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Abstract

Data selection is essential for training deep learning models. An effective data
sampler assigns proper sampling probability for training data and helps the model
converge to a good local minimum with high performance. Previous studies in
data sampling are mainly based on heuristic rules or learning through a huge
amount of time-consuming trials. In this paper, we propose an automatic swift
sampler search algorithm, SS, to explore automatically learning effective samplers
efficiently. In particular, SS utilizes a novel formulation to map a sampler to a low
dimension of hyper-parameters and uses an approximated local minimum to quickly
examine the quality of a sampler. Benefiting from its low computational expense,
SS can be applied on large-scale data sets with high efficiency. Comprehensive
experiments on various tasks demonstrate that SS powered sampling can achieve
obvious improvements (e.g., 1.5% on ImageNet) and transfer among different
neural networks. Project page: https://github.com/Alexander-Yao/Swift-Sampler.

1 Introduction
Training data plays a pivotal role in deep learning tasks. The sampling probability of data in the
training process can significantly influence the performance of the learned model. A set of works
[Jiang et al., 2019, Katharopoulos and Fleuret, 2018, Needell et al., 2014, Johnson and Guestrin, 2018,
Han et al., 2018, Hu et al., 2024] have demonstrated improvements in model training by sampling
data according to different features and under different rules. These studies reveal that how to sample
examples during training is nontrivial and sampling data in a totally uniform way is not always the
optimal choice.

Previous works on data sampling strategy include two main categories: human-defined rules and
learning-based methods. Some works [Han et al., 2018, Jiang et al., 2019, Katharopoulos and Fleuret,
2018, Hacohen and Weinshall, 2019, Kumar et al., 2010] proposed manually designed rules, such as
setting the sampling probability of training examples with loss values larger than a threshold as zero,
or making the sampling probability proportional to the gradient norms. Such human-defined rules are
designed for specific tasks and hardly adapts to different scenarios, because optimal sampling strategy
varies among different tasks and data sets. Learning-based methods [Fan et al., 2017, Jiang et al.,
2017, Ren et al., 2018] explore an automatic way to assign sampling probability to a given learning
task, including sample-based and differential based methods. Sample-based methods take advantage
of deep reinforcement learning (DRL) [Fan et al., 2017] to model the training process of the target
model as an environment and use a DRL model to learn the optimal sampling strategy during training.
These methods need hundreds of replays of the training process and require too much searching cost
to be applied on large-scale data sets, e.g., ImageNet [Russakovsky et al., 2015]. Differential based
methods [Ren et al., 2018, Shu et al., 2019] assume a completely clean meta dataset and use the inner
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product between the gradients of training data and meta data to sample or reweight training data. The
problem is that the clean meta data is not guaranteed to be available for all scenarios, and complex
changes are made in the training process.

To explore an automatic way of sampler search, we focus on improving sample-based search methods
as they do not require extra meta data and impose no change in the training process when applying
the obtained sampler. Typically, a sample-based method repeatedly uses an agent (e.g., Bayesian
Optimization or Deep Reinforcement Learning) to sample a sampler and evaluate the objective
function value of the sampled sampler to update the agent. There are three challenges in designing a
sample-based method for automatic sampler search: (1) High dimension. A sampler is defined by
a vector of sampling probabilities of all instances in the training set. Therefore, the complexity of
searching the optimal sampler in a sample-based way increases exponentially with the number of
training instances. (2) Sharpness. As great difference exists among gradients of various instances in
the training set, sampling probability of some instances has a significant impact on the performance
of resulted models. Such property results in the sharpness of the objective function for samplers and
harms the efficiency of the agent’s learning. (3) Costly evaluation. The agent seeks a sampler that
achieves high performance when used to train the model from scratch. Thus the evaluation of a single
sampler causes high computational expense (e.g., training 100 epochs from scratch on ImageNet).

In this paper, we aim at addressing the three problems listed above. For the high dimension problem
(1), we define sampler as a function mapping the feature of the training data to their sampling
probabilities and formulate the search space of sampler as a family of composite functions, which
are represented by a small number of hyper-parameters. The amount is much less than the number
of training data. Moreover, our formulation of the sampler has a flexible expression covering any
features used in previous works and is adaptive to a range of data sets. We carefully choose the
features and mapping functions so that the number of parameters to be learned for the sampler is
only 10. To relieve the sharpness problem (2) of the objective function, we modify the objective
function by designing a transform function to smooth the landscape of the objective function. This
transform function balances the amounts of gradient norm in different areas of the definition domain
of the objective function. For the costly evaluation problem (3), we use a fast approximation method
for learning the network, which is much less expensive than training from scratch. Integrating the
designs above, we propose an automatic swift sampler learning (SS) method, where we choose naive
Bayesian Optimization (BO) [Brochu et al., 2010, Klein et al., 2016, Snoek et al., 2012] as the agent.
The swift here means our formulation of the sampler has a very small volume of parameters, and our
method has a high speed of sampler learning, like a swift, the small and fast bird.

We apply SS to training neural networks with various sizes, including ResNet-18 and SE-ResNext-
101, with training data from different data sets including ImageNet [Russakovsky et al., 2015],
CIFAR10 and CIFAR100 [Krizhevsky et al., 2009]. Experiments demonstrate obvious improvements
in the performance compared with the baseline and other methods, e.g., 1.5% on ImageNet. During
the search process, SS optimizes much faster compared with previous automatic methods, and the
learned sampler consists of only 10 hyper-parameters. Further analysis shows that the sampler found
by SS transfers well among neural networks with various architectures and sizes. The contributions
of this paper are summarized as follows:

• We formulate a search space of sampler consisting of a new family of functions. The family
of functions is decided by a small number of parameters and also has flexible expression.
The reduced dimension facilitates the application of SS on large-scale data sets.

• To improve the efficiency of the optimization of the sampler, we smooth the sharp objective
function of the sampler search problem with a carefully designed transform function.

