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ABSTRACT

One of the main challenges in optimal scaling of large language models (LLMs)
is the prohibitive cost of hyperparameter tuning, particularly learning rate 1 and
batch size B. While techniques like 4P (Yang et al, [2022) provide scaling rules
for optimal 7 transfer in the infinite model size limit, the optimal scaling behavior
in the infinite data size limit remains unknown. We fill in this gap by observing
for the first time an intricate dependence of optimal 7 scaling on the pretraining
token budget 7', B and its relation to the critical batch size B,it, which we mea-
sure to evolve as By o< 1. Furthermore, we show that the optimal batch size
is positively correlated with B keeping it fixed becomes suboptimal over time
even if learning rate is scaled optimally. Surprisingly, our results demonstrate
that the observed optimal 7 and B dynamics are preserved with P model scaling,
challenging the conventional view of B, dependence solely on loss value. Com-
plementing optimality, we examine the sensitivity of loss to changes in learning
rate, where we find the sensitivity to decrease with increase of 7" and to remain
constant with P model scaling. We hope our results make the first step towards a
unified picture of the joint optimal data and model scaling.

1 INTRODUCTION

Large Language Models (LLMs) have increasingly become a prominent area of study in the field
of Natural Language Processing (NLP) and beyond. They have demonstrated significant improve-
ment in performance across a wide range of tasks, such as language understanding, text generation,
translation, and summarization, showing results comparable or outperforming those of an average
domain expert (Dubey et al.l 2024} OpenAl et al.| [2024; [Team et al.| [2024). The primary advan-
tage of LLMs is their ability to scale well with increased computational resources, which results in
predictive improved performance (Kaplan et al.,[2020; Hoffmann et al., 2022).

One of the main challenges in LLM scaling lies in the proportional scaling of computational re-
sources required for hyperparameter tuning. To remedy this, pTransfer (Yang et al.,|2022) technique
was proposed as a way to transfer hyperparameters from a small (proxy) model to a large (target) one
by introducing scaling rules for learning rate, weight multipliers and initialization scale, altogether
referred to as Maximal Update Parametrization (¢P). While significantly reducing the hyperparam-
eter tuning cost coming with model scaling, its applicability is limited by requiring both target and
proxy models to share the same batch size and number of training iterations. With current pretrain-
ing budgets surpassing trillions of tokens, it makes pTransfer computationally expensive to apply
even with tuning a small proxy model.

One solution would be hyperparameter tuning performed both for the small proxy model and on
the small dataset, followed by pTransfer to the larger model and larger dataset, under assumption of
both datasets being sampled from the same underlying data distribution. This raises the question of
pTransfer’s applicability in the infinite data limit, which can be formalized as an increase in the size
of the training dataset, which in the LLM case is measured by the number of tokens. Understanding
training dynamics in this limit would unlock hyperparameter transfer not only across model scales,
but also across data horizons, thus removing the largest limitation of p/Transfer.

The study of optimal hyperparameter evolution throughout the model training should also be com-
plemented with a study of hyperparameter sensitivity, i.e. the measure of how the model performance
is affected when the training is performed outside the optimal hyperparameter range. In practice, it
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is rarely possible to remain within the optimum due to statistical uncertainties in its estimation. It
would be of large interest to find training regimes which have small hyperparameter sensitivity and
penalize model performance the least if the optimal hyperparameters are missed by a small degree.

Expanding on this line of research, we consider a commonly used LLM pretraining setup and aim
towards building a yet missing holistic picture of optimal learning rate and batch size dynamics as
one scales up the model training — both in the data and model sizes. Our main contributions are
summarized as follows:

* Optimal learning rate scaling: by incorporating a dependence on the pretraining token
budget into the theoretical model of optimal learning rate n* scaling |Li et al.| (2024) via
Eq.[3.T]and performing a fit to experimentally observed data (Fig. [I)), we establish a depen-
dence of the n* evolution with 7" on the batch size B and its relation to the critical batch size
Bt (see definition in Sec. . From interpreting the model fit results, we obtain scaling
behaviors ranging from n* o v/T to * o< 1/+/T depending on B, B.i; and T, which we
find compatible with experimental observations. Furthermore, we find these dynamics to
be largely preserved within pP (Appendix [A.TT).

* Optimal batch size scaling: assuming 7 is optimal for a given data horizon T', we observe a
gradual increase of the optimal batch size B* with an increase of the token budget (Fig.[3a).
The drift is correlated with the evolution of the critical batch size B, (Fig. @ left), with
B*(T) < Beit(T) in our measured range of T'. Importantly, we show that naive applica-
tion of optimal 7 scaling rules in the 7" — oo limit with B being indefinitely fixed becomes
suboptimal over time: a joint (7, B) scaling is required.

¢ Critical batch size: we experimentally find B.,;; (see definition in Sec. @ to evolve in
time with By o< T8 and ap = 1.0 4 0.2 (Fig. [2} left). This dynamic affects optimal
7 scaling via Eq. and drives the transition between various scaling behaviors (Sec.[3.2).
Surprisingly, we show evidence that B..;; is not exclusively defined by the value of the
loss function (Eq.[8) as suggested by McCandlish et al.| (2018): models within P share the
same B, region while having different performance in terms of loss.

* Learning rate sensitivity: the sensitivity is generally decreasing with an increase of the
training token budget, which is interestingly more pronounced for the batch sizes in the
critical batch size region (Fig. [d). We observe no significant change in the learning rate
sensitivity with the change of the ;P base model and within the pP width limit (Fig. [3)).

2 METHODOLOGY

2.1 TERMINOLOGY

Time (T'): we often use the terms time, token budget, and data horizon interchangeably, both
to specify the measure of the training data size in tokens, and to pinpoint the specific moment
throughout the model training. From this perspective, an infinite data limit T' — oo, as opposed to
a fixed budget regime with 7" = const, refers to an (infinite) increase of the number of tokens seen
by the model during pretraining.

pP: we refer to a model with width dgﬁfgel as a base model if P scaling multipliers for learning

rates, weight multipliers and initialization scale (Sec. [2.2)) are computed relative to this width. This
brings us to a broader view on uP where the base model “pinpoints” the training dynamics for all
the other models obtained either by scaling up or down the base dbma(fgel width. Together with the
base model, we refer to this set of models as a uP model family or as a uP trajectory if the direction
of scaling is implied. We also slightly distinguish between the base and proxy models, where the
former is used to define a P model family, while the latter is a model used to tune hyperparameters
to be transferred with pTransfer to a target model.

