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Abstract
We present Contextual Vision Transformers (Con-
textViT), a method for producing robust feature
representations for images exhibiting grouped
structure such as covariates. ContextViT intro-
duces an extra context token to encode group-
specific information, allowing the model to ex-
plain away group-specific covariate structures
while keeping core visual features shared across
groups. Specifically, given an input image,
Context-ViT maps images that share the same
covariate into this context token appended to the
input image tokens to capture the effects of condi-
tioning the model on group membership. We fur-
thermore introduce a context inference network to
predict such tokens on the fly given a few samples
from a group distribution, enabling ContextViT to
generalize to new testing distributions at inference
time. We demonstrate the performance of Con-
textViT through a diverse range of applications.

1. Introduction
In recent years, Vision Transformers (ViTs) have emerged
as a powerful approach for image representation learn-
ing (Dosovitskiy et al.; Khan et al., 2022). However, many
real-world datasets exhibit structured variations or covariate
shifts across groups, which pose challenges for standard
ViT models. To address this limitation, we propose Contex-
tual Vision Transformers (ContextViT), a novel method that
leverages the notion of in-context learning (Brown et al.,
2020) to produce robust feature representations for images
with grouped structures, such as covariates.

ContextViT builds upon the concept of in-context learn-
ing, which was originally proposed in the domain of lan-
guage processing. In-context learning involves conditioning
Transformer-based models on specific contexts to enable
test-time adaptation to new tasks. In our work, we extend
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this idea to address the challenge of covariate shift and struc-
tured variations in real-world datasets. Unlike traditional
in-context learning approaches that condition on the whole
context-dataset explicitly for each query, ContextViT infers
context tokens per each group that can be shared across
members of this group, such as all images collected under a
shared context. A practical advantage of this modeling style
is not requiring extensive memory and computing resources
to serve excessive context windows. Underlying this model
is the idea of mixed models, a class of hierarchical statistical
models commonly used in scientific applications, which cap-
ture fixed and random effects to represent individual- and
group-level variation for observed data, but in our case those
effects are latent and modeled as inferred context tokens. In-
context learning is also interpreted as an implicit generative
model (Xie et al., 2022), but in our case the relatedness of
the queries is explicitly given by the group structure, assum-
ing a more structured style of conditioning across contexts
common in real world scientific datasets collected under
shared experimental conditions.

We present two variations of ContextViT: In Section 2.3,
we assume contexts have been observed and infer them as
parameters during training. Test-time adaptation is imprac-
tical for this model as it requires inferring a new token for
a test group. In Section 2.4, we propose overcoming this
limitation by utilizing a context inference network to esti-
mate these tokens on the fly given a set of examples from a
group, making the model more amenable to test-time adap-
tation tasks. We examine different choices for the inference
network and layerwise versus input-layer-only inference of
context tokens.

We demonstrate the versatility and effectiveness of Con-
textViT and its variations on the challenging Camelyon17
dataset, which serves as a benchmark for distribution shift
in pathology imaging. Compared to conventional ViT mod-
els, ContextViT showcases remarkable improvements in
generalization, achieving significantly higher accuracy on
previously unseen hospitals (97.5 compared to 93.8).

2. Contextual Vision Transformer
Assume Dc denotes a collection of samples from a distribu-
tion Pc(·) under potentially unknown context c. Our goal is
as follows: given a collection of such related datasets from
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Figure 1. Contextual Vision Transformer (ContextViT). Before each Transformer layer, ContextViT applies a context inference model
over all patches (from images within the current batch that share the same group membership) to produce a context token. To simplify the
illustration, we present only two Transformer layers and depict a single patch embedding for each image on the left side.

distributions with varying contexts c, we would like to learn
a model that can generalize gracefully across these different
domains and ideally adapt to new contexts c∗ at test time.

We assume that we observe data from multiple distributions
jointly, each varying by a context c, so that our dataset is
comprised by their collection D = {D1, ...,Dc}. We aim to
learn a single shared ViT model, parameterized by θ, across
all sub-datasets with varying contexts. We denote a tuple
{x, y, c} as the data describing the sample, where x denotes
an input, the image, and y denotes an output variable such
as a label or an unknown embedding, and c denoting group
membership for each datum to each sub-distribution Pc(·).
Over the next sections we will explain our assumptions for
ContextViT and will present practical implementations.

2.1. In-Context Model

A popular paradigm for incorporating test-time conditioning
in Transformers is given by in-context learning (Brown et al.,
2020) and prompt-conditioning (Radford et al., 2021; Li &
Liang, 2021). To translate that paradigm to our task, we
incorporate group membership to the representation learning
task by conditioning on the members of the group, assuming
the following factorization of the joint distribution over all
data:

P (Y |X,C) =
∏
c

∏
{x,y}∈Dc

P (y|x,Dc; θ). (1)

Here, we would concatenate all images belonging to context
c to the query image. During ViT processing, these images
are patchified and represented as patch tokens, resulting in
an input to the Transformer consisting of the tokens belong-
ing to the query image and to the context images. This pro-
cess is closest to in-context reasoning as commonly applied
for LLMs, but ported over to the scenario of representation
learning for vision.