• We use an approximation method to approximate the local minima of the sampler efficiently
tried by the agent. This method makes SS fast and capable of improving the performance of
models on large data sets.

2 Related Work
Hard-wired Methods Hard-wired methods have fixed sampling rules and focus on a few particular
problems, e.g., imbalance, noise and training speed up. Each problem needs respective hand-crafted
rules and the designs are based on specific understandings of data. Thus, these methods hardly
generalizes over a wide range of data sets. In [Han et al., 2018], the sampling method focuses
on denoising problem, and neglects instances with loss values larger than a gradually increasing
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threshold. It needs prior knowledge on the ratio of noisy instances in the data set. For imbalance, [He
and Garcia, 2009, Maciejewski and Stefanowski, 2011, Lin et al., 2017, Wang et al., Li et al., 2022]
propose methods to boost the training of imbalanced data by optimizing the sampling or weighting
(a ’soft’ sampling way) of instances, and develop different features as the signals of imbalance.
Importance sampling [Hacohen and Weinshall, 2019, Kumar et al., 2010, Ma et al., 2017, Graves
et al., 2017] speeds up the training process by giving larger sampling probabilities to instances with
higher loss values. But it does not fit noisy data sets. Curriculum learning (CL) methods [Hacohen
and Weinshall, 2019, Kumar et al., 2010, Jiang et al., 2015] are also related to our work. It shows that
some particular sampling orders benefit training process.

Learning-based Methods Like recently proposed automated loss function search [Li et al., 2019a]
and augmentation policy search methods [Cubuk et al., 2018, Lin et al., 2019, Tian et al., 2020],
many recent works also explore automatically learning how to optimize data sampling. They can
achieve generalization on various scenarios. [Fan et al., 2017] proposes a RL-based framework to
optimize the data sampling in different training stages under the setting of mini-batch SGD. It models
the RL agent as the teacher to guide the training of the student model. This method requires multiple
runs of training from scratch, thus does not fit large data sets such as ImageNet. [Li et al., 2019b]
proposes a similar RL-based framework to reweight training instances, which can be viewed as a soft
sampling method. Some other related works [Ren et al., 2018, Shu et al., 2019] propose differential
based methods. It makes use of the gradients of loss of a completely clear meta dataset, sampling or
weighting the training datum via the inner product between their gradients and meta data gradients.
In summary, the methods in [Fan et al., 2017, Li et al., 2019b] require lots of parameters with high
computational costs and needs extra data [Ren et al., 2018, Jiang et al., 2017, Shu et al., 2019]. In
comparison, our approach is fast, requires few parameters but no extra data.

Bayesian Optimization Bayesian Optimization (BO) has shown its great potentials in optimizing
the hyper-parameters of learning tasks. The method in [Snoek et al., 2012] first introduces BO
to optimize the hyper-parameters of various tasks, including SVM and regression. FABOLAS
[Klein et al., 2016] constructs a BO-based method to simultaneously optimizes computation cost and
information gain w.r.t hyper-parameters of SVM and training data size. It is at most 100 times faster
than previous methods. Recently, NASBOT [Kandasamy et al., 2018] explores the usage of BO in
neural architecture search by mathematically defining the distance between two architectures. The
distance enables the design of kernel for BO.

In our approach, the use of Bayesian Optimization is not our contribution, although naive Bayesian Op-
timization is used for solving our problem. Therefore, the recent advances in Bayesian Optimization
can be also used for our approach.

3 Method

We introduce SS in this section. First, we describe the problem of sampler search in a bilevel
optimization framework, consisting of the outer loop and the inner loop. The outer loop uses an agent
to learn to sample the sampling probabilities of training instances and optimizes the performance
of the target model when trained under the sampled sampling probabilities. And the inner loop
minimizes the loss of model parameters on the training set, with sampling probabilities given by
the outer loop. Further, we formulate the sampler, define its search space, and design a transform
function to smooth the curvature of the objective function of the outer loop. Then, we introduce our
agent for the learning of sampling in the outer loop. Finally, we propose a highly efficient method to
approximate the local minima of given sampling probabilities rather than training from scratch.

3.1 Problem Formulation
A common practice of training deep neural networks (DNN) is using mini-batch SGD to update the
network parameters. The batches are formed by uniformly sampling from the training set. Sampling
methods usually take different settings where the sampling probability of training instances are
optimized [Hacohen and Weinshall, 2019, Kumar et al., 2010, Jiang et al., 2015, Ma et al., 2017,
Jiang et al., 2019, Katharopoulos and Fleuret, 2018, Needell et al., 2014, Johnson and Guestrin,
2018]. In this work, we focus on finding a static sampling probability which guides the parameters of
target DNN to the local optimum with the best performance on the validation set. We formulate this
problem as follows.
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For a target task, e.g., image classification, its training set and validation set are respectively denoted
by Dt and Dv , and the parameters of the target model are denote by w. Each sample xi for xi ∈ Dt

has its corresponding sample probability τ (xi). We define the probability function τ as sampler.
We formulate the optimization of τ as a bilevel problem.

The inner loop learns the network parameters that minimize the expected loss on the target task under
the sampling probability τ given by the outer loop. Denoted by w∗ (τ) the local minima of network
parameters trained with loss L(x;w) and sample probability τ , w∗ (τ) is obtained as follows:

w∗ (τ) = argminEx∼τ [L(x;w)] . (1)

The outer loop uses an agent to search for the best sampler τ . Specifically, the network with
parameters w∗ (τ) obtained from the inner loop is used for searching the sampler τ that has the best
score P (Dv;w

∗ (τ)) on validation set Dv , where P (D;w) is the performance score of parameters
w on a given data set D and P (Dv;w

∗ (τ)) is our objective function. The outer loop problem is
described as:

τ∗ = argmax
τ

P (Dv;w
∗ (τ)) . (2)

Both the outer loop and the inner loop are difficult to solve. The outer loop is a high-dimension
optimization problem, where the optimized sampler τ (xi) has a dimension equal to the number
of training data. In addition, the objective function P (Dv;w

∗ (τ)) for the agent of the outer loop
encounters a sharpness problem. Further, given a τ from the outer loop, the inner loop needs to train
from scratch with τ to get the local minima w∗ (τ), which involves high computational cost. We
introduce our solutions to the three problems hereinafter.

