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ABSTRACT

Reinforcement learning from human preference rankings forms the basis for train-
ing language models to be helpful and value-aligned. As these powerful Al sys-
tems are trained for increasingly high-stakes tasks, the risk of leaking sensitive
human training data increases. However, the problem of protecting human pref-
erence data is complicated by the fact that reinforcement learning from human
feedback is a multistage pipeline involving learning a reward function from hu-
man preferences, and subsequently training a language model policy from the
learned rewards. To address these issues, we design algorithms for the task of
alignment from preference feedback that provably avoid leaking human prefer-
ence data in both the Bradley-Terry and Plackett-Luce models. Our algorithms
satisfy e-DP while matching the minimax optimal sample complexity for the task
of aligning a policy to human preference rankings. These results demonstrate that
there is no inherent tradeoff between protecting the privacy of human preferences
and efficient alignment with human values.

1 INTRODUCTION

With the rise of large pretrained machine learning models that flexibly interact with humans, there is
an increasing need to ensure that the models do not exhibit harmful behaviour or ethical violations
that can cause unsafe circumstances for humans. Reinforcement Learning from Human Feedback
(RLHF) is currently the standard method targeting this problem (OpenAl, |2023}; |Google Gemini,
2023)), and has achieved significant success introducing several behavioral skills to language models
(i.e. probability distributions over sequences of tokens (Shannon| |1948)) from refusing to act on
improper requests to simply interacting with humans by responding to questions (Ziegler et al.,
2019; [Wu et al., 20215 [Nakano et al.l 2021} |Stiennon et al.l |2020; |Abramson et al., [2022; |Glaese
et al., 2022; Bai et al., [2022} Ganguli et al., 2022; Menick et al., 2022; |Ouyang et al., 2022; |Gao
et al.l 2023} Ramamurthy et al 2023). Yet there are still problems with large language models
where recent work demonstrates the unethical behaviour that they can exhibit when they interact
with humans (Ganguli et al., 2022; [Perez et al., [2022)).

While improving the safety and harmlessness of LLMs remains an active area of research, the use
of RLHF introduces an orthogonal set of problems relating to human interactions. In particular, the
input data used for RLHF training is human ratings of model responses to prompts. Furthermore,
current language models record data when interacting with humans via chat interfaces, and this data
can be used for future training (OpenAll [2023). As a result, there are numerous reasons to worry
about privacy when building a reward function from human-feedback, a few of which we now enu-
merate. First, even when human raters are paid, they may be giving preference ratings that need
to be kept private. Honest preference ratings on sensitive topics can be very revealing of private
information e.g. political preference, gender identity etc. In some jurisdictions there is a legal man-
date for an employer of paid raters to avoid leaking such private information. Moreover, orthogonal
to this, several other issues would arise for an LLM trained to give basic medical advice based on
responses from raters who have real medical issues, in which case the preference data clearly must
be kept private. Furthermore, a glance at the terms of use of the major LLM providers indicates
that user feedback on LLM outputs is being stored, with the possibility of later training on this data.
Thus, the current paradigm of only using paid raters may change in the foreseeable future. From
another perspective, human preference data on specialized topics, e.g. legal or scientific questions,
may be very expensive to obtain, and thus could be viewed as trade secrets that must be kept private.
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In this case, privacy is economically incentivized for providers of LLMs. Furthermore, one of the
major LLM providers has issued a statement indicating that maintaining privacy is a core principle
of responsible Al development|DeepMind|(2023). Finally, the ability to violate privacy with only ac-
cess to anonymous preference rankings was conclusively demonstrated in Narayanan & Shmatikov
(2008), for the case of the Netflix prize dataset consisting of anonymous movie ratings by Netflix
users. This paper shows that it is possible to deanonymize a target user with just a small amount of
publicly available information about the target, and then subsequently to learn potentially sensitive
information about the user e.g. political preferences. Therefore, it seems quite plausible that access
to an LLM fine-tuned on human preference data, combined with the above well-established methods
for deanonymization from preference data alone, can lead directly to privacy violations European
Union Data Protection Board! (2025)).

Thus, as large language models continue to scale to interact with millions of people in more com-
plex ways, the necessity of maintaining the privacy of individual interactions becomes even more
significant. To mitigate the privacy risks associated with machine learning, the framework of differ-
ential privacy is the primary approach to the design of algorithms with rigorous privacy guarantees
(Dwork et al.,2006; Dwork & Roth,|2014)). The standard approach to RLHF starts with a pretrained
language model and fixed dataset of prompts. A prompt is sampled from the dataset, and K out-
puts from the language model are sampled conditioned on the prompt. A human rater then gives a
preference ranking of the K outputs. This process is repeated until a dataset D containing n human
preference rankings over model responses is collected. Following this a reward model rg is trained
to match the human preference rankings in D. Finally, the original pretrained language model is fur-
ther trained via reinforcement learning to maximize the learned rewards ry. Both the human ratings
and prompts in the dataset D are generated by humans interacting with the model, and thus may
contain information that should be kept private even when the final trained model is released.

Recent work of |Zhu et al.| (2023)) studies the sample complexity of RLHF, and gives an algorithm
achieving minimax optimal rates for RLHF in the setting where rewards are linearly parametrized
in some feature space. In this paper we will prove that, in the same setting, it is possible to achieve
minimax optimal sample complexity and differential privacy simultaneously. In particular, our dif-
ferential privacy guarantees imply that even if n — 1 of the human ratings in the dataset are revealed,
it will be statistically infeasible to learn the private information of the one remaining rating, when
given access to the final trained model.

1.1 OUR RESULTS

We begin by introducing the basic setting for RLHF. There are a set of states S and actions A
corresponding to prompts and language model responses respectively. First a state s is sampled
from a distribution p, then K actions a1, ...,ax are sampled from the model conditioned on the
state s giving a tuple (s,a1,...,ax). Human preference rankings over aq,...,ax are given by
a permutation o : [K] — [K], where a,(y is the most preferred action, and a, (k) is the least

preferred action. We assume that there is a feature map ¢ : S x A — RY, and a reward modelled
as a linear function r¢(s,a) = (6, ¢(s,a)). Human preference rankings over model responses are
assumed to follow a Plackett-Luce model (Plackett, |1975; [Lucel |2012) for some true reward rg-«.
That is the probability that an action a; is selected as the “best” from a list of K alternative actions
is proportional to

]P)[a’i|saa1,~ ..QK} = eXp(’]"e* (s7ai)) .