Critical batch size (B,it): following [Li et al.|(2024), we define B, as the corresponding pa-
rameter in Eq. [3.1] also describing the peak position of the bell-shaped curve (Fig. [Ta)), which was
shown by the authors to equal the B.,;; definition of McCandlish et al.[(2018)). To better clarify the
nomenclature appearing in the literature, we provide an extended discussion in Appendix
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Sensitivity: as acknowledged by [Wortsman et al.| (2023), it is difficult to formalize this notion,
also in the absence of a theory to be verified. We therefore define it in the most minimal way,
namely as the variation of validation loss Lya1(1) — Lya1(n*) for a given learning rate variation from
its optimal value n/n*. We refer to the corresponding loss vs. learning rate curve (both with and
without Ly,1(n*) normalization) as a loss profile.

2.2 MODEL CONFIGURATION AND DATASETS

For all our experiments we use a default MPT model architecture (MosaicML,2023) as implemented
in the 1 1m-foundry codebase (MosaicML} 2024)), with all the models sharing the same training
configuration (Appendix [A.3). We use the Decoupled AdamW optimizer (Loshchilov & Hutter}
2019) with B8; = 0.9, B = 0.95, ¢ = 1078, weight decay A\ = 0 and gradient clipping by the
Lo norm value of 1.

P is implemented according to Table 8 of [Yang et al.| (2022)), so that when d 046 1S set to the base
model width dgﬁfgel, it replicates Standard Parametrization (SP). That makes our observations for

the base models also applicable to setups that use SP rather than pP. Model weights are initialized

from the normal distribution with the base model standard deviation o"%¢ = 1/ dbase . The

models are scaled up/down only in width, with the head dimension dy,e,q being always fixed and the
number of heads being scaled proportionally to the width scaling.

The models are trained with the causal language modeling task on the train split of the Colossal
Clean Crawled Corpus (C4) dataset (Raffel et al., 2020), tokenized with the GPT2 tokenizer (Rad-
ford et al.l 2019) with a vocabulary size of 50257 and a context length of 1024 tokens. As a metric
to evaluate model performance, we report the loss on the C4 validation split as L.

2.3 HYPERPARAMETER GRID

To investigate the interplay of learning rate and batch size in the infinite data limit 77 — oo, we
define a 5D grid spanned by the following axes: 7, B, T', dmodel, dgf‘jgel (see Appendix for
exact definition). Fundamentally, we are interested in measuring how the loss profile £,1(7) and its
optimum value n* evolve in time 7" depending on the choice of batch size B. As this measurement
is moreover conditioned on the pP trajectory and a specific point therein, we firstly study this evo-
lution for a trajectory pinpointed by one specific base model with dgf‘jjel. We train a set of models
within the defined uP trajectory with different widths d,oqe1, ranging in size from 32M up to 354M
parameters, and measure for each of them the L., (n) profile at specific points in time T, ranging
from 1B up to 275B tokens. Then, we repeat the same measurement for a new uP trajectory, pin-
pointed by a different value of d>25$ . This grid approach allows us to interpret results from multiple
perspectives, as we detail in Sec. 3]

2.4 LEARNING RATE SCHEDULE SCALING

Since we study the training dynamics in the infinite data limit, it necessarily implies training models
across different data horizons. This raises the question of how one should adjust the learning rate
schedule in this limit. Motivated by recent work of |Hu et al.| (2024); Higele et al.|(2024)), in all our
experiments we use a warmup-stable (WS) version of the warmup-stable-decay (WSD) schedule
consisting of a warmup phase with a linear increase of learning rate from 0 to 7,,x and a constant
phase with learning rate fixed at n,ax, hereafter notated as n. Our version omits the decay phase
to simplify experimentation as we observe that it does not affect the optimal 7 position (Appendix
[A77). The warmup duration is fixed across all horizons and across all experiments at an absolute
value of Tiyarmup = 219 — 524288 tokens. Whenever batch size is varied, we adjust the number of
gradient steps in the warmup phase accordingly so that the total amount of tokens seen by the model
during warmup equals 2'°. We also present additional experiments with different ways to scale the
learning rate warmup and an added decay phase in Appendix with results largely confirming
those of [Hagele et al.[(2024). The WS schedule allows us to reduce computational requirements by
approximately a factor of two: contrary to retraining for each of the data horizons in the 7" grid, we
run indefinitely continued trainings and take evaluation snapshots on the way.
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Figure 1: (a): Optimal learning rate n* per batch size against a set of pretraining token budgets
(see Appendix [A.9] for a full set). Each point is obtained by averaging experimental observations
of optimal learning rate values across ©P model family and random seeds, as described in Sec. [3.1]
with color bands visualizing the corresponding standard deviation. Solid lines represent the fitted
theoretical model of [Li et al| (2024) (Eq. [3.1) as described in Sec.[3.1] dashed lines only connect the
data points for visualization purposes. We observe an approximately linear growth of B, (see also
a dedicated Fig. [2), defined as the peak position of the fitted curve, in the limit of increased token
budget.

(b) Transposition of Fig.[Ta} evolution of the optimal learning rate with an increase of the pretraining
token budget n*(7T") for a representative set of batch sizes, in tokens. We observe the fitted model
to describe the scaling behavior of low (B = 2'®) and high (B = 226) batch sizes, as well as
intermediate batch sizes in the high token budget regime. For B = 2'8, the model reduces to
o1/ VT as discussed in Sec. matching the observations.

3 RESULTS

3.1 CRITICAL BATCH SIZE EVOLVES IN TIME, BUT IS UNCHANGED WITHIN ,uP
First, we begin with setting d'l?naosgel = 1024 and scanning learning rate across different batch sizes
and dy0qe1- We present results for the n* optimum dependence on the batch size B per data hori-
zon T in Fig. with individual L., (n) profile scans in Appendix and the full set of hori-
zons in Appendix [AJ9] In order to reduce statistical uncertainties, we average results across three
wP models'| with dpnogel € {256, 512, 1024} for tokens budgets 7' < 235 and additionally across
four more random seeds for large batch size values B € {220, 222, 224 226} for the model with
dmodel = 256 to reduce statistical fluctuations in the low token budget region. We include a similar
plot for the other base model with d>25¢ 256 in Appendix [A.10{and individual plots for each of

model —

the (dmodel, d2255.,) configurations in Appendix |A.1 1l

model

We observe that for a given time horizon, the (1*, B) curve has a bell-like shape, as predicted by |Li

et al[(2024). The left-hand side of the peak represents a known 7 oc v/B scaling rule (Malladi et al.,
2023 /Shen et al.,|2024). However, with our experiments, we uncover a previously unseen right-hand
side of the curve, also referred to as “surge” by |Li et al.[(2024)), where the optimal learning rate for a
fixed token budget scales inversely proportionally to the batch size scaling via the n* o« 1/ VB rule.