3.2 Sampler Formulation
The complexity of the optimization problem increases exponentially with the dimension of τ , which
is the number of training data. However, modern hyper-parameter optimization methods like BO can
hardly handle more than 30 hyper-parameters [Brochu et al., 2010]. Hence we reduce the dimension
of τ by a simple formulation. The high dimension comes from independence among training samples.
However, we assume that the optimal sampler lies in a more compact subdomain. Instead, we restrict
that the difference in the sampling probabilities of two training instances is bounded by their distance
in the feature space, e.g., the (loss, entropy) space.

Example As an intuitive example, we consider cropped images in ImageNet [Russakovsky et al.,
2015] dataset as samples and define a one-dimension feature space where the feature is the loss value.
Cropped images with the highest loss values have small distance between each other in this feature
space. Further, as we show in Sec. 4, most of them are noisy instances, which should all be assigned
sampling probabilities near 0. It means they also have small sampling probabilities difference.

Mathematically, the intuition above can be formulated as constraining samplers to satisfy Lipschitz
condition:

|τ (xi)− τ (xj)| ≤ C · ∥f (xi)− f (xj)∥2 , (3)

where ∥f (xi)− f (xj)∥2 is the L2 distance in the space of feature vector f and C is a real positive
number.

Dimension Reduction With the above consideration, we define τ (x) as a multivariate continuous
function of the features of instance x, described by

τ (x) = F (f1 (x) ,f2 (x) , ...fN (x)) , (4)

where F is a multivariate continuous function and fi (x) is i-th feature of example x (i = 1, ..., N ).
The choices of features have been explored in a wide range, e.g., loss in [He and Garcia, 2009,
Maciejewski and Stefanowski, 2011, Jiang et al., 2019, Katharopoulos and Fleuret, 2018], and density
in [Fan et al., 2017]. Our choice of features is discussed in the latter sections.

We consider a family of F which have flexible expression and low dimension. F are formed by:
(1) a univariate piecewise linear function H defined on the period [0, 1], (2) a univariate transform
function T which balances the density of the gradient of instances along the period [0, 1] to smooth the
objective function of the agent and (3) an multivariate aggregation function G (x) which aggregates
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information from all features f :

F (f1 (x) ,f2 (x) , ...,fN (x)) = H (T (G (x))) , (5)

G (x) =

N∑
i=1

ci · f i (x), (6)

where ci are real-value coefficients aggregating features and T maps the input G (x) to a value in
the closed interval [0, 1]. The definition of T and the explanation of why it smooths the objective
function of the agent are given in the latter part of this section. To aggregate different features in a
unified scale [0, 1], we use cumulative distribution function cdf of the features:

f i (x) = cdf (fo
i (x)) , (7)

where fo
i denotes the original numerical value of features, e.g., cross entropy loss in classification

with range [0,∞).

The G (x) in Eqn. 6 takes a linear aggregation form and projects the whole feature space to a single
dimension, which distinguishes the importance of different instances to the greatest extent. H is a
continuous piecewise linear function because it can fit a wide range of continuous function when the
number of segments is large enough.

With such definition, F is decided by parameters in functions H , T , and G, much smaller than the
number of the training data.

τ defined by Eqn. 4, Eqn. 5, Eqn. 6, and Eqn. 7 satisfies Lipschitz condition when cdf and transform
T are continuous in close definition domains.

Search Space For the univariate piecewise linear function H , we define e0, e1, ..., eS as the positions
of endpoints, and define v0,v2, ...,vS as the values on the endpoints. e0 and eS are fixed as 0 and 1.
Then the feasible domain (search space) of the sampler τ is:

es ≤ ej , vs ∈ [0, 1] , ∀ 0 ≤ s ≤ j ≤ S, (8)
ci ∈ [−1, 1] , ∀ 1 ≤ i ≤ N . (9)

In our implementation, S is 4 and N is 2, resulting in totally only 10 hyper-parameters.

Smooth the Objective Function When the curvature of objective function P (Dv;w
∗ (τ)) is too

large, i.e., with a sharp landscape, agents like BO would need more trials to find the maxima [Brochu
et al., 2010]. Such sharpness problem exists in our scenario. This sharpness problem is caused by the
imbalance between the gradients of training instances lying in different segments of the piecewise
linear function H . For the function H whose input is t(x) = T (G(x)) and one of its segment
[ei−1, ei], if the instances x with t(x) lying the interval [ei−1, ei] have much larger gradients than
the other intervals, then a little variation of the value vi or vi−1 will cause a large difference on
the overall gradient from the whole training data, which results in large difference in the objective
function P . For example, the worst trained 10% instances of ImageNet contains over 90% gradients
norm of the whole set. It means the curvature of objective function P around τ∗ is likely to be sharp
and the value of P is only distinguishable in a little sub-domain of τ . If the maxima τ∗ has such
sharpness problem, the efficiency of the agent would be reduced as we show in Sec. 4.4. To smooth
the objective function, we define the cumulative gradient function cgf :

T (u) = cgf (u) =

∑
xi∈Dt,G(xi)<=u grad (xi)∑

xi∈Dt
grad (xi)

, (10)

where grad (xi) is the gradient norm of xi. It can be easily proved that any two intervals in the
domain of H with equal lengths contain the same amount of total gradient norm, as cgf (u) itself
is the cumulative gradient norm. This design brings the search on sampler optimization problem
with high efficiency. We conduct experiment in Sec. 4.4 to verify the necessity of objective function
smoothing via comparing T = cgf and T = cdf .