31 exp(rgs (s a))
This naturally implies a distribution on full rankings of actions o : [K] — [K], by first selecting the
best action from the full list of K actions, then recursively selecting the next best from the remaining
K —1, and so on. When K = 2 this is equivalent to the Bradley-Terry-Luce model. We denote by D
the dataset of » human ranking tuples (s, a1, ... ax, o). In order to accurately estimate uncertainty
in the rewards given the dataset D, one typically uses the dataset-dependent covariance matrix

n K K
Sp = e 0 2 (00 — ol ah) (65 a}) — 65" a}) ).

i=1 j=1 j=k+1

In particular, the pessimistic policy optimization algorithm in our paper (as well as in [Zhu et al.
(2023))) depends on access to a sufficiently accurate approximation of Xp.
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RLHF for Contextual Bandits. Our first results are in the contextual bandit setting, where states
s are sampled from some fixed distribution p. This is the closest to the standard setup of RLHF
applied to LLM alignment. Under certain regularity assumptions the results of |Zhu et al.| (2023)

show that computing the maximum likelihood estimator (MLE) Opig for the reward parameters,
followed by a pessimistic policy optimization algorithm with respect to r;  yields a policy 7pg

achieving expected rewards that are at most O (ﬁ > worse than those of the optimal policy. Our
main result matches this performance while simultaneously achieving differential privacy for the
dataset D.

Theorem 1.1. (Informal) Let D be a dataset of K -wise human rankings of the form (s, a1, . . . ax, o).
Under appropriate regularity assumptions, there is an (e, 0)-differentially private algorithm that

learns a reward model . and a perturbed data covariance Yp from D. Both Oy g and Yp

are close (under appropriate metrics) to the true parameter 0* and the true data covariance ¥p
respectively.

Theorem 1.2. (Informal) Under appropriate regularity assumptions, there is pessimistic policy op-
timization algorithm that, when trained with the reward model Touie and data covariance estimate

ip outputs a policy Tpg achieving rewards that are worse than the optimal policy by at most

1/4
o (\/z+ (dlog\(/le/%m )

In the typical differential privacy setting € is a constant and ¢ is inverse polynomial in n, and so
the first term above dominates. Thus, in the typical setting our results match the minimax optimal

rate O (ﬁ) up to constant factors. Also notable in our results is the fact that privacy holds for

the estimated reward function 5 and the perturbed data covariance Sp. This makes our results
modular, and means that privacy will be maintained under follow-up post-processing by any policy
learning algorithm. In particular, it is even possible to publicly release the weights Oumig of the
learned reward model TGwie’ along with the perturbed data covariance ip.

RLHF for general MDPs. We extend our results to RLHF in general MDPs, where human pref-
erences are given over pairs of trajectories. In this setting we also simultaneously obtain (e, d)-
differential privacy and performance matching the non-private algorithm.

Theorem 1.3. (Informal) Let D, be a dataset of pairwise trajectory comparisons from an MDP
M. Under appropriate regularity assumptions, there is an (e, 0)-differentially private algorithm

that learns a reward model T Guie and a perturbed data covariance ¥p_ from D.. Both O\, and

Yp, are close in an appropriate metric to the true parameter 0* and the true data covariance Xp_
respectively.

Theorem 1.4. (Informal) Under appropriate regularity assumptions, there is pessimistic policy op-
timization algorithm that, when trained in the MDP M with the reward model TGuie and data

covariance estimate Yp_ outputs a policy Tpg achieving expected rewards that are worse than those

of the optimal policy by at most
1/4
o ( \/E | (dlog(1/9)) )
n Ven

Again in the typical setting where € is constant and § is inverse polynomial in n, these results match
the non-private algorithm of Zhu et al.| (2023)) up to logarithmic factors.

2 PRELIMINARIES

Notation. We use the notation [K] = {1,..., K}. We write N'(u,c2)? to denote the distribu-
tion of random vector whose entries are independent Gaussian random variables with mean y and
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variance o2. We use ||-||2 to denote the standard £o-norm on R?. For a positive semidefinite matrix

M € R4 we define the semi-norm ||v|as = VvT Mo for any vector v € RY. For a pair of
matrices A and B we write A = B if and only if A — B is positive semidefinite.

Reinforcement learning A finite-horizon Markov Decision Process (MDP) with horizon H is
represented by a tuple (S, A, {r, }2_, , {T}!'_,, po). Here, S represents the state space, A repre-
sents the action space, and p represents the initial state distribution. For each h € [H] there is a
reward function 7, : S x A — R assigning a real-valued reward to each state-action pair, and a
transition function 7}, : S x H — A(S) taking a state-action pair to a distribution over states.

A deterministic policy m = {W}L}thl is a collection of functions 75, : S — A giving an action a to
be taken in state s. A policy 7 in an MDP M induces a distribution over sequences of states and
actions. In particular, first s; ~ pg and a3 = m1(s1), and then subsequently sy, ~ T(sp—1,ap—1)
and a, = mp(sy) for each h € [H]. The value function V™ : S — R for the policy  is then the
expected cumulative rewards obtained when starting in state s,

H
Vﬂ(s) = Eah:ﬂ'h(sh) [Z 7‘(Shvah)|51 = S‘| .

h=1

We further define the occupancy measure p, of a policy 7 to be the probability distribution over
state-action pairs encountered when utilizing the policy 7 in the MDP M,
pr(s,a) = P [sh = s,ap = a).

§1~pP0
sp~T(Sh—1,an-1),an="n(Sh)

We use 7" = arg max, V'™ to denote the optimal policy i.e. the policy that maximizes the expected
cumulative rewards. The objective in reinforcement learning is to learn a policy 7 that obtains
rewards that are close to those obtained by the optimal policy 7*. Formally, we define the subop-
timality of a policy 7 by SubOpt(#) = Esw,, [V™ (s) — V7(s)]. The setting where the horizon
H = 1isreferred to as the contextual bandit setting. In particular, in this setting there are no transi-
tions, and the state s is always sampled from the fixed initial state distribution pg. This is the setting
that most accurately models RLHF as it is typically applied to language models.

Reinforcement learning from human feedback In reinforcement learning from human feed-
back the humans provide preference rankings over actions. Given a state s and K possible actions
(a1, ...ax), the ranking over the actions is given by a permutation o : [K] — [K] that ranks the
actions from the most preferred a, (1), to the least preferred a,(K). In RLHF these preference
rankings are assumed to arise as samples from the Plackett-Luce model.

CLK) _ ﬁ exp(r*(s,ao(k)))

P(ols, ag, a1, - - - 7 )
k=1 Ej:m eXp(T*(S, aa(j)))

where r*(s,a) is a ground-truth reward function corresponding to underlying human preferences.
The input to RLHF is then a data-set of human preference rankings D = {(s%,al,...,al, o)},
where the state s’ and tuple of actions a!, ..., a% can be arbitrary, but the preference ranking o is
assumed to be sampled from the Plackett-Luce model.

Throughout the paper, we make the following assumption regarding the parameterization of the
reward function r*, which is the same as that made in prior work (Zhu et al., 2023)).