'We believe this averaging approach is justified since all the three models share the same optimization
trajectory in terms of the number of steps, batch size and data horizon length, therefore are theoretically guar-
anteed by pTransfer to share the same optimal learning rate. From the experimental side, we also observe no
significant differences across the three models (Appendix @
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Figure 2: Critical batch size B, (left) and critical learning rate 7.3 (right), as extracted from
the fit with the power law peiy = a,T*? + by, where p € {n, B}, following the procedure from
Appendix as a function of token budget. Solid line represents the fit result. Dashed line cor-
responds to the fit with the power exponent fixed to ap = 0.5 (left) and o, = —0.5 (right). This
model fit is visualized only to illustrate the model variation with the exponent change and its param-
eters are not used in the main analysis.

We analyze the observed data points within the theoretical framework of |Li et al.| (2024). For each
of the token budgets we fit the data with the following functional form:

TMerit (T)

[ B [ Beein(T)
Bcrit (T) + B

where Bt and 7.4 are parameters of the fit. The former corresponds to the peak position of
the bell-like curve and was shown in McCandlish et al.| (2018); |Li et al.| (2024) to approximate the
critical batch size defined as the balance point between optimal number of training steps and data
efficiency. The latter can be interpreted as the optimal learning rate when training in the regime with
the batch size tracking the critical one, i.e. B(T') = Be.it(T).

n"(T,B) = (D

After performing the fit for each token budget, we analyze the 7.t and B.,;; evolution in time. We
fit a power law of the form pe,iy = a, T + by, p € {n, B} to each of the data sets following the
procedure described in Appendix [A.5] and present the results in Fig. [2] (solid lines). For the time
dependence of critical parameters, we obtain the following power exponents:

Beit T2, ap =1.0+£0.2,

2
Merit < T, oy = —1.340.4, )

where we find that in both cases the hypothesis of the power exponent +1 (—1) for ap (c,) is com-
patible with experimental observations within uncertainties. Detailed results for the a, b coefficients
are provided in Appendix [A.3]

Lastly, there is a difference of B, evolution between the 7" and uP infinite width limits. Specif-
ically, for a fixed token budget, we observe no significant change of the curves’ shapes and peak
positions across dpodel Values within the same pP trajectory, and also with the change of the base
model (Appendix @]) At the same time, there is a noticeable drift of B, in the 7" — oo limit
with the model being fixed. As both limits are accompanied with a comparable change of the model
performanc this observation brings evidence that dependence of the critical batch size exclusively
on the loss value suggested by [Kaplan et al.| (2020) (Eq.[§) is not entirely complete. Or, contrary to
results in|L1 et al.|(2024)), the two definitions of the critical batch size region (Appendix are not
the same and should be disentangled.

*Back-of-the-envelope calculation from Fig. [3aland Appendix for d2258 | = 1024, B = 2%°, there is
a loss change Lya1 = 3.4 — 2.8 with a token budget increase 23" — 2°7, resulting in Beyis drifting by 2*. For

the same ( base B) configuration, there is no significant Be;; drift with a change of width by 2% within zP,
but the corresponding loss change is Lva1 = 3.5 — 2.9.
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3.2 LEARNING RATE OPTIMUM DRIFTS IN TIME, WITH BATCH SIZE INTERPOLATING
BETWEEN DIFFERENT SCALING RULES

In Fig.[Tb] we reinterpret Fig.[Ia]by transposing the batch size and token budget axes and by plotting
the evolution of the optimal learning rate n* in time 7" for a representative set of batch size values,
with the full set of batch size values in Appendix[A.9] Overlayed, we also plot the model fitted with

Eq.[3.1] (solid lines).

From the data points alone we observe an intricate drift of the optimal learning rate in time as
governed by the batch size value. In a simplified way, for small B values (2'® and 2%° in Fig. ,
we observe a decrease of * by 22 with an increase of the token budget by 27, while for the larger
B values (224 and 229), it is oppositely an increase by up to 22.

We also find that the fitted mode describes the data points for the smallest (2'¢ and 2'®) and largest
(225) probed batch sizes well. For the intermediate batch size values, it captures the behavior in
the large token budget regime and the general curvature patterns (B = 224), but sometimes lacks
the correct amplitude. We note, however, large uncertainties on the fitted model parameters (Ap-
pendix[A.3)): additional data points with improved resolution in both 7 and B would better constrain
the model fit and therefore constitute an important next step in future work.

It is instructive to consider several limiting scaling scenarios of Eq.[3.1] First, when B < Bqyit,
one obtains 1* (T, B)  7erit(T')//Berit(T). Which we do not observe, since min(Be;) = 2'°
in our experiments. Second, when B > B, one obtains n* (T, B) & 7crit(T) - \/Bexit(T)-
We observe this regime for high batch size values (B = 224 and B = 229) in the high token
budget regime (7' > 23 tokens). Since in this region, we see 7t (7)) ~ 1 (Fig. [2| right) and
Beit < T8 ~ T, we obtain n* VT (as can be seen in Fig. . Lastly, a special case is when
B(T) = Buit(T), i.e. batch size is tracking the critical one. We observe this regime for the smallest
batch sizes (B = 2'6 and B = 2'8) in the low token budget regime (T' < 233 tokens). In that
case, the optimal learning rate n* o< 7y o< T = T~95 (see Fig.[2| where the power exponent
oy, = —0.5 describes data in the low token budget region better).

3.3 OPTIMALLY-TUNED BATCH SIZE INCREASES IN TIME

Second, we study how optimal hyperparameter values evolve in time to yield optimal loss values.
For each batch size and horizon length, we select the best-performing run across the learning rate
grid and plot model loss L, against batch size across time horizons for the configuration with
(dmoder = 1024, dP2s¢ , = 1024). Results are presented in Fig. [3| with a full set of plots across

mode

various combinations of (dmodel, d2%5,;) in Appendix

model

We observe an increase of the optimal batch size with increase of the pretraining token budget from
B*|p—g30 = 28 to B*|p_93s = 2% (Fig. 3a). Emergence of suboptimality is more pronounced
when transposing the token budget and batch size axes (Fig. , where the smallest B = 216
batch size curve, with each point having learning rate scaled approximately with the inverse scal-
ing rule n* « 1/ VT, is being taken over in the T — oo limit by the curves corresponding to
larger batch sizes. Furthermore, comparing the optimal batch size values with the critical batch size
evolution (Sec. , we obtain B*(T') < Beyi; for the range of our measurements 7' = [230, 237].

