 99.0 99.0 99.1 99.0 99.1 98.9 99.1 99.1 99.1 99.1 99.0
mean 98.7 98.9 98.8 98.5 98.8 98.7 98.8 98.7 98.6 98.8 98.6 98.8 98.7 98.9 98.8 98.5
min 35.7 87.8 31.9 31.9 31.9 33.4 79.2 31.9 31.9 31.9 94.5 40.6 31.9 94.7 41.3 31.9

alg bs bn
SGD ADAM RMSprop 32 64 128 Yes No

Ratio 32.3 34.0 33.7 33.6 34.0 32.5 49.7 50.3
max 99.6 99.6 99.5 99.5 99.6 99.5 99.5 99.6

median 98.7 99.1 99.1 99.1 99.1 99.0 98.9 99.1
mean 98.2 99.0 99.0 99.0 98.8 98.4 98.4 99.0
min 31.9 96.9 79.2 79.2 80.0 31.9 31.9 93.8

Table 10: Distribution of attributes in domain D (DIDA) of MEDU-modelset and classification
accuracy of our method on the DIDA validation set.

act drop pool ks conv fc
ReLU ELU PReLU Tanh No Yes No Yes 3 5 2 3 4 2 3 4

Ratio 24.7 26.3 24.8 24.1 51.0 49.0 50.2 49.9 50.9 49.1 34.2 33.3 32.5 33.9 32.8 33.3
max 97.8 98.1 97.9 98.0 97.8 98.1 97.1 97.6 98.6 98.1 94.0 94.4 99.1 97.9 98.0 98.1

median 94.0 94.4 94.5 93.7 93.9 94.3 94.0 94.3 93.9 94.4 93.0 94.5 94.8 94.3 94.1 94.0
mean 92.7 93.1 93.2 92.0 92.8 92.7 92.9 92.6 92.3 93.2 91.6 93.2 93.6 93.2 92.7 92.3
min 25.4 25.0 25.2 25.1 25.0 25.1 32.7 25.0 25.0 25.0 26.0 25.1 25.0 26.5 25.0 25.1

alg bs bn
SGD ADAM RMSprop 32 64 128 Yes No

Ratio 31.7 35.4 32.9 33.9 33.9 32.1 47.6 52.4
max 98.0 97.7 98.1 97.9 98.1 97.9 96.6 98.1

median 93.2 94.3 94.5 94.6 94.2 93.5 93.3 95.0
mean 90.4 93.9 93.8 93.8 93.0 91.3 91.1 94.2
min 25.0 68.8 43.2 26.1 25.1 25.0 25.0 43.2

16



Under review as a conference paper at ICLR 2023

Table 11: Distribution of attributes in domain U (USPS) of MEDU-modelset and classification
accuracy of our method on the USPS validation set.

act drop pool ks conv fc
ReLU ELU PReLU Tanh No Yes No Yes 3 5 2 3 4 2 3 4

Ratio 25.1 26.2 25.0 23.7 51.0 49.0 49.1 50.9 50.9 49.1 33.5 33.4 33.1 33.3 32.7 34.0
max 98.9 98.9 98.8 98.7 98.8 98.9 98.9 98.8 98.8 98.9 98.5 98.7 98.9 98.9 98.8 98.9

median 97.2 97.1 97.2 96.9 97.1 97.1 96.8 97.3 96.9 97.3 96.5 97.3 97.5 97.1 97.1 97.1
mean 96.5 96.3 96.6 94.9 96.4 95.8 95.3 96.8 95.8 96.4 94.8 96.5 97.0 96.2 96.3 95.8
min 30.4 30.5 29.6 26.1 26.1 26.7 26.7 26.1 26.7 26.1 28.5 26.7 26.1 36.1 26.7 26.1

alg bs bn
SGD ADAM RMSprop 32 64 128 Yes No

Ratio 32.9 34.8 32.3 33.5 34.0 32.5 48.7 51.3
max 98.9 98.9 98.8 98.9 98.8 98.8 98.6 98.9

median 96.9 97.3 97.2 97.3 97.1 96.8 98.6 98.9
mean 96.1 96.5 95.7 96.8 96.3 95.2 96.7 95.5
min 26.1 29.7 26.7 31.8 26.7 26.1 26.1 26.7

