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Abstract

In recent years, large language models (LLMs)
have achieved remarkable success across di-
verse natural language processing tasks. Nev-
ertheless, their understanding of core human
experiences remains underexplored. Current
benchmarks for LLM evaluation typically fo-
cus on a single aspect of linguistic understand-
ing, thus failing to capture the full breadth of
its abstract reasoning about the world. To ad-
dress this gap, we propose a multidimensional
paradigm to investigate the capacity of LLMs
to perceive the world through temporal, spa-
tial, emotional, and causal aspects. We conduct
extensive experiments by partitioning datasets
according to different distributions and employ-
ing various prompting strategies. Our find-
ings reveal significant differences and short-
comings in how LLMs handle temporal granu-
larity, multi-hop spatial reasoning, subtle emo-
tions, and implicit causal relationships. While
sophisticated prompting approaches can miti-
gate some of these limitations, substantial chal-
lenges persist in effectively capturing abstract
human perception. We aspire that this work,
which assesses LLMs from multiple perspec-
tives of human understanding of the world, will
guide more instructive research on the LLMs’
perception or cognition. The data and code will
be released soon.

1 Introduction

Large Language Models (LLMs) have made sig-
nificant strides in advancing natural language pro-
cessing (NLP) (Brown et al., 2020; Kojima et al.,
2022; Zhao et al., 2024; Chu et al., 2024a), show-
casing impressive abilities in understanding and
generating human-like text (Sicilia and Alikhani,
2022; Gao et al., 2023b; Minaee et al., 2024). How-
ever, their comprehension of fundamental human
experiences—such as time, space, emotion, and
causality—remains largely underexplored. Mau-
rice Merleau-Ponty, a renowned phenomenologist,

highlighted the embodied nature of perception, as-
serting that our bodily and affective experiences are
central to how we engage with the world (Merleau-
Ponty et al., 2013). He argued that consciousness
is deeply intertwined with physical existence, chal-
lenging the Cartesian dualism of mind and body.
This perspective suggests that a deeper understand-
ing of human perception requires considering the
pivotal role of the body in shaping experience.

In recent years, research has started to inves-
tigate specific facets of LLMs’ world perception.
For example, studies have examined their under-
standing of emotional scenarios through the frame-
work of appraisal and coping theory, revealing that
while LLMs’ responses generally align with hu-
man patterns in emotional appraisal and coping
dynamics, they differ in their sensitivity to key ap-
praisal dimensions (Yongsatianchot et al., 2023).
Additionally, evaluations of their causal reasoning
capabilities have uncovered challenges in handling
complex causal structures and distinguishing be-
tween correlation and causation (Liu et al., 2024,
Zhou et al., 2024). To further explore the under-
standing and cognition of the world in terms of
LLMs, we need to comprehensively evaluate their
perception in multiple dimensions, including the
dimensions emphasized by Merleau-Ponty’s phe-
nomenological sense.

This study aims to evaluate the world percep-
tion of LLMs through a multi-dimensional frame-
work that encompasses time, space, emotion, and
causality. We have elected two datasets for each
dimension and annotated them with relevant fea-
tures based on different data distributions for eval-
uation. To guide this assessment, we employ a
variety of prompting techniques, including basic,
Chain-of-Thought (CoT), few-shot, and few-shot
CoT prompting. Few-shot prompting (Dai et al.,
2022) involves providing the model with a few
examples to help guide its responses, while CoT
(Wei et al., 2022) prompting encourages the model



to generate intermediate reasoning steps, thereby
improving its problem-solving abilities.

The main contributions of this study are as fol-
lows. (1) We introduce a novel framework for eval-
uating LLMs’ world perception across four critical
dimensions: time, space, emotion, and causality
from the perspective of data distribution. (2) By
employing a variety of prompting strategies, this
study explores how different prompting methods
influence the performance of LLMs across the four
dimensions. (3) We reveal the strengths and lim-
itations of current LL.Ms in handling various rea-
soning tasks, providing valuable insights for future
LLM development and applications.

2  WorldInsight BENCH

2.1 Benchmark Design

WorldInsight BENCH is designed to assess the ca-
pacity of large language models (LLMs) to under-
stand the world at the abstract level of human cogni-
tion and perception. Given the multifaceted nature
of perceptual domains, we structure our evaluation
into four critical dimensions: time, space, emotion,
and causality. Each of these dimensions is exam-
ined through two specialized datasets. Based on
different data distributions, we analyze how LLM
interprets and processes the world.