Assumption 2.1. The reward function comes from a class of linear functions ry(s,a) =
(6), ¢(s,a)) with a known feature map ¢ : S x A — R? satisfying ||¢(s,a)|[2 < L for all (s, a).
Further, we assume that the true parameter 6* for the reward satisfies * € ©5 = {0 | ||0]|2 < B}.

We denote ground-truth linear parameter vector 6, so that r*(s,a) = 74+ (s, a). In reinforcement

learning from human feedback one first uses the dataset D to learn an estimated reward parameter 0,
and then trains a policy # in the MDP M using the learned reward 7. Critically, the objective is to
obtain good performance relative to the ground-truth rewards rg«, despite training with an estimated
reward function 7.
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2.1 DIFFERENTIAL PRIVACY

Our results are stated in terms of the rigorous notion of differential privacy. Let D be a dataset
containing n items. In our case each item is a tuple (s, a1, .. ., ax, o) representing human preference
rankings. For another dataset D’ we use the notation ||D —D’||; = 1 to indicate that D and D’ differ
in exactly one item, and are otherwise identical. The formal definition of differential privacy is then,

Definition 2.2. ((¢, §)-differential privacy (Dwork & Roth, 2014)) A randomized algorithm A is
(¢, 0)-differentially private if for all O C Range(.A) such that |D — D’||; < 1:

P[A(D) € O] < e“PlA(D) € O] +6 (1)

where the probability space is over the coin flips of the mechanism .4. When § = 0, we say that A
satisfies e-differential privacy.

Intuitively, differential privacy ensures that if one of the items in D contains private data for some
person, even if all the other items in D are revealed, the output of the algorithm .4 leaks a negligible
amount of information about the user. In particular, the distribution of the output is approximately
equal to what it would be if that user’s item were not present at all.

3 RELATED WORK

Learning from Ranking in Bandits and Reinforcement Learning: The most closely related work
is the paper of Zhu et al.|(2023), which recently gave minimax optimal bounds for the suboptimality
of policies trained via RLHF when the rewards are assumed to be linearly parametrized. We con-
sider the same setting in our paper, but additionally achieve differential privacy for RLHF, while
asymptotically maintaining the same bounds on the suboptimality of the learned policy.

Privacy in Bandits and Reinforcement Learning: Differential privacy has been explored in linear
contextual bandits (Shariff & Sheffet, [2018; [Neel & Roth, |2018; [Huang et al., [2023)), in stochastic
bandits with a central trust mode(Mishra & Thakurtal 2015; Tossou & Dimitrakakis| 2016; Sajed
& Sheffet, 2019; |Azize & Basu, [2022; (Charisopoulos et al.| [2023)), with the local model of trust
(Kasiviswanathan et al.| [2011} [Tenenbaum et al., 2021; (Chowdhury & Zhoul, [2023)), in adversarial
bandits (Tossou & Dimitrakakis, 2017), and in tabular MDPs |Vietri et al.| (2020). Wang & Hegde
(2019) uses reproducing kernel Hilbert space norm-bounded noise to ensure private value function
approximation with respect to the number of states queried. The notion of joint differential privacy
in tabular MDPs was later extended to the linear MDP setting where the transitions and the reward
functions parameterized by linear functions (Luyo et al., [2021; [Ngo et al.l 2022). |Garcelon et al.
(2021)) provides a lower bound for regret minimization in finite-horizon MDPs with local differential
privacy (LDP) guarantees. However, in all of the aforementioned settings, the rewards are assumed
to be part of the private input, and do not need to be learned from data as is necessary in the setting
we consider.

4 PRIVATE RLHF FOR CONTEXTUAL BANDITS

In this section we give our main results for private RLHF in the contextual bandit setting. For clarity
of presentation we begin with the case of pairwise comparisons (i.e. K = 2 in the Plackett-Luce
model). We then describe how to extend these results to general K. The contextual bandit setting
corresponds most closely to the current approach to aligning language models with human prefer-
ences. In particular, given a prompt s multiple possible responses a’ are sampled from the model.
Human raters then give a preference ranking over the responses. This dataset of preference rankings
over responses is then used as the dataset for training reward models to be used subsequently to tune
the model via RL.

4.1 PAIRWISE COMPARISONS

In this setting the dataset D consists of n tuples (s, af), at,y") where y* € {0,1} is an indicator
variable with y* = 0 if the human rater preferred ay, in state s and y* = 1 if aj was preferred. Given

'In the central model of trust the users are trust a central database curator who has access the raw user data
(Dwork & Roth, [2014).
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a true reward parameter vector 6*, the Plackett-Luce model for K = 2 reduces to the Bradley-Terry-
Luce model,

exp(ro«(s,ar))
exp(rg- (s, ao)) + exp(ro- (s, a1))

Ply=1]s,a9,a1] =
In this case, the log-likelihood of a parameter vector 6 is given by,

y 1
to(0) =~ ;log (1[%‘ =1} T+ oxp(— (8, 9(",a}) — (51, ap))) + 1[y; = 0]:

1
(1 1+ exp(— (0, 6(s, a}) — (s, a6)>)>>

Furthermore, for pairwise comparisons we define the data covariance matrix by Yp =
LS L (8(s,al) — o(s',ad)) (o(s%,al) — o(s', af)))T. In order to privately estimate the rewards
we utilize a version of objective-perturbed MLE [Algorithm 1] which was shown to achieve (¢, §)-
differential privacy in |Bassily et al.|(2019a) with the bulk of the analysis coming from a theorem of
Kifer et al.[{(2012). While the privacy analysis of|Kifer et al.|(2012)) applies quite generally, achieving

tight error bounds on the distance of fyig from the unperturbed MLE OyLg = arg mingcg , {p (0)
is more complex. For general convex MLE, usually one requires strong convexity of the loss to

achieve tight error bounds on the ¢»-distance ||OmLe — éMLE||2. In the RLHF setting that we con-
sider, we instead have strong convexity with respect to the dataset-dependent seminorm ||-||s .
Further, in order for pessimistic policy optimization to succeed we must bound the error in terms of
the noise-perturbed dataset dependent norm ||- an 4y forsome A > 0.

This is a significant difference, because the noise perturbation added in in order to
achieve differential privacy is from a standard, spherical Gaussian. In particular, it turns out the
error introduced by adding such noise will scale with the norm of a spherical Gaussian under
l-l£p+x1)-1» which may be much larger than the standard ¢>-norm. Thus, a more delicate analysis
is required which trades-off the perturbations need for privacy (which must be standard Gaussians)
versus the norm which is actually useful in measuring the error of the MLE for the RLHF setting.

Algorithm 1 Private MLE for ¢p

Input: Dataset D, privacy parameters e < 1, <
failure probability 7).
_ 40L%log(3)

Sample b ~ N(0,0%)%, foro? = ——;
Sample w ~ N(0,v2)?, forv? = 4081og(3)

Set o = 20 VAoEA/ Ios(1/0)
Define /n(8) = ((6) + 6] + 22

n

1

. . . 1
peu ) optimization accuracy parameter 0 < B < )

N =

Compute an approximate solution 6 satisfying ¢ (6) — mingee , Ip(0) < 3
return Oypg =0 +w

AN A

Privacy for the estimated covariance matrix Sp follows from a straightforward application of the
standard Gaussian mechanism.