Static vs. Varying Features In our formulation, τ (x) is a static function, which restricts that the
features do not change in the training process as well. This means a pre-trained model should be used
to produce features for Dt rather than the model currently being trained. The reason is that a model
being trained often forgets and re-memorizes part of Dt [Toneva et al., 2018], resulting in jitters and
noises for the features like loss or entropy. Thus we empirically find that fixed features are more
effective than varying features for learning samplers.
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3.3 Optimization
Bayesian Optimization For simplicity, we define z = [e0, ..., eS ,v0, ...,vS , c1, ..., cN ], and replace
P (Dv;w

∗ (τ)) with P (z) in the latter discussion because τ and z are one-to-one mapped. In the
outer loop, to find maxima z∗ of P with as few trials as possible, we explore the advantage of
Bayesian Optimization [Brochu et al., 2010]. Bayesian Optimization is an approach to optimize
objective functions that take a long time (e.g., hours) to evaluate. It is best-suited for optimization
over continuous domains with the dimension less than 30, and tolerates stochastic noise in function
evaluations, which are exactly characteristics of our problem. Recent works proved the potential
of Bayesian Optimization (BO) on hyper-parameter tuning of DNN [Klein et al., 2016, Snoek
et al., 2012]. Given the black-box performance function P : Z → R, BO aims to find an input
z∗ = argmaxz∈Z P (z) that globally maximizes P (z).

BO requires a prior p (P ) over the performance function, and an acquisition function ap : Z → R
quantifying the utility of an evaluation at any z, depending on the prior p. With these ingredients,
the following three steps are iterated [Brochu et al., 2010]: (1) find the most promising zt+1 ∈
argmax ap (z) by numerical optimization; (2) evaluate the expensive and often noisy function
Qt+1 ∼ P (zt+1)+N

(
0, σ2

)
and add the resulting data point (zt+1, Qt+1) to the set of observations

Ot = (zj , Qj), j = 1, ..., t; (3) update the prior p (P |Ot+1) and acquisition function ap(P |Ot+1) with
new observation set Ot+1. Typically, evaluations of the acquisition function a are cheap compared to
evaluations of P such that the optimization effort is negligible.

Gaussian Processes Gaussian processes (GP) are a prominent choice for p (P ), thanks to their
descriptive power and analytic tractability [Brochu et al., 2010]. Formally, a GP is a collection of
random variables, such that every finite subset of them follows a multivariate normal distribution.
To detail the distribution, a GP is identified by a mean function m (often set to m (z) = 0), and a
positive definite covariance function (kernel) k (often set to RBF kernel [Brochu et al., 2010]). Given
history observation Ot, the posterior p (P |Ot) follows normal distribution according to the above
definition, with mean and covariance functions of tractable, analytic form. It means we can estimate
the mean and variance of P on a new point zt+1 by marginalize over p (P |Ot). The mean and the
variance denote the expected performance of and the potential of zt+1.

Acquisition Function The role of the acquisition function is to trade off expected performance and
potential by choosing next tried point zt+1. Popular choices include Expected Improvement (EI),
Upper Confidence Bound (UCB), and Entropy Search (ES) [Brochu et al., 2010].

In our method, following the popular settings in [Brochu et al., 2010], we choose GP with RBF kernel
[Brochu et al., 2010] and a constant m function whose value is the mean of performance P (zt) of all
tried samples. For the choice of acquisition function, we use UCB in all our experiments.

Algorithm 1 SS

1: Inputs: Eo (BO steps), Ef (fine-tune epochs), Dt, Dv , f , wshare, BO (the agent)
2: CandidateSamplers = ∅
3: Initialize(BO)
4: for s = 1 : Eo do
5: τ = BO.sample()
6: for e = 1 : Ef do
7: w = TrainForOneEpoch(wshare,τ ,f ,Dt)
8: end for
9: P (τ) = P(w,Dv)

10: BO.Update(τ ,P (τ))
11: CandidateSamplers = CandidateSamplers ∪ {τ}
12: end for
13: Outputs: CandidateSamplers.Top

3.4 Local Minima Approximation

The critical problem of the inner loop is how to get w∗ (τ) at an acceptable computational cost.
Training from scratch is too computationally expensive to be used on a large data set. Hence, we
design a method to obtain an approximation of w∗ (τ) at a limited cost.
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Table 1: SS results on CIFAR10 and CIFAR100 comparisons with other methods. The number pair X
/ Y means the Top-1 accuracy on CIFAR10 is X% and on CIFAR100 is Y%.

Methods Noise Rate
0 0.1 0.2 0.3 0.4

Baseline 93.3 / 74.3 88.9 / 67.5 81.8 / 60.7 74.7 / 53.1 64.9 / 45.1
REED 93.4 / 74.3 89.4 / 68.1 83.4 / 62.5 77.4 / 55.2 68.6 / 50.7
MN 93.4 / 74.2 90.3 / 69.0 86.1 / 65.1 83.6 / 59.6 76.6 / 56.9
LR 93.2 / 74.2 91.0 / 70.1 89.2 / 68.3 88.5 / 63.1 86.9 / 61.3
SS 93.8 / 75.2 91.7 / 71.2 90.4 / 69.2 89.7 / 64.4 88.0 / 62.3

First, we focus on the main properties of w∗ (τ): (1) minimizing the expected loss on the train set
with sampler τ , (2) undergoing a complete training process. We assume that weight vectors w with
the two properties are accurate enough to approximate w∗ (τ) so that we can use this approximated
w∗ (τ) to learn τ . Our method initializes the parameters w for different samplers τ with the same
parameters wshare which is learned from a complete training process to meet property (2). After
this special initialization, we fine-tune wshare with the given sampler. For property (1), we refer
to recent works on the memorization of DNN [Toneva et al., 2018, Kirkpatrick et al., 2017], which
shows DNN tends to fit the data currently used for training and forget historical training instances.
As an analogy, our experiments show that the parameters fine-tuned from wshare under τ converge
to the same loss level as w∗ (τ) trained from scratch and with enough iterations.