In practice, we can subsample patch-tokens from Dc up to
the memory constraints and perform reasoning this way.

2.2. Context-Token Model

Upon further inspection, it is evident that such a process can
be interpreted as performing inference over a latent variable
explaining away the context-specific covariates tc as shown
in the following:

P (y|x,Dc) =

∫
P (y|x, tc; θ)P (tc|Dc) dtc. (2)

Here we assume an implicit hierarchical generative model
of images with shared latent structure up to a contextual
variable tc ∈ Rd which represents an embedding of the
latent covariates determining each distribution and is treated
as a context token. Such a context token can be characterized
by its posterior distribution given the members of the group
P (tc|Dc) and can then be utilized in a model P (y|x, tc) to
explain the impact of the contextual samples Dc.
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Under this viewpoint using Eq.2, we can now see that the
context token is shared over all members of a distribution
with index c, allowing us to rewrite Eq.1 such that we can
break the dependence of the model on Dc for each data
point given this context token:

P (Y |X,C) =
∏
c

∫
P (tc|Dc)

∏
{x,y}∈Dc

P (y|x, tc; θ) dtc.

(3)

We now have established equivalence between the in-context
model, and a model which explicitly assumes existence of a
context token as additional input to the forward model. We
note that recent work proposes a deeply related interpreta-
tion of in-context learning in (Xie et al., 2022) supporting
our view of an implicit probabilistic model.

2.3. Oracle-Context Model

We now devise simpler formulations of the model and per-
form maximum likelihood inference over the context token,
simplifying Eq. 3 to:

P (Y |X,C) =
∏
c

∏
{x,y}∈Dc

P (y|x, tc; θ), (4)

where tc now is a shared parameter that can be inferred per
existing group during training. We denote this model the
Oracle-Context Model, since it only assumes knowledge of
the indicator about which group an image belongs to, and
does not require access to the other members of the group.

We can instantiate this oracle model by conditioning the
ViTs with a learnable context token tc and append it
to the input sequence of the Transformer: [tCLS, tc, t1 +
pos1, . . . , tN + posN ].

The drawback is, that such a method cannot be applied
during test-time outside of known distributions, since it will
not be able to infer the token embedding without having
seen examples from this group during training.

2.4. Context Inference Model

We overcome this limitation by closer matching the objec-
tive and assuming a model that performs amortized infer-
ence over the context-token parameters on the fly given Dc

by utilizing an inference network h(·;ϕ).

Concretely, we will again simplify p(tc|Dc) to be given by
maximum likelihood but this time also utilize Dc by posing:

P (Y |X,C) =
∏
c

∏
{x,y}∈Dc

P (y|x; tc, θ),

with tc = h(Dc; ϕ).

Here, h(·;ϕ) infers tc on the fly when observingDc, and can
indeed also be used during test time on a previous unknown
distribution with context c∗ time given a set of samples Dc∗ .
There are multiple options available for instantiating the
inference model h(·;ϕ) (refer to the Appendix for more
details). In the case of ContextViT (Figure 1), the inference
model h(·;ϕ) comprises three key components:

Mean pooling Given an image x ∈ Dc with its corre-
sponding patch embeddings tpi

, a direct way to obtain the
context token tc is to aggregate the patch embeddings of all
images in Dc through an average pooling operation

tmean
c = hmean

c (Dc) :=
1

|Dc|
∑
x∈Dc

1

N

∑
xpi

∈x

tpi
.

The input sequence for the image x would then be repre-
sented as [tCLS, tmean

c , t1 + pos1, . . . , tN + posN ]. In prac-
tice, instead of pooling over the entire Dc, we apply mean
pooling over B ∩ Dc where B is the current batch.

Linear transformation with gradients detaching To fur-
ther enhance the context representation, we introduce a train-
able linear transformation to the pooled representation. In
order to prevent the patch embeddings from being penalized
by the context inference model, we detach their gradients.
This results in the expression

hlinear
c (Dc; b,W ) := b+W · detach(tmean

c ).

Layerwise context conditioning Recent work (Ghiasi
et al., 2022) has shown that Transformer features progress
from abstract patterns in early layers to concrete objects in
later layers. We explore the application of context condi-
tioning beyond the input layer driven by the hypothesis that
patch embeddings may not be able to capture higher-level
concepts. For the l-th Transformer layer, we use y(l) to
denote its output and D(l)

c to denote the collection of hidden
patch embeddings of context c. We propose layerwise con-
text conditioning which performs amortized inference over
context-token parameters for each layer in the ViT instead
of just propagating the input-layer token:

P (y(l)|y(0) := x; tc) =

L∏
l=1

P (y(l)|y(l−1); t(l−1)
c ),

with t(l)c = h(D(l)
c ;ϕ(l)).
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Table 1. Accuracy of linear probing of pre-trained DINO embeddings on Camelyon17-WILDS. We use † to denote our implementations.
Unlabeled ID&OOD denote unlabeled pathology images from all hospitals. In our experiments, we exclude the OOD unlabeled images
during the DINO pre-training stage to avoid information leak.