Algorithm 2 Private ¥p

Input: Dataset D = {(s%,a}), a},y*)}1_, }, privacy parameters ¢ < 1,0 < .
1: Compute the data covariance: ¥p = L 37" | (¢(s', al) — ¢(s',ad)) - (#(s', al) — (s’ aé))T
1 4
2: Sample: G ~ N(0,02)4%d, for g2 = S41os(5) L

€2n?
3: return Xp = Xp + G.

We can now state our main theorem regarding privacy of the reward parameters Ouie and the data
covariance Xp.



Under review as a conference paper at ICLR 2026

Theorem 4.1. Let ¢, 8 > 0, and Oy g be the output o and Sp the output 0

Then the pair (9MLE, ED) satisfies (e, §)-differential privacy.

The proof appears in[Section A.3] Note that while the theorem statement is straightforward, the key
is to accurately balance the prlvacy achieved against the need for accuracy of the perturbed estimates

of E'D and 9MLE

To state the pessimistic policy optimization algorithm that will be applied to the private outputs OmLE
and Xp we define the confidence set of parameters

@(aMLE7)\) = {9 € 0Op | ||§MLE 9”2 +>\I (n d , 1, €, 5)} 2)

/
F(n,d,n,e,6) =0 <\/z+ (dlog(1/77)¢1€07:g(1/5))1 4) . 3)

We also set A once and for all as A = C'- where the constant C' is the one provided
by[Lemma A.9} |Algorithm 3|gives the pesmmmtw pohcy optimization algorithm that we apply to the
learned rewards and data covariance. Note that the algorithm takes the perturbed reward parameter

§MLE and covariance ip as inputs, but does not access the private dataset D at all. Thus by standard
post-processing, the output of [Algorithm 3|also satisfies (e, d)-differential privacy.

where,

dlog(l/n log(1/6)

Algorithm 3 Pessimistic policy optimization

Input: Error tolerance 7, reward parameters §MLE, perturbed data covariance flp, confidence set
O(OmLE, ), reference vector v € R?, and state distribution p.

1: Set j(’f(’) = minee(_)((;MLE’)\) ]Eswp[<97 (]5(8, F(S)) - ’U>]
2: return 7pg = arg max, J ().

Theorem 4.2. Let 7ipp be the output of |Algorithm 3| and F(n,d,n,¢€,d) be as in Then with
probability at least 1 — n,

SubOpt(tpr) < F(n,d,n,€,0)|[(Ep + M)~ (Egplo(s, 7 (s)) — v])||2

where the O(-) hides factors depending only on L and B. In particular, when € is constant and 0 is
inverse polynomial in n,

SubOpt(7pg) < O (ﬁ) 1(Sp + )™ (Egnpd(s,7(5)) — v])J2-

The proof appears in The factor [|(Sp + M)~ (Es~plo(s, 7 (s)) —v])]|2 is known as

the single concentratability coefficient, and is a measure of how well the offline dataset covers the
average feature vector E;,[¢(s, 7*(s))]. The same factor appears in [Zhu et al.| (2023)) and other
related work on offline reinforcement learning. In particular, it is standard practice to assume that
the single concentratability coefficient is bounded by a constant independent of d and n.

The vector v is free to be chosen by the algorithm designer, and can make a significant dif-
ference in the magnitude of the bound. See [Zhu et al.| (2023) for an example of a sim-
ple multiarmed bandit setting where E,.,[¢(s,7*(s))] is in the null space of ¥p, and hence

[(Zp + A1)~ (Esnplo(s,m*(s))])||]2 = oo as A — 0. However, for the same MDP there exists a
v such that [|(Sp + M) ™" (Bq,[¢(s, 7% (5)) — v])||2 < 1.

It is also critical to note that the error bound is given in terms of (Xp + A )71 and not
~ -1
(ZD + Al ) . That is, even though the pessimistic policy optimization algorithm only has ac-

cess to Xp the error depends on the true value of the single concentratability coefficient determined
by ¥p, and thus makes our results directly comparable to the non-private algorithm. This introduces
additional subtleties in our proof, which do not appear in the non-private case where the pessimistic
policy algorithm has access to the unperturbed Xp.
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4.2 K-wWISE COMPARISONS

For the case of K-wise comparisons the dataset Dy consists of n tuples of the form
(s*,al,...,a%,0), where o is a permutation on K elements representing a human preference rank-
ing. The log likelihood for the Plackett-Luce model with general K takes the form,

__l n K exp <<9 ¢( ) o‘(])>)

In this case the data covariance matrix is given by

Up,

Yok = L RE D) ZZ Z — o(s', a}))(e(s", a}) — ¢(s',a})) ")

1:1] 1 k=j+1

The main subtlety in extending our main privacy result[Theorem 4.1]to the setting of K -wise compar-
isons relates to the assumptions required for objective-perturbed MLE as into maintain
privacy. In particular, the loss takes the form of a sum of n terms ¢p, (0) = >, {5, (¢), where

liy,. is determined by the tuple (s',al,...a%,0;) € Dk. By linearity, the Hessian is given by
V2p, (0) = Y27, V24, (0). As stated, the original privacy theorem of Kifer et al. (2012) only
applies under the assumption that each such term V2€§3K (0) has rank one. Unfortunately, this is

false for our case, as VQE%K (6) may actually have rank as large as K*. Luckily, as shown in Bass-
ily et al.[(2019b), the results of Iyengar et al.[(2019) can be applied to allow for constant rank for
the individual Hessians Vzﬁi) (0) to achieve differential privacy. In particular, we show that we
can adjust o by a constant factor depending on K in order to satlsfy the appropriate assumptions
to achieve privacy. Further, privacy for Xp, output by applied to the dataset Dy fol-
lows again from the standard Gaussian mechanism. Thus, altogether we can prove our main privacy
theorem.

Theorem 4.3. Let €,0 > 0, and §MLE « be the output of| ;Ugorithm 1{(with parameters modified by
a constant factor) and ED « the output of [élgorlthm Zl when applied to the dataset Dy. Then the
pair (HMLEK , ZDK) satisfies (e, §)-differential privacy.