Temporal dimension focuses on the models’ abil-
ity to understand and reason about the passage of
time and the relationships between temporal events.
Spatial dimension centers on the model’s capacity
to grasp and interpret spatial relationships. Emo-
tion recognition evaluates the model’s understand-
ing of human emotions exposed to various scenes,
and its ability to discern emotional states, inten-
sity, and the underlying psychological dynamics.
Causal perception examines the models’ ability
to infer causal relationships, distinguish between
correlation and causation, and reason in counterin-
tuitive causal scenarios.

2.2 Challenges

Complex reasoning tasks in natural language pro-
cessing mirror real-world cognitive challenges.
They require not only language comprehension but
also intricate logical inference, recognition of im-
plicit relationships, and the integration of multidi-
mensional information.

Temporal Logic and Event Sequencing Analyz-
ing temporal information involves understanding
event ordering, duration, frequency, and typical

time. This analysis requires managing several tem-
poral relationships concurrently, inferring implicit
logic, and constructing accurate event sequences
(Dong et al., 2024). The challenge increases when
multiple time frames or ambiguous temporal cues
are involved.

Complex Spatial Relationship Inference Infer-
ring spatial relationships entails identifying both
direct and indirect cues that determine the relative
positions of entities (Hu et al., 2024). This process
becomes more difficult as the number of objects
and the complexity of their arrangements grow.
Emotion Analysis with Implicit Context De-
tecting emotion in text demands sensitivity to sub-
tle emotional nuances, including sarcasm and im-
plicit sentiments (Wang and Luo, 2023). The
task will be further complicated when texts con-
vey mixed sentiments or when broader situational
factors exist in text (Zhang et al., 2024).

Complex Causal Relationship Analysis Under-
standing causal relations in text involves tracking
multiple events and their interactions (Lyu et al.,
2022), particularly when causal links are implied
rather than explicitly stated. Moreover, Large mod-
els can be confused when reasoning about counter-
factual scenarios.

2.3 Datasets

In the face of the above challenges, we selected two
data sets for each dimension. And every dataset is
segmented into different data distributions.

2.3.1 Temporal Cognition

TempNLI (Thukral et al., 2021) contains time-
related premise-hypothesis pairs annotated with
logical labels: Entailment, Contradiction, and Neu-
tral. It focuses on evaluating temporal reasoning
across two primary dimensions, including time
granularity and Language complexity.

MCTACO (Zhou et al., 2019) evaluates the mod-
els’ reasoning ability from multiple temporal rela-
tionship types, comprising time frequency, order,
duration, stationarity, and typical event time. It
presents short contexts followed by temporal rea-
soning questions with multiple valid answers.

2.3.2 Spatial Intelligence

Multi-hop Space (Li et al., 2024) evaluates the
models’ capability in reasoning about complex
spatial relationships through multiple steps. The
dataset presents scenarios of increasing complexity,
ranging from 1-hop to 10-hop, in which the model



must determine the relative position between two
objects based on a series of intermediate spatial
relationships.

SpaceTrans (Comsa and Narayanan, 2023) aims
to assess the capability of LLMs to process spa-
tial transfer relations conveyed through spatial
prepositions in diverse contexts, including physical,
metaphorical, and mixed scenarios. The dataset
specifically examines whether models can distin-
guish between cases where spatial transitivity holds
(in physical scenarios) versus cases where it breaks
down (in metaphorical or hybrid contexts). This
helps evaluate LLMs’ understanding of how spatial
reasoning rules apply differently across contexts.

2.3.3 Emotional Insight

Yelp-5 (Zhang et al., 2015) contains restaurant re-
views labeled with emotional intensity ratings from
0-4, where O indicates strong negative sentiment
and 4 indicates strong positive sentiment. The
reviews discuss various aspects of dining experi-
ences, including food quality, service, ambiance,
and value. This dataset enables assessment of mod-
els’ ability to detect nuanced emotional expressions
in long-form consumer feedback.

IronyEval (Van Hee et al., 2018) comprises so-
cial media posts labeled as either sarcastic or non-
sarcastic. Each post is classified as "explicit" and
"implicit" based on whether it contains overt sar-
casm markers or contextual cues that suggest sar-
casm. This dataset tests models’ capability to iden-
tify both overt and subtle forms of sarcastic expres-
sion common in social media communication.

2.3.4 Causal Comprehension

ECI (Gao et al., 2023a) consists of sentences con-
taining event pairs, where the model must identify
whether one event causes another. The dataset is
categorized into man-made causality and natural
causality based on different types of causal fea-
tures. Additionally, the textual distance between
event entities within the context is classified into
close-range and far-range.

