

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 AI ALIGNMENT WITH PROVABLE PROTECTION OF HUMAN JUDGEMENTS

Anonymous authors

Paper under double-blind review

ABSTRACT

Reinforcement learning from human preference rankings forms the basis for training language models to be helpful and value-aligned. As these powerful AI systems are trained for increasingly high-stakes tasks, the risk of leaking sensitive human training data increases. However, the problem of protecting human preference data is complicated by the fact that reinforcement learning from human feedback is a multistage pipeline involving learning a reward function from human preferences, and subsequently training a language model policy from the learned rewards. To address these issues, we design algorithms for the task of alignment from preference feedback that provably avoid leaking human preference data in both the Bradley-Terry and Plackett-Luce models. Our algorithms satisfy ϵ -DP while matching the minimax optimal sample complexity for the task of aligning a policy to human preference rankings. These results demonstrate that there is no inherent tradeoff between protecting the privacy of human preferences and efficient alignment with human values.

1 INTRODUCTION

With the rise of large pretrained machine learning models that flexibly interact with humans, there is an increasing need to ensure that the models do not exhibit harmful behaviour or ethical violations that can cause unsafe circumstances for humans. Reinforcement Learning from Human Feedback (RLHF) is currently the standard method targeting this problem (OpenAI, 2023; Google Gemini, 2023), and has achieved significant success introducing several behavioral skills to language models (i.e. probability distributions over sequences of tokens (Shannon, 1948)) from refusing to act on improper requests to simply interacting with humans by responding to questions (Ziegler et al., 2019; Wu et al., 2021; Nakano et al., 2021; Stiennon et al., 2020; Abramson et al., 2022; Glaese et al., 2022; Bai et al., 2022; Ganguli et al., 2022; Menick et al., 2022; Ouyang et al., 2022; Gao et al., 2023; Ramamurthy et al., 2023). Yet there are still problems with large language models where recent work demonstrates the unethical behaviour that they can exhibit when they interact with humans (Ganguli et al., 2022; Perez et al., 2022).

While improving the safety and harmlessness of LLMs remains an active area of research, the use of RLHF introduces an orthogonal set of problems relating to human interactions. In particular, the input data used for RLHF training is human ratings of model responses to prompts. Furthermore, current language models record data when interacting with humans via chat interfaces, and this data can be used for future training (OpenAI, 2023). As a result, there are numerous reasons to worry about privacy when building a reward function from human-feedback, a few of which we now enumerate. First, even when human raters are paid, they may be giving preference ratings that need to be kept private. Honest preference ratings on sensitive topics can be very revealing of private information e.g. political preference, gender identity etc. In some jurisdictions there is a legal mandate for an employer of paid raters to avoid leaking such private information. Moreover, orthogonal to this, several other issues would arise for an LLM trained to give basic medical advice based on responses from raters who have real medical issues, in which case the preference data clearly must be kept private. Furthermore, a glance at the terms of use of the major LLM providers indicates that user feedback on LLM outputs is being stored, with the possibility of later training on this data. Thus, the current paradigm of only using paid raters may change in the foreseeable future. From another perspective, human preference data on specialized topics, e.g. legal or scientific questions, may be very expensive to obtain, and thus could be viewed as trade secrets that must be kept private.

In this case, privacy is economically incentivized for providers of LLMs. Furthermore, one of the major LLM providers has issued a statement indicating that maintaining privacy is a core principle of responsible AI development DeepMind (2023). Finally, the ability to violate privacy with only access to anonymous preference rankings was conclusively demonstrated in Narayanan & Shmatikov (2008), for the case of the Netflix prize dataset consisting of anonymous movie ratings by Netflix users. This paper shows that it is possible to deanonymize a target user with just a small amount of publicly available information about the target, and then subsequently to learn potentially sensitive information about the user e.g. political preferences. Therefore, it seems quite plausible that access to an LLM fine-tuned on human preference data, combined with the above well-established methods for deanonymization from preference data alone, can lead directly to privacy violations European Union Data Protection Board (2025).

Thus, as large language models continue to scale to interact with millions of people in more complex ways, the necessity of maintaining the privacy of individual interactions becomes even more significant. To mitigate the privacy risks associated with machine learning, the framework of differential privacy is the primary approach to the design of algorithms with rigorous privacy guarantees (Dwork et al., 2006; Dwork & Roth, 2014). The standard approach to RLHF starts with a pretrained language model and fixed dataset of prompts. A prompt is sampled from the dataset, and K outputs from the language model are sampled conditioned on the prompt. A human rater then gives a preference ranking of the K outputs. This process is repeated until a dataset \mathcal{D} containing n human preference rankings over model responses is collected. Following this a reward model r_θ is trained to match the human preference rankings in \mathcal{D} . Finally, the original pretrained language model is further trained via reinforcement learning to maximize the learned rewards r_θ . Both the human ratings and prompts in the dataset \mathcal{D} are generated by humans interacting with the model, and thus may contain information that should be kept private even when the final trained model is released.

Recent work of Zhu et al. (2023) studies the sample complexity of RLHF, and gives an algorithm achieving minimax optimal rates for RLHF in the setting where rewards are linearly parametrized in some feature space. In this paper we will prove that, in the same setting, it is possible to achieve minimax optimal sample complexity and differential privacy simultaneously. In particular, our differential privacy guarantees imply that even if $n - 1$ of the human ratings in the dataset are revealed, it will be statistically infeasible to learn the private information of the one remaining rating, when given access to the final trained model.

1.1 OUR RESULTS

We begin by introducing the basic setting for RLHF. There are a set of states S and actions A corresponding to prompts and language model responses respectively. First a state s is sampled from a distribution ρ , then K actions a_1, \dots, a_K are sampled from the model conditioned on the state s giving a tuple (s, a_1, \dots, a_K) . Human preference rankings over a_1, \dots, a_K are given by a permutation $\sigma : [K] \rightarrow [K]$, where $a_{\sigma(1)}$ is the most preferred action, and $a_{\sigma(K)}$ is the least preferred action. We assume that there is a feature map $\phi : S \times A \rightarrow \mathbb{R}^d$, and a reward modelled as a linear function $r_\theta(s, a) = \langle \theta, \phi(s, a) \rangle$. Human preference rankings over model responses are assumed to follow a Plackett-Luce model (Plackett, 1975; Luce, 2012) for some true reward r_{θ^*} . That is the probability that an action a_i is selected as the “best” from a list of K alternative actions is proportional to

$$\mathbb{P}[a_i | s, a_1, \dots, a_K] = \frac{\exp(r_{\theta^*}(s, a_i))}{\sum_{j=1}^K \exp(r_{\theta^*}(s, a_j))}.$$

This naturally implies a distribution on full rankings of actions $\sigma : [K] \rightarrow [K]$, by first selecting the best action from the full list of K actions, then recursively selecting the next best from the remaining $K - 1$, and so on. When $K = 2$ this is equivalent to the Bradley-Terry-Luce model. We denote by \mathcal{D} the dataset of n human ranking tuples $(s, a_1, \dots, a_K, \sigma)$. In order to accurately estimate uncertainty in the rewards given the dataset \mathcal{D} , one typically uses the dataset-dependent covariance matrix

$$\Sigma_{\mathcal{D}} = \frac{2}{nK(K-1)} \sum_{i=1}^n \sum_{j=1}^K \sum_{k=k+1}^K ((\phi(s^i, a_j^i) - \phi(s^i, a_k^i))(\phi(s^i, a_j^i) - \phi(s^i, a_k^i))^\top).$$

In particular, the pessimistic policy optimization algorithm in our paper (as well as in Zhu et al. (2023)) depends on access to a sufficiently accurate approximation of $\Sigma_{\mathcal{D}}$.

108 **RLHF for Contextual Bandits.** Our first results are in the contextual bandit setting, where states
 109 s are sampled from some fixed distribution ρ . This is the closest to the standard setup of RLHF
 110 applied to LLM alignment. Under certain regularity assumptions the results of Zhu et al. (2023)
 111 show that computing the maximum likelihood estimator (MLE) $\hat{\theta}_{\text{MLE}}$ for the reward parameters,
 112 followed by a pessimistic policy optimization algorithm with respect to $r_{\hat{\theta}_{\text{MLE}}}$ yields a policy $\hat{\pi}_{\text{PE}}$
 113 achieving expected rewards that are at most $O\left(\sqrt{\frac{d}{n}}\right)$ worse than those of the optimal policy. Our
 114 main result matches this performance while simultaneously achieving differential privacy for the
 115 dataset \mathcal{D} .

117 **Theorem 1.1.** (Informal) Let \mathcal{D} be a dataset of K -wise human rankings of the form $(s, a_1, \dots, a_k, \sigma)$.
 118 Under appropriate regularity assumptions, there is an (ϵ, δ) -differentially private algorithm that
 119 learns a reward model $r_{\hat{\theta}_{\text{MLE}}}$ and a perturbed data covariance $\tilde{\Sigma}_{\mathcal{D}}$ from \mathcal{D} . Both $\hat{\theta}_{\text{MLE}}$ and $\tilde{\Sigma}_{\mathcal{D}}$
 120 are close (under appropriate metrics) to the true parameter θ^* and the true data covariance $\Sigma_{\mathcal{D}}$
 121 respectively.

122 **Theorem 1.2.** (Informal) Under appropriate regularity assumptions, there is pessimistic policy op-
 123 timization algorithm that, when trained with the reward model $r_{\hat{\theta}_{\text{MLE}}}$ and data covariance estimate
 124 $\tilde{\Sigma}_{\mathcal{D}}$ outputs a policy $\tilde{\pi}_{\text{PE}}$ achieving rewards that are worse than the optimal policy by at most

$$126 \quad 127 \quad 128 \quad O\left(\sqrt{\frac{d}{n}} + \frac{(d \log(1/\delta))^{1/4}}{\sqrt{\epsilon n}}\right)$$

129 In the typical differential privacy setting ϵ is a constant and δ is inverse polynomial in n , and so
 130 the first term above dominates. Thus, in the typical setting our results match the minimax optimal
 131 rate $O\left(\sqrt{\frac{d}{n}}\right)$ up to constant factors. Also notable in our results is the fact that privacy holds for
 132 the estimated reward function $r_{\hat{\theta}_{\text{MLE}}}$ and the perturbed data covariance $\tilde{\Sigma}_{\mathcal{D}}$. This makes our results
 133 modular, and means that privacy will be maintained under follow-up post-processing by any policy
 134 learning algorithm. In particular, it is even possible to publicly release the weights $\hat{\theta}_{\text{MLE}}$ of the
 135 learned reward model $r_{\hat{\theta}_{\text{MLE}}}$, along with the perturbed data covariance $\tilde{\Sigma}_{\mathcal{D}}$.

136 **RLHF for general MDPs.** We extend our results to RLHF in general MDPs, where human pref-
 137 erences are given over pairs of trajectories. In this setting we also simultaneously obtain (ϵ, δ) -
 138 differential privacy and performance matching the non-private algorithm.

139 **Theorem 1.3.** (Informal) Let \mathcal{D}_{τ} be a dataset of pairwise trajectory comparisons from an MDP
 140 M . Under appropriate regularity assumptions, there is an (ϵ, δ) -differentially private algorithm
 141 that learns a reward model $r_{\hat{\theta}_{\text{MLE}, \tau}}$ and a perturbed data covariance $\tilde{\Sigma}_{\mathcal{D}_{\tau}}$ from \mathcal{D}_{τ} . Both $\hat{\theta}_{\text{MLE}, \tau}$ and
 142 $\tilde{\Sigma}_{\mathcal{D}_{\tau}}$ are close in an appropriate metric to the true parameter θ^* and the true data covariance $\Sigma_{\mathcal{D}_{\tau}}$
 143 respectively.

144 **Theorem 1.4.** (Informal) Under appropriate regularity assumptions, there is pessimistic policy op-
 145 timization algorithm that, when trained in the MDP M with the reward model $r_{\hat{\theta}_{\text{MLE}, \tau}}$ and data
 146 covariance estimate $\tilde{\Sigma}_{\mathcal{D}_{\tau}}$ outputs a policy $\tilde{\pi}_{\text{PE}}$ achieving expected rewards that are worse than those
 147 of the optimal policy by at most

$$148 \quad 149 \quad 150 \quad O\left(\sqrt{\frac{d}{n}} + \frac{(d \log(1/\delta))^{1/4}}{\sqrt{\epsilon n}}\right)$$

151 Again in the typical setting where ϵ is constant and δ is inverse polynomial in n , these results match
 152 the non-private algorithm of Zhu et al. (2023) up to logarithmic factors.