The proof appears in For the pessimistic policy optimization algorithm applied to
K -wise comparisons, we define a similar confidence set

@K(gMLE;w)\) = {9 €0 | HgMLE - 9||§D+>\1F(n»d»7776a5)} “4)

where F(n,d,n,e€,0) is given by Finally, our main theorem on the performance of pessimistic
policy optimization follows by running|Algorithm 3|on D with confidence set O (OypE, , A)-

Theorem 4.4. ~Let 7ipg be the output of |Algorithm 3|when run with input gMLE K> EDK, and confi-
dence set O g (OmLE , A). Let F(n,d,n,€,0) be as in Then with probability at least 1 — 1,

SubOpt(#pg) < F(n,d,n,€,0)||(Xp + )\I)_l (Esmplo(s, 7 (s)) — v]) |2

where the O(-) hides factors depending only on L, B, and K. In particular, when ¢ is constant and
d is inverse polynomial in n,

SubOpt(ﬁ'pE) S 6 (\/E) H(ZD + >\I)_1 (]ESNP[Qb(S’W*(S)) - U])HQ

The proof appears in

5 PRrIVATE RLHF FOR GENERAL MDPs

In this section we extend our results to private RLHF in finite-horizon MDPs. In this
case we start with a set of trajectories i.e. length H sequences of state-action pairs 7° =
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((st,at), (sy,db),...(s%,at)). Then human ratings of pairs of trajectories are made to produce a
dataset D, = {78, 7}, 4" }"_,, where y; = I for [ € {0, 1} implies that the human preferred trajectory
7. Here 7} and 7{ both start with the same state. Once again we assume that given a ground-truth
parameter vector 8%, the human preference ratings follow a Bradley-Terry-Luce model of the form,

exp (2521 ro+(Sh1, ah1))
H
Zje{o’l} eXp (Eh:1 7o+ (Shjs ahj))

where  above T = ((s10, @10), (520, a20); - - - (Smo,amo)) and 71 =
((s11,a11), (821,G21), ... (Sg1,am1)). In this setting, the relevant data covariance matrix is

given by Xip_ = %Z?ﬂ (Zf:l (¢(520va20) — d(shy afu)) (‘f’(szﬁo’ ahy) — G5}y, aﬁll))T) :

As in the contextual bandit case, we run[Algorithm 1| with the dataset of trajectories D, to produce a
parameter estimate Oy g, . Further, we modify |Algorithm 2|to use the trajectory covariance matrix

Yp_ given above, resulting in private trajectory covariance output Xp_. We then have the following
theorem.

Theorem 5.1. Let €, > 0, and gMLET be the output of |Algorithm 1| and ipf the output of
when run on the trajectory dataset D. Then the pair (OmLE, , Xp. ) satisfies (e, 6)-differential
privacy.

The proof appears in[C.3] In order to utilize for the general MDP setting, one needs to
consider the distribution p, on states induced by the utilization of the policy 7 in the MDP M. In

this case the pessimistic policy loss function in[Algorithm 3|becomes
J(m) =~ min By g, (s,7(s))].
GGG(QMLET,)\) T
Slightly abusing notation, we will refer to the use of this loss function as running with
input p = py.

Theorem 5.2. Let 5MLET and EDT be as in{Theorem 5.1 ‘ Let Ttpg be the output of|Algorithm 3|\when
Then wit

run with p = pr, and F(n,d,n,¢€,0) as in W probability at least 1 — 7,

P[y =1 | 877-0’71] -

SubOpt(#tpe) < F(n, d,1,€,8) - |(Sp + A1)~ (Bonp, [6(s, 77 (5)) — v])|2

where the O(-) hides factors depending only on L,H, and B. In particular, when € is constant and
0 is inverse polynomial in n,

SubOpt(#pg) < O (ﬁ) (0 +AD) T (Esnp, [8(s, 7 () = ]2

The proof appears in[Section C}

6 CONCLUSION AND OPEN PROBLEMS

We have shown that it is possible to perform reinforcement learning from human feedback with
minimax optimal rates and differential privacy when rewards are linearly parametrized. The setting
of linear parametrization in a fixed feature space is often used as a theoretical model in order to give
qualitative insight into real-world machine learning algorithms. We view our results as qualitatively
suggesting that it may be possible to simultaneously align large language models using RLHF while
simultaneously protecting the privacy of the humans whose preference rankings are used during
training. The ability to provide rigorous privacy guarantees can provably prevent the types of leaks
of personal data described in [The New York Times| (2024), where a personal email address was
leaked by a popular chat bot built on a large language model. The problem of privacy leaks due to
LLMs is likely to only grow more serious as these models are utilized more widely, and differential
privacy can be an important part of the solution.

A natural avenue for future work is to see if these theoretical results can be extended beyond linear
parameterization. For instance, it would be interesting to study the setting where the rewards r lie in
a general PAC-learnable function class, and then attempt to achieve statistical efficiency alongside
differential privacy in such a setting.
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A PROOFS FOR CONTEXTUAL BANDITS WITH PAIRWISE COMPARISONS

A.1 BASIC PROPERTIES OF {p AND YXp

We begin with the basic properties of £p and Xp necessary for the analysis. Throughout we will
use the notation z; = ¢(s",a}) — ¢(s", afy). With this notation the loss function ¢ becomes

I 1 1
lo(0) = —— ;bg ((1[yi =1]5 s S T— +1[y; = 0] (1 e @m)))
®)
The gradient and Hessian of ¢ are given by the following formulas.
Claim A.1.
A e (Gy) ! ,
Vin(0) = n ; <1[y1 =1 1+ exp(— (0, ;) 1y: = 0] 1+ exp(— <07$i>)) .
Claim A.2.
2 _ 1 & exp(— (0, xi)) T
Vito(0) = n ; (1 + exp(— (9,301‘>))2:El£z
Proof.
18 exp(— (6, z;)) exp(— (0, z:)) T
V2p(f) = ~ i=1 i=0 i
p(f) = ; <1[y ](1 ol (6.2 +1[y ](1 " <9’$i>))2> Tiw
1 ep(—(0e)) o
0 v el 0P
O

These formulas lead directly to an upper bound on the norm of the gradient and the operator norm
of the Hessian of /.

Lemma A.3. Forall 0,

1 ||[Vep(0)]l2 < 2L

2. |[V2p(0)]op < 4L
Proof. Observe first that ||z;||> < 2L because ||¢(s,a)|| < L. By|Claim A.1} the gradient V{p(0) is
the average of n vectors each of length at most 2L. Similarly by [Claim A.2} V2/p () is the average
of n rank-one matrices, each of operator norm at most ||z; |3 < 4L2. O
The proof Lemma 3.1 in Zhu et al.|(2023)) implies that for all § € ©p and v € R4

v V2Up(0)v > ' Spv = ||, (6)

where 7 = 1/(2 + exp(2LB) + exp(—2LB)). In particular, we have the following lemma,

Lemma A.4. (p is strongly convex on the set © g with respect to the semi-norm |-||s,. That is,
there exists a constant y > 0 such that,

(p(6+8) = (p(6) — (Vip(6).6) > 1|3, )
forall 0 € Op, and A such that (0 + A) € Op.

We will need the following standard fact regarding optimizers of strongly convex functions over
convex sets.