FantasyR (Srivastava et al., 2023) presents sce-
narios involving fictional elements like magic, su-
pernatural beings, and fantastical situations, and
is categorized based on the explicitness of causal
relationships depicted in the text. It tests whether
LLMs can maintain causal coherence and apply
consistent logic within hypothetical worlds.

2.4 Evaluation Metrics

In this work, we utilize a range of evaluation met-
rics to assess the performance of LLMs on chosen
tasks. The evaluation metrics include accuracy, F1-
score, exact match, tolerant accuracy, etc. However,
due to space limitations, we only report the accu-
racy in the main body, while the detailed scores for
other metrics are provided in the Appendix B.

3 Approaches
3.1 Model Setup and Implementation

We evaluate a range of widely used LLLMs, encom-
passing both open-source and proprietary models.
The open-source models included in this evalua-
tion range from the Llama 2 series to Llama 3.3
(Touvron et al., 2023; Grattafiori et al., 2024), with
parameter sizes varying from 8B to 70B. Addition-
ally, the proprietary GPT-40 model is also assessed.

The open-source models (Llama 2, Llama 3,
Llama 3.1 and Llama3.3) are deployed locally
across 8 A800s, while the GPT-40 model is ac-
cessed via APIL. For all experiments, we configure
the temperature to 0.0 to enforce greedy decoding
(Prabhu, 2024).

3.2 Evaluation Methods

In this study, we evaluate the LLLMs using four dis-
tinct prompting strategies: Basic prompting, Chain
of Thought (CoT) prompting, and their combina-
tion with Few-Shot setting. The aim is to inves-
tigate the competence of LLMs to understand the
world in an abstract dimension, and whether differ-
ent prompting methods can enhance their relevant
reasoning.

Basic Prompting, also denoted as zero-shot (ZS),
provide the model with specific instructions for
each task. And in the few-shot (FS) setting, the
model receives several QA pairs as demonstra-
tions to guide the responses to new questions. The
prompts P can be formulated as follows

Pys = {INST} ® {Q} (1

n
Prs = {INST} P({Qi} @ {A:}) @ {Q} @
i=1
CoT Prompting builds on standard prompting by
adding guidance for reasoning steps. In specific,
we append a reasoning trigger "Let’s think step by
step" to encourage the model to break down the
problem into logical steps before providing an an-
swer. In the few-shot CoT setting, we also provide