This result illustrates that, while naive “pairwise” scaling rules for optimal learning rate, e.g. n*
1/ VT, are convenient for predicting optimal values at scale, they do not necessarily result in the
best model performance: taking batch size dynamics into account is required. In other words, the
invariant induced solely by, for example, the * o 1/+/T scaling rule is not sufficient for the model
performance to be optimal. We believe, similarly to/Smith & Le|(2018), that some broader notion of
noise scale should serve as a more fundamental invariant to optimize for in the joint data and model
size limit. We discuss this idea in more detail in Sec. [
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Figure 3: Validation loss Ly, for a (dmodel = dgﬁfﬁel = 1024) model training (354M parameters)
with an optimally-tuned learning rate as a function of (a) batch size split in pretraining token budgets
(b) pretraining token budget split in batch size, both measured in tokens. Inset plots zoom into
the optimum region. We observe that (a) optimal batch size (circled markers in the inset plot)
evolves in time, by a x22 (B = 28 — 220 tokens) increase with an increase of the budget by x2°
(T = 23Y — 23% tokens) (b) smaller batch sizes are gradually phased out to become suboptimal as
the token budget increases.

3.4 LEARNING RATE SENSITIVITY IS REDUCED IN TIME, AND IS UNCHANGED WITHIN pP

After having studied the learning rate optimum dynamics, we turn our attention to a broader structure
around the optimum from the sensitivity perspective. Specifically, we are interested in how the shape
of the Ly,1(n) curve changes in the time 7" — oo and uP width limits. In Fig. 4} we present our
observations for the two base models with dfna(fgel = dmodel € {256,1024}, for token budgets
T € {231, 233, 235}, We note that since we implement pP in a way that the base model is also

SP-parametrized, the results should be applicable to this parametrization as well.

We observe that there is a general decrease in the learning rate sensitivity by up to 2! per each
token budget increase by 2% as measured by Ly, — L2 value, where L0 = L£.1(n*) is the
validation loss value in the learning rate optimum. This indicates that the model profits from longer
training by having lower penalty for the misspecification of the optimal learning rate. Notably,
the decrease is more pronounced for batch sizes in the critical region (B = 229 and 222), while

for the region with the n* o 1/ VT scaling rule (B = 2'8), the effect is either reduced (base

model d2S | = 1024) or shows asymmetric trends w.r.t. the learning rate optimum (base model
dgf‘(fgel = 256). However, within our measurement precision, the sensitivity evens out across batch

sizes for the longest 235 token horizon. Overall, our results motivate the choice of the training
regime within the critical batch size region in order to minimize the risks of under- or overshooting
the learning rate optimum. As we show in Appendix [A.] the learning rate optimum position can
vary by a factor of two just depending on the random seed choice.

With respect to the pP width limit, we observe no significant deviation of the loss profile from the
one of the base model, both for up- and down-scaled models within ;P (Fig. 5] with and Fig. 2]
without £, normalization). Evaluated for the data horizon of T' = 23% ~ 34B tokens, this holds
across the models with the number of trainable parameters ranging from 32M up to 5B. Likewise,
changing the base model does not affect the profile shape, except for the optimum learning rate shift

3We note that the model is not fitted to the data points in the representation of Fig. Instead, as described
in Sec. the fit is performed in two consecutive steps: by first capturing the (1™, B) behavior per token
budget (illustrated in Fig. @), followed by fitting the time dynamics (illustrated in Fig. Q)
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Figure 4: Learning rate sensitivity Lya — ‘J;il“ as a function of the learning rate deviation from the
optimal value 7)/7optimal, measured for batch sizes of B = 218 (left column), 22° (middle column),
and 222 (right column) tokens, separately for the P base models with width dglajgel = 256 (top
row) and 1024 (bottom row). The former model amounts to 32M and the latter to 354M trainable
parameters. With an increase of the pretraining token budget (different marker styles) we observe
a general decrease in the learning rate sensitivity, which is more pronounced for batch sizes B €
{220222} in the critical region (Sec. and for the 354M model. At the largest probed token

budget T = 23° tokens, the sensitivity equalizes across the models and batch sizes.

base

by x2, which is expected for the base models compared here due to our d755,

initialization scheme (Sec.[2.2)).

-dependent weight

4  DISCUSSION

While originally, we were aiming to find a golden recipe for hyperparameter transfer in the infinite
data limit, we show that there is no simple and straight-forward answer. In Sec.[3.2] we show that
the model fit based on Eq. [3.I] describes the observed data points well. However, as illustrated in
Sec.[3.3] following the optimal learning rate trajectory in time is not sufficient to obtain optimal per-
formance. That leads us to believe that there exists a deeper underlying perspective on the problem,
as opposed to the one of simply tuning learning rate and batch size.

Fundamentally, the field of model parametrization research has originated from and is further con-
verging towards preserving some notion of norm in some infinite (model width and/or depth) limit
(Everett et al., |2024; |Yang et al., |2024; Large et al., 2024). In fact, any parametrization itself is
simply a set of scaling rules to be applied to hyperparameters in order to preserve these norms (e.g.
of model weight matrices or weight updates). Expanding on this, one can argue that scaling rules
follow from the requirement of keeping some underlying quantity invariant within the infinite limit.
From this perspective, hyperparameter transfer is nothing but a consequence of such “conservation
laws”.

With this perspective in mind, we draw a parallel between infinite model and data limits, and specu-
late that a similar notion of “norm” should exist and should be aimed to be preserved in the infinite
data limit. In fact, there is already a good candidate for this, namely the noise scale (Eq.[5]and [9),
which intriguingly also induces scaling rules for hyperparameters (see Appendix [A.2] for in-depth
discussion). However, the existing definition neither takes into account the adaptive nature of the
optimizer, nor the scenario of jointly following the infinite data and model limits.
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Figure 5: Learning rate sensitivity Ly, — L™ as a function of learning rate 7, measured for batch
sizes of B = 2'® (leftmost column), 22° (middle left column), 222 (middle right column) and
224 (rightmost column) tokens, separately for the yP base models with the width dgﬁfgel = 256 (top
row) and 1024 (bottom row). Different marker styles correspond to different models within the
pP family, with all the models being evaluated at the data horizon of 7 = 23° tokens. For the
base model with db25$ | = 256, we scale the width only downwards, while for the base model with
dbase | = 1024, we scale it both upwards and downwards. We observe no significant difference in
the sensitivity across all the (dgﬁfgel, dmodel) configurations. Note that for the configuration (B =
224 dglaosgel = 1024), the base and dyoge1 = 4 X dgffgel models share a different random seed
compared to all the other models, to illustrate the loss penalty arising from the learning rate optimum

variation.

We hope that our experimental observations, similarly to the discovery of the n* oc T scaling rule
for SGD, will make the first step towards the theoretical unification of infinite data and model size
limits via deriving such a joint scaling invariant. Still, our insights into optimal scaling rules for
learning rate and batch size might be valuable for practitioners who approach the problem of hyper-
parameter optimization in the infinite data and model size limit. We provide our recommendations

in Appendix[A.T]

As future work, it would important to improve the resolution in data points with a finer grid of (7, B)
values. This is a necessary step to establish the generalization power of Eq. [3.1]and the power law
fits of its critical parameters as a function of time (Fig. @, also across various data sets, model
architectures and modalities. Additionally, while we used pP as the main way to incorporate model
scaling due to its ability to transfer optimal learning rate across model sizes, recent work of |[Everett
et al.| (2024)) suggests that this is not the only way to do so. A similar study to ours, but for other
model parametrizations, is an exciting direction of future research.