153 2 PRELIMINARIES

154 **Notation.** We use the notation $[K] = \{1, \dots, K\}$. We write $\mathcal{N}(\mu, \sigma^2)^d$ to denote the distribu-
 155 tion of random vector whose entries are independent Gaussian random variables with mean μ and

162 variance σ^2 . We use $\|\cdot\|_2$ to denote the standard ℓ_2 -norm on \mathbb{R}^d . For a positive semidefinite matrix
 163 $M \in \mathbb{R}^{d \times d}$ we define the semi-norm $\|v\|_M = \sqrt{v^\top M v}$ for any vector $v \in \mathbb{R}^d$. For a pair of
 164 matrices A and B we write $A \succcurlyeq B$ if and only if $A - B$ is positive semidefinite.
 165

166 **Reinforcement learning** A finite-horizon Markov Decision Process (MDP) with horizon H is
 167 represented by a tuple $(S, A, \{r_h\}_{h=1}^H, \{T_h\}_{h=1}^H, \rho_0)$. Here, S represents the state space, A repre-
 168 sents the action space, and ρ represents the initial state distribution. For each $h \in [H]$ there is a
 169 reward function $r_h : S \times A \rightarrow \mathbb{R}$ assigning a real-valued reward to each state-action pair, and a
 170 transition function $T_h : S \times H \rightarrow \Delta(S)$ taking a state-action pair to a distribution over states.
 171

172 A deterministic policy $\pi = \{\pi_h\}_{h=1}^H$ is a collection of functions $\pi_h : S \rightarrow A$ giving an action a to
 173 be taken in state s . A policy π in an MDP M induces a distribution over sequences of states and
 174 actions. In particular, first $s_1 \sim \rho_0$ and $a_1 = \pi_1(s_1)$, and then subsequently $s_h \sim T(s_{h-1}, a_{h-1})$ and
 175 $a_h = \pi_h(s_h)$ for each $h \in [H]$. The value function $V^\pi : S \rightarrow \mathbb{R}$ for the policy π is then the
 176 expected cumulative rewards obtained when starting in state s ,
 177

$$V^\pi(s) = \mathbb{E}_{a_h=\pi_h(s_h)} \left[\sum_{h=1}^H r(s_h, a_h) | s_1 = s \right].$$

180 We further define the occupancy measure ρ_π of a policy π to be the probability distribution over
 181 state-action pairs encountered when utilizing the policy π in the MDP M ,
 182

$$\rho_\pi(s, a) = \mathbb{P}_{\substack{s_1 \sim \rho_0 \\ s_h \sim T(s_{h-1}, a_{h-1}), a_h = \pi_h(s_h)}} [s_h = s, a_h = a].$$

185 We use $\pi^* = \arg \max_\pi V^\pi$ to denote the optimal policy i.e. the policy that maximizes the expected
 186 cumulative rewards. The objective in reinforcement learning is to learn a policy $\hat{\pi}$ that obtains
 187 rewards that are close to those obtained by the optimal policy π^* . Formally, we define the suboptimal-
 188 ity of a policy $\hat{\pi}$ by $\text{SubOpt}(\hat{\pi}) = \mathbb{E}_{s \sim \rho_0} [V^{\pi^*}(s) - V^{\hat{\pi}}(s)]$. The setting where the horizon
 189 $H = 1$ is referred to as the contextual bandit setting. In particular, in this setting there are no transi-
 190 tions, and the state s is always sampled from the fixed initial state distribution ρ_0 . This is the setting
 191 that most accurately models RLHF as it is typically applied to language models.
 192

193 **Reinforcement learning from human feedback** In reinforcement learning from human feed-
 194 back the humans provide preference rankings over actions. Given a state s and K possible actions
 195 (a_1, \dots, a_K) , the ranking over the actions is given by a permutation $\sigma : [K] \rightarrow [K]$ that ranks the
 196 actions from the most preferred $a_\sigma(1)$, to the least preferred $a_\sigma(K)$. In RLHF these preference
 197 rankings are assumed to arise as samples from the Plackett-Luce model.
 198

$$\mathbb{P}(\sigma | s, a_0, a_1, \dots, a_K) = \prod_{k=1}^K \frac{\exp(r^*(s, a_{\sigma(k)}))}{\sum_{j=m}^K \exp(r^*(s, a_{\sigma(j)}))}.$$

202 where $r^*(s, a)$ is a ground-truth reward function corresponding to underlying human preferences.
 203 The input to RLHF is then a data-set of human preference rankings $\mathcal{D} = \{(s^i, a_1^i, \dots, a_K^i, \sigma^i)\}_{i=1}^n$,
 204 where the state s^i and tuple of actions a_1^i, \dots, a_K^i can be arbitrary, but the preference ranking σ^i is
 205 assumed to be sampled from the Plackett-Luce model.
 206

Throughout the paper, we make the following assumption regarding the parameterization of the
 207 reward function r^* , which is the same as that made in prior work (Zhu et al., 2023).

208 **Assumption 2.1.** The reward function comes from a class of linear functions $r_\theta(s, a) =$
 209 $\langle \theta, \phi(s, a) \rangle$ with a known feature map $\phi : S \times A \rightarrow \mathbb{R}^d$ satisfying $\|\phi(s, a)\|_2 \leq L$ for all (s, a) .
 210 Further, we assume that the true parameter θ^* for the reward satisfies $\theta^* \in \Theta_B = \{\theta | \|\theta\|_2 \leq B\}$.
 211

212 We denote ground-truth linear parameter vector θ^* , so that $r^*(s, a) = r_{\theta^*}(s, a)$. In reinforcement
 213 learning from human feedback one first uses the dataset \mathcal{D} to learn an estimated reward parameter $\hat{\theta}$,
 214 and then trains a policy $\hat{\pi}$ in the MDP M using the learned reward $r_{\hat{\theta}}$. Critically, the objective is to
 215 obtain good performance relative to the ground-truth rewards r_{θ^*} , despite training with an estimated
 216 reward function $r_{\hat{\theta}}$.
 217

216 2.1 DIFFERENTIAL PRIVACY
217218 Our results are stated in terms of the rigorous notion of *differential privacy*. Let \mathcal{D} be a dataset
219 containing n items. In our case each item is a tuple $(s, a_1, \dots, a_K, \sigma)$ representing human preference
220 rankings. For another dataset \mathcal{D}' we use the notation $\|\mathcal{D} - \mathcal{D}'\|_1 = 1$ to indicate that \mathcal{D} and \mathcal{D}' differ
221 in exactly one item, and are otherwise identical. The formal definition of differential privacy is then,222 **Definition 2.2.** $((\epsilon, \delta)$ -differential privacy (Dwork & Roth, 2014)) A randomized algorithm \mathcal{A} is
223 (ϵ, δ) -differentially private if for all $\mathcal{O} \subseteq \text{Range}(\mathcal{A})$ such that $\|\mathcal{D} - \mathcal{D}'\|_1 \leq 1$:

224
$$\mathbb{P}[\mathcal{A}(\mathcal{D}) \in \mathcal{O}] \leq e^\epsilon \mathbb{P}[\mathcal{A}(\mathcal{D}') \in \mathcal{O}] + \delta \quad (1)$$

225 where the probability space is over the coin flips of the mechanism \mathcal{A} . When $\delta = 0$, we say that \mathcal{A}
226 satisfies ϵ -differential privacy.
227

228 Intuitively, differential privacy ensures that if one of the items in \mathcal{D} contains private data for some
229 person, even if all the other items in \mathcal{D} are revealed, the output of the algorithm \mathcal{A} leaks a negligible
230 amount of information about the user. In particular, the distribution of the output is approximately
231 equal to what it would be if that user's item were not present at all.
232233 3 RELATED WORK
234235 **Learning from Ranking in Bandits and Reinforcement Learning:** The most closely related work
236 is the paper of Zhu et al. (2023), which recently gave minimax optimal bounds for the suboptimality
237 of policies trained via RLHF when the rewards are assumed to be linearly parametrized. We con-
238 sider the same setting in our paper, but additionally achieve differential privacy for RLHF, while
239 asymptotically maintaining the same bounds on the suboptimality of the learned policy.240 **Privacy in Bandits and Reinforcement Learning:** Differential privacy has been explored in linear
241 contextual bandits (Shariff & Sheffet, 2018; Neel & Roth, 2018; Huang et al., 2023), in stochastic
242 bandits with a central trust model¹ (Mishra & Thakurta, 2015; Tossou & Dimitrakakis, 2016; Sajed
243 & Sheffet, 2019; Azize & Basu, 2022; Charisopoulos et al., 2023), with the local model of trust
244 (Kasiviswanathan et al., 2011; Tenenbaum et al., 2021; Chowdhury & Zhou, 2023), in adversarial
245 bandits (Tossou & Dimitrakakis, 2017), and in tabular MDPs Vietri et al. (2020). Wang & Hegde
246 (2019) uses reproducing kernel Hilbert space norm-bounded noise to ensure private value function
247 approximation with respect to the number of states queried. The notion of joint differential privacy
248 in tabular MDPs was later extended to the linear MDP setting where the transitions and the reward
249 functions parameterized by linear functions (Luyo et al., 2021; Ngo et al., 2022). Garcelon et al.
250 (2021) provides a lower bound for regret minimization in finite-horizon MDPs with local differential
251 privacy (LDP) guarantees. However, in all of the aforementioned settings, the rewards are assumed
252 to be part of the private input, and do not need to be learned from data as is necessary in the setting
253 we consider.
254255 4 PRIVATE RLHF FOR CONTEXTUAL BANDITS
256257 In this section we give our main results for private RLHF in the contextual bandit setting. For clarity
258 of presentation we begin with the case of pairwise comparisons (i.e. $K = 2$ in the Plackett-Luce
259 model). We then describe how to extend these results to general K . The contextual bandit setting
260 corresponds most closely to the current approach to aligning language models with human prefer-
261 ences. In particular, given a prompt s multiple possible responses a^i are sampled from the model.
262 Human raters then give a preference ranking over the responses. This dataset of preference rankings
263 over responses is then used as the dataset for training reward models to be used subsequently to tune
264 the model via RL.
265266 4.1 PAIRWISE COMPARISONS
267268 In this setting the dataset \mathcal{D} consists of n tuples (s^i, a_0^i, a_1^i, y^i) where $y^i \in \{0, 1\}$ is an indicator
269 variable with $y^i = 0$ if the human rater preferred a_0^i in state s and $y^i = 1$ if a_1^i was preferred. Given270 ¹In the central model of trust the users are trust a central database curator who has access the raw user data
(Dwork & Roth, 2014).

270 a true reward parameter vector θ^* , the Plackett-Luce model for $K = 2$ reduces to the Bradley-Terry-
 271 Luce model,

$$272 \quad \mathbb{P}[y = l \mid s, a_0, a_1] = \frac{\exp(r_{\theta^*}(s, a_l))}{\exp(r_{\theta^*}(s, a_0)) + \exp(r_{\theta^*}(s, a_1))}. \\ 273 \\ 274$$

275 In this case, the log-likelihood of a parameter vector θ is given by,

$$276 \quad \ell_{\mathcal{D}}(\theta) = -\frac{1}{n} \sum_{i=1}^n \log \left(\mathbf{1}[y_i = 1] \cdot \frac{1}{1 + \exp(-\langle \theta, \phi(s^i, a_1^i) - \phi(s^i, a_0^i) \rangle)} + \mathbf{1}[y_i = 0] \cdot \right. \\ 277 \quad \left. \left(1 - \frac{1}{1 + \exp(-\langle \theta, \phi(s^i, a_1^i) - \phi(s^i, a_0^i) \rangle)} \right) \right) \\ 278 \\ 279 \\ 280 \\ 281$$

282 Furthermore, for pairwise comparisons we define the data covariance matrix by $\Sigma_{\mathcal{D}} =$
 283 $\frac{1}{n} \sum_{i=1}^n (\phi(s^i, a_1^i) - \phi(s^i, a_0^i)) (\phi(s^i, a_1^i) - \phi(s^i, a_0^i))^{\top}$. In order to privately estimate the rewards
 284 we utilize a version of objective-perturbed MLE Algorithm 1, which was shown to achieve (ϵ, δ) -
 285 differential privacy in Bassily et al. (2019a) with the bulk of the analysis coming from a theorem of
 286 Kifer et al. (2012). While the privacy analysis of Kifer et al. (2012) applies quite generally, achieving
 287 tight error bounds on the distance of $\tilde{\theta}_{\text{MLE}}$ from the unperturbed MLE $\hat{\theta}_{\text{MLE}} = \arg \min_{\theta \in \Theta_B} \ell_{\mathcal{D}}(\theta)$
 288 is more complex. For general convex MLE, usually one requires strong convexity of the loss to
 289 achieve tight error bounds on the ℓ_2 -distance $\|\tilde{\theta}_{\text{MLE}} - \hat{\theta}_{\text{MLE}}\|_2$. In the RLHF setting that we con-
 290 sider, we instead have strong convexity with respect to the dataset-dependent seminorm $\|\cdot\|_{\Sigma_{\mathcal{D}}}$.
 291 Further, in order for pessimistic policy optimization to succeed we must bound the error in terms of
 292 the noise-perturbed dataset dependent norm $\|\cdot\|_{\tilde{\Sigma}_{\mathcal{D}} + \lambda I}$ for some $\lambda > 0$.

293 This is a significant difference, because the noise perturbation added in Algorithm 1 in order to
 294 achieve differential privacy is from a standard, spherical Gaussian. In particular, it turns out the
 295 error introduced by adding such noise will scale with the norm of a spherical Gaussian under
 296 $\|\cdot\|_{(\Sigma_{\mathcal{D}} + \lambda I)^{-1}}$, which may be much larger than the standard ℓ_2 -norm. Thus, a more delicate analysis
 297 is required which trades-off the perturbations need for privacy (which must be standard Gaussians)
 298 versus the norm which is actually useful in measuring the error of the MLE for the RLHF setting.

299 **Algorithm 1** Private MLE for $\ell_{\mathcal{D}}$

300 **Input:** Dataset \mathcal{D} , privacy parameters $\epsilon \leq 1, \delta \leq \frac{1}{n^2}$, optimization accuracy parameter $0 < \beta < \frac{1}{n}$,
 301 failure probability η .
 302 1: Sample $b \sim \mathcal{N}(0, \sigma^2)^d$, for $\sigma^2 = \frac{40L^2 \log(\frac{1}{\delta})}{\epsilon^2}$
 303 2: Sample $w \sim \mathcal{N}(0, \nu^2)^d$, for $\nu^2 = \frac{40\beta \log(\frac{1}{\delta})}{\alpha \epsilon^2}$.
 304 3: Set $\alpha = 2C\gamma \frac{\sqrt{d \log(1/\delta) \log(1/\eta)}}{\epsilon n}$.
 305 4: Define $\tilde{\ell}_{\mathcal{D}}(\theta) = \ell_{\mathcal{D}}(\theta) + \alpha \|\theta\|_2^2 + \frac{\langle b, \theta \rangle}{n}$
 306 5: Compute an approximate solution $\hat{\theta}$ satisfying $\tilde{\ell}_{\mathcal{D}}(\hat{\theta}) - \min_{\theta \in \Theta_B} \tilde{\ell}_{\mathcal{D}}(\theta) < \beta$
 307 6: **return** $\tilde{\theta}_{\text{MLE}} = \hat{\theta} + w$

311
 312 Privacy for the estimated covariance matrix $\tilde{\Sigma}_{\mathcal{D}}$ follows from a straightforward application of the
 313 standard Gaussian mechanism.