Method | Temporal | Spatial | Emotional | Causal | Overall Score

| TempNLI MCTACO | M-h Space  SpaceT | Yelp-5 IronyEval | ECI  FantasyR | Temp. Spat. emot. Causal Avg.
GPT-40 63.50 53.75 48.75 88.25 61.50 79.00 35.25 80.00 58.63 6850 7025 57.63 63.75
+COT 70.25 60.00 42.50 89.50 59.25 77.50 59.00 81.00 65.13  66.00 68.38 70.00 67.38
+FS 70.25 57.25 46.75 89.25 63.50 90.25 64.75 81.00 63.75 68.00 76.88 72.88  70.38
+FS CoT 70.75 74.50 52.75 92.00 60.25 81.75 66.50 91.50 72.63 7238 71.00 79.00 73.75
Llama-3.3-70b 53.50 54.75 36.00 82.50 57.75 74.00 58.50 75.50 54.13 5925 65.88 67.00 61.56
+COT 70.00 63.25 48.25 87.25 58.00 76.25 54.25 80.00 66.63 67.75 67.13 67.13 67.16
+FS 71.25 58.50 54.75 85.75 57.50 82.25 31.75 79.50 64.88 70.25 69.88 55.63 65.16
+FS CoT 74.50 72.75 45.00 88.75 55.75 78.50 59.50 83.00 73.63 6688 67.13 7125 69.72
Llama-3.1-70b 50.50 49.25 38.00 86.25 58.25 73.75 43.75 78.50 49.88 62.13 66.00 61.13 59.78
+COT 64.50 57.50 44.00 87.50 52.75 72.50 55.50 76.00 61.00 6575 62.63 6575 63.78
+FS 63.00 44.75 50.00 87.50 56.50 83.00 55.75 84.00 5388 6875 69.75 69.88 65.56
+FS CoT 72.00 66.50 44.00 91.75 53.50 78.50 68.00 82.00 69.25 67.88 66.00 75.00 69.53
Llama-3-70b 50.25 33.25 25.25 79.75 55.00 72.50 70.25 63.00 41.75 5250 63775 66.63  56.16
+COT 48.25 31.25 31.75 85.25 57.75 73.75 49.75 76.50 39.75 5850 6575 63.13 56.78
+FS 51.75 48.75 40.25 83.00 59.50 81.00 28.75 76.00 5025 61.63 7025 52.38 58.63
+FS CoT 70.75 47.00 28.25 89.00 56.25 79.50 56.50 77.00 58.88 58.63 67.88 66.75 63.03
Llama-3-8b 46.25 37.75 23.25 71.50 46.25 59.75 71.00 70.50 42.00 4738 53.00 70.75 5328
+COT 41.00 18.25 15.50 75.00 50.75 56.75 47.25 70.50 29.63 4525 5375 58.88  46.88
+FS 50.00 41.50 20.25 70.50 51.75 73.75 38.75 61.50 45775 4538 6275 50.13  51.00
+FS CoT 50.75 28.50 22.75 84.00 57.50 77.50 46.75 74.00 39.63 5338 67.50 6038 55.22
Llama-2-70b 45.50 24.50 22.75 65.25 29.50 61.50 19.00 61.50 35.00 44.00 4550 4025 41.19
+COT 47.25 19.25 25.25 76.00 59.50 52.00 45.75 75.00 3325 50.63 5575 6038 50.00
+FS 48.50 14.25 21.00 63.25 50.25 70.00 21.50 64.00 31.38 42,13 60.13 4275  44.09
+FS CoT 45.75 23.00 24.25 85.50 58.50 69.50 38.75 73.00 3438 54.88 64.00 5588 52.28
Llama-2-13b 49.50 7.75 9.00 51.50 47.25 42.00 31.75 66.50 28.63 3025 4463 49.13 38.16
+COT 47.00 13.25 17.75 75.00 39.50 49.50 38.75 64.50 30.13 4638 4450 51.63 43.16
+FS 44.25 15.50 12.50 57.25 33.00 57.75 21.25 66.50 29.88 34.88 4538 43.88 38.50
+FS CoT 49.00 15.00 23.50 71.25 60.50 71.50 37.75 60.50 32.00 47.38 66.00 49.13 48.63

Table 1: Comprehensive experimental results over 8 datasets.

demonstrations with CoT to guide the reasoning
process. The prompt formulations are as follows

Pegr = {INST} & {Q} @ {TRIG} ~ (3)

Peorrs = (INST}D(Qul e 1R (A))(Q)

=1

“)
4 Experimental Results

4.1 Zero-shot Results

Our evaluation of LLMs on the four dimensions of
abstract reasoning, covering time, space, emotion,
and causality, revealed significant performance dif-
ferences (Table 1). In the zero-shot setting, GPT-40
achieved the highest overall average score (63.8%),
outperforming all open-source models across ev-
ery dimension. This superior performance is likely
due to its training on large-scale data, which en-
ables it to capture complex patterns and implicit
structures across diverse domains. However, in
causal reasoning, GPT-40 underperformed relative
to most models in the Llama series. This is possibly
because of its focus on lexical co-occurrence and
syntactic structures, rather than understanding the
causal nature of events.

Open-source models generally excelled in emo-
tional and causal reasoning tasks but struggled with

temporal and spatial inference. Spatial reasoning
showed the greatest variability among models, with
GPT-40 averaging 68.5% versus Llama-2-13b’s
30.3%. This disparity likely reflects the advan-
tage of more advanced models that benefit from
larger, more diverse training sets, which facilitate
the learning of finer, more abstract spatiotemporal
relationships.

4.2 The Impact of CoT Prompting

CoT prompting brings improvements that are spe-
cific to both the models and the dimensions. For
temporal reasoning, it significantly enhances larger
and more advanced models. GPT-40 demonstrates
an improvement of 6.5%, while Llama-3.3-70b
exhibits a 12.5% increase. Llama-2 and Llama-
3, however, show marginal benefits of 1.5%, or
even negative effects, indicating that earlier models
may lack sufficient autonomous reasoning capabili-
ties. In spatial reasoning, Llama models generally
benefited from CoT, especially in multi-hop tasks.
Llama-3.3 improved by 12.3%, as step-by-step rea-
soning helped with multi-hop inference tasks. Emo-
tional reasoning and spatial reasoning exhibited
mixed trends, with GPT-40 and Llama-3.1 show-
ing performance declines in emotional reasoning
but improvements in spatial reasoning, reflecting
task-specific dependencies.