Lemma A.5. Let C C R? be a convex set, let M € R*? be a positive semidefinite matrix, and let
f : R — R be vy-strongly convex with respect to the seminorm ||-||p; on C. Let 0 be the minimum of
finC. Then f(0) — f(0) > %||0 — 0||3, for any point § € C.
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Proof. Follows from the second-order Taylor expansion of f and the optimality conditions for opti-
mization over a convex set. Then|(6)|implies the desired result. O

The following lemma allows us to quantify the effect of adding an /5-norm regularizer to a function
that is strongly convex with respect to a seminorm of the form ||-|| ;.

Lemma A.6. Let M € R be a positive semidefinite matrix. Suppose f : R — R is y-strongly
convex with respect 1o ||-||ar. Then the function g(0) = f(0) + 50|13 is y-stongly convex with
respect 10 || ey

Proof.
V2g(0) = V2£(0) + el =~ (M + 51)

O
A.2  PRIVATE COVARIANCE
We obtain privacy for the feature covariance matrix via the Gaussian mechanism.
4 ~
Lemma A7. Let 0 = S5 00 G o N(0,02)%4 Then Sp = Sp + G is (¢/2,6/2)-
differentially private.
Proof. For a dataset D’ differing in one query (s, ag, a1) from D we have
1 T 1 5  AL?
1S0-Sorlla < —[(Bls,01) — 6(5,60)) (9(5,a1) — Bls,00)) Il = 6(s,01) (5, a0) 3 < =~

The standard analysis of the Gaussian mechanism (Dwork & Roth} 2014) then implies that ip is
64log(%)L* 0
€2n?

(€/2, 6 /2)-differentially private when setting 02 =

The parameter estimation error is asymptotically the same when measuring with respect to the dif-
ferentially private covariance matrix >p.

Lemma A.8. Let z € RY. With probability at least 1 — 1,

log(1/4)log(1/n
||Z||§)D+AI < 1+0 <\/ <€/271>2)\ ( / ) HZ”ED-i-/\I

Proof. Since Sp=3p + G for G ~ N(0,5%)dxd,
||Z||2§D+)\I =218, a1 +2' G2 ®)

Further 2" G is a linear function of the independent A/(0, 02) entries of G, and thus is distributed
as a Gaussian with mean 0 and variance o2||z||3. Next note that since ¥p is positive semidefinite,

Mz||3 =2 Az
<27 (Sp+AD) 2= 23 par ©)
Thus by [(9)]and standard Gaussian concentration, with probability at least 1 — 7,

1
2" Gz < y[log <n>a||z||§

1No, s
< e (3) el

<0 <\/log<1/5> 1og<1/n>> .

eZn2\

Plugging into|(8)|and taking square roots yields the desired result. O
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We next prove bounds relating (£p + AI) ™! to (Sp + AI) L.

. [Toa(1/m Toa(173)
Lemma A.9. There is a constant C' > 0 such that for A\ > C a1 g(léz)l 8179 e have

A —1/2
64log(L)L*

Proof. Note that ©p = Yp + G where G ~ N(0,02)%%?, for o2 = 253~ Therefore by
standard concentration bounds for the operator norm of a matrix with independent Gaussian entries
Vershynin| (2018) we have that with probability at least 1 — 7,

IGllop < C'o(Vd + /log(1/n)

- oo V/A0E(1]3) Tog (1 /)

Next set C' = 2C", and let pu = ||G||op- Then, with probability at least 1 — 7,

1(Ep + M) "2z, <

2

S A
ZD+)\I=ED+G—|—)\I>;ED+()\—M)I:ED+§I,

Therefore,

~ A
2T (Sp+ M)z <2 (Zp + 5I)—lz.

Taking square roots yields the desired result. O

A.3 PRIVACY OF OBJECTIVE-PERTURBED MLE
Lemma A.10. |Algorithm I|satisfies (¢/2, § /2)-differential privacy.

Proof. For the chosen values of «, 0, and v given in the function ¢p satsifies the
assumptions of Theorem 5.6 of |Bassily et al.| (2019b) which is the full version of |Bassily et al.
(2019a). Further note that Theorem 5.6 of Bassily et al.| (2019b)) is just output perturbation applied
to the objective perturbation from Theorem 2 in Kifer et al.|(2012). O

We now have all the ingredients necessary to prove our main result on differential privacy for the
setting of contextual bandits with pairwise comparisons.

Proof o Omig is (e/2,9/2)-differentially private by [Lemma A.10, and Sp is

(e/2,6/2)-differentially private by Thus, standard composition implies that the pair
(OmLE, Xp) is (e, )-differentially private. O

A.4 APPROXIMATION ERROR OF OBJECTIVE-PERTURBED MLE

We now prove an upper bound on the distance between the output of and the true MLE
solution.

Lemma A.11. Let A = C~Y dlog(l/ez) log(l/z;), with probability at least 1 —

7,

(dlog(1/n) log(l/é))”“)
Jen

|OmLe — §MLE||§D+M <0 (
where the O(-) hides factors depending only on L and B.

Proof. Let o, 02, and b be as in|Algorithm 1| First, define the £5-regularized and objective-perturbed
loss functions as follows:
U (6) = to(8) + all6]3 (10)
~ b,0
ép(e)zfp(9)+a\\9||§+—< n> (11)

Further let Oy g = argmingcg . {p(0), 0 = argmingg , £5(0), and 6 = argmingcg, Zp(@).
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An upper bound for ||fye — 0. By|Lemma A.4{and [Lemma A.6{the loss £/, (6) is y-strongly
convex with respect 0 ||+[|s,+ < 7. Thus, [Lemma A.5[implies that

U (Opig) > O (0') + %\\QMLE - QIH%D+%I
= Ip(Owie) + alduell3 > €o(0") +all0'l3 + 50wk — 03,42
Observe that ED(éMLE) < ¢p(6") by optimality of Ovig. Thus,
allfyel3 > all6'l3 + 211fmie 63,21
> Llbye = 011302

Rearranging and using the fact that ||y g2 < B yields

A 2aB
[10mLE — 0 llspt21 <4 — (12)

An upper bound for ||§ — ¢’||. Adding a linear term has no affect on strong convexity, thus by

|Lemma A.4| and ILemma A.6| the function £p(0) is y-strongly convex with respect to [ lzp+er.