314 **Algorithm 2** Private $\Sigma_{\mathcal{D}}$

315 **Input:** Dataset $\mathcal{D} = \{(s^i, a_0^i, a_1^i, y^i)\}_{i=1}^n\}$, privacy parameters $\epsilon \leq 1, \delta \leq \frac{1}{n^2}$.
 316 1: Compute the data covariance: $\Sigma_{\mathcal{D}} = \frac{1}{n} \sum_{i=1}^n (\phi(s^i, a_1^i) - \phi(s^i, a_0^i)) \cdot (\phi(s^i, a_1^i) - \phi(s^i, a_0^i))^{\top}$
 317 2: Sample: $G \sim \mathcal{N}(0, \sigma^2)^{d \times d}$, for $\sigma^2 = \frac{64 \log(\frac{1}{\delta}) L^4}{\epsilon^2 n^2}$
 318 3: **return** $\tilde{\Sigma}_{\mathcal{D}} = \Sigma_{\mathcal{D}} + G$.

321
 322 We can now state our main theorem regarding privacy of the reward parameters $\tilde{\theta}_{\text{MLE}}$ and the data
 323 covariance $\tilde{\Sigma}_{\mathcal{D}}$.

324 **Theorem 4.1.** Let $\epsilon, \delta > 0$, and $\tilde{\theta}_{\text{MLE}}$ be the output of Algorithm 1 and $\tilde{\Sigma}_{\mathcal{D}}$ the output of Algorithm 2.
 325 Then the pair $(\tilde{\theta}_{\text{MLE}}, \tilde{\Sigma}_{\mathcal{D}})$ satisfies (ϵ, δ) -differential privacy.
 326

327 The proof appears in Section A.3. Note that while the theorem statement is straightforward, the key
 328 is to accurately balance the privacy achieved against the need for accuracy of the perturbed estimates
 329 of $\tilde{\Sigma}_{\mathcal{D}}$ and $\tilde{\theta}_{\text{MLE}}$.

330 To state the pessimistic policy optimization algorithm that will be applied to the private outputs $\tilde{\theta}_{\text{MLE}}$
 331 and $\tilde{\Sigma}_{\mathcal{D}}$ we define the confidence set of parameters
 332

$$333 \Theta(\tilde{\theta}_{\text{MLE}}, \lambda) = \left\{ \theta \in \Theta_B \mid \|\tilde{\theta}_{\text{MLE}} - \theta\|_{\tilde{\Sigma}_{\mathcal{D}} + \lambda I} \leq F(n, d, \eta, \epsilon, \delta) \right\} \quad (2)$$

335 where,

$$336 F(n, d, \eta, \epsilon, \delta) = O \left(\sqrt{\frac{d}{n}} + \frac{(d \log(1/\eta) \log(1/\delta))^{1/4}}{\sqrt{\epsilon n}} \right). \quad (3)$$

339 We also set λ once and for all as $\lambda = C \cdot \frac{\sqrt{d \log(1/\eta) \log(1/\delta)}}{\sqrt{\epsilon n}}$ where the constant C is the one provided
 340 by Lemma A.9. Algorithm 3 gives the pessimistic policy optimization algorithm that we apply to the
 341 learned rewards and data covariance. Note that the algorithm takes the perturbed reward parameter
 342 $\tilde{\theta}_{\text{MLE}}$ and covariance $\tilde{\Sigma}_{\mathcal{D}}$ as inputs, but does not access the private dataset \mathcal{D} at all. Thus by standard
 343 post-processing, the output of Algorithm 3 also satisfies (ϵ, δ) -differential privacy.
 344

345 **Algorithm 3** Pessimistic policy optimization

346 **Input:** Error tolerance η , reward parameters $\tilde{\theta}_{\text{MLE}}$, perturbed data covariance $\tilde{\Sigma}_{\mathcal{D}}$, confidence set
 347 $\Theta(\tilde{\theta}_{\text{MLE}}, \lambda)$, reference vector $v \in \mathbb{R}^d$, and state distribution ρ .
 348 1: Set $\hat{J}(\pi) = \min_{\theta \in \Theta(\tilde{\theta}_{\text{MLE}}, \lambda)} \mathbb{E}_{s \sim \rho}[\langle \theta, \phi(s, \pi(s)) - v \rangle]$.
 349 2: **return** $\hat{\pi}_{\text{PE}} = \arg \max_{\pi} \hat{J}(\pi)$.

352 **Theorem 4.2.** Let $\hat{\pi}_{\text{PE}}$ be the output of Algorithm 3, and $F(n, d, \eta, \epsilon, \delta)$ be as in (3). Then with
 353 probability at least $1 - \eta$,

$$354 \text{SubOpt}(\hat{\pi}_{\text{PE}}) \leq F(n, d, \eta, \epsilon, \delta) \|(\Sigma_{\mathcal{D}} + \lambda I)^{-1} (\mathbb{E}_{s \sim \rho}[\phi(s, \pi^*(s)) - v])\|_2$$

355 where the $O(\cdot)$ hides factors depending only on L and B . In particular, when ϵ is constant and δ is
 356 inverse polynomial in n ,

$$358 \text{SubOpt}(\hat{\pi}_{\text{PE}}) \leq \tilde{O} \left(\sqrt{\frac{d}{n}} \right) \|(\Sigma_{\mathcal{D}} + \lambda I)^{-1} (\mathbb{E}_{s \sim \rho}[\phi(s, \pi^*(s)) - v])\|_2.$$

361 The proof appears in Section A.5. The factor $\|(\Sigma_{\mathcal{D}} + \lambda I)^{-1} (\mathbb{E}_{s \sim \rho}[\phi(s, \pi^*(s)) - v])\|_2$ is known as
 362 the *single concentratability coefficient*, and is a measure of how well the offline dataset covers the
 363 average feature vector $\mathbb{E}_{s \sim \rho}[\phi(s, \pi^*(s))]$. The same factor appears in Zhu et al. (2023) and other
 364 related work on offline reinforcement learning. In particular, it is standard practice to assume that
 365 the single concentratability coefficient is bounded by a constant independent of d and n .

366 The vector v is free to be chosen by the algorithm designer, and can make a significant difference
 367 in the magnitude of the bound. See Zhu et al. (2023) for an example of a simple multiarmed bandit setting where $\mathbb{E}_{s \sim \rho}[\phi(s, \pi^*(s))]$ is in the null space of $\Sigma_{\mathcal{D}}$, and hence
 368 $\|(\Sigma_{\mathcal{D}} + \lambda I)^{-1} (\mathbb{E}_{s \sim \rho}[\phi(s, \pi^*(s))])\|_2 \rightarrow \infty$ as $\lambda \rightarrow 0$. However, for the same MDP there exists a
 369 v such that $\|(\Sigma_{\mathcal{D}} + \lambda I)^{-1} (\mathbb{E}_{s \sim \rho}[\phi(s, \pi^*(s)) - v])\|_2 \leq 1$.
 370

372 It is also critical to note that the error bound is given in terms of $(\Sigma_{\mathcal{D}} + \lambda I)^{-1}$ and not
 373 $(\tilde{\Sigma}_{\mathcal{D}} + \lambda I)^{-1}$. That is, even though the pessimistic policy optimization algorithm only has
 374 access to $\tilde{\Sigma}_{\mathcal{D}}$ the error depends on the *true value* of the single concentratability coefficient determined
 375 by $\Sigma_{\mathcal{D}}$, and thus makes our results directly comparable to the non-private algorithm. This introduces
 376 additional subtleties in our proof, which do not appear in the non-private case where the pessimistic
 377 policy algorithm has access to the unperturbed $\Sigma_{\mathcal{D}}$.

378 4.2 K -WISE COMPARISONS
379380 For the case of K -wise comparisons the dataset \mathcal{D}_K consists of n tuples of the form
381 $(s^i, a_1^i, \dots, a_K^i, \sigma)$, where σ is a permutation on K elements representing a human preference rank-
382 ing. The log likelihood for the Plackett-Luce model with general K takes the form,

383
$$\ell_{\mathcal{D}_K}(\theta) = -\frac{1}{n} \sum_{i=1}^n \sum_{j=1}^K \log \left(\frac{\exp(\langle \theta, \phi(s^i, a_{\sigma_i(j)}^i) \rangle)}{\sum_{k=j}^K \exp(\langle \theta, \phi(s^i, a_{\sigma_i(k)}^i) \rangle)} \right).$$

384
385
386

387 In this case the data covariance matrix is given by
388

389
$$\Sigma_{\mathcal{D}_K} = \frac{2}{nK(K-1)} \sum_{i=1}^n \sum_{j=1}^K \sum_{k=j+1}^K ((\phi(s^i, a_j^i) - \phi(s^i, a_k^i))(\phi(s^i, a_j^i) - \phi(s^i, a_k^i))^\top)$$

390
391

392 The main subtlety in extending our main privacy result Theorem 4.1 to the setting of K -wise comparisons
393 relates to the assumptions required for objective-perturbed MLE as in Algorithm 1 to maintain
394 privacy. In particular, the loss takes the form of a sum of n terms $\ell_{\mathcal{D}_K}(\theta) = \sum_{i=1}^n \ell_{\mathcal{D}_K}^i(\theta)$, where
395 $\ell_{\mathcal{D}_K}^i$ is determined by the tuple $(s^i, a_1^i, \dots, a_K^i, \sigma_i) \in \mathcal{D}_K$. By linearity, the Hessian is given by
396 $\nabla^2 \ell_{\mathcal{D}_K}(\theta) = \sum_{i=1}^n \nabla^2 \ell_{\mathcal{D}_K}^i(\theta)$. As stated, the original privacy theorem of Kifer et al. (2012) only
397 applies under the assumption that each such term $\nabla^2 \ell_{\mathcal{D}_K}^i(\theta)$ has rank one. Unfortunately, this is
398 false for our case, as $\nabla^2 \ell_{\mathcal{D}_K}^i(\theta)$ may actually have rank as large as K^3 . Luckily, as shown in Bassily et al.
399 (2019b), the results of Iyengar et al. (2019) can be applied to allow for constant rank for
400 the individual Hessians $\nabla^2 \ell_{\mathcal{D}_K}^i(\theta)$ to achieve differential privacy. In particular, we show that we
401 can adjust α by a constant factor depending on K in order to satisfy the appropriate assumptions
402 to achieve privacy. Further, privacy for $\tilde{\Sigma}_{\mathcal{D}_K}$ output by Algorithm 2 applied to the dataset \mathcal{D}_K fol-
403 lows again from the standard Gaussian mechanism. Thus, altogether we can prove our main privacy
404 theorem.405 **Theorem 4.3.** *Let $\epsilon, \delta > 0$, and $\tilde{\theta}_{\text{MLE}_K}$ be the output of Algorithm 1 (with parameters modified by
406 a constant factor) and $\tilde{\Sigma}_{\mathcal{D}_K}$ the output of Algorithm 2, when applied to the dataset \mathcal{D}_K . Then the
407 pair $(\tilde{\theta}_{\text{MLE}_K}, \tilde{\Sigma}_{\mathcal{D}_K})$ satisfies (ϵ, δ) -differential privacy.*
408409 The proof appears in Section B.3. For the pessimistic policy optimization algorithm applied to
410 K -wise comparisons, we define a similar confidence set
411

412
$$\Theta_K(\tilde{\theta}_{\text{MLE}_K}, \lambda) = \left\{ \theta \in \Theta_B \mid \|\tilde{\theta}_{\text{MLE}} - \theta\|_{\tilde{\Sigma}_{\mathcal{D}} + \lambda I} F(n, d, \eta, \epsilon, \delta) \right\} \quad (4)$$

413

414 where $F(n, d, \eta, \epsilon, \delta)$ is given by (3). Finally, our main theorem on the performance of pessimistic
415 policy optimization follows by running Algorithm 3 on \mathcal{D}_K with confidence set $\Theta(\tilde{\theta}_{\text{MLE}_K}, \lambda)$.
416417 **Theorem 4.4.** *Let $\hat{\pi}_{PE}$ be the output of Algorithm 3 when run with input $\tilde{\theta}_{\text{MLE}_K}, \tilde{\Sigma}_{\mathcal{D}_K}$, and confi-
418 dence set $\Theta_K(\tilde{\theta}_{\text{MLE}_K}, \lambda)$. Let $F(n, d, \eta, \epsilon, \delta)$ be as in (3). Then with probability at least $1 - \eta$,*
419

420
$$\text{SubOpt}(\hat{\pi}_{PE}) \leq F(n, d, \eta, \epsilon, \delta) \|(\Sigma_{\mathcal{D}} + \lambda I)^{-1} (\mathbb{E}_{s \sim \rho} [\phi(s, \pi^*(s)) - v])\|_2$$

421

422 where the $O(\cdot)$ hides factors depending only on L , B , and K . In particular, when ϵ is constant and
423 δ is inverse polynomial in n ,
424

425
$$\text{SubOpt}(\hat{\pi}_{PE}) \leq \tilde{O} \left(\sqrt{\frac{d}{n}} \right) \|(\Sigma_{\mathcal{D}} + \lambda I)^{-1} (\mathbb{E}_{s \sim \rho} [\phi(s, \pi^*(s)) - v])\|_2.$$

426

427 The proof appears in Section B.
428429 5 PRIVATE RLHF FOR GENERAL MDPs
430431 In this section we extend our results to private RLHF in finite-horizon MDPs. In this
432 case we start with a set of trajectories i.e. length H sequences of state-action pairs $\tau^i =$

((s_1^i, a_1^i), (s_2^i, a_2^i), \dots (s_H^i, a_H^i))). Then human ratings of pairs of trajectories are made to produce a dataset $\mathcal{D}_\tau = \{\tau_0^i, \tau_1^i, y^i\}_{i=1}^n$, where $y^i = l$ for $l \in \{0, 1\}$ implies that the human preferred trajectory τ_l^i . Here τ_0^i and τ_1^i both start with the same state. Once again we assume that given a ground-truth parameter vector θ^* , the human preference ratings follow a Bradley-Terry-Luce model of the form,

$$\mathbb{P}[y = 1 \mid s, \tau_0, \tau_1] = \frac{\exp\left(\sum_{h=1}^H r_{\theta^*}(s_{h1}, a_{h1})\right)}{\sum_{j \in \{0,1\}} \exp\left(\sum_{h=1}^H r_{\theta^*}(s_{hj}, a_{hj})\right)}$$

where above $\tau_0 = ((s_{10}, a_{10}), (s_{20}, a_{20}), \dots (s_{H0}, a_{H0}))$ and $\tau_1 = ((s_{11}, a_{11}), (s_{21}, a_{21}), \dots (s_{H1}, a_{H1}))$. In this setting, the relevant data covariance matrix is given by $\Sigma_{\mathcal{D}_\tau} = \frac{1}{n} \sum_{i=1}^n \left(\sum_{h=1}^H (\phi(s_{h0}^i, a_{h0}^i) - \phi(s_{h1}^i, a_{h1}^i)) (\phi(s_{h0}^i, a_{h0}^i) - \phi(s_{h1}^i, a_{h1}^i))^\top \right)$.