4.3 Few-shot Setting and CoT Prompting

The utilization of few-shot has consistently en-
hanced performance. The average score of GPT-
40 increases from 63.8% to 70.4%, while Llama-
3.1-70b rises by 5.8%, and only the Llama-3-8b
model shows a slight performance decline. For
these abstract dimensions, the temporal, spatial,
and emotional reasoning capabilities of the LLMs
are improved to varying degrees. Causal reason-
ing improvements are more pronounced in GPT-4o,
but remains limitation across most Llama models.
It suggests that GPT-40 shows exceptional poten-
tial in learning causal inference from instances in
the few-shot scenario, whereas most Llama models
still struggle to extract patterns of causal reasoning
from examples.

The examples of CoT stabilize reasoning.
Combining few-shot with CoT yields the high-
est benefits, with the causal reasoning of GPT-40
jumping by 21.3%, and the emotional reasoning
of Llama-2-13B improving by 21.4%. Notably,
few-shot CoT prompting mitigated the decline in
reasoning capabilities caused by CoT in some mod-
els. Notably, few-shot CoT prompting mitigated
the decline in reasoning capabilities caused by CoT
in some models. This suggests that relying solely
on CoT may lead to misleading results when the
model lacks sufficient context. The addition of few-
shot prompting provides more task-relevant infor-
mation and guidance, helping the model understand
diverse reasoning steps, avoiding over-reliance on
single reasoning path, and thus enhancing the accu-
racy of causal reasoning.

5 Analysis and Discussion

We conduct a further analysis of the capacity of
various large language models to comprehend the
world primarily through the lens of data distribu-
tion.

5.1 Evaluation on Temporal Inference

LLMs underperform in large temporal granu-
larities, with the performance worsening even
more at mixed granularities. As illustrated in Fig-
ure 1, LLMs generally show higher performance
on small time scales (e.g., 9 a.m.) than on large
time scales (e.g., after May 1939). This trend could
be attributed to the fact that the greater symbolic
complexity involved in large time scales expressing
introduces ambiguity and require more context to
understand.

The capacity various in different LLMs when
dealing with different language complexities.
Notably, GPT-40, Llama-3.3, and Llama-3.1 ex-
hibit superior performance on simple time expres-
sion tasks, whereas LLlama-3 and Llama-2 demon-
strate greater proficiency on compound or multi-
ple time expression tasks. The observed perfor-
mance disparity can likely be attributed to differ-
ences in the models’ pre-training corpora, particu-
larly in terms of their exposure to temporal expres-
sions. Additionally, variations in model architec-
ture, including the design of attention mechanisms
that capture relationships across different positions
within the input sequence, may also contribute to
this discrepancy.

Iterations have made the models show a
steady improvement in handling event ordering
issues. From llama2 to llama3.3, the model per-
formance has continued to rise, which is exhibited
in Figure 2. This is due to the inclusion of more
diverse and complex data, along with enhanced
attention mechanisms and the resulting better con-
textual understanding.

The model is limited in its ability to make au-
tonomous choices, but few-shot and CoT can
bring significant improvements. Due to the char-
acteristics of typical time tasks, the model needs
to autonomously select possible time nodes as the
correct answer. In the zero-shot scenario, the per-
formance of the LLMs is limited. Few-shot and
CoT bring more examples or structured contexts
to the models, which opens the models’ ability to
make autonomous choices.

5.2 Evaluation on Spatial Reasoning

Most models are not yet adequate for multi-hop
spatial reasoning tasks involving complex rela-
tionships between multiple objects. In n-hop
tasks (Figure 3), when n > 4, the average accuracy
of LLMs is always below 30% under all methods.
Although methods such as few-shot or CoT will
bring some performance improvements when n is
small, this improvement disappears when n >= 6.
In addition, in 10-hop tasks, few-shot and CoT
even become introduced noise and can no longer
help LLMs summarize and process more complex
spatial relationships.

Metaphorical relations make it difficult for
models to maintain consistent performance.
Within the SpaceTrans task (Figure 4), LLMs gen-
erally perform well on physical spatial relations,
achieving high accuracy in all prompting strategies.
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Figure 1: Performance of the LLMs on TempNLI. The dataset is divided into Large, Small and Cross-granularity
according to the time granularity, and clasified into Simple and Compound based on the language complexity.
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Figure 2: Performance of the LLMs on MCTACO. This dataset is grouped into Event Duration, Event Duration,

Frequency, Stationarity and Typical Time.
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Figure 3: Average performance of all the LLMs on
Multi-hop Space, ranging from 1-hop to 10-hop.