5 RELATED WORK

(n, B) scaling rules In efforts to accelerate model training, the 7 o< B rule for the SGD optimizer
was found necessary to avoid performance loss due to increased batch size (Goyal et al., [2018),
known as generalization gap (Keskar et al.| 2017)). Afterwards, additional usage of momentum
(Smith et al.,2018)) and model scaling (Park et al., |2019) was incorporated, and a /B rule for
Adam was observed (Hilton et al.| 2022)). From the theoretical side, experimentally observed rules
were verified with the framework of stochastic differential equations (SDEs) (Smith & Le} 2018;
Malladi et al.,|2023)), loss curvature analysis (Zhang et al.,[2019; McCandlish et al., |2018; Li et al.,
2024) and random matrix theory (Granziol et al.||2021). While most of the studies were performed
in the fixed epoch budget, |Shallue et al.| (2019) broadened the perspective to other target budget
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measures and studied the scope of the o< B rule applicability across various datasets and model
architectures. Looking beyond fixed budgets, Smith & Le| (2018]) showed a linear relation between
the optimal batch size and the dataset size (for fixed 1), and |Smith et al.| (2020) similarly presented
hints for a linear relation between the optimal learning rate and the dataset size (for fixed B), with
both works considering the SGD optimizer. In the modern LLM pretraining context, Hu et al.[(2024));
DeepSeek-Al et al.| (2024) approached this problem by deriving the joint (1, B) scaling laws.

pP  Originally developed within the Tensor Program series studying feature learning in the in-
finite width limit (Yang & Hu, 2022; |Yang et al., 2022), uP has been gaining traction recently
within the LLM community. It has been extensively tested and applied experimentally (Lingle,
2024; Blake et al.| 2024} (Gunter et al., [2024; Dey et al., 2024)), as well as theoretically, with [Yang
et al.| (2023); Bordelon et al.|(2024)) extending it to the infinite depth limit, and |Yang et al.| (2024));
Bernstein et al.| (2023) revisiting it from the spectral normalization perspective. Recently, |[Everett
et al.| (2024) showed that other model parametrizations also induce hyperparameter transfer if tak-
ing weight alignment into account. Furthermore, they revealed that pTransfer does not work in the
regime of Chinchilla-optimal scaling (Hoffmann et all [2022). The most closely related work to
ours, Shen et al.| (2024) expanded on this observation and proposed a learning rate scheduler com-
bining uP and experimentally measured (7, B) scaling rules to allow for the hyperparameter transfer

in the T' — oo limit, however only limited to the n* o< 1/ VT scaling regime.

Sensitivity The topic of loss sensitivity to suboptimal hyperparameter choice is less thoroughly
studied, focusing exclusively on learning rate as the most affecting hyperparameter. [Wortsman et al.
(2023) studied how various optimizer and model interventions, such as weight decay or P usage,
influence the learning rate sensitivity with the model size scaling. [Hagele et al.| (2024)) investigated
the impact of various learning rate schedule choices, such as length and functional form of the decay
phase.

6 CONCLUSION

In this work, we studied joint model and data scaling in the LLM context from the perspective of
optimal learning rate 7 and batch size B dynamics. We observed an intricate dependence of optimal
7 scaling on B and its relation to the critical batch size B.,it, as a function of the pretraining token
budget T'. This dynamic is preserved during model scaling with pP, as well as the loss sensitivity to
the learning rate variation, highlighting the intriguing difference in how uP infinite width and time
limits evolve the critical batch size. Overall, we hope our observations pave the way towards deeper
understanding of the optimal scaling in the unified infinite data and model size limit.
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A APPENDIX

A.1 HYPERPARAMETER OPTIMIZATION IN THE INFINITE DATA AND MODEL SIZE LIMIT

We believe our observations provide useful hints on how to scale learning rate and batch size jointly
in the infinite data and model size limits. We take the general pTransfer approach of tuning hyper-
parameters for a small proxy model and then transferring them either zero-shot or according to some
scaling rules via extrapolation, across model sizes and data horizons.

1. If one can afford tuning a P proxy model on the data horizon of the target model, then it
is sufficient to simply perform a grid search over learning rate and batch size values to find
the best combination, following pTransfer (Yang et all 2022). As we describe in Sec. [5}
pTransfer has been established to successfully transfer hyperparameters to O(10B) model
sizes, albeit with potential limitations arising from very long range extrapolation in the
infinite width limit (Blake et al.| 2024} |Gunter et al., 2024).

2. Otherwise, a proxy model has to be tuned on a shorter data horizon than the target one. In
that case, we suggest running a 2D grid search across learning rate and batch size values
roughly around the optimal ones, where each training follows a WSD schedule (Sec. [2.4),
for as long as compute budget allows. We suggest both the warmup and decay of the
schedule to be fixed to the one of the target model in absolute number of tokens, which in
turn should be about 10-20% fraction of the target model horizon to be optimal (Kosson
et al.| 2024; |[Hagele et al. [2024). This is due to the observed drift of the learning rate
optimum with the change of the number of steps (Appendix [A.7). It is still not yet clear
how scaling of warmup/decay length and Adam’s 3; » parameters (which we keep constant
in our experiments) can be incorporated into the total horizon scaling. We leave this as an
interesting direction for future work.

3. After the grid search, one should be able to obtain a plot similar to Fig. [Ta and Fig. 33
Provided long enough WSD horizon, a drift in time of the critical batch size region, asso-
ciated to the peak of the fixed token budget curve in Fig. should be visible. Likewise,
there should be a drift of the optimally tuned (i.e. assuming optimal learning rate is used)
batch size in time as in Fig. Since we observe a strong correlation but still a mismatch
between the optimally-tuned batch size and the critical batch size, we suggest the following
approach for selecting optimal hyperparameter values:

(a) Derive scaling rule by extrapolating the batch size optimum drift in time 7" based on

Fig. [3a| (in our case, approximately B* o< v/T'). Estimate the expected optimal batch
size value Bg‘arget for the target data horizon T} ,,ge, under assumption of the optimally
tuned learning rate.

(b) Perform a fit to fixed-budget curves per token budget step based on data similar to
Fig.[Ta|with Eq. following the procedure of Sec.[3.1] Fit a set of extracted Bei; per
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token budget with a power law function By = a1 +b to extract the corresponding
exponent ap (in our case, ap ~ 1) and derive the expected critical batch size for the

H crit
target horizon B ;-

(c) Perform the same power law fit to the n°(T) data and extrapolate its value to the
target horizon, obtaining n{; 5. Set optimal learning rate for the target horizon as:

crit * crit : * crit
ntarget ' Btarget/Btarget if Btarget S Btarget

n‘rarget - crit crit * : * crit ’ (3)
ntarget ' Btarget/Btarget if Btarget > Btarget

where we correct the learning rate value for the corresponding n*(B) scaling regime.