As in the contextual bandit case, we run Algorithm 1 with the dataset of trajectories \mathcal{D}_τ to produce a parameter estimate $\tilde{\theta}_{\text{MLE}_\tau}$. Further, we modify Algorithm 2 to use the trajectory covariance matrix $\Sigma_{\mathcal{D}_\tau}$ given above, resulting in private trajectory covariance output $\tilde{\Sigma}_{\mathcal{D}_\tau}$. We then have the following theorem.

Theorem 5.1. *Let $\epsilon, \delta > 0$, and $\tilde{\theta}_{\text{MLE}_\tau}$ be the output of Algorithm 1 and $\tilde{\Sigma}_{\mathcal{D}_\tau}$ the output of Algorithm 2 when run on the trajectory dataset \mathcal{D} . Then the pair $(\tilde{\theta}_{\text{MLE}_\tau}, \tilde{\Sigma}_{\mathcal{D}_\tau})$ satisfies (ϵ, δ) -differential privacy.*

The proof appears in C.3. In order to utilize Algorithm 3 for the general MDP setting, one needs to consider the distribution ρ_π on states induced by the utilization of the policy π in the MDP M . In this case the pessimistic policy loss function in Algorithm 3 becomes

$$\hat{J}(\pi) = \min_{\theta \in \Theta(\tilde{\theta}_{\text{MLE}_\tau}, \lambda)} \mathbb{E}_{s \sim \rho_\pi} [r_{\tilde{\theta}_{\text{MLE}_\tau}}(s, \pi(s))].$$

Slightly abusing notation, we will refer to the use of this loss function as running Algorithm 3 with input $\rho = \rho_\pi$.

Theorem 5.2. *Let $\tilde{\theta}_{\text{MLE}_\tau}$ and $\tilde{\Sigma}_{\mathcal{D}_\tau}$ be as in Theorem 5.1. Let $\hat{\pi}_{PE}$ be the output of Algorithm 3 when run with $\rho = \rho_\pi$, and $F(n, d, \eta, \epsilon, \delta)$ as in (3). Then with probability at least $1 - \eta$,*

$$\text{SubOpt}(\hat{\pi}_{PE}) \leq F(n, d, \eta, \epsilon, \delta) \cdot \|(\Sigma_{\mathcal{D}} + \lambda I)^{-1} (\mathbb{E}_{s \sim \rho_\pi} [\phi(s, \pi^*(s)) - v])\|_2$$

where the $O(\cdot)$ hides factors depending only on L, H , and B . In particular, when ϵ is constant and δ is inverse polynomial in n ,

$$\text{SubOpt}(\hat{\pi}_{PE}) \leq \tilde{O} \left(\sqrt{\frac{d}{n}} \right) \cdot \|(\Sigma_{\mathcal{D}} + \lambda I)^{-1} (\mathbb{E}_{s \sim \rho_\pi} [\phi(s, \pi^*(s)) - v])\|_2.$$

The proof appears in Section C.

6 CONCLUSION AND OPEN PROBLEMS

We have shown that it is possible to perform reinforcement learning from human feedback with minimax optimal rates and differential privacy when rewards are linearly parametrized. The setting of linear parametrization in a fixed feature space is often used as a theoretical model in order to give qualitative insight into real-world machine learning algorithms. We view our results as qualitatively suggesting that it may be possible to simultaneously align large language models using RLHF while simultaneously protecting the privacy of the humans whose preference rankings are used during training. The ability to provide rigorous privacy guarantees can provably prevent the types of leaks of personal data described in The New York Times (2024), where a personal email address was leaked by a popular chat bot built on a large language model. The problem of privacy leaks due to LLMs is likely to only grow more serious as these models are utilized more widely, and differential privacy can be an important part of the solution.

A natural avenue for future work is to see if these theoretical results can be extended beyond linear parameterization. For instance, it would be interesting to study the setting where the rewards r lie in a general PAC-learnable function class, and then attempt to achieve statistical efficiency alongside differential privacy in such a setting.

486 REFERENCES
487

488 Josh Abramson, Arun Ahuja, Federico Carnevale, Petko Georgiev, Alex Goldin, Alden Hung, Jes-
489 sica Landon, Jirka Lhotka, Timothy P. Lillicrap, Alistair Muldal, George Powell, Adam Santoro,
490 Guy Scully, Sanjana Srivastava, Tamara von Glehn, Greg Wayne, Nathaniel Wong, Chen Yan,
491 and Rui Zhu. Improving multimodal interactive agents with reinforcement learning from human
492 feedback. *CoRR*, abs/2211.11602, 2022.

493 Achraf Azize and Debabrota Basu. When privacy meets partial information: A refined analysis of
494 differentially private bandits. In *Advances in Neural Information Processing Systems 35: Annual
495 Conference on Neural Information Processing Systems, NeurIPS*, 2022.

496 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
497 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson
498 Kernion, Tom Conerly, Sheer El Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernan-
499 dez, Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson,
500 Dario Amodei, Tom B. Brown, Jack Clark, Sam McCandlish, Chris Olah, Benjamin Mann, and
501 Jared Kaplan. Training a helpful and harmless assistant with reinforcement learning from human
502 feedback. *CoRR*, 2022.

503 Raef Bassily, Vitaly Feldman, Kunal Talwar, and Abhradeep Guha Thakurta. Private stochastic
504 convex optimization with optimal rates. *Advances in neural information processing systems*, 32,
505 2019a.

506 Raef Bassily, Vitaly Feldman, Kunal Talwar, and Abhradeep Thakurta. Private stochastic convex
507 optimization with optimal rates. *arXiv preprint arXiv:1908.09970*, 2019b.

508 Vasileios Charisopoulos, Hossein Esfandiari, and Vahab Mirrokni. Robust and private stochastic
509 linear bandits. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
510 Sabato, and Jonathan Scarlett (eds.), *International Conference on Machine Learning, ICML 2023,
511 23-29 July 2023, Honolulu, Hawaii, USA*, volume 202 of *Proceedings of Machine Learning Re-
512 search*, pp. 4096–4115. PMLR, 2023.

513 Sayak Ray Chowdhury and Xingyu Zhou. Distributed differential privacy in multi-armed ban-
514 dits. In *The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali,
515 Rwanda, May 1-5, 2023*. OpenReview.net, 2023.

516 Google DeepMind. Ai safety summit: An update on our approach to safety and
517 responsibility, Oct 2023. URL <https://deepmind.google/public-policy/ai-summit-policies/>.

518 Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. *Found. Trends
519 Theor. Comput. Sci.*, 9(3-4):211–407, 2014.

520 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating noise to sen-
521 sitivity in private data analysis. In Shai Halevi and Tal Rabin (eds.), *Theory of Cryptography,
522 Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006,
523 Proceedings*, volume 3876 of *Lecture Notes in Computer Science*, pp. 265–284. Springer, 2006.

524 European Union Data Protection Board. Ai privacy risks and mitigations large language models
525 (llms). 2025.

526 Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda Askell, Yuntao Bai, Saurav Kadavath, Ben
527 Mann, Ethan Perez, Nicholas Schiefer, Kamal Ndousse, Andy Jones, Sam Bowman, Anna Chen,
528 Tom Conerly, Nova DasSarma, Dawn Drain, Nelson Elhage, Sheer El Showk, Stanislav Fort, Zac
529 Hatfield-Dodds, Tom Henighan, Danny Hernandez, Tristan Hume, Josh Jacobson, Scott Johnston,
530 Shauna Kravec, Catherine Olsson, Sam Ringer, Eli Tran-Johnson, Dario Amodei, Tom Brown,
531 Nicholas Joseph, Sam McCandlish, Chris Olah, Jared Kaplan, and Jack Clark. Red teaming
532 language models to reduce harms: Methods, scaling behaviors, and lessons learned. *CoRR*, 2022.

533 Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization.
534 In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
535 Jonathan Scarlett (eds.), *International Conference on Machine Learning, ICML 2023, 23-29 July*

540 2023, *Honolulu, Hawaii, USA*, volume 202 of *Proceedings of Machine Learning Research*, pp.
 541 10835–10866. PMLR, 2023.

542

543 Evrard Garcelon, Vianney Perchet, Ciara Pike-Burke, and Matteo Pirotta. Local differential privacy
 544 for regret minimization in reinforcement learning. In Marc’Aurelio Ranzato, Alina Beygelzimer,
 545 Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), *Advances in Neural In-*
 546 *formation Processing Systems 34: Annual Conference on Neural Information Processing Systems*
 547 *2021, NeurIPS 2021, December 6-14, 2021, virtual*, pp. 10561–10573, 2021.

548

549 Amelia Glaese, Nat McAleese, Maja Trebacz, John Aslanides, Vlad Firoiu, Timo Ewalds, Mari-
 550 beth Rauh, Laura Weidinger, Martin J. Chadwick, Phoebe Thacker, Lucy Campbell-Gillingham,
 551 Jonathan Uesato, Po-Sen Huang, Ramona Comanescu, Fan Yang, Abigail See, Sumanth
 552 Dathathri, Rory Greig, Charlie Chen, Doug Fritz, Jaume Sanchez Elias, Richard Green, Sona
 553 Mokrá, Nicholas Fernando, Boxi Wu, Rachel Foley, Susannah Young, Iason Gabriel, William
 554 Isaac, John Mellor, Demis Hassabis, Koray Kavukcuoglu, Lisa Anne Hendricks, and Geoffrey
 555 Irving. Improving alignment of dialogue agents via targeted human judgements. *CoRR*, 2022.

556

557 Google Gemini. Gemini: A family of highly capable multimodal models. *Technical Report*,
 558 <https://arxiv.org/abs/2312.11805>, 2023.

559

560 Ruiquan Huang, Huanyu Zhang, Luca Melis, Milan Shen, Meisam Hejazinia, and Jing Yang. Fed-
 561 erated linear contextual bandits with user-level differential privacy. In Andreas Krause, Emma
 562 Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *In-*
 563 *ternational Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii,*
 564 *USA*, volume 202 of *Proceedings of Machine Learning Research*, pp. 14060–14095. PMLR, 2023.

565

566 Roger Iyengar, Joseph P Near, Dawn Song, Om Thakkar, Abhradeep Thakurta, and Lun Wang. To-
 567 wards practical differentially private convex optimization. In *2019 IEEE Symposium on Security*
 568 *and Privacy (SP)*, pp. 299–316. IEEE, 2019.

569

570 Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova, and Adam D.
 571 Smith. What can we learn privately? *SIAM J. Comput.*, 40(3):793–826, 2011.

572

573 Daniel Kifer, Adam Smith, and Abhradeep Thakurta. Private convex empirical risk minimization
 574 and high-dimensional regression. In *Conference on Learning Theory*, pp. 25–1. JMLR Workshop
 575 and Conference Proceedings, 2012.

576

577 Duncan Luce. Individual choice behavior: A theoretical analysis. In *Courier Corporation*, 2012.

578

579 Paul Luyo, Evrard Garcelon, Alessandro Lazaric, and Matteo Pirotta. Differentially private explo-
 580 ration in reinforcement learning with linear representation. *CoRR*, 2021.

581

582 Jacob Menick, Maja Trebacz, Vladimir Mikulik, John Aslanides, H. Francis Song, Martin J.
 583 Chadwick, Mia Glaese, Susannah Young, Lucy Campbell-Gillingham, Geoffrey Irving, and Nat
 584 McAleese. Teaching language models to support answers with verified quotes. *CoRR*, 2022.

585

586 Nikita Mishra and Abhradeep Thakurta. (nearly) optimal differentially private stochastic multi-arm
 587 bandits. In Marina Meila and Tom Heskes (eds.), *Proceedings of the Thirty-First Conference on*
 588 *Uncertainty in Artificial Intelligence, UAI 2015, July 12-16, 2015, Amsterdam, The Netherlands*,
 589 pp. 592–601. AUAI Press, 2015.

590

591 Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
 592 Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,
 593 Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John Schulman. Webgpt:
 594 Browser-assisted question-answering with human feedback. *CoRR*, 2021.