However, when it comes to metaphorical spatial
prepositions, LL.Ms perform poorly. And the im-
provement brought by few-shot or CoT does not
catch up with the former. On physical-metaphorical
composite spatial relations, models like Llama-2-
13b and Llama-2-70b show lower accuracy, indicat-
ing that the mixture of different types of semantic
relations may confuse the model and negatively
affect its performance.

Few-shot CoT prompting can significantly im-
prove the performance of LLMs in processing
composite spatial semantic relations. Although
LLMs are not satisfactory in processing metaphors
or physical-metaphor compound relations, the per-
formance of LLMs can be greatly improved when
using Few-shot CoT prompting. In particular, the
improvement in physical-metaphor compound re-
lations exceeds that of pure metaphorical relations.
The phenomenon shows that although the complex-

ity of the task increases with mixed relations, the
models benefit from the additional context provided
by the few-shot examples and their thought chains.
This helps them improve the ability to distinguish
between both physical and metaphorical relations,
thereby better handling the related tasks.

5.3 Evaluation on Emotional Reasoning

LLMs have the ability to judge the polarity of
sentiment, but they are often erratic at a fine
granularity. For most models, the dark colors
of the confusion matrix are mainly on the diago-
nal, and confusion mainly occurs on adjacent grids.
This demonstrates that LLMs can effectively judge
the sentiment tendency of the text but will bring
deviation to refined scoring. And CoT Few-shot
(Figure 5) will even deepen the confusion in most
models, indicating that LLMs still have difficulty
learning firm scoring criteria from examples.
LLMs encounter notable difficulties in detect-
ing subtle implicit irony. As shown in Figure 6,
the performance of LLMs on the explicit and im-
plicit irony datasets reveals significant variations,
with most models performing better on explicit
irony, where clear markers are present. For in-
stance, GPT-40 achieved 97.5% accuracy in detect-
ing explicit irony, but the performance dropped to
66.9% for implicit irony. This performance gap
suggest that while large language models are ef-
fective at identifying clear markers of irony, they
struggle to discern more subtle, context-dependent
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Figure 4: Performance of the LLMs on SpaceTrans, which is segmented into physical, metaphorical, and mixed
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Figure 5: Confusion Matrix of GPT-40 in Yelp-5 utiliz-
ing CoT Few-shot prompting. The confusion matrices
for all the models are demonstrated in Appendix C.

GPT-40 97.5 66.94
+FS 96.8 85.95
Llama-3.3-70b 98.7 57.85
+FS 96.2 73.14
Llama-3.1-70b 98.7 57.44
+FS 98.7 72.73
Llama-3-70b 96.8 56.61
+FS 96.8 70.66
Llama-3-8b 98.7 34.30
+FS 97.5 58.26
Llama-2-70b 100.0 37.45
+FS 99.4 50.83
Llama-2-13b 100.0 9180 Explicit
+FS 100.0 30.17 Implicit

Accuracy (%)

Figure 6: Performance on IronyEval, which is devided
into explicit and implicit expressions.

instances of implicit irony.

5.4 Evaluation on Causal Reasoning

The LLMs have roughly equivalent causal iden-
tification ability for two categories of events. Ta-
ble 2 suggests that large language models (LLMs)
such as GPT-40 and the Llama series demonstrate a
similar level of accuracy in identifying causal rela-
tionships across different event categories, whether
"natural" or "man-made." This indicates that the
models can recognize and classify causal events in
both contexts without significant bias.

Current LL.Ms exhibit notable limitations in
identifying causal relations within close textual

Model Event Type Text Distance
Natural ~ Man-made close Far

GPT-40 65.45 66.67 62.11  72.25
Llama-3.3-70b 61.82 59.13 56.83  63.01
Llama-3.1-70b 70.91 67.54 66.52  69.94
Llama-3-70b 49.09 57.68 52.86  61.27
Llama-3-8b 50.91 46.09 4449  49.71
Llama-2-70b 38.18 38.84 36.56  41.62
Llama-2-13b 40.00 37.39 39.21 3584

Table 2: Performance comparison of different models
on ECI with few-shot and CoT setting.

distance. It may be attributable to rapid context
shifts and token proximity. This underscores the
need for enhanced contextual awareness and im-
proved disambiguation of closely related events.

Most models can make accurate inferences
in counterintuitive scenes. However, this doesn’t
conclude that the model is capable of human-like
thinking, because the model may just replace the
subjects or concepts based on the large number
of reasoning paradigms learned. Just as although
few-shot CoT can bring an 11.5% improvement to
GPT-40, CoT and few-shot can only bring a 1%
improvement when acting alone.