4. Apply optimal values of learning rate 7;,,,.; and batch size B, ... to the target model,
scaled up with pP, and to the target training horizon. As we show in this work, P does not
impact the dynamics of the critical batch size evolution in the infinite data limit, therefore
we expect no interference between the two limits.

We suppose it is also possible to adjust the recipe above to the continual learning setting (Cagatay
Yildiz et al.,[2024; Tbrahim et al.,2024): under assumption of °"'* being constant in time and of the
golden path hypothesis (Vyas et al., 2024), one could indefinitely run the model training with the
same learning rate but dynamically adjust the batch size to follow the critical one (peak of the fixed
budget curve in Fig. [Ta), or, alternatively viewed, to remain on the pareto curve of Fig. [3b| (inset
plot).

A.2 ON CRITICAL BATCH SIZE AND NOISE SCALE

There are two perspectives on the critical batch size B.,j;. Firstly, McCandlish et al.|(2018)) define
it as a batch size which results in an optimal trade-off between data sample efficiency and gradient
update step efficiency:

Emin

Bcrit = g
min

“4)

where Ey iy (Smin) are the minimum possible number of training examples (steps) to reach a spec-
ified level of performance. Additionally, they introduce a notion of a noise scale (for SGD-like
optimizers):

curv .__ t’I“(HE)
noise " GTHG’ (5)

where G is the noiseless true gradient, H is the true hessian of the loss function and X is the
minibatch covariance. For B < B{li* one obtains the linear learning rate scaling rule, while
for B > BCU™ increasing B does not yield any loss improvement.

noise

Under assumption of the Hessian being a multiple of the identity matrix, one obtains a simplified
version:

curv . t’r(z)
simple "~ |G2| s (6)
and McCandlish et al.| (2018)) argue that
Bcrit ~ Br?olis‘; X :Silrl‘r!;‘l;/)lw (7)

thus bridging together mathematical loss curvature and pragmatical compute resource utilization
views. Approximation with B F, , being computationally less expensive to estimate, is shown to

be to a good degree applicable across multiple tasks, datasets and model architectures. Both the
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critical batch size and the noise scale are shown to grow in time as one progresses in the training,
with the only dependence on the loss value via a power law, with parameters By and ap to be
determined empirically (Kaplan et al., 2020):

By

Bcrit = IA/TB .

®)

Notably, Smith & Le| (2018)) introduce from a different SDE perspective another definition of the
noise scale:

T T
BSPE — (= — 1)~ = 9
noise n(B ) T/B7 ( )

where T is the training set size. It is suggested that one should aim at finding the optimal noise scale
in the first place, rather than optimal batch size and learning rate. Within the suggested Bayesian
framework, |Smith & Le|(2018) argue that the optimality arises from the trade-off between depth and
breadth in the Bayesian evidence. In a follow-up work, [Park et al.| (2019)) take one step further and
extend the noise scale to a model width limit and introduce a modified noise scale accounting for the
change of the model width in the standard (SP) and Neural Tangent Kernel (NTK) parametrizations
(Jacot et al .| [2020):

BSDE
norm .__ noise
Bnoise T |w‘2 ’ (10)
where |w|? is model weight norm, normalizing BS2E to have the unit 1/loss.

The second perspective on B, is as a region where batch invariance breaks. Introduced by Hilton
et al.| (2022), batch invariance refers to a regime where the model performance remains invariant
with the change of either learning rate or batch size within the corresponding scaling rule. As
shown by [Shallue et al.| (2019), the breaking of batch invariance appears with an increase of batch
size to sufficiently large values and looks like plateauing of the optimal learning rate. [Zhang et al.
(2019) further investigated how the critical batch size is affected by using momentum, optimizer
pre-conditioning and exponential moving average (EMA).

Intriguingly, [Li et al.| (2024) expanded the approach of McCandlish et al.| (2018)) and showed that in
the case of Adam, the batch invariance does not break conventionally as in the SGD case. In fact,
it is always preserved, with the only difference that the 17 oc /B scaling rule breaks at the peak
value Bpeax and transforms intoan oc 1/ V/B rule via:

crit
e an
5( lgak + Bpwk)

They also show that Bpcai = Beis in the definition of McCandlish et al.| (2018), therefore bridging
together the two B, perspectives outlined above.

A.3 MODEL TRAINING CONFIGURATION (CONT.)
* 24 layers, FFN expansion factor fg, = dffn/dmodel = 4, multihead attention with the head
dimension dyeaq = 128.

* GeLU activation function, Layer Normalization initialized with 1 (Ba et al., 2016), RoPE
with & = 10000 (Su et al., 2023).

* Dropout is disabled and biases are included in all layers (initialized with 0), weights are
shared between the input and output embedding layers.

e FSDP parallelization scheme (Zhao et al. [2023), bfloat16 precision, FlashAttention-2
(Dao, [2023).
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A.4 HYPERPARAMETER GRID (CONT.)

The (n, B, T, dbase dodel) grid is defined with the following values:

model®

 Learning rate 7:
- {2712 27115 0 27T) for dP¥S | = 1024

model —
- {2711, 27107 276} for ¢Pase | = 256
e Batch size B = {216, 218 . 226} tokens
e Data horizon T = {230, 231 /.. 235} tokens
* Base model width d*$ | = {256, 1024}
* Model width dpnode1 = {256, 512, 1024}
For a configuration with (B = 220, P3¢ = = 1024), we perform longer runs with an extended

set of horizons with {236, 237} token budgets, except for the smallest B = 26 due to limited
computational resources and low GPU utilization of this batch size on our hardware. A configuration
for the largest batch size (B = 226, dEna(fgel = 1024), we train until 7' = 238 tokens to further

establish the learning rate optimum drift (Sec. [3.2).

The total number of trainable parameters is 32M, 101M, 354M for the models with widths dy,0de1 =
{256, 512, 1024}, respectively. We also train 1.3B and 5B models up until 22> ~ 34B tokens
with three selected learning rate values for a fixed batch size of 22 and 22* tokens, respectively,
in order to study learning rate sensitivity change within P (Sec. [3.4). The models share the same
1P base model with dll?na(ff{el = 1024 and have the corresponding width dy,0qe1 = 2048 (1.3B) and
dmodel = 4096 (5B).