The shared starting point wshare is the weight trained from scratch with uniform sampling. Experi-
ments in Sec. 4.4 demonstrate the effectiveness of our approximation method.

The complete process of SS is in Algorithm 1. We use BO to explore Eo samplers. In each step,
BO agent samples the candidate sampler τ . We use the candidate sampler τ to produce probabilities
with the pre-trained feature f for sampling training data. The sampled training data are then used for
fine-tuning the network weight. After the fine-tuning for Ef epochs, BO agent is updated with the
candidate sampler τ and its performance on fine-tuned parameters, then it produces more accurate
estimations of the better sampler to facilitate the next sampling.

4 Experiment

In this section, we choose three classification and face recognition tasks as benchmarks to illustrate
the effectiveness of SS: CIFAR10, CIFAR100, ImageNet, and MS1M, including data sets with both
small and large sizes. The ablation experiments are also included in Appendix 4.4

In all experiments, the optimization step Eo is fixed as 40, and the fine-tune epochs Ef are set to
5. We set the number of segments S as 4 in all cases and utilize 8 NVIDIA A100 GPUs to ensure
efficient processing. We tuned these hyper-parameters by separately increasing them until negligible
improvements are obtained on ImageNet. The features and shared start points wshare are from the
pre-trained models with the same architectures as the target models. We norm the sum τ to 1 when
use it to sample. For the choice of features, we consider the following two features: (1) Loss: Training
loss is frequently utilized in curriculum learning, hard example mining and self-paced method. It is a
practicable discriptor and is usually viewed as signals of hardness or noise. For our classification
benchmarks, we use the Cross Entropy (CE) loss. (2) Renormed Entropy: The entropy of predicted
probabilities is also widely used in current methods. To decouple it from CE loss, we delete the
probability of target label from the probability vector, and renorm the rest ones in the vector to 1.
Then we use the resulted renormed vector to calculate the entropy:

Er (xi) = −
∑
j ̸=yi

pj∑
j ̸=yi

pj
log

(
pj∑

j ̸=yi
pj

)
, (11)

where pj denotes the predicted probability of the j-th class. A small Er results from a peak in the
distribution over the rest vector, which often implies a misclassification, while a large Er implies a
hard instance.

4.1 CIFAR Experiment

CIFAR10 and CIFAR100 are two well-known classification tasks. We explore the performance of
our method with the target model ResNet18 on both the original data sets and the data sets with four
ratios of noisy labels, 10%, 20%, 30%, and 40%. When generating noisy labels, we random sample
instances in each class with the given ratios and uniformly change their labels into the rest incorrect
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Table 2: Comparison of Top-1/5 accuracy of SS and baseline on ImageNet ILSVRC12. “MB" ,“RN"
and “SRN" means MobileNet ResNet and SE-ResNext. SS(self), SS(R18) and SS(R50) means the
the sampler is searched on the target model, ResNet-18 and ResNet-50. All results are averaged over
5 runs, and the deviations are omitted because they are all less than 0.10. It is observed that SS has
consistent improvements on Top-1 Acc on all cases, and the performance gain on Top-5 is relatively
less because we only use Top-1 Acc as the objective of sampler search.

Model MB-v2 RN-18 RN-50 RN-101 SRN-50 SRN-101 Swin-T Swin-B
Baseline 70.4 / 89.7 70.2 / 89.4 76.3 / 93.1 78.0 / 93.8 78.6 / 93.9 78.9 / 94.4 81.2 / 95.5 83.5 / 96.5
SS(self) 71.9 / 90.1 71.6 / 89.8 77.7 / 93.0 79.3 / 94.0 79.8 / 94.2 80.0 / 94.6 82.1 / 95.6 84.3 / 96.7
SS(R18) - 71.6 / 89.8 - - 79.5 / 94.2 79.8 / 94.5 - -
SS(R50) - - 77.7 / 93.0 - 79.6 / 94.2 79.8 / 94.5 - -
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Figure 1: A demonstration of the effectiveness of our SS. (a) The density of noisy instances of
noise 40% on CIFAR10 in (Loss,Er) space. (b) The sampling probability of sampler from SS. (a)(b)
show that SS accurately distinguishes the noisy instances and discards them.

classes. We set batch size as 128 and the L2 regularization as 1e-3. The training process lasts 80
epochs, and the learning rate is initialized as 0.1 and decays by time 0.1 at the 40-th and 80-th epoch.
We adopt mini-batch SGD with Nesterov and set the momentum as 0.9.

To fully explore the effectiveness of our method, we compare them with both heuristic and learning-
based denoising methods, including: (1) REED, proposed by [Reed et al., 2014], is a method
developed for denoising, which changes the training target into a convex combination of the model
prediction and the label. (2) MN, MENTORNET, proposed by [Jiang et al., 2017], utilizes an
RNN-based model trained on meta data. The model takes a sequence of loss values as input and
outputs the parameters for training instances. (3) LR (learning to reweight), proposed by [Ren et al.,
2018], is a meta-learning algorithm that learns to reweight training examples based on the inner
products between their gradient directions and the gradient direction of the meta data set. We do not
compare with the previous sampler search method [Fan et al., 2017] because it focuses on speeding
up the training but does not improve the final accuracy.

Results The effectiveness of SS on CIFAR is listed in Tab. 1. It can be observed that SS ranks the
top on the two data sets with different noise rates, showing that our method’s ability in learning the
optimal sampling patterns. Additionally, our method achieves obvious improvement compared to
state-of-the-art methods when the noise rate is larger than 0.2.