595

596 Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large sparse datasets. In *2008*
 597 *IEEE Symposium on Security and Privacy (sp 2008)*, pp. 111–125, 2008. doi: 10.1109/SP.2008.
 598 33.

599

600 Seth Neel and Aaron Roth. Mitigating bias in adaptive data gathering via differential privacy. In
 601 Jennifer G. Dy and Andreas Krause (eds.), *Proceedings of the 35th International Conference*
 602 *on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018*,
 603 volume 80 of *Proceedings of Machine Learning Research*, pp. 3717–3726. PMLR, 2018.

594 Dung Daniel T. Ngo, Giuseppe Vietri, and Steven Wu. Improved regret for differentially private
 595 exploration in linear MDP. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári,
 596 Gang Niu, and Sivan Sabato (eds.), *International Conference on Machine Learning, ICML 2022,*
 597 *17-23 July 2022, Baltimore, Maryland, USA*, volume 162 of *Proceedings of Machine Learning
 598 Research*, pp. 16529–16552. PMLR, 2022.

599
 600 OpenAI. Gpt-4 technical report. *CoRR*, 2023.

601
 602 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
 603 Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
 604 Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan
 605 Leike, and Ryan Lowe. Training language models to follow instructions with human feedback.
 606 In *NeurIPS*, 2022.

607
 608 Ethan Perez, Saffron Huang, H. Francis Song, Trevor Cai, Roman Ring, John Aslanides, Amelia
 609 Glaese, Nat McAleese, and Geoffrey Irving. Red teaming language models with language models.
 610 In *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing,
 EMNLP*, 2022, pp. 3419–3448. Association for Computational Linguistics, 2022.

611 R. L. Plackett. The analysis of permutations. In *Journal of the Royal Statistical Society.,* volume 24
 612 of *Series C*, pp. 193–202, 1975.

613
 614 Rajkumar Ramamurthy, Prithviraj Ammanabrolu, Kianté Brantley, Jack Hessel, Rafet Sifa, Chris-
 615 tian Bauckhage, Hannaneh Hajishirzi, and Yejin Choi. Is reinforcement learning (not) for natural
 616 language processing: Benchmarks, baselines, and building blocks for natural language policy op-
 617 timization. In *The Eleventh International Conference on Learning Representations, ICLR 2023,*
 618 *Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023.

619 Touqir Sajed and Or Sheffet. An optimal private stochastic-mab algorithm based on optimal private
 620 stopping rule. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th
 621 International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, Cali-
 622 fornia, USA*, volume 97 of *Proceedings of Machine Learning Research*, pp. 5579–5588. PMLR,
 623 2019.

624
 625 Claude E Shannon. A mathematical theory of communication. In *The Bell system technical journal.,*
 626 volume 27, pp. 379–423, 1948.

627 Roshan Shariff and Or Sheffet. Differentially private contextual linear bandits. In Samy Bengio,
 628 Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett
 629 (eds.), *Advances in Neural Information Processing Systems 31: Annual Conference on Neural
 630 Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada,*
 631 pp. 4301–4311, 2018.

632 Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec
 633 Radford, Dario Amodei, and Paul F. Christiano. Learning to summarize with human feedback.
 634 In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
 635 Lin (eds.), *Advances in Neural Information Processing Systems 33: Annual Conference on Neural
 636 Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual*, 2020.

637
 638 Jay Tenenbaum, Haim Kaplan, Yishay Mansour, and Uri Stemmer. Differentially private multi-
 639 armed bandits in the shuffle model. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N.
 640 Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), *Advances in Neural Information
 641 Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021,
 642 NeurIPS 2021, December 6-14, 2021, virtual*, pp. 24956–24967, 2021.

643 The New York Times. How strangers got my email address from chat-gpt’s model. 2024.

644
 645 Aristide C. Y. Tossou and Christos Dimitrakakis. Algorithms for differentially private multi-armed
 646 bandits. In Dale Schuurmans and Michael P. Wellman (eds.), *Proceedings of the Thirtieth AAAI
 647 Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA*, pp. 2087–
 2093. AAAI Press, 2016.

648 Aristide Charles Yedia Tossou and Christos Dimitrakakis. Achieving privacy in the adversarial
 649 multi-armed bandit. In Satinder Singh and Shaul Markovitch (eds.), *Proceedings of the Thirty-*
 650 *First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California,*
 651 *USA*, pp. 2653–2659. AAAI Press, 2017.

652 Roman Vershynin. *High-dimensional probability: An introduction with applications in data science*,
 653 volume 47. Cambridge university press, 2018.

654 Giuseppe Vietri, Borja Balle, Akshay Krishnamurthy, and Zhiwei Steven Wu. Private reinforcement
 655 learning with PAC and regret guarantees. In *Proceedings of the 37th International Conference on*
 656 *Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event*, volume 119 of *Proceedings of*
 657 *Machine Learning Research*, pp. 9754–9764. PMLR, 2020.

658 Baoxiang Wang and Nidhi Hegde. Privacy-preserving q-learning with functional noise in continu-
 659 ous spaces. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc,
 660 Emily B. Fox, and Roman Garnett (eds.), *Advances in Neural Information Processing Systems 32:*
 661 *Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December*
 662 *8-14, 2019, Vancouver, BC, Canada*, pp. 11323–11333, 2019.

663 Jeff Wu, Long Ouyang, Daniel M. Ziegler, Nisan Stiennon, Ryan Lowe, Jan Leike, and Paul F.
 664 Christiano. Recursively summarizing books with human feedback. *CoRR*, 2021.

665 Banghua Zhu, Jiantao Jiao, and Michael I Jordan. Principled reinforcement learning with human
 666 feedback from pairwise or k -wise comparisons. *arXiv preprint arXiv:2301.11270*, 2023.

667 Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul F.
 668 Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. *CoRR*,
 669 2019.

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A PROOFS FOR CONTEXTUAL BANDITS WITH PAIRWISE COMPARISONS
703704 A.1 BASIC PROPERTIES OF $\ell_{\mathcal{D}}$ AND $\Sigma_{\mathcal{D}}$
705706 We begin with the basic properties of $\ell_{\mathcal{D}}$ and $\Sigma_{\mathcal{D}}$ necessary for the analysis. Throughout we will
707 use the notation $x_i = \phi(s^i, a_1^i) - \phi(s^i, a_0^i)$. With this notation the loss function $\ell_{\mathcal{D}}$ becomes

708
$$\ell_{\mathcal{D}}(\theta) = -\frac{1}{n} \sum_{i=1}^n \log \left((\mathbf{1}[y_i = 1] \frac{1}{1 + \exp(-\langle \theta, x_i \rangle)} + \mathbf{1}[y_i = 0] \left(1 - \frac{1}{1 + \exp(-\langle \theta, x_i \rangle)}\right)) \right) \quad (5)$$

711

712 The gradient and Hessian of $\ell_{\mathcal{D}}$ are given by the following formulas.
713714 *Claim A.1.*

715
$$\nabla \ell_{\mathcal{D}}(\theta) = -\frac{1}{n} \sum_{i=1}^n \left(\mathbf{1}[y_i = 1] \frac{\exp(-\langle \theta, x_i \rangle)}{1 + \exp(-\langle \theta, x_i \rangle)} - \mathbf{1}[y_i = 0] \frac{1}{1 + \exp(-\langle \theta, x_i \rangle)} \right) x_i$$

716

717 *Claim A.2.*

718
$$\nabla^2 \ell_{\mathcal{D}}(\theta) = \frac{1}{n} \sum_{i=1}^n \frac{\exp(-\langle \theta, x_i \rangle)}{(1 + \exp(-\langle \theta, x_i \rangle))^2} x_i x_i^\top$$

719

720 *Proof.*

721
$$\begin{aligned} 722 \nabla^2 \ell_{\mathcal{D}}(\theta) &= \frac{1}{n} \sum_{i=1}^n \left(\mathbf{1}[y_i = 1] \frac{\exp(-\langle \theta, x_i \rangle)}{(1 + \exp(-\langle \theta, x_i \rangle))^2} + \mathbf{1}[y_i = 0] \frac{\exp(-\langle \theta, x_i \rangle)}{(1 + \exp(-\langle \theta, x_i \rangle))^2} \right) x_i x_i^\top \\ 723 &= \frac{1}{n} \sum_{i=1}^n \frac{\exp(-\langle \theta, x_i \rangle)}{(1 + \exp(-\langle \theta, x_i \rangle))^2} x_i x_i^\top \end{aligned}$$

724

□

725 These formulas lead directly to an upper bound on the norm of the gradient and the operator norm
726 of the Hessian of $\ell_{\mathcal{D}}$.
727728 **Lemma A.3.** *For all θ ,*
729730 1. $\|\nabla \ell_{\mathcal{D}}(\theta)\|_2 \leq 2L$
731 2. $\|\nabla^2 \ell_{\mathcal{D}}(\theta)\|_{op} \leq 4L^2$
732733 *Proof.* Observe first that $\|x_i\|_2 \leq 2L$ because $\|\phi(s, a)\| \leq L$. By Claim A.1, the gradient $\nabla \ell_{\mathcal{D}}(\theta)$ is
734 the average of n vectors each of length at most $2L$. Similarly by Claim A.2, $\nabla^2 \ell_{\mathcal{D}}(\theta)$ is the average
735 of n rank-one matrices, each of operator norm at most $\|x_i\|_2^2 \leq 4L^2$. □
736737 The proof Lemma 3.1 in Zhu et al. (2023) implies that for all $\theta \in \Theta_B$ and $v \in \mathbb{R}^d$
738

739
$$v^\top \nabla^2 \ell_{\mathcal{D}}(\theta) v \geq \gamma v^\top \Sigma_{\mathcal{D}} v = \gamma \|v\|_{\Sigma_{\mathcal{D}}}^2. \quad (6)$$

740

741 where $\gamma = 1/(2 + \exp(2LB) + \exp(-2LB))$. In particular, we have the following lemma,
742743 **Lemma A.4.** *$\ell_{\mathcal{D}}$ is strongly convex on the set Θ_B with respect to the semi-norm $\|\cdot\|_{\Sigma_{\mathcal{D}}}$. That is,
744 there exists a constant $\gamma > 0$ such that,*
745

746
$$\ell_{\mathcal{D}}(\theta + \Delta) - \ell_{\mathcal{D}}(\theta) - \langle \nabla \ell_{\mathcal{D}}(\theta), \Delta \rangle \geq \frac{\gamma}{2} \|\Delta\|_{\Sigma_{\mathcal{D}}}^2 \quad (7)$$

747

748 for all $\theta \in \Theta_B$, and Δ such that $(\theta + \Delta) \in \Theta_B$.
749750 We will need the following standard fact regarding optimizers of strongly convex functions over
751 convex sets.
752753 **Lemma A.5.** *Let $\mathcal{C} \subseteq \mathbb{R}^d$ be a convex set, let $M \in \mathbb{R}^{d \times d}$ be a positive semidefinite matrix, and let
754 $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be γ -strongly convex with respect to the seminorm $\|\cdot\|_M$ on \mathcal{C} . Let $\hat{\theta}$ be the minimum of
755 f in \mathcal{C} . Then $f(\hat{\theta}) - f(\theta) \geq \frac{\gamma}{2} \|\hat{\theta} - \theta\|_M^2$ for any point $\theta \in \mathcal{C}$.*

756 *Proof.* Follows from the second-order Taylor expansion of f and the optimality conditions for optimization over a convex set. Then (6) implies the desired result. \square
 757
 758

759 The following lemma allows us to quantify the effect of adding an ℓ_2 -norm regularizer to a function
 760 that is strongly convex with respect to a seminorm of the form $\|\cdot\|_M$.

761 **Lemma A.6.** *Let $M \in \mathbb{R}^{d \times d}$ be a positive semidefinite matrix. Suppose $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is γ -strongly
 762 convex with respect to $\|\cdot\|_M$. Then the function $g(\theta) = f(\theta) + \frac{c}{2}\|\theta\|_2^2$ is γ -strongly convex with
 763 respect to $\|\cdot\|_{M+c/2I}$.*

764
 765 *Proof.*

$$766 \quad 767 \quad 768 \quad 769 \quad 770 \quad 771 \quad 772 \quad 773 \quad 774 \quad 775 \quad 776 \quad 777 \quad 778 \quad 779 \quad 780 \quad 781 \quad 782 \quad 783 \quad 784 \quad 785 \quad 786 \quad 787 \quad 788 \quad 789 \quad 790 \quad 791 \quad 792 \quad 793 \quad 794 \quad 795 \quad 796 \quad 797 \quad 798 \quad 799 \quad 800 \quad 801 \quad 802 \quad 803 \quad 804 \quad 805 \quad 806 \quad 807 \quad 808 \quad 809$$

$$\nabla^2 g(\theta) = \nabla^2 f(\theta) + cI \succcurlyeq \gamma \left(M + \frac{c}{\gamma} I \right)$$

\square

A.2 PRIVATE COVARIANCE

We obtain privacy for the feature covariance matrix via the Gaussian mechanism.

Lemma A.7. *Let $\sigma^2 = \frac{64 \log(\frac{1}{\delta}) L^4}{\epsilon^2 n^2}$ and $G \sim \mathcal{N}(0, \sigma^2)^{d \times d}$. Then $\tilde{\Sigma}_{\mathcal{D}} = \Sigma_{\mathcal{D}} + G$ is $(\epsilon/2, \delta/2)$ -differentially private.*

Proof. For a dataset \mathcal{D}' differing in one query (s, a_0, a_1) from \mathcal{D} we have

$$\|\Sigma_{\mathcal{D}} - \Sigma_{\mathcal{D}'}\|_2 \leq \frac{1}{n} \|(\phi(s, a_1) - \phi(s, a_0))(\phi(s, a_1) - \phi(s, a_0))^\top\|_2 = \frac{1}{n} \|\phi(s, a_1) - \phi(s, a_0)\|_2^2 \leq \frac{4L^2}{n}.$$

The standard analysis of the Gaussian mechanism (Dwork & Roth, 2014) then implies that $\tilde{\Sigma}_{\mathcal{D}}$ is $(\epsilon/2, \delta/2)$ -differentially private when setting $\sigma^2 = \frac{64 \log(\frac{1}{\delta}) L^4}{\epsilon^2 n^2}$. \square

The parameter estimation error is asymptotically the same when measuring with respect to the differentially private covariance matrix $\tilde{\Sigma}_{\mathcal{D}}$.