A.5 FITTING PROCEDURE

In Sec. [3.1] we introduce the fitting procedure to the data points of Fig. [Ta] with a functional form
of Eq. @] with two parameters 7)., and Bc,i;. We perform the fit separately per token budget, as
illustrated in Fig.[6] using scipy.optimize.curve_fit () and firstly without including error
bars (which stem from the variation of the model with P and random seeds). Since we observe
some data points as having no uncertainties, which makes the fit computationally unstable, we repeat
the fit two more times: one with adding small ¢ = 10~'® as uncertainty for such data points.
Then, we attribute the mean uncertainty across the other points to the points without uncertainties
and perform the same fit. This procedure results in three data sets for each 7t (T") and Byt (T'),
corresponding to three variations of the fitting procedure, which we treat as “systematic” uncertainty.
For each data point, we assign an uncertainty as a square root of the corresponding covariance matrix
element, as obtained from the fit.

We then perform a full power law periy = a,7*? + by, p € {n, B} fit with uncertainties to each
of the three data sets, for each of the critical parameters p. We obtain the following values with
corresponding fit uncertainties:

* No error:

- (ay,an,by) = (1.9-10%,-0.85,2.9 - 1073]

- (CLB,O{B, bB) = [82 . 1075, 1.00,3.0 - 105)

- (0a,,0a,,0p,) = (1.2-10°,0.32,2.8 - 107*)

— (Cap,Tap,0by) = (4.5-1074,0.23,1.5 - 10°)
* With errors + e€:

- (ay,an,by) = (2.3-10%,-1.31,2.7-1073)

- (aB,aB,bB) = (23 : 107270.75, 19. 105)

- (0a,s0a,,0p,) = (1.0 10%°,0.21,1.1-107%)

= (CapsOaps0by) = (5.1-1072,0.09, 8.8 - 10%)
* With errors + mean uncertainty attribution:

- (ay, ay, by) = (4.5-10",-1.68,2.9 - 1073)
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- (aB,ap,bp) = (4.9-1077,1.20,2.8 - 10°)

- (04,00, 0p,) = (4.5 10%2,0.47,1.4-107%)

— (Caps0aps0by) = (2.1-1076,0.17,8.0 - 10%)
Since we are primarily interested in the power exponents c,, we average their values across the
three variations to produce a central value for each p. For the uncertainties, we add in quadratures
the variance across the three fit variations and the mean uncertainty obtained from each of the in-
dividual fits. This produces the results we supply in the main text (Eq.[3.1). To further constrain
large uncertainties on a,, we refit 7c,it(7") and Beyit (T") time dependence data with the power ex-

ponents o, fixed to the ones obtained above. This gives us the final model parameters, which we
visualize oi Fig.[2]and[Ib]and discuss throughout the main text:

s a, =(2.0+0.3)-10°
ca,=-13+04
*b,=(31+£0.1)-1073
cap=(80+13)-107°
cap=10+£0.2

s bp=(3.0+1.1) 10°

Figure 6: Fits to token budgets 7' = 239,231 ... 237 (from upper left to bottom right) with Eq.
to the data points in Fig.[A.9]

A.6 RANDOM SEED VARIATION

0.301 number of iterations 0.0 0.30| number of iterations 005 0.301 number of iterations. 005
20 g 22 004 20 g 22 00t 20 g 22 oo
21 g 21 21 g 2t 21 g 21
0.25] mggm 27 migm 215 003 0.25| mggm 22 migm 215 0.03 0.25{ = 212 wigm 25 0.03
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5 i3 000 £8 000
i 0.15 7: 0.15 z 2 z i 0.15 2 2 2
0.10 0.10 N 0.10
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o e e
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Figure 7: Loss profile L. — Lo as a function of maximum learning rate 7 for three different
random seeds for the model configuration (dyodel = dgﬁfgel = 1024).

A.7 LEARNING RATE SCHEDULE SCALING (CONT.)

Conventionally, the learning rate schedule consists of a warmup phase, followed by either a constant
phase or a decay phase. When all of the three phases are enabled, one obtains a warmup-stable-
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decay (WSD) schedule 2024):

t
* hmax ift < Twarmup
Twarmup
ﬁ(t) = § "lmax if Twarmup <t <T - Tdecay y (12)

t— (T -T eca; .
(1_ (dY)) * Nlmax lf/I’_T‘decay §t<T
Tdecay

where T is the total length of the training horizon, Tyarmup (Tdecay ) is the length of the warmup (de-
cay) phases, all measured in tokens.

As Higele et al.| (2024) showed, there is no significant difference in terms of the final loss value
and learning rate sensitivity between using cosine decay and WSD schedules. We run additional
ablations in our setup and also arrive at the same conclusions: the structure of the learning rate
optimum is marginally affected by the decay phase of the schedule and its type. Even though there
appears to be a small increase in learning rate sensitivity if learning rate is decayed comparing to the
schedule without decay, it does not affect the optimal * location (Fig.[8).

Furthermore, we vary the warmup scaling strategy with an increase of the data horizon, specifically
where all the horizons either share the same warmup length, or warmup is scaled together with the
horizon length (with the fixed f = Twarmup/T = 1/64 fraction of the total horizon), or warmup
is disabled. We observe that the addition of warmup decreases learning rate sensitivity and, inter-
estingly, that scaling of the warmup proportionally with the horizon length leads to a drift of the
learning rate optimum, as also indirectly observed earlier by [Kosson et al.| (2024).

Warmup -> Constant Warmup -> Constant -> Linear (0) Warmup -> Linear (0)
005 05

0.30} Number of iterations 005 0.30| Number of iterations 0.301 Number of iterations
1 10 1

o= 212 0.04 210 =g 2t 0.04 2 == 2 0.04
M g 2 P pi-ap
0.25{ cgpm 212 mgm 215 003 0.25| cpm 212 mpm 235 003 0.25{ mgpm 212 mgm 21 003

0.10 0.10 0.10
0.05 0.05 0.05
0.00 0.00 0.00
211 pen 2-10 29 28 27 211
n n

Warmup -> Cosine (10%) Warmup (scaled, 1/64 fraction) -> Constant Constant
0.30 Number of iterations 005 0.30| Number of iterations > 0.301 Number of iterations 29
2v 0.04 20 g 222 4 200 - 222 0.04
L = o~ Lo
0.25| —ggm 212 mgm 235 0.03 0.25| wgpm 212 0.25{ m@pm 22 mggm 21 0.03
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o B I e T e
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Figure 8: Loss profile £y, — L1 as a function of maximum learning rate 7 for schedules with

the following phases: warmup and constant (top left); warmup, constant and linear decay to O (top
middle); warmup and linear decay to O (top right); warmup and cosine decay to 10% of the max-
imum 7 (bottom left); warmup scaled as 1/64 fraction of the total horizon and constant (bottom
middle); constant (bottom right). Warmup duration is always set t0 Twarmup = 219 = 524288 to-
kens, except for the case with warmup phase scaling. The model configuration is (dbmaggel =
1024, dmodel = 1024, B = 220).
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A.8 LOSS PROFILES PER (dbase dmodel) CONFIGURATION

model?