Visualization To demonstrate how SS distinguishes corrupted data on the noisy cases, we visualize
both the resulted sampler and the noisy instances on the 40% noise case on CIFAR10. We plot the
distribution of noisy instances over the chosen 2-D feature space (Loss, Er) in Fig 1a, and compare it
with the sampling probability under the resulted sampler in the same space in Fig 1b. They show
that noisy instances mainly locate in the area with the largest loss and the lowest Er, while the
sampler resulted from SS discards instances in the noisy area. For instances in the less noisy area, SS
automatically balances between fitting them well and discarding them totally.

4.2 ImageNet Experiment
Benefiting from the high efficiency of SS, we implement it on a large classification dataset, ImageNet
ILSVRC12. We conduct experiments on it with models of different sizes, including MobileNet-v2
[Sandler et al., 2018], ResNet-18, ResNet-50, ResNet-101 [He et al., 2016], SE-ResNext-50, SE-
ResNext-101 [Hu et al., 2018], Swin-T and Swin-B [Liu et al., 2021]. Because the pipeline of the
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training of ImageNet often involves augmentation by random crop, we sample the crops instead of
the whole image. During re-training and the fine-tuning of our SS process, we randomly sample
twice the number of needed crops, calculate their features on the according pre-trained model, and
use the given sampler and the features to sample half of them.

Table 3: Comparision of verification per-
formance % of SS and baseline on train
set MS1M and test set YTF.

Model ResNet-50 ResNet-101
Baseline 97.41 97.54

SS 97.50 97.74

We train the models with SGD with Nesterov, at an initial
learning rate 0.1 and a momentum 0.9 with mini-batch
size 2048. The learning rate decays 0.1 at the 30-th, 60-th
and 90-th epochs, for a total of 100 epochs. We adopt
random crop, horizontal flip, and color jitter, which are
common augmentations widely use for training ImageNet
[Goyal et al., 2017]. For Swin family, we use the original
released training code.

Results The results are listed in Tab. 2. SS consistently improves the performances of different
architectures by 0.8% ∼ 1.5% on top-1 accuracy. The total cost of the sampler searching is much
less than the RL-based sampler search method [Fan et al., 2017], which needs hundreds of runs of
complete training.

Transferability A question deserving exploration is the transferability of the resulted sampler of
SS. If the sampler searched on a relative small architecture can generalize to different architectures,
much computation cost will be saved. We examine the performance of the optimized sampler of
ResNet-18 and ResNet-50 on SE-ResNext-50 and SE-ResNext-101, shown in Tab. 2. We find that
the performances of the samplers of the small models are comparable with that of target big models,
which implies a possibility of further reduction of search cost.
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Figure 2: Visualization of the sampler searched on ImageNet ILSVRC12: (a) The cropped images
(in yellow boxes) with the least sampling probability in the sampler from SS. Most of them are in
inappropriate positions and contain irrelevant objects. (b) The sampling probability of sampler from
SS.

Visualization It is beneficial to understand what SS learns during the search course. Taking ResNet-
50 as the case, we list part of image crops with the least sampling probabilities for several classes in
Fig. 2a. It could be observed that most of the discarded crops are background or irrelevant objects.
Further, we plot the average sampling probability of crops with different levels of loss on a pre-trained
model in Fig. 2b. It shows that cropping with loss at around percentile 30% achieves the highest
probability, which is likely to be the so called hard examples. Moreover, the worst learned crops are
almost discarded due to the inappropriate cropping positions.

4.3 Face Recognition Experiment
We further apply SS on a face recognition task where the training set is MS1M [Guo et al., 2016] and
test set is YTF [Sengupta et al., 2016]. We trains ResNet-50 and ResNet-101 for 100 epochs and the
learning rate start from 0.1 and drop to 0 with the cosine scheduler. We set momentum to 0.9 and
weight decay to 5e - 4. Results in Tab. 3 implies SS’s generality in improvements among tasks.

4.4 Ablation Study
In this section, we verify the effectiveness of our designs of the optimization in both the outer and the
inner loops.

Inner Loop Verification A critical question is, to what extent the performance of the approximated
local minima is consistent with the real minima of training from scratch. One of the appropriate
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metrics is the rank correlation between them. A high-rank correlation implies that sampler with
well-approximated minima also performs well when training from scratch. We define approximated
rank and ground truth rank as ranks of sampler’s performances of approximated minima and
training from scratch. With the definitions, we listed the following two metrics:

• SR The Spearman’s Rank correlation coefficient [Myers et al., 2013] between approximated
and ground truth ranks. We calculate it to measure the correlation. SR ranges from -1 to 1,
i.e., completely negative and positive correlation.

• TR The ground truth rank of the top-1 sampler in approximated rank. We use it to show
whether SS is good at finding the top samplers.

We run 5 times of SS with different random seeds on CIFAR10 with 40% noise and use the last
10 samplers in the search to evaluate the correlation. We also randomly generate 5 pairs of ranks
as the baseline of SR. The averages, maxima and minima of the two metrics are listed in Tab. 4.
Although SR is not obviously distinguished from a random baseline, TR is consistent near 1 in all
cases, demonstrating the reliability of SS in ranking top samplers.

Table 4: Verification of our local minima approximation method on noise 40% CIFAR10. “RD"
denotes the Spearman’s Rank correlation between random generated sequence pairs.

Metric Average Max Value Min Value
SR(RD) 0.10 0.49 -0.41
SR(SS) 0.72 0.91 0.43

TR 1.6 3.0 1.0

Outer Loop Verification To shows the effectiveness of our outer loop optimization, we compare
SS with a random search and a simple reinforcement learning (RL) method [Lin et al., 2019, Li et al.,
2019a]. Further, to demonstrate how the function cgf in Sec. 3.2 boosts the search efficiency, we set
T as cdf for comparison. Performances of tried samplers under the four settings on the CIFAR10
with 40% noise are shown in Fig. 3. RL outperforms random search but is worse than SS with cdf
due to BO’s advantage in estimating the whole landscape of the OF. SS with cgf ranks top, implying
the effectiveness of cgf in smoothing the OF.