Lemma A.8. *Let $z \in \mathbb{R}^d$. With probability at least $1 - \eta$,*

$$\|z\|_{\tilde{\Sigma}_{\mathcal{D}} + \lambda I} < \sqrt{1 + O\left(\frac{\sqrt{\log(1/\delta) \log(1/\eta)}}{\epsilon^2 n^2 \lambda}\right)} \|z\|_{\Sigma_{\mathcal{D}} + \lambda I}$$

Proof. Since $\tilde{\Sigma}_{\mathcal{D}} = \Sigma_{\mathcal{D}} + G$ for $G \sim \mathcal{N}(0, \sigma^2)^{d \times d}$,

$$\|z\|_{\tilde{\Sigma}_{\mathcal{D}} + \lambda I}^2 = \|z\|_{\Sigma_{\mathcal{D}} + \lambda I}^2 + z^\top G z \quad (8)$$

Further $z^\top G z$ is a linear function of the independent $\mathcal{N}(0, \sigma^2)$ entries of G , and thus is distributed as a Gaussian with mean 0 and variance $\sigma^2 \|z\|_2^4$. Next note that since $\Sigma_{\mathcal{D}}$ is positive semidefinite,

$$\begin{aligned} \lambda \|z\|_2^2 &= z^\top \lambda I z \\ &\leq z^\top (\Sigma_{\mathcal{D}} + \lambda I) z = \|z\|_{\Sigma_{\mathcal{D}} + \lambda I}^2. \end{aligned} \quad (9)$$

Thus by (9) and standard Gaussian concentration, with probability at least $1 - \eta$,

$$\begin{aligned} z^\top G z &< \sqrt{\log\left(\frac{1}{\eta}\right)} \sigma \|z\|_2^2 \\ &\leq \sqrt{\log\left(\frac{1}{\eta}\right)} \frac{\sigma}{\lambda} \|z\|_{\Sigma_{\mathcal{D}} + \lambda I}^2 \\ &\leq O\left(\frac{\sqrt{\log(1/\delta) \log(1/\eta)}}{\epsilon^2 n^2 \lambda}\right) \|z\|_{\Sigma_{\mathcal{D}} + \lambda I}^2 \end{aligned}$$

Plugging into (8) and taking square roots yields the desired result. \square

810 We next prove bounds relating $(\Sigma_{\mathcal{D}} + \lambda I)^{-1}$ to $(\tilde{\Sigma}_{\mathcal{D}} + \lambda I)^{-1}$.
 811

812 **Lemma A.9.** *There is a constant $C > 0$ such that for $\lambda \geq C \frac{\sqrt{d \log(1/\eta) \log(1/\delta)}}{\epsilon n}$ we have*
 813

$$814 \quad \|\tilde{\Sigma}_{\mathcal{D}} + \lambda I\|_2^{-1/2} z \leq \left\| \left(\Sigma_{\mathcal{D}} + \frac{\lambda}{2} I \right)^{-1/2} z \right\|_2 \\ 815$$

816
 817 *Proof.* Note that $\tilde{\Sigma}_{\mathcal{D}} = \Sigma_{\mathcal{D}} + G$ where $G \sim \mathcal{N}(0, \sigma^2)^{d \times d}$, for $\sigma^2 = \frac{64 \log(\frac{1}{\delta}) L^4}{\epsilon^2 n^2}$. Therefore by
 818 standard concentration bounds for the operator norm of a matrix with independent Gaussian entries
 819 Vershynin (2018) we have that with probability at least $1 - \eta$,
 820

$$821 \quad \|G\|_{\text{op}} \leq C' \sigma (\sqrt{d} + \sqrt{\log(1/\eta)}) \\ 822 \quad \leq C'' \frac{\sqrt{d \log(1/\delta) \log(1/\eta)}}{\epsilon n}.$$

823 Next set $C = 2C''$, and let $\mu = \|G\|_{\text{op}}$. Then, with probability at least $1 - \eta$,
 824

$$825 \quad \tilde{\Sigma}_{\mathcal{D}} + \lambda I = \Sigma_{\mathcal{D}} + G + \lambda I \succcurlyeq \Sigma_{\mathcal{D}} + (\lambda - \mu)I = \Sigma_{\mathcal{D}} + \frac{\lambda}{2} I.$$

826 Therefore,
 827

$$828 \quad z^\top (\tilde{\Sigma}_{\mathcal{D}} + \lambda I)^{-1} z \leq z^\top (\Sigma_{\mathcal{D}} + \frac{\lambda}{2} I)^{-1} z.$$

829 Taking square roots yields the desired result. \square
 830

831 A.3 PRIVACY OF OBJECTIVE-PERTURBED MLE

832 **Lemma A.10.** *Algorithm 1 satisfies $(\epsilon/2, \delta/2)$ -differential privacy.*
 833

834 *Proof.* For the chosen values of α, σ , and ν given in Algorithm 1, the function $\ell_{\mathcal{D}}$ satisfies the
 835 assumptions of Theorem 5.6 of Bassily et al. (2019b) which is the full version of Bassily et al.
 836 (2019a). Further note that Theorem 5.6 of Bassily et al. (2019b) is just output perturbation applied
 837 to the objective perturbation from Theorem 2 in Kifer et al. (2012). \square
 838

839 We now have all the ingredients necessary to prove our main result on differential privacy for the
 840 setting of contextual bandits with pairwise comparisons.
 841

842 *Proof of Theorem 4.1.* $\tilde{\theta}_{\text{MLE}}$ is $(\epsilon/2, \delta/2)$ -differentially private by Lemma A.10, and $\tilde{\Sigma}_{\mathcal{D}}$ is
 843 $(\epsilon/2, \delta/2)$ -differentially private by Lemma A.7. Thus, standard composition implies that the pair
 844 $(\tilde{\theta}_{\text{MLE}}, \tilde{\Sigma}_{\mathcal{D}})$ is (ϵ, δ) -differentially private. \square
 845

846 A.4 APPROXIMATION ERROR OF OBJECTIVE-PERTURBED MLE

847 We now prove an upper bound on the distance between the output of Algorithm 1 and the true MLE
 848 solution.
 849

850 **Lemma A.11.** *Let $\lambda = C \frac{\sqrt{d \log(1/\eta) \log(1/\delta)}}{\epsilon n}$, with probability at least $1 - \eta$,*
 851

$$852 \quad \|\hat{\theta}_{\text{MLE}} - \tilde{\theta}_{\text{MLE}}\|_{\tilde{\Sigma}_{\mathcal{D}} + \lambda I} \leq O \left(\frac{(d \log(1/\eta) \log(1/\delta))^{1/4}}{\sqrt{\epsilon n}} \right)$$

853 where the $O(\cdot)$ hides factors depending only on L and B .
 854

855 *Proof.* Let α, σ^2 , and b be as in Algorithm 1. First, define the ℓ_2 -regularized and objective-perturbed
 856 loss functions as follows:
 857

$$858 \quad \ell'_{\mathcal{D}}(\theta) = \ell_{\mathcal{D}}(\theta) + \alpha \|\theta\|_2^2 \quad (10)$$

$$859 \quad \tilde{\ell}_{\mathcal{D}}(\theta) = \ell_{\mathcal{D}}(\theta) + \alpha \|\theta\|_2^2 + \frac{\langle b, \theta \rangle}{n} \quad (11)$$

860 Further let $\hat{\theta}_{\text{MLE}} = \arg \min_{\theta \in \Theta_B} \ell_{\mathcal{D}}(\theta)$, $\theta' = \arg \min_{\theta \in \Theta_B} \ell'_{\mathcal{D}}(\theta)$, and $\hat{\theta} = \arg \min_{\theta \in \Theta_B} \tilde{\ell}_{\mathcal{D}}(\theta)$.
 861

864 **An upper bound for $\|\hat{\theta}_{\text{MLE}} - \theta'\|$.** By Lemma A.4 and Lemma A.6 the loss $\ell'_{\mathcal{D}}(\theta)$ is γ -strongly
 865 convex with respect to $\|\cdot\|_{\Sigma_{\mathcal{D}} + \frac{\alpha}{\gamma} I}$. Thus, Lemma A.5 implies that
 866

$$\begin{aligned} 867 \quad \ell'_{\mathcal{D}}(\hat{\theta}_{\text{MLE}}) &\geq \ell'_{\mathcal{D}}(\theta') + \frac{\gamma}{2} \|\hat{\theta}_{\text{MLE}} - \theta'\|_{\Sigma_{\mathcal{D}} + \frac{\alpha}{\gamma} I}^2 \\ 868 \quad \implies \ell_{\mathcal{D}}(\hat{\theta}_{\text{MLE}}) + \alpha \|\hat{\theta}_{\text{MLE}}\|_2^2 &\geq \ell_{\mathcal{D}}(\theta') + \alpha \|\theta'\|_2^2 + \frac{\gamma}{2} \|\hat{\theta}_{\text{MLE}} - \theta'\|_{\Sigma_{\mathcal{D}} + \frac{\alpha}{\gamma} I}^2 \end{aligned}$$

871 Observe that $\ell_{\mathcal{D}}(\hat{\theta}_{\text{MLE}}) \leq \ell_{\mathcal{D}}(\theta')$ by optimality of $\hat{\theta}_{\text{MLE}}$. Thus,

$$\begin{aligned} 872 \quad \alpha \|\hat{\theta}_{\text{MLE}}\|_2^2 &\geq \alpha \|\theta'\|_2^2 + \frac{\gamma}{2} \|\hat{\theta}_{\text{MLE}} - \theta'\|_{\Sigma_{\mathcal{D}} + \frac{\alpha}{\gamma} I}^2 \\ 873 \quad &\geq \frac{\gamma}{2} \|\hat{\theta}_{\text{MLE}} - \theta'\|_{\Sigma_{\mathcal{D}} + \frac{\alpha}{\gamma} I}^2 \end{aligned}$$

876 Rearranging and using the fact that $\|\hat{\theta}_{\text{MLE}}\|_2 \leq B$ yields

$$878 \quad \|\hat{\theta}_{\text{MLE}} - \theta'\|_{\Sigma_{\mathcal{D}} + \frac{\alpha}{\gamma} I} \leq \sqrt{\frac{2\alpha B}{\gamma}} \quad (12)$$

881 **An upper bound for $\|\hat{\theta} - \theta'\|$.** Adding a linear term has no affect on strong convexity, thus by
 882 Lemma A.4 and Lemma A.6 the function $\tilde{\ell}_{\mathcal{D}}(\theta)$ is γ -strongly convex with respect to $\|\cdot\|_{\Sigma_{\mathcal{D}} + \frac{\alpha}{\gamma} I}$.
 883 Again Lemma A.5 implies

$$\begin{aligned} 884 \quad \tilde{\ell}_{\mathcal{D}}(\theta') &\geq \tilde{\ell}_{\mathcal{D}}(\hat{\theta}) + \frac{\gamma}{2} \|\hat{\theta} - \theta'\|_{\Sigma_{\mathcal{D}} + \frac{\alpha}{\gamma} I}^2 \\ 885 \quad \implies \ell'_{\mathcal{D}}(\theta') + \frac{\langle b, \theta' \rangle}{n} &\geq \ell'_{\mathcal{D}}(\hat{\theta}) + \frac{\langle b, \hat{\theta} \rangle}{n} + \frac{\gamma}{2} \|\hat{\theta} - \theta'\|_{\Sigma_{\mathcal{D}} + \frac{\alpha}{\gamma} I}^2 \end{aligned}$$

889 By the optimality of θ' for $\ell'_{\mathcal{D}}$, we have $\ell'_{\mathcal{D}}(\hat{\theta}_{\text{MLE}}) \geq \ell'_{\mathcal{D}}(\theta')$. Hence,

$$\begin{aligned} 890 \quad \frac{\langle b, \theta' \rangle}{n} &\geq \frac{\langle b, \hat{\theta} \rangle}{n} + \frac{\gamma}{2} \|\hat{\theta} - \theta'\|_{\Sigma_{\mathcal{D}} + \frac{\alpha}{\gamma} I}^2 \\ 891 \quad \implies \langle b, \theta' - \hat{\theta} \rangle &\geq \frac{n\gamma}{2} \|\hat{\theta} - \theta'\|_{\Sigma_{\mathcal{D}} + \frac{\alpha}{\gamma} I}^2. \end{aligned}$$

896 Therefore by Cauchy-Schwarz,

$$897 \quad \|b\|_{(\Sigma_{\mathcal{D}} + \frac{\alpha}{\gamma} I)^{-1}} \|\hat{\theta} - \theta'\|_{\Sigma_{\mathcal{D}} + \frac{\alpha}{\gamma} I}^2 \geq \frac{n\gamma}{2} \|\hat{\theta} - \theta'\|_{\Sigma_{\mathcal{D}} + \frac{\alpha}{\gamma} I}^2.$$

899 Rearranging yields,

$$900 \quad \|\hat{\theta} - \theta'\|_{\Sigma_{\mathcal{D}} + \frac{\alpha}{\gamma} I} \leq \frac{2\|b\|_{(\Sigma_{\mathcal{D}} + \frac{\alpha}{\gamma} I)^{-1}}}{n\gamma}.$$