CoT and Few-shot have shown significant
promise in eliminating the deviation of the
model’s causal reasoning ability between explicit
and implicit data. From Llama-2 to Llama-3, CoT
and few-shot settings each demonstrates different
debiasing effects (Table 3). These approached to-
gether contribute to a more balanced reasoning
approach, enabling the models to perform consis-
tently across distinct causal reasoning tasks, thus
reducing the performance discrepancies.

5.5 Summary of Findings

LLMs exhibit glaring deficiencies in processing
large and mixed temporal granularities, complex
linguistic phenomena, and metaphorical relations,
exposing critical limitations in current generative
models. While iterative improvements enhance



Method GPT-40 Llama-3.3-70b Llama-3.1-70b Llama-3-70b Llama-3-8b Llama-2-70b Llama-2-13b
basic 8.79 -6.92 -4.51 -10.77 -8.02 -8.68 -3.19
CoT 3.74 -6.59 4.84 -3.19 -3.63 3.30 2.53

FS -0.66 -2.97 -4.84 4.84 -2.09 1.76 -3.19

FS CoT 0.11 0.22 -5.71 -4.62 -11.43 -1.98 7.36

Table 3: Applying different prompting methods has a significant effect in helping the model eliminate explicit and
implicit biases in FantasyR. The smallest absolute value of the bias for each model is marked in bold.

event ordering and causal reasoning, many mod-
els still falter in multi-hop spatial reasoning, de-
tecting subtle irony, and fine-grained sentiment
analysis. Few-shot and chain-of-thought prompt-
ing significantly boost performance in autonomous
decision-making, mixed spatial semantic process-
ing, and aligning explicit and implicit causal rea-
soning, highlighting promising directions for future
development.

6 Related Work

Recent research has increasingly focused on ex-
ploring the intersections between LLMs and hu-
man cognitive processes. Cognitive psychology
techniques reveal that, although task-specific esti-
mates from LLMs can sometimes align with hu-
man behavior, these models exhibit substantial
variability across tasks (Niu et al., 2024; Chu
et al., 2024b; Suresh et al., 2023), and their induc-
tive reasoning—exemplified by GPT-3 and Chat-
GPT—differs markedly from human patterns (Lam-
prinidis, 2024). These findings highlight both the
promise and limitations of LLMs as cognitive mod-
els, indicating a need for further research.
Temporal reasoning has been explored via graph-
based paradigms that use synthetic datasets and
CoT symbolic reasoning (Xiong et al., 2024; Yuan
et al., 2024), as well as through synthetic and hier-
archical benchmarks that reveal performance gaps
between LLMs and human (Fatemi et al., 2024;
Chu et al., 2024b). Moreover, knowledge induction
frameworks have been applied to improve tempo-
ral QA, with dedicated QA datasets and prompt
engineering strategies addressing specific vulnera-
bilities (Wei et al., 2023; Chen et al., 2024).
Spatial reasoning investigations have shown that
prefix-based prompts can enhance zero-shot per-
formance on 3D trajectory tasks (Sharma, 2023),
while studies in visual question answering and navi-
gation highlight performance variability and ethical
concerns (Dugar and Asesh, 2023; Yamada et al.,
2024). Qualitative assessments in commonsense
spatial tasks and tic-tac-toe reveal further limita-
tions, with chain-of-symbol prompting notably im-

proving spatial planning (Cohn, 2023; Liga and
Pasetto, 2023; Cohn and Hernandez-Orallo, 2023).
Evaluations of emotional understanding (Lei et al.,
2024; Sun et al., 2023; Fei et al., 2023) indicate that
LLMs generate appropriate yet not fully human-
aligned responses (Huang et al., 2024; Wang et al.,
2023; Li et al., 2023a; Balamurali et al., 2023),
while studies in causal reasoning demonstrate accu-
rate causal argument generation alongside persis-
tent failure modes (Kiciman et al., 2024; Jin et al.,
2024; Vashishtha et al., 2023; Cai et al., 2024; Li
et al., 2023b; Tang et al., 2025; Hobbhahn et al.,
2022).

Distinguished from other works, our study exam-
ines the capacity of LLMs to comprehend the world
from the perspective of data distribution, leveraging
secondary annotations of comprehensive data.

7 Conclusion

Although large language models demonstrate ex-
ceptional language processing capabilities, they
continue to face significant challenges in capturing
complex human experiences. Variability in perfor-
mance across time, space, emotion, and causality
indicates that even advanced models have limita-
tions. Enhanced prompting methods, such as chain-
of-thought and few-shot approaches, provide im-
provements but do not fully resolve these issues.
These insights offer a clear direction for future re-
search focused on strengthening abstract reasoning
in language models.