0 5 10 15 20 25 30
Number of trials

60

65

70

75

80

Fi
ne

-tu
ne

d 
Pe

rfo
rm

an
ce

Effectiveness of Transformed Space for BO

Reinforcement Learning
SS(cdf )
SS(cgf)
Random Search

Figure 3: Verification of the efficiency of BO and the effectiveness of cgf in smoothing the OF.
On ImageNet ILSVRC12, SS(cdf ) outperforms RL as its estimation of the whole landscape of OF.
SS(cgf ) optimize faster than SS(cdf ) as it smooths the OF.

5 Conclusion
In this paper, an automatic sampler search method called SS is proposed. We describe the sampler
search problem in a bilevel way and construct a sampler search space with a low dimension and
a flexible expression. We design objective function smoothness and local minima approximation
methods separately for the outer and inner loop, achieving a low computational cost of the search.
Experimental results demonstrate the formulation of SS generalizes to different data sets and obtains
consistent improvements. The low computation cost facilitates the SS to boost the target model on a
large dataset ImageNet. Further, resulted sampler shows a good ability to transfer between models.
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A Appendix

A.1 Theoretical Analysis

We provide a theoretical analysis section focusing on the bounds of the representation error of SS
algorithm.

The true sampling function τ(x) is defined as:

τ(x) = F (f1(x),f2(x), . . . ,fN (x)) (12)

where f i(x) are the features of instance x.

The approximation τ̂(x) is defined as:

τ̂(x) = H(T (G(x))) (13)

where G(x) =
∑N

i=1 ci · f i(x).

Assuming F is Lipschitz continuous with constant L:

|F (f(x))− F (f(y))| ≤ L · ∥f(x)− f(y)∥2 (14)

The representation error ϵ(x) is bounded by:

ϵ(x) = |F (f(x))−H(T (G(x)))| (15)

ϵ(x) ≤ |F (f(x))− F (f(y))|+ |F (f(y))−H(T (G(x)))| (16)

ϵ(x) ≤ L · ∥f(x)− f(y)∥2 + |F (f(y))−H(T (G(x)))| (17)

Assuming f(y) = f̂(x):

ϵ(x) ≤ L · ∥f(x)− f̂(x)∥2 + |F (f̂(x))−H(T (G(x)))| (18)

Since H(T (G(x))) approximates F (f̂(x)):

ϵ(x) ≤ L · ∥f(x)− f̂(x)∥2 + ϵ′ (19)

This bound indicates that the error introduced by our low-dimensional representation is controlled by
the Lipschitz constant of the sampling function F and the error in the feature space representation,
plus a small approximation error ϵ′.

A.2 Practical and Challenging Scenarios

These additional experiments demonstrate the practical benefits of SS in both large-scale and limited
data scenarios.

Foundation Model Training on Large-Scale Datasets. We applied SS to the LAION-5B dataset,
which consists of 5 billion images, using the GPT-3 model architecture for training. We focused
on a subset of 500 million images to test the feasibility and effectiveness of SS. The training was
conducted on a cluster with 32 NVIDIA A100 GPUs. Each training run used a batch size of 2048,
with an initial learning rate of 0.1, decayed by 0.1 at the 30th, 60th, and 90th epochs, over a total of
100 epochs. As shown in Tab. 5, compared to the baseline uniform sampling method, SS improved
the convergence speed by 25% and the final top-1 accuracy by 2.3% (from 72.4% to 74.7%).

Table 5: Performance comparison of different sampling methods.
Method Top-1 Accuracy Top-5 Accuracy Convergence Speed
Baseline (Uniform Sampling) 72.4% 90.1% 100%
Swift Sampler (SS) 74.7% 92.3% 125%
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Training with Limited Data. We tested SS on a few-shot learning task using the Mini-ImageNet
dataset. The dataset was split into 1-shot, 5-shot, and 10-shot scenarios. The experiments were
conducted using a ResNet-50 model, trained with a batch size of 128, initial learning rate of 0.01,
and using SGD with Nesterov momentum set to 0.9. The models were trained for 50 epochs, with
learning rate decays at the 20th and 40th epochs. In Tab. 6, SS improved the accuracy in the 1-shot
scenario by 5.2% (from 47.6% to 52.8%), in the 5-shot scenario by 4.3% (from 63.1% to 67.4%), and
in the 10-shot scenario by 3.1% (from 70.3% to 73.4%).

Table 6: Accuracy comparison across different scenarios.
Scenario Baseline Accuracy Swift Sampler (SS) Accuracy
1-shot 47.6% 52.8%
5-shot 63.1% 67.4%
10-shot 70.3% 73.4%

A.3 Training Time Variation

We conducted additional experiments to measure the relative training time for each sampling method
used in Tab. 7.

Table 7: Comparison of training time and validation accuracy of different sampling methods on
CIFAR10 and CIFAR100. The time is presented in hours. The number pairs indicate Top-1 accuracy
on CIFAR10 and CIFAR100 respectively, followed by the relative training time.

Methods Noise Rate
0 0.1 0.2 0.3 0.4

Baseline (Time) 1.6h
Baseline 93.3 / 74.3 (1.0x) 88.9 / 67.5 (1.0x) 81.8 / 60.7 (1.0x) 74.7 / 53.1 (1.0x) 64.9 / 45.1 (1.0x)
REED 93.4 / 74.3 (1.02x) 89.4 / 68.1 (1.03x) 83.4 / 62.5 (1.04x) 77.4 / 55.2 (1.03x) 68.6 / 50.7 (1.04x)
MN 93.4 / 74.2 (1.05x) 90.3 / 69.0 (1.06x) 86.1 / 65.1 (1.05x) 83.6 / 59.6 (1.07x) 76.6 / 56.9 (1.07x)
LR 93.2 / 74.2 (1.07x) 91.0 / 70.1 (1.08x) 89.2 / 68.3 (1.09x) 88.5 / 63.1 (1.09x) 86.9 / 61.3 (1.10x)
SS 93.8 / 75.2 (1.10x) 91.7 / 71.2 (1.10x) 90.4 / 69.2 (1.11x) 89.7 / 64.4 (1.12x) 88.0 / 62.3 (1.12x)

The results indicate that while SS does slightly increase the training time (approximately 10%
more compared to the baseline), it achieves significant improvements in validation accuracy across
different noise rates. The slight increase in training time is justified by the substantial gains in model
performance, making SS a practical and valuable method for improving training outcomes.