A.8.1 dbase 1024, dimodel = 1024
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Figure 9: Loss profile Ly, — L™ as a function of maximum learning rate 7 for (d‘r’fgeel =
1024, dmodel = 1024) for batch size B = 2'° (top left), B = 2'8 (top middle), B = 2" (top
right), B = 222 (bottom left), B = 2?4 (bottom middle), B = 226 (bottom right) across various

token budgets.
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A.8.2 dglaos,;elel = 10247 dmodel = 512
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Figure 10: Loss profile Ly, — £ as a function of maximum learning rate 7 for (db255
1024, diodel = 512) for batch size B = 216 (top left), B = 218 (top middle), B = 220 (top right),
B = 222 (bottom left), B = 22* (bottom middle), B = 226 (bottom right) across various token

budgets.

A.8.3 dbass

mode

| = 1024, doder = 256
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Figure 11: Loss profile Ly, — L™ as a function of maximum learning rate 7 for (d
1024, diodel = 256) for batch size B = 216 (top left), B = 2'8 (top middle), B = 22 (top right),
B = 222 (bottom left), B = 224 (bottom middle), B = 226 (bottom right) across various token

budgets.
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A.8.4 dbase 2567 dmodel = 256

model —

0.301 Number of iterations 005 0.30 Number of iterations 005 0.301 Number of iterations 005
Rl e e
-l L -
0.25{ wgm 215 mm 219 0.03 0.25| ugm 21*  mm 217 0.03
0.20 001 0.20 0.01
1015 FED BT T oas T 2 o '
0.10 0.10
0.05 ﬁ/ 0.05
0.00 0.00
P B e S =
n n
0.301 Number of iterations 005 0.30 Number of iterations 005
2 == 2 004 2 2 004
A > ¢ \Si
0.25{ wgm 210 mm 213 0.03 0.25| mggm 28w 211 0.03
0.20 0.20 0.01
£ & 000 &
o m s < = iy =) n
1015 71015 2 z 2 i 2 z 2
0.10 0.10
0.05 0.05
0.00 0.00
P = e o
n
. . min . . . base _
Figure 12: Loss profile Ly, — L2 as a function of maximum learning rate n for (d22%5, =

256, dmodel = 256) for batch size B = 216 (top left), B = 218 (top middle), B = 220 (top right),
B = 222 (bottom left), B = 22* (bottom middle), B = 226 (bottom right) across various token
budgets.
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Figure 13: Loss profile £y, — £ as a function of maximum learning rate 1 for (d2, =
256, dmodel = H12) for batch size B = 216 (top left), B = 2'8 (top middle), B = 22 (top right),
B = 222 (bottom left), B = 224 (bottom middle), B = 226 (bottom right) across various token

budgets.
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A.8.6 dP™ =256, dpodqe = 1024
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Figure 14: Loss profile Ly, — £ as a function of maximum learning rate 7 for (dﬁf‘(fgel =
256, dmodel = 1024) for batch size B = 216 (top left), B = 2'8 (top middle), B = 22° (top right),
B = 222 (bottom left), B = 2% (bottom middle), B = 2%6 (bottom right) across various token

budgets.

A.9 FIG.[IIWITH THE FULL SET OF BATCH SIZE AND TOKEN BUDGET VALUES

T 1
_7 Batch size [tokens] 7 Token budget
2 216 _._ 222 2 230 . 232 . 234 . 236
218 _._ 224 231 . 233 . 235 . 237
270 -0 2° -@ 2 -
0o,
2-9
S
2-10
2—11
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230 31 32 33 34 35 336 37 216 218 220 222 224 226
Token budget Batch size [tokens]

Figure 15: Same as Fig.|l{with the full set of batch size (left) and token budget (right) values.
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A.10 pP-AVERAGED OPTIMAL LEARNING RATE AND BATCH SIZE JOINT SCALING FOR

base __
dmodcl = 256
23 Batch size Token budget
216 ‘ 220 + 224 230 ‘ 232 + 234
218 + zZZ * 226 2_6 231 * 233 * 235
22
2—7
21
£ 278
L <
2-° \
2—1
2-10
2-2
-11
273 2
230 231 232 233 234 235 216 218 220 222 224 226
Token budget Batch size

Figure 16: (left) Evolution of the optimal learning rate with an increase of the pretraining token
budget 0, (T') , normalized to 7*|—230, for a set of batch sizes (in tokens). Each point is obtained
by averaging optimal learning rate values across 1P model family, as described in Sec.[3.2] Dashed
lines correspond to a square-root n* o< v/T'~1 scaling rule. (right) Transposition of (left): optimal
learning rate n* per batch size, against a range of pretraining token budgets. Each point is pP-
averaged as in (left), with color bands visualizing the corresponding standard deviation. We note

that experiments were performed with a coarser learning rate resolution of 2! compared to a 2°-° step
in experiments with d*2$ | = 1024.
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A.11 PER-MODEL OPTIMAL LEARNING RATE AND BATCH SIZE JOINT SCALING

A11.1 db2S, =256
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Figure 17: Individual curves contributing to Fig. for models with dy,0qe1 = 256 (left column),
512 (middle column), 1024 (right column) showing evolution of the normalized to T' = 23 tokens
optimal learning rate 7., in time per batch size (top row), and joint optimal (7, B) curves per
token budget (bottom row), for d>2S | = 256.
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A.11.2 dPase . = 1024

model T
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Figure 18: Individual curves contributing to Fig. [l for models with dy,04e1 = 256 (left column),
512 (middle column), 1024 (right column) showing evolution of the normalized to T' = 23 tokens
optimal learning rate 7., in time per batch size (top row), and joint optimal (7, B) curves per
token budget (bottom row), for d*2$ | = 1024.

32



Under review as a conference paper at ICLR 2025

A.12 PER-MODEL VALIDATION LOSS EVOLUTION IN TIME DEPENDING ON BATCH SIZE WITH
OPTIMALLY-TUNED LEARNING RATE

A12.1 db2sS, =256
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Figure 19: Analogue of Fig. (top row) and Fig.(bottom row) for models with widths d,,o4el
256 (left column), 512 (middle column), 1024 (right column) and the base model width dgﬁfgel
256.
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A.12.2

Figure 20: Analogue of Fig. (top row) and Fig.(bottom row) for models with widths d,0qe1
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256 (left column), 512 (middle column), 1024 (right column) and the base model width dﬁlasgel

1024.

A.13

LEARNING RATE SENSITIVITY IN THE pP WIDTH LIMIT
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Figure 21: Same as Fig. Elbut without y-axis normalization with £7in.
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