A.8 EXPERIMENT OF MORE REALISTIC SCENARIO

We use a subset of these K classes for training. when training the white box model, we leave out
the “dog” and “elephant” for each domain. Then, we train domain-free meta classifiers using model
outputs without the “dog” and “elephant” classes and then test domain-free meta classifiers using
model outputs that hold all classes. As shown in the 12, our method can still perform well compared
with baselines.

Table 12: Model attribute classification accuracy (%) on S of PACS-modelset. Red and blue indicate
the best and second best performance, respectively. DREAM* represents that its domain-free meta
classifier is trained on model outputs without the "dog" and "elephant" classes and is tested on model
outputs that hold all classes.

Method Attributes Avg#act #drop #pool #ks #conv #fc #opt #bs #bn

Random 25.00 50.00 50.00 50.00 33.33 33.33 33.33 33.33 50.00 39.81

S

SVM 23.80 47.60 47.40 45.80 33.80 34.50 31.80 34.30 53.10 39.12
KENNEN* 34.64 50.10 53.07 52.01 34.61 37.11 35.78 37.04 55.27 43.29

SelfReg 27.07 54.32 51.39 53.07 36.99 36.82 35.47 34.17 61.80 43.46
MixStyle 37.78 51.71 54.16 53.60 34.53 36.16 36.36 36.02 59.42 44.42

MMD 31.96 52.94 56.84 52.78 38.18 38.20 36.20 35.92 57.56 44.51
DREAM 42.24 55.68 61.82 58.34 39.55 38.39 38.51 41.39 74.39 50.03

DREAM* 39.71 57.74 64.73 60.79 40.79 40.14 43.54 43.80 72.51 51.53

A.9 EXPERIMENT OF APPLICATION OF REVERSE ENGINEERING

Let us consider the setting of model extraction. The structure of the target model is unknown. We use
an arbitrary random network structure to extract the target model with the method DFME [1], and use
the structure inferred by our method to extract the target model. As shown in the above table, the
experimental result shows that using the structure inferred by our method obtains better extraction
performance, indicating that our findings are significant.

[1] Kariyappa, S., Prakash, A., & Qureshi, M. K. (2021). Maze: Data-free model stealing
attack using zeroth-order gradient estimation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (pp. 13814-13823).

17



Under review as a conference paper at ICLR 2023

Table 13: Accuracy and normalized accuracy of data-free model extraction methods. The structure
of student model has three choices, same to victim, randomly generate ten structures and compute
average, predicted by DREAM. Results for "DREAM predict" reflect our support for model extraction
task in black box setting.

Dataset Victim accuracy(black box model) Structure of student model
#same to victim #Random(10) #DREAM predict

MNIST 86.43% 68.46%(0.79×) 45.88%(0.53×) 62.81%(0.73×)

18


	Introduction
	Related Work
	Proposed Method
	Preliminaries
	DREAM Framework
	Multi-domain Output Preparation
	Multi-Discriminator GAN (MDGAN)
	Domain-free Reverse Model
	Overall Model and Training Strategy

	Experiments
	Dataset Construction
	Experimental Results and Analysis

	Conclusion
	Appendix
	Details of Constructed Modelset
	Detailed Implementation of MDGAN and Meta-classifier
	Training Strategy Algorithm
	Experiments on Different Training and Testing Attributes
	Sensitivity Analysis
	Query Number and Size of Training Set Analysis
	Statistics of Modelset
	Experiment of more realistic scenario
	Experiment of Application of reverse engineering