Again|[Lemma A.5|1implies
~ ~ ~ ’y ~
{p(0") > £p(0) + §||9 - 9/||22D+%I

b0/ (b0 )
— )+ B s )+ <n> F 2000 R

By the optimality of ¢’ for ¢/, we have £, (Opig) > € (0'). Hence,

o) _ (00)

Yua 2
- ZT+§”9_9/HED+%I

~ Yy, A
— <b, o — 9> > L0 =01 e

Therefore by Cauchy-Schwarz,
~ ny, s
e O A e
Rearranging yields,
2bll 52 1)1
ny ’
The largest eigenvalue of (Xp + %I)’1 is at most X and therefore [|b]|(s, 421 < [|b]l2/2.
Therefore we conclude,

10— 0lcprar <

p bl 1
9_9/ o < H .
H ||ED+,YI =, o

Standard Gaussian concentration bounds then imply that with probability at least 1 — 7,

2dylog (%)

«

o o
16 = llsprer < — (13)

An upper bound for ||fyrg — 6. For w defined as in|Algorithm 1} the operator norm bound of
[Cemma A3 impics

10mLE — Ollspiar = [[wllspear < (402 + N)|w]|2.

Again standard Guassian concentration bounds imply that with probability at least 1 — 7,

10mie — Ollspiar < (402 + N)vy/2dlog(2/n). (14)
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Putting it all together. Observe that by our choice of A and o we have that A < % Hence
lv]lspaerr < HU||ED+% 1 for all v € R%. The result now follows by applying the triangle inequality

to[(12)} [(13)} and [(14)} applying to upper bound ||"||s:p 41 bY |||, 11> and plugging
in the values for «, 5, v, and o from|Algorithm 1 O

A.5 PESSIMISTIC POLICY OPTIMIZATION

We now utilize the bounds proved earlier in this section on the estimation error of and
[ATgorithm 3]in order to complete the proof of

(0} O .
Proof of[Theorem 4.2] Let A\ = C'~ al g(l/ez)l /%) By Lemma 3.1 in|Zhu et al, (2023) we have
that with probability 1 — 7,

A . d+log(1
s — 6 [l iar < O <\/g</7’) + A) .

n

Thus, by [Lemma A.11] [Lemma A.8| and the triangle inequality, we have that with probability 1 —n

Ho* - aMLE”f}DJr)\] < F(nvdvna 675) (15)
where i
_ d , (dlog(1/n)log(1/0))
F(n,d,n,e,§)—0<\/;+ Jen .

Recalling the notation @(5MLE, A) from , this implies that 6* € @(5MLE, A).

Next define J*(w) = E, ,[(0*, é(s,7(s)))] and J'(7) = J*(w) — (6*,v). Let n* =
arg min_ J* (7). Note that by optimality of 7pg we have

Since 6* € ©(fyLg, A) with probability 1 — 7, we have
J(ipe) = J'(fpg) = min Egop[(6, &(s, Tee(s) = 0)] = Egnpl(07, &(s, Ter(s)) — 0)]
QEQ(QMLE,)\)
<. (17)
Then we can decompose the suboptimality for the output 7pg of as follows,

SubOpt(frpE) = J*(TF*) — J*(ﬁ'pE)
= J' (") = J'(7ee)
= (J'(x") = J (7)) + (J(x") = I (tpe)) + (J (Fvg) — J'(fpe))
By [(T6)] and [(T7)] the latter two differences above are less than zero, hence
SubOpt(#pe) < J'(7*) — J ()

= Sljp Es~p[<9* - 07 ¢(87 77*(5)) - U)]
QGG(GMLE,)\)

= Eswp[<0* — aMLE,QS(S,TF*(S)) —’U>] + sup Es~p[<§MLE —07¢(8,7T*(8)) —'U>]
96@(5}\/&]{,)\)
(18)
By construction we have that for all € @(gMLE, A) the Cauchy-Schwarz inequality implies
Eovp [(Ouie = 0,0(s,7(5)) = v)| < [0we = Ol 5 IS+ AD T2 (6(5,7°(5) = 0)ll3
< F(n,d,n,¢,8) - |(Ep + M)~ 2(9(s,77(s)) = 0)l2

As 0% € ®(§MLE, A) with probability 1 — 7, we have that both terms in take the form
Esep {<5MLE —0,p(s, 7 (s)) — v>] for some 0 € 9(5MLE, A). Finally, substituting 2\ for A and
applying[Cemma A 9]implies the desired result. O

18
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B PROOFS FOR CONTEXTUAL BANDITS WITH K -WISE COMPARISONS

We begin, as in the pairwise case, with some basic properties of the loss and covariance in the
K-wise setting.

B.1 BASIC PROPERTIES OF {p, AND Xp,

The loss for the K-wise Plackett-Luce model is given by

1 n K exp (<37¢(5i’afn(j))>)
tp, (0) = — ;;1 : S, exp (<9,¢(8ivafri(k))>>

We will use the following notation throughout this section,

2l = o(s',al ;) — O(s", g, i)-
The gradient and Hessian of /1, are given by the following formulas.
Claim B.1.

LR EE ew((heha)
Vip, (0) = n ZZZ Z{ig exp (<9’¢(Si’afn(l)>) .

s
Il
Ja
<
Il
—
=
I
<

Claim B.2.

_1y Ny P (<9’¢(Si’a§”(i)>> i T
VQEDK "= " ;JZI; ; Z{ij exp (<97 (s, aﬁ;,;(l)>) T

These formulas lead directly to an upper bound on the norm of the gradient and the operator norm
of the Hessian of /p,. .

Lemma B.3. Forall 6,
1. ||[Vep, (0)]]2 < 2K?L
2. ||V2£DK(0)||0,, < 4K3L2

Proof. Observe first that ||z;||2 < 2L because ||¢(s, a)|| < L. By[Claim B.1] the gradient V/p, ()
is the average of n sums of K 2{ vectors each of length at most 2. Similarly by |(Claim B.2, V2/p, ()
is the average of n sums of K rank-one matrices, each of operator norm at most [[2;][3 < 4L2. [

The proof Theorem 4.1 in|Zhu et al.|(2023) implies that for all # € O and v € R4
v Vp,. (0)v > yxv Spv = ’YK||UH2EDK~ (19)

where v = % exp(—4LB). In particular, we have the following lemma,

Lemma B.4. (p, is strongly convex on the set © g with respect to the semi-norm ||"||s,, . That is,
there exists a constant yx > 0 such that,

(0 (04 B) = o, (6) = (VEp(0),0) = XA, 20)

forall § € ©p, and A such that (0 + A) € Op.

B.2 PRIVATE COVARIANCE FOR K -WISE COMPARISONS
We obtain privacy for the feature covariance matrix ¥p, via the Gaussian mechanism. The main

point is use[Algorithm 2] with the variance of the Gaussian mechanism increased by a constant factor
depending only on K.
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641og(L)KOL*

Lemma B.5. Let 02 = L and G ~ N(0,02)%4 Then $p,. = Sp,. +G is (¢/2,5/2)-

differentially private.

€202

Proof. For a dataset D’ differing in one query (s, a1, ... ax, o) from Dy we have

4K3L?

1 o 1 )
10 = Epgllo < = Kok I = K3l <

The standard analysis of the Gaussian mechanism (Dwork & Roth, [2014)) then implies that f]p 1S
64log(L)K°L* 0
€2n? .