Limitations

This work evaluates LLMs from multiple abstract
perspectives of human perception of the world, re-
lying on the selected datasets, which may not fully
reflect the diversity of human perceptions of the
world. Although prompting strategies can enhance
performance, they do not address the inherent gaps
in the model architecture and training data. Future
research should investigate more diverse datasets
and more comprehensive evaluation methods to
gain deeper insights into how to strengthen the ab-
stract reasoning capabilities of the models.
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A Dataset Instances

Here are the examples from the utilized datasets in
Figure 7- 10.

B Full Results

This study evaluates model performance across
eight datasets, each using specific scoring metrics
to assess different aspects of effectiveness. For the
TempNLI, SpaceTrans, and IronyEval datasets, ac-
curacy (Acc) is used. The MCTACO, Yelp-5, and
ECI datasets are evaluated with exact match (EM),
F1 score, and tolerant accuracy (ToAcc). The Fanta-
syR dataset includes Acc along with implicit (Acc-
1) and explicit (Acc-e) accuracy variants to capture
nuanced performance. The full experimental re-
sults can be found in Table 4.

C Confusion Matrices on Yelp-5

The confusion matrices for all the LLMs on Yelp-5
are illustrated in Figure 11.

TempNLI
Premise: Before 3 days, the grocery store will close.
Hypothesis: The grocery store will close after 54 hours.
Label: Neutral

MCTACO
C: It seemed strange to him, but not as strange as it was to see Linda the brown
chicken in the living room last spring.
Q: How often does he find a wild animal in his house?

Options: he sees a wild animal in his house once every five years; he finds a wild
animal in his house once a day; he finds a wild animal in his house once every five
years; he finds a wild animal in his house once every five seconds.

Label: yes; No; Yes; no

Figure 7: Data instances in temporal datasets.

Multi-hop Space
C1: D presents left to N.
C2:Disat P's 3 o'clock.
C3: Sand P are parallel, and S is on top of P.
C4: S is positioned in the front right corner of M.
Q: What is the relation of the agent S to the agent N?
Label: upper-left

SpaceTrans
Premise: The painting is above the garden.
The garden is behind my need for a hobby.
Statement: The painting is behind my need for a hobby.
Label: no

Figure 8: Data instances in temporal datasets.
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Yelp-5
C: Arriba's was not as good as they used to be, apparently the original owner
passed away and its under new ownership. Won't be coming back here again.
Label: 1 (0~5)

IronyEval
C: Waking up with a pounding headache is just what | need for this final.
Label: 1

Figure 9: Data instances in temporal datasets.

ECI
C: The Third Cod War concluded in 1976, with a highly favourable agreement for
Iceland ; the United Kingdom conceded to a Icelandic exclusive fishery zone after
threats that Iceland would withdraw from NATO , which would have forfeited
NATO 's access to most of the GIUK gap , a critical anti-submarine warfare during
the Cold War .
Events: threats, conceded
Label: 1

FantasyR
C: In a world filled with magic, your family is scorned for generations for wasting
time with science. Your mother was a botanist. Your father, a biologist. Mages can
heal by touching. You developed steam locomotion when mages teleport. Your
family has never trusted magic. One day, also known as the Fateful Day, the magic
stops working. A mage is suspended in the air by magic when the Fateful Day
arrives.
Q: Can the mage touch the ground anymore?
Label: yes

Figure 10: Data instances in temporal datasets.
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Figure 11: All the LLMs are assessed with confusion matrices on Yelp-5. The horizontal axis represents the
predicted value, and the vertical axis represents the true value. The color depth on the diagonal determines the
ability of models to explicit classify.

14



	Introduction
	WorldInsight BENCH
	Benchmark Design
	Challenges
	Datasets
	Temporal Cognition
	Spatial Intelligence
	Emotional Insight
	Causal Comprehension

	Evaluation Metrics

	Approaches
	Model Setup and Implementation
	Evaluation Methods

	Experimental Results
	Zero-shot Results
	The Impact of CoT Prompting
	Few-shot Setting and CoT Prompting

	Analysis and Discussion
	Evaluation on Temporal Inference
	Evaluation on Spatial Reasoning
	Evaluation on Emotional Reasoning
	Evaluation on Causal Reasoning
	Summary of Findings

	Related Work
	Conclusion
	Dataset Instances
	Full Results
	Confusion Matrices on Yelp-5