902 The largest eigenvalue of $(\Sigma_{\mathcal{D}} + \frac{\alpha}{\gamma} I)^{-1}$ is at most $\frac{\gamma}{\alpha}$ and therefore $\|b\|_{(\Sigma_{\mathcal{D}} + \frac{\alpha}{\gamma} I)^{-1}} \leq \|b\|_2 \sqrt{\frac{\gamma}{\alpha}}$.
 903 Therefore we conclude,

$$904 \quad \|\hat{\theta} - \theta'\|_{\Sigma_{\mathcal{D}} + \frac{\alpha}{\gamma} I} \leq \frac{\|b\|_2}{n} \frac{1}{\sqrt{\gamma\alpha}}.$$

907 Standard Gaussian concentration bounds then imply that with probability at least $1 - \eta$,

$$908 \quad \|\hat{\theta} - \theta'\|_{\Sigma_{\mathcal{D}} + \frac{\alpha}{\gamma} I} \leq \frac{\sigma}{n} \sqrt{\frac{2d\gamma \log\left(\frac{2}{\eta}\right)}{\alpha}}. \quad (13)$$

912 **An upper bound for $\|\tilde{\theta}_{\text{MLE}} - \hat{\theta}\|$.** For w defined as in Algorithm 1, the operator norm bound of
 913 Lemma A.3 implies

$$915 \quad \|\tilde{\theta}_{\text{MLE}} - \hat{\theta}\|_{\Sigma_{\mathcal{D}} + \lambda I} = \|w\|_{\Sigma_{\mathcal{D}} + \lambda I} \leq (4L^2 + \lambda) \|w\|_2.$$

916 Again standard Gaussian concentration bounds imply that with probability at least $1 - \eta$,

$$917 \quad \|\tilde{\theta}_{\text{MLE}} - \hat{\theta}\|_{\Sigma_{\mathcal{D}} + \lambda I} \leq (4L^2 + \lambda) \nu \sqrt{2d \log(2/\eta)}. \quad (14)$$

918 **Putting it all together.** Observe that by our choice of λ and α we have that $\lambda \leq \frac{\alpha}{\gamma}$. Hence
919 $\|v\|_{\Sigma_{\mathcal{D}} + \lambda I} \leq \|v\|_{\Sigma_{\mathcal{D}} + \frac{\alpha}{\gamma} I}$ for all $v \in \mathbb{R}^d$. The result now follows by applying the triangle inequality
920 to (12), (13), and (14), applying Lemma A.8 to upper bound $\|\cdot\|_{\Sigma_{\mathcal{D}} + \lambda I}$ by $\|\cdot\|_{\tilde{\Sigma}_{\mathcal{D}} + \lambda I}$, and plugging
921 in the values for α, β, ν , and σ from Algorithm 1. \square
922

923 **A.5 PESSIMISTIC POLICY OPTIMIZATION**
924

925 We now utilize the bounds proved earlier in this section on the estimation error of Algorithm 1 and
926 Algorithm 3 in order to complete the proof of Theorem 4.2.
927

928 *Proof of Theorem 4.2.* Let $\lambda = C \frac{\sqrt{d \log(1/\eta) \log(1/\delta)}}{\epsilon n}$. By Lemma 3.1 in Zhu et al. (2023) we have
929 that with probability $1 - \eta$,
930

$$931 \|\hat{\theta}_{\text{MLE}} - \theta^*\|_{\Sigma_{\mathcal{D}} + \lambda I} \leq O \left(\sqrt{\frac{d + \log(1/\eta)}{n}} + \lambda \right).$$

934 Thus, by Lemma A.11, Lemma A.8, and the triangle inequality, we have that with probability $1 - \eta$
935

$$936 \|\theta^* - \tilde{\theta}_{\text{MLE}}\|_{\tilde{\Sigma}_{\mathcal{D}} + \lambda I} \leq F(n, d, \eta, \epsilon, \delta) \quad (15)$$

937 where

$$938 F(n, d, \eta, \epsilon, \delta) = O \left(\sqrt{\frac{d}{n}} + \frac{(d \log(1/\eta) \log(1/\delta))^{1/4}}{\sqrt{\epsilon n}} \right).$$

940 Recalling the notation $\Theta(\tilde{\theta}_{\text{MLE}}, \lambda)$ from (2), this implies that $\theta^* \in \Theta(\tilde{\theta}_{\text{MLE}}, \lambda)$.
941

942 Next define $J^*(\pi) = \mathbb{E}_{s \sim \rho}[\langle \theta^*, \phi(s, \pi(s)) \rangle]$ and $J'(\pi) = J^*(\pi) - \langle \theta^*, v \rangle$. Let $\pi^* = \arg \min_{\pi} J^*(\pi)$. Note that by optimality of $\hat{\pi}_{\text{PE}}$ we have

$$944 \hat{J}(\hat{\pi}_{\text{PE}}) \leq \hat{J}(\pi^*) \quad (16)$$

945 Since $\theta^* \in \Theta(\tilde{\theta}_{\text{MLE}}, \lambda)$ with probability $1 - \eta$, we have

$$946 \hat{J}(\hat{\pi}_{\text{PE}}) - J'(\hat{\pi}_{\text{PE}}) = \min_{\theta \in \Theta(\tilde{\theta}_{\text{MLE}}, \lambda)} \mathbb{E}_{s \sim \rho}[\langle \theta, \phi(s, \hat{\pi}_{\text{PE}}(s)) - v \rangle] - \mathbb{E}_{s \sim \rho}[\langle \theta^*, \phi(s, \hat{\pi}_{\text{PE}}(s)) - v \rangle] \\ 947 \leq 0. \quad (17)$$

950 Then we can decompose the suboptimality for the output $\hat{\pi}_{\text{PE}}$ of Algorithm 3 as follows,

$$951 \text{SubOpt}(\hat{\pi}_{\text{PE}}) = J^*(\pi^*) - J^*(\hat{\pi}_{\text{PE}}) \\ 952 = J'(\pi^*) - J'(\hat{\pi}_{\text{PE}}) \\ 953 = (J'(\pi^*) - \hat{J}(\pi^*)) + (\hat{J}(\pi^*) - \hat{J}(\hat{\pi}_{\text{PE}})) + (\hat{J}(\hat{\pi}_{\text{PE}}) - J'(\hat{\pi}_{\text{PE}}))$$

956 By (16) and (17) the latter two differences above are less than zero, hence

$$957 \text{SubOpt}(\hat{\pi}_{\text{PE}}) \leq J'(\pi^*) - \hat{J}(\pi^*) \\ 958 = \sup_{\theta \in \Theta(\tilde{\theta}_{\text{MLE}}, \lambda)} \mathbb{E}_{s \sim \rho}[\langle \theta^* - \theta, \phi(s, \pi^*(s)) - v \rangle] \\ 959 = \mathbb{E}_{s \sim \rho}[\langle \theta^* - \tilde{\theta}_{\text{MLE}}, \phi(s, \pi^*(s)) - v \rangle] + \sup_{\theta \in \Theta(\tilde{\theta}_{\text{MLE}}, \lambda)} \mathbb{E}_{s \sim \rho}[\langle \tilde{\theta}_{\text{MLE}} - \theta, \phi(s, \pi^*(s)) - v \rangle] \\ 960 \\ 961 \\ 962 \\ 963 \quad (18)$$

964 By construction we have that for all $\theta \in \Theta(\tilde{\theta}_{\text{MLE}}, \lambda)$ the Cauchy-Schwarz inequality implies
965

$$966 \mathbb{E}_{s \sim \rho} [\langle \tilde{\theta}_{\text{MLE}} - \theta, \phi(s, \pi^*(s)) - v \rangle] \leq \|\tilde{\theta}_{\text{MLE}} - \theta\|_{\tilde{\Sigma}_{\mathcal{D}} + \lambda I} \|(\tilde{\Sigma}_{\mathcal{D}} + \lambda I)^{-1/2}(\phi(s, \pi^*(s)) - v)\|_2 \\ 967 \leq F(n, d, \eta, \epsilon, \delta) \cdot \|(\tilde{\Sigma}_{\mathcal{D}} + \lambda I)^{-1/2}(\phi(s, \pi^*(s)) - v)\|_2 \\ 968$$

969 As $\theta^* \in \Theta(\tilde{\theta}_{\text{MLE}}, \lambda)$ with probability $1 - \eta$, we have that both terms in (18) take the form
970 $\mathbb{E}_{s \sim \rho} [\langle \tilde{\theta}_{\text{MLE}} - \theta, \phi(s, \pi^*(s)) - v \rangle]$ for some $\theta \in \Theta(\tilde{\theta}_{\text{MLE}}, \lambda)$. Finally, substituting 2λ for λ and
971 applying Lemma A.9 implies the desired result. \square

972 B PROOFS FOR CONTEXTUAL BANDITS WITH K -WISE COMPARISONS
973974 We begin, as in the pairwise case, with some basic properties of the loss and covariance in the
975 K -wise setting.
976977 B.1 BASIC PROPERTIES OF $\ell_{\mathcal{D}_K}$ AND $\Sigma_{\mathcal{D}_K}$
978979 The loss for the K -wise Plackett-Luce model is given by
980

981
$$\ell_{\mathcal{D}_K}(\theta) = -\frac{1}{n} \sum_{i=1}^n \sum_{j=1}^K \log \left(\frac{\exp \left(\langle \theta, \phi(s^i, a_{\sigma_i(j)}^i) \rangle \right)}{\sum_{k=j}^K \exp \left(\langle \theta, \phi(s^i, a_{\sigma_i(k)}^i) \rangle \right)} \right).$$

982

983 We will use the following notation throughout this section,
984

985
$$x_{jk}^i = \phi(s^i, a_{\sigma_i(j)}^i) - \phi(s^i, a_{\sigma_i(k)}^i).$$

986

987 The gradient and Hessian of $\ell_{\mathcal{D}_K}$ are given by the following formulas.
988989 *Claim B.1.*

990
$$\nabla \ell_{\mathcal{D}_K}(\theta) = -\frac{1}{n} \sum_{i=1}^n \sum_{j=1}^K \sum_{k=j}^K \frac{\exp \left(\langle \theta, \phi(s^i, a_{\sigma_i(j)}^i) \rangle \right)}{\sum_{l=j}^K \exp \left(\langle \theta, \phi(s^i, a_{\sigma_i(l)}^i) \rangle \right)} \cdot x_{jk}^i.$$

991

992 *Claim B.2.*

993
$$\nabla^2 \ell_{\mathcal{D}_K}(\theta) = \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^K \sum_{k=j}^K \sum_{l=j}^K \frac{\exp \left(\langle \theta, \phi(s^i, a_{\sigma_i(j)}^i) \rangle \right)}{\sum_{l=j}^K \exp \left(\langle \theta, \phi(s^i, a_{\sigma_i(l)}^i) \rangle \right)} \cdot x_{kl}^i x_{kl}^{i\top}.$$

994

995 These formulas lead directly to an upper bound on the norm of the gradient and the operator norm
996 of the Hessian of $\ell_{\mathcal{D}_K}$.
9971001 **Lemma B.3.** *For all θ ,*
10021003 1. $\|\nabla \ell_{\mathcal{D}_K}(\theta)\|_2 \leq 2K^2 L$
1004 2. $\|\nabla^2 \ell_{\mathcal{D}_K}(\theta)\|_{op} \leq 4K^3 L^2$
10051006 *Proof.* Observe first that $\|x_i\|_2 \leq 2L$ because $\|\phi(s, a)\| \leq L$. By Claim B.1, the gradient $\nabla \ell_{\mathcal{D}_K}(\theta)$
1007 is the average of n sums of K^2 vectors each of length at most $2L$. Similarly by Claim B.2, $\nabla^2 \ell_{\mathcal{D}_K}(\theta)$
1008 is the average of n sums of K^3 rank-one matrices, each of operator norm at most $\|x_i\|_2^2 \leq 4L^2$. \square
10091010 The proof Theorem 4.1 in Zhu et al. (2023) implies that for all $\theta \in \Theta_B$ and $v \in \mathbb{R}^d$
1011

1012
$$v^\top \nabla^2 \ell_{\mathcal{D}_K}(\theta) v \geq \gamma_K v^\top \Sigma_{\mathcal{D}_K} v = \gamma_K \|v\|_{\Sigma_{\mathcal{D}_K}}^2. \quad (19)$$

1013

1014 where $\gamma_K = \frac{1}{2} \exp(-4LB)$. In particular, we have the following lemma,
10151016 **Lemma B.4.** $\ell_{\mathcal{D}_K}$ is strongly convex on the set Θ_B with respect to the semi-norm $\|\cdot\|_{\Sigma_{\mathcal{D}_K}}$. That is,
1017 there exists a constant $\gamma_K > 0$ such that,
1018

1019
$$\ell_{\mathcal{D}_K}(\theta + \Delta) - \ell_{\mathcal{D}_K}(\theta) - \langle \nabla \ell_{\mathcal{D}_K}(\theta), \Delta \rangle \geq \frac{\gamma_K}{2} \|\Delta\|_{\Sigma_{\mathcal{D}_K}}^2 \quad (20)$$

1020

1021 for all $\theta \in \Theta_B$, and Δ such that $(\theta + \Delta) \in \Theta_B$.
10221023 B.2 PRIVATE COVARIANCE FOR K -WISE COMPARISONS
10241025 We obtain privacy for the feature covariance matrix $\Sigma_{\mathcal{D}_K}$ via the Gaussian mechanism. The main
1026 point is use Algorithm 2 with the variance of the Gaussian mechanism increased by a constant factor
1027 depending only on K .
1028

1026 **Lemma B.5.** Let $\sigma^2 = \frac{64 \log(\frac{1}{\delta}) K^6 L^4}{\epsilon^2 n^2}$ and $G \sim \mathcal{N}(0, \sigma^2)^{d \times d}$. Then $\tilde{\Sigma}_{\mathcal{D}_K} = \Sigma_{\mathcal{D}_K} + G$ is $(\epsilon/2, \delta/2)$ -
 1027 differentially private.
 1028