(€/2, 6 /2)-differentially private when setting 02 =

B.3 PRIVACY OF OBJECTIVE-PERTURBED MLE FOR K -WISE COMPARISONS

Lemma B.6. [Algorithm I|applied to {p,. and Dy satisfies (¢/2,6/2)-differential privacy, when «
is adjusted by a constant factor.

Proof. First define

) K exXp (<05¢(517a2(1)>)
U, (0) = log | — —
j=1 Zk:j exp <<97¢<Szaazo-l(k)>>
As pointed out in the discussion after Theorem 5.6 |Bassily et al.| (2019b)), the analysis of objective

perturbation by |lyengar et al.| (2019) implies that one can still achieve differential privacy when the
rank of V204, () is larger than one. In particular, by (Claim B.2|

2 RE & en((006hdg)
Vi, ()= > > —% -
G=1k=j I=j El:j exp (<97 B(st, af,i(l)>)
which evidently has rank at most K. Thus the analysis of [Iyengar et al. (2019) implies that we need

only increase « by a constant factor (depending only on K) in order to achieve (¢, d)-differential
privacy.

We now can conclude with our main privacy theorem for K -wise comparisons.

Proof of Theorem 43} Oyiig,. is (¢/2,0/2)-differentially private by and Sp, is

(e/2,8/2)-differentially private by Thus, standard composition implies that the pair
(OMLE s 2Dy ) is (€, 0)-differentially private. O

B.4 APPROXIMATION ERROR AND PESSIMISTIC POLICY OPTIMIZATION FOR K -WISE
COMPARISONS

At this point, one can check that the proofs of [Lemma A.8|and [Lemma A.9] as well as those of all
the results in[Section A.4|and[Section A.5|go through, with the only change being an adjustment of
the parameters by constant factors depending only on K. Thus, following these proofs with Xp,

substituted for >p and éMLEK substituted for éMLE yields Theorem 4.4

C PROOFS FOR GENERAL MDPs

C.1 BASIC PROPERTIES OF {p_ AND Xp_

For each tuple ({,7},y") € D, we denote the two sequences of states and actions by 7{ =
(st,,ai )L and 7§ = (si,,alo) . The loss for general MDPs is given by the log likelihood of
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the Bradley-Terry-Luce model applied to trajectory comparisons,
€xp (Zthl 7o (Sh1, %1))

€xp (Zthl ro+(Sho; a20)> +exp (Zthl 7o+ (S} aéu))
exp (ZhH:1 7o+ (Sho, aﬁzO))

H . . H . .
exp (Zh:l 7o (840 a;zo)) + exp (Zh:l 7o ()1 a;zl))

1 n
{p, (0) = *ﬁzlog 1y; = 1]
i=1

+1[y; = 0]

We will use the following notation throughout this section,
H
Ty = Z D(Sh1s ah1) — A(Shos Aho)-
h=1

The gradient and Hessian of {p_ are given by the following formulas.

Claim C.1.
1 _ 41 exp(= (0, z:)) _ 1
Vip (0) =~ ; (1[% =173 exp(— (0, z;)) =07y exp(— <97$i>)) "
Claim C.2.

, B l n exp(— <'9,$z>) Ty
Vitp. (0) = ; (L+exp(— (0,2:))" "

These formulas lead directly to an upper bound on the norm of the gradient and the operator norm
of the Hessian of {p_.

Lemma C.3. Forall 0,

1. | Ve, (0)]2 < 2HL
2. |V2p_ (0)op < AHZL

Proof. Observe first that ||x;||2 < 2H L because it is the sum of H vectors each of norm at most
2||é(s,a)|| < 2L. By|Claim C.1| the gradient VZ¢p_(0) is the average of n vectors each of length at
most 2H L. Similarly by|Claim C.2| V?/p_(6) is the average of n vectors, each of operator norm at
most ||z;]|3 < 4H2L2. O

The proof Lemma 5.1 inZhu et al.|(2023) implies that for all # € O and v € R4

v V¥p_ (0)v > yv ' Yp v = fyTHvHQEDT. 21

where v, = In particular, we have the following lemma,

1
2+exp(—2HLB)+exp(2HLB) *

Lemma Cd4. (p_ is strongly convex on the set © g with respect to the semi-norm |-z, . That is,
there exists a constant y; > 0 such that,

tp(6+2) — o, (6) = (Vep, (6),6) = TIAlIR, (22)

forall 0 € Op, and A such that (0 + A) € Op.

C.2 PRIVATE COVARIANCE FOR GENERAL MDPs

We obtain privacy for the feature covariance matrix Xp_ via the Gaussian mechanism. The main

point is to use with the variance of the Gaussian mechanism increased by a constant

factor depending only on H.

64log(L)H*L*
e2n?

Lemma C.5. Let 02 = and G ~ N(0,02)%% Then Sp_ = Sp_+ G is (€/2,5/2)-

differentially private.
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Proof. For a dataset D.. differing in one query (s, a1, ...ak,o) from D, we have

1, - 1., AH?L?
IEp = o flo < —flaiay 2 = |23 < ——

The standard analysis of the Gaussian mechanism (Dwork & Roth, 2014) then implies that >p_ is
64log(L1)H*L* 0

(€/2,8/2)-differentially private when setting 0% =

C.3 PRIVACY OF OBJECTIVE-PERTURBED MLE FOR GENERAL MDPs

Lemma C.6. |Algorithm I|applied to {p_ and D, satisfies (e/2,8/2)-differential privacy, when the
input parameters are adjusted by at most a constant factor depending only on H.

Proof. Similarly to the case of pairwise comparisons for contextual bandits in the
Hessian V2{p_(6) is the sum of n rank-one terms. Thus, after adjusting the parameters by a constant

factor depending on H, Theorem 5.6 of Bassily et al.| (2019b) implies that Oy g, is (€/2,0/2)-
differentially private. O

We now can conclude with our main privacy theorem for the general MDP setting.

Proof of [Theorem 3.1} Ouvie, is (€/2,0/2)-differentially private by [Lemma C.6| and Yp_ is

(e/2,8/2)-differentially private by Thus, standard composition implies that the pair
(OmLE, , 2D, ) is (€, 6)-differentially private. O

C.4 APPROXIMATION ERROR AND PESSIMISTIC POLICY OPTIMIZATION FOR GENERAL
MDPs

As in the case of K-wise comparisons, the proofs of [Lemma A.8|and|[Lemma A.9} as well as those
of all the results in[Section A.4|and [Section A.5|go through, with the only change being an adjust-
ment of the parameters by constant factors depending only on H, L, and B. The only additional
modification necessary for the general MDP setting is to use the policy-dependent distribution on
states and actions p in the place of the fixed distribution on states p in the proof from [Section A3]

Thus, following these proofs with Yp_ substituted for Xp and éMLET substituted for éMLE yields
[Theorem 3.2l
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