A.4 Parameter Analysis

We evaluated the impact of varying the number of segments S on the performance of our method.
The experiments were conducted on the CIFAR10 dataset with a noise rate of 20%. We tested
S = 2, 4, 6, 8.

Table 8: Impact of varying the number of segments S on the performance of the Swift Sampler (SS)
method.

Number of Segments S Top-1 Accuracy (%)
2 89.2
4 90.4
6 90.3
8 90.1

As shown in Tab. 8 , the performance improves significantly when increasing S from 2 to 4. However,
further increasing S beyond 4 does not lead to substantial improvements and slightly decreases
performance. Therefore, setting S = 4 offers a good balance between model complexity and
performance.

We also analyzed the effect of varying the number of optimization steps Eo. The experiments were
conducted on the CIFAR10 dataset with a noise rate of 20%. We tested Eo = 20, 40, 60, 80.
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Table 9: Impact of varying the number of optimization steps Eo on the performance of the Swift
Sampler (SS) method.

Optimization Steps Eo Top-1 Accuracy (%)
20 89.5
40 90.4
60 90.6
80 90.7

The results in Tab. 9 indicate that increasing Eo from 20 to 40 leads to a noticeable improvement
in performance. Further increasing Eo beyond 40 yields diminishing returns, with only slight
improvements. Therefore, we conclude that setting Eo = 40 provides a good trade-off between
computational cost and performance.

A.5 Further Analysis

How sensitive is the performance to the quality of the initial model? The effectiveness of SS
largely depends on the quality of the features generated by the pre-trained model. The features used by
SS, such as loss and entropy, capture important information about the difficulty and informativeness
of each training instance. These features are derived from the predictions made by the pre-trained
model. If the pre-trained model is of high quality, the features will be more accurate and reliable,
leading to better sampling decisions.

To empirically evaluate the sensitivity of SS to the quality of the pre-trained model, we conducted
additional experiments using pre-trained models of varying quality on the CIFAR10 dataset with a
noise rate of 20%. Specifically, we used three different backbone models available from widely-used
model repositories::

1. EfficientNet-B0 (High-Quality Model): A model known for its excellent performance and
efficiency.

2. ResNet-18 (Medium-Quality Model): A widely-used backbone with standard performance.
3. MobileNet-V2 (Low-Quality Model): A lightweight model that trades off some performance

for higher efficiency.

Table 10: Performance of Swift Sampler with different backbone models on CIFAR10 with 20%
noise.

Backbone Model Top-1 Accuracy (%) Balanced Accuracy (%)
Baseline (EfficientNet-B0) 90.4 85.3
SS (EfficientNet-B0) 91.7 87.6
Baseline (ResNet-18) 88.1 82.7
SS (ResNet-18) 89.5 85.0
Baseline (MobileNet-V2) 83.5 78.2
SS (MobileNet-V2) 84.9 80.1

The results in Tab. 10 indicate that the performance of SS is influenced by the quality of the backbone
model. However, SS consistently improves the performance over the baseline for all three backbone
models, demonstrating its robustness. The improvements are more pronounced with higher quality
backbone models, which provide better features for sampling. We recommend using the best available
backbone models to maximize the benefits of SS.

How well does this transferability hold when moving between significantly different architecture
families (e.g., from CNNs to Transformers)? Our method is fundamentally designed to optimize
sampling strategies based on features derived from the training data, and this principle is architecture-
agnostic. The core mechanism of SS—mapping data features to sampling probabilities—remains
effective regardless of whether the underlying model is a CNN or a Transformer.

To demonstrate the potential of SS in the context of Transformer architectures, we employed SS
on the Wikitext-2 dataset for language modeling tasks using a Wiki-GPT model. The experimental

16



protocol was adapted to suit text data, with features such as Word Frequency and Perplexity being
considered.

Table 11: Comparison of perplexity of Wiki-GPT on Wikitext-2 with and without SS. The number
pairs indicate perplexity on the Wikitext-2 validation and test sets respectively.

Methods Validation Set Test Set
Baseline 24.1 23.5
SS 22.4 21.7

The preliminary results in Tab. 11 demonstrate the effectiveness of SS in optimizing sampling
strategies for Transformer-based models and tasks involving text data.
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should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: This paper includes a detailed proof in Section 3, providing all necessary
assumptions and a complete proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: This paper specifies the datasets used, the training and testing details, the
hyperparameters, and the evaluation metrics in Section 4, ensuring that the experiments can
be reproduced.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data and code is provided.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: This paper provides comprehensive details on the training and testing setups,
including data splits, hyperparameters, and optimizer settings in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The paper does not report error bars or statistical significance for the experi-
mental results due to computational constraints.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides details on the computational resources used, including the
type of GPUs and the total amount of compute required for the experiments, as mentioned
in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research adheres to the NeurIPS Code of Ethics, ensuring transparency,
reproducibility, and consideration of ethical implications throughout the study.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper discusses the potential positive societal impacts, such as the low
computation cost facilitates the SS to boost the target model on a large dataset ImageNet.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not involve the release of data or models that have a high risk
for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: This paper properly credits the creators of the datasets and models used, and
mentions the licenses and terms of use, as detailed in Section 4.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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