1029 *Proof.* For a dataset \mathcal{D}'_K differing in one query $(s, a_1, \dots, a_K, \sigma)$ from \mathcal{D}_K we have
 1030

$$1032 \quad \|\Sigma_{\mathcal{D}_K} - \Sigma_{\mathcal{D}'_K}\|_2 \leq \frac{1}{n} K^3 \|x_{kl}^i x_{kl}^{i\top}\|_2 = \frac{1}{n} K^3 \|x_{kl}^i\|_2^2 \leq \frac{4K^3 L^2}{n}.$$

1033

1034 The standard analysis of the Gaussian mechanism (Dwork & Roth, 2014) then implies that $\tilde{\Sigma}_{\mathcal{D}_K}$ is
 1035 $(\epsilon/2, \delta/2)$ -differentially private when setting $\sigma^2 = \frac{64 \log(\frac{1}{\delta}) K^6 L^4}{\epsilon^2 n^2}$. \square
 1036

1037 B.3 PRIVACY OF OBJECTIVE-PERTURBED MLE FOR K -WISE COMPARISONS
 1038

1039 **Lemma B.6.** Algorithm 1 applied to $\ell_{\mathcal{D}_K}$ and \mathcal{D}_K satisfies $(\epsilon/2, \delta/2)$ -differential privacy, when α
 1040 is adjusted by a constant factor.
 1041

1042 *Proof.* First define
 1043

$$1044 \quad \ell_{\mathcal{D}_K}^i(\theta) = \sum_{j=1}^K \log \left(\frac{\exp(\langle \theta, \phi(s^i, a_{\sigma_i(j)}^i) \rangle)}{\sum_{k=j}^K \exp(\langle \theta, \phi(s^i, a_{\sigma_i(k)}^i) \rangle)} \right).$$

1045

1046 As pointed out in the discussion after Theorem 5.6 Bassily et al. (2019b), the analysis of objective
 1047 perturbation by Iyengar et al. (2019) implies that one can still achieve differential privacy when the
 1048 rank of $\nabla^2 \ell_{\mathcal{D}_K}^i(\theta)$ is larger than one. In particular, by Claim B.2,
 1049

$$1052 \quad \nabla^2 \ell_{\mathcal{D}_K}^i(\theta) = \sum_{j=1}^K \sum_{k=j}^K \sum_{l=j}^K \frac{\exp(\langle \theta, \phi(s^i, a_{\sigma_i(j)}^i) \rangle)}{\sum_{l=j}^K \exp(\langle \theta, \phi(s^i, a_{\sigma_i(l)}^i) \rangle)} \cdot x_{kl}^i x_{kl}^{i\top},$$

1053

1054 which evidently has rank at most K^3 . Thus the analysis of Iyengar et al. (2019) implies that we need
 1055 only increase α by a constant factor (depending only on K) in order to achieve (ϵ, δ) -differential
 1056 privacy. \square
 1057

1058 We now can conclude with our main privacy theorem for K -wise comparisons.
 1059

1060 *Proof of Theorem 4.3.* $\tilde{\theta}_{\text{MLE}_K}$ is $(\epsilon/2, \delta/2)$ -differentially private by Lemma B.6, and $\tilde{\Sigma}_{\mathcal{D}_K}$ is
 1061 $(\epsilon/2, \delta/2)$ -differentially private by Lemma B.5. Thus, standard composition implies that the pair
 1062 $(\tilde{\theta}_{\text{MLE}_K}, \tilde{\Sigma}_{\mathcal{D}_K})$ is (ϵ, δ) -differentially private. \square
 1063

1064 B.4 APPROXIMATION ERROR AND PESSIMISTIC POLICY OPTIMIZATION FOR K -WISE
 1065 COMPARISONS

1066 At this point, one can check that the proofs of Lemma A.8 and Lemma A.9, as well as those of all
 1067 the results in Section A.4 and Section A.5 go through, with the only change being an adjustment of
 1068 the parameters by constant factors depending only on K . Thus, following these proofs with $\Sigma_{\mathcal{D}_K}$
 1069 substituted for $\Sigma_{\mathcal{D}}$ and $\hat{\theta}_{\text{MLE}_K}$ substituted for $\hat{\theta}_{\text{MLE}}$ yields Theorem 4.4.
 1070

1071 C PROOFS FOR GENERAL MDPs
 1072

1073 C.1 BASIC PROPERTIES OF $\ell_{\mathcal{D}_\tau}$ AND $\Sigma_{\mathcal{D}_\tau}$

1074 For each tuple $(\tau_1^i, \tau_0^i, y^i) \in \mathcal{D}_\tau$ we denote the two sequences of states and actions by $\tau_1^i =$
 1075 $(s_{h1}^i, a_{h1}^i)_{h=1}^H$ and $\tau_0^i = (s_{h0}^i, a_{h0}^i)_{h=1}^H$. The loss for general MDPs is given by the log likelihood of
 1076

1080 the Bradley-Terry-Luce model applied to trajectory comparisons,
 1081

$$1082 \ell_{\mathcal{D}_\tau}(\theta) = -\frac{1}{n} \sum_{i=1}^n \log \left(\mathbf{1}[y_i = 1] \frac{\exp\left(\sum_{h=1}^H r_{\theta^*}(s_{h1}^i, a_{h1}^i)\right)}{\exp\left(\sum_{h=1}^H r_{\theta^*}(s_{h0}^i, a_{h0}^i)\right) + \exp\left(\sum_{h=1}^H r_{\theta^*}(s_{h1}^i, a_{h1}^i)\right)} \right. \\ 1083 \left. + \mathbf{1}[y_i = 0] \frac{\exp\left(\sum_{h=1}^H r_{\theta^*}(s_{h0}^i, a_{h0}^i)\right)}{\exp\left(\sum_{h=1}^H r_{\theta^*}(s_{h0}^i, a_{h0}^i)\right) + \exp\left(\sum_{h=1}^H r_{\theta^*}(s_{h1}^i, a_{h1}^i)\right)} \right).$$

1089 We will use the following notation throughout this section,
 1090

$$1091 x_i = \sum_{h=1}^H \phi(s_{h1}^i, a_{h1}^i) - \phi(s_{h0}^i, a_{h0}^i).$$

1094 The gradient and Hessian of $\ell_{\mathcal{D}_\tau}$ are given by the following formulas.
 1095

1096 *Claim C.1.*

$$1097 \nabla \ell_{\mathcal{D}_\tau}(\theta) = -\frac{1}{n} \sum_{i=1}^n \left(\mathbf{1}[y_i = 1] \frac{\exp(-\langle \theta, x_i \rangle)}{1 + \exp(-\langle \theta, x_i \rangle)} - \mathbf{1}[y_i = 0] \frac{1}{1 + \exp(-\langle \theta, x_i \rangle)} \right) x_i$$

1100 *Claim C.2.*

$$1101 \nabla^2 \ell_{\mathcal{D}_\tau}(\theta) = \frac{1}{n} \sum_{i=1}^n \frac{\exp(-\langle \theta, x_i \rangle)}{(1 + \exp(-\langle \theta, x_i \rangle))^2} x_i x_i^\top$$

1104 These formulas lead directly to an upper bound on the norm of the gradient and the operator norm
 1105 of the Hessian of $\ell_{\mathcal{D}_\tau}$.

1106 **Lemma C.3.** *For all θ ,*

- 1108 1. $\|\nabla \ell_{\mathcal{D}_\tau}(\theta)\|_2 \leq 2HL$
- 1109 2. $\|\nabla^2 \ell_{\mathcal{D}_\tau}(\theta)\|_{op} \leq 4H^2L^2$

1111 *Proof.* Observe first that $\|x_i\|_2 \leq 2HL$ because it is the sum of H vectors each of norm at most
 1112 $2\|\phi(s, a)\| \leq 2L$. By Claim C.1, the gradient $\nabla \ell_{\mathcal{D}_\tau}(\theta)$ is the average of n vectors each of length at
 1113 most $2HL$. Similarly by Claim C.2, $\nabla^2 \ell_{\mathcal{D}_\tau}(\theta)$ is the average of n vectors, each of operator norm at
 1114 most $\|x_i\|_2^2 \leq 4H^2L^2$. \square

1116 The proof Lemma 5.1 in Zhu et al. (2023) implies that for all $\theta \in \Theta_B$ and $v \in \mathbb{R}^d$

$$1117 v^\top \nabla^2 \ell_{\mathcal{D}_\tau}(\theta) v \geq \gamma_\tau v^\top \Sigma_{\mathcal{D}_\tau} v = \gamma_\tau \|v\|_{\Sigma_{\mathcal{D}_\tau}}^2. \quad (21)$$

1119 where $\gamma_\tau = \frac{1}{2 + \exp(-2HLB) + \exp(2HLB)}$. In particular, we have the following lemma,

1121 **Lemma C.4.** *$\ell_{\mathcal{D}_\tau}$ is strongly convex on the set Θ_B with respect to the semi-norm $\|\cdot\|_{\Sigma_{\mathcal{D}_\tau}}$. That is,
 1122 there exists a constant $\gamma_\tau > 0$ such that,*

$$1123 \ell_{\mathcal{D}}(\theta + \Delta) - \ell_{\mathcal{D}_\tau}(\theta) - \langle \nabla \ell_{\mathcal{D}_\tau}(\theta), \Delta \rangle \geq \frac{\gamma_\tau}{2} \|\Delta\|_{\Sigma_{\mathcal{D}}}^2 \quad (22)$$

1125 for all $\theta \in \Theta_B$, and Δ such that $(\theta + \Delta) \in \Theta_B$.

1127 C.2 PRIVATE COVARIANCE FOR GENERAL MDPs

1129 We obtain privacy for the feature covariance matrix $\Sigma_{\mathcal{D}_\tau}$ via the Gaussian mechanism. The main
 1130 point is to use Algorithm 2 with the variance of the Gaussian mechanism increased by a constant
 1131 factor depending only on H .

1132 **Lemma C.5.** *Let $\sigma^2 = \frac{64 \log(\frac{1}{\delta}) H^4 L^4}{\epsilon^2 n^2}$ and $G \sim \mathcal{N}(0, \sigma^2)^{d \times d}$. Then $\tilde{\Sigma}_{\mathcal{D}_\tau} = \Sigma_{\mathcal{D}_\tau} + G$ is $(\epsilon/2, \delta/2)$ -
 1133 differentially private.*

1134 *Proof.* For a dataset \mathcal{D}'_τ differing in one query $(s, a_1, \dots, a_K, \sigma)$ from \mathcal{D}_τ we have
 1135

$$1136 \quad \|\Sigma_{\mathcal{D}_K} - \Sigma_{\mathcal{D}'_\tau}\|_2 \leq \frac{1}{n} \|x_i x_i^\top\|_2 = \frac{1}{n} \|x^i\|_2^2 \leq \frac{4H^2 L^2}{n}.$$

1138 The standard analysis of the Gaussian mechanism (Dwork & Roth, 2014) then implies that $\Sigma_{\mathcal{D}_\tau}$ is
 1139 $(\epsilon/2, \delta/2)$ -differentially private when setting $\sigma^2 = \frac{64 \log(\frac{1}{\delta}) H^4 L^4}{\epsilon^2 n^2}$. \square
 1140

1141 C.3 PRIVACY OF OBJECTIVE-PERTURBED MLE FOR GENERAL MDPs
 1142

1143 **Lemma C.6.** *Algorithm 1 applied to $\ell_{\mathcal{D}_\tau}$ and \mathcal{D}_τ satisfies $(\epsilon/2, \delta/2)$ -differential privacy, when the
 1144 input parameters are adjusted by at most a constant factor depending only on H .*
 1145

1146 *Proof.* Similarly to the case of pairwise comparisons for contextual bandits in Lemma C.6, the
 1147 Hessian $\nabla^2 \ell_{\mathcal{D}_\tau}(\theta)$ is the sum of n rank-one terms. Thus, after adjusting the parameters by a constant
 1148 factor depending on H , Theorem 5.6 of Bassily et al. (2019b) implies that $\tilde{\theta}_{\text{MLE}_\tau}$ is $(\epsilon/2, \delta/2)$ -
 1149 differentially private. \square
 1150

1151 We now can conclude with our main privacy theorem for the general MDP setting.
 1152

1153 *Proof of Theorem 5.1.* $\tilde{\theta}_{\text{MLE}_\tau}$ is $(\epsilon/2, \delta/2)$ -differentially private by Lemma C.6, and $\tilde{\Sigma}_{\mathcal{D}_\tau}$ is
 1154 $(\epsilon/2, \delta/2)$ -differentially private by Lemma C.5. Thus, standard composition implies that the pair
 1155 $(\tilde{\theta}_{\text{MLE}_\tau}, \tilde{\Sigma}_{\mathcal{D}_\tau})$ is (ϵ, δ) -differentially private. \square
 1156

1157 C.4 APPROXIMATION ERROR AND PESSIMISTIC POLICY OPTIMIZATION FOR GENERAL
 1158 MDPs
 1159

1160 As in the case of K -wise comparisons, the proofs of Lemma A.8 and Lemma A.9, as well as those
 1161 of all the results in Section A.4 and Section A.5 go through, with the only change being an adjust-
 1162 ment of the parameters by constant factors depending only on H , L , and B . The only additional
 1163 modification necessary for the general MDP setting is to use the policy-dependent distribution on
 1164 states and actions ρ_π in the place of the fixed distribution on states ρ in the proof from Section A.5.
 1165 Thus, following these proofs with $\Sigma_{\mathcal{D}_\tau}$ substituted for $\Sigma_{\mathcal{D}}$ and $\hat{\theta}_{\text{MLE}_\tau}$ substituted for $\hat{\theta}_{\text{MLE}}$ yields
 1166 Theorem 5.2.
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187