Backbone Size Pre-training
Method

Pre-training
Dataset

In-distribution
Accuracy

OOD
Accuracy

Fine-tuning all parameters
DenseNet121 (Koh et al., 2021) 7.9M Supervised ImageNet1K 90.6 82.0
DenseNet121 (Sagawa et al., 2021) 7.9M SwaV Unlabeled ID&OOD 92.3 91.4
ViT-B/16 (Kumar et al., 2022) 86M DINO ImageNet — 90.6
ViT-L/14 (Kumar et al., 2022) 303M CLIP WebImageText 95.2 96.5

Linear probing on frozen backbone
ViT-L/14 (Kumar et al., 2022) 303M CLIP WebImageText — 92.6
ViT-S/8† 21.7M DINO Unlabeled ID 98.9 93.8
ContextViT-S/8† 21.8M DINO Unlabeled ID 98.9 97.5

For the l-th Transformer layer, we can express the layerwise
context conditioning as

[y
(l)
CLS, y

(l)
c , y(l)p1

, . . . , y(l)pN
]

= T (l)([y
(l−1)
CLS , t(l−1)

c , y(l−1)
p1

, . . . , y(l−1)
pN

]).

3. Experiments
In medical applications, models are often trained using data
from a limited number of hospitals with the intention of de-
ploying them across other hospitals more broadly (Yala et al.,
2019; 2021; Bandi et al., 2018). However, this presents
a challenge for the generalization of out-of-distribution
data. In this section, we aim to evaluate the ability of
self-supervised learning with ContextViT to achieve bet-
ter out-of-distribution generalization. 1

Dataset We consider the Camelyon17-WILDS bench-
mark (Bandi et al., 2018; Sagawa et al.). The dataset con-
tains 455,954 labeled and 2,999,307 unlabeled pathology
images across five hospitals (3 for training, 1 for validation
and 1 for testing). Given a 96× 96× 3 image, the task is to
predict whether the center region of the image contains any
tumor tissue. We use the hospital id for context inference.

Evaluation protocol We utilize DINO to pre-train our ViT
and ContextViT models from scratch on unlabeled pathol-
ogy images. Unlike previous work ((Sagawa et al., 2021))
that incorporates both in-distribution and out-of-distribution
unlabeled data (Unlabeled ID&OOD), we exclusively use
images from the three training hospitals (Unlabeled ID) dur-
ing pre-training stage to prevent any potential information
leakage from out-of-distribution data. Given the 96 by 96 in-

1Given space constraints, we provide our ablation study and
analyses in the Appendix. Additionally, we also provide evidence
of the utility of ContextViT for supervised fine-tuning on iWild-
Cam and FMoW datasets, as well as for self-supervised represen-
tation learning in microscopy imaging on the cpg-0000 dataset.

put resolution of our dataset, we opt for a smaller patch size
(8 instead of 16) for the ViT models. Further details on our
DINO pre-training approach can be found in the Appendix.
Once pre-training is complete, we freeze the ViT parameters
and train a linear classifier with SGD to predict the target
label, the presence of tumors. We use the validation data
for model selection and report the testing accuracy on the
out-of-distribution hospitals.

Results Table 1 presents a comparison of our linear prob-
ing results (marked with†) with other published results on
the Camelyon17 benchmark. Our DINO pre-trained ViT-S/8
baseline outperforms the much larger CLIP model in terms
of linear probing (93.8 vs. 92.6), which is not surprising
given the ViT-S/8 has been pre-trained on the same pathol-
ogy domain. Next, we see that by conditioning our ViT-S/8
representation with other images from the same hospital
within the testing batch, ContextViT-S/8 achieves an OOD
accuracy of 97.5%, significantly outperforming all baselines.
Due to space constraints, we defer our ablation study and
additional analyses to the appendix.

4. Conclusion
We have presented Contextual Vision Transformers, a
method that addresses challenges posed by structured varia-
tions and covariate shifts in image datasets. By leveraging
the concept of in-context learning and introducing context
tokens and token inference models, ContextViT enables
robust feature representation learning across groups with
shared characteristics. Through extensive experimental eval-
uations across diverse applications, ContextViT consistently
demonstrates its utility compared to standard ViT models in
terms of out-of-distribution generalization and resilience to
batch effects. This success highlights the power and versa-
tility of ContextViT when handling structured variations in
real-world applications, where invariance to such nuisances
may be desirable.
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A. Related Work
Our work shares some ideas and expands on the notion of in-context learning proposed in (Brown et al., 2020) in that we
realize that a form of conditioning can position transformer-based models to perform test-time adaptation to new tasks,
but instead of conditioning on a dataset explicitly for each query infer context tokens which are shareable across a group.
Similar to (Xie et al., 2022) we interpret in-context learning via an implicit generative model, with the key difference that we
focus on the case of adaptation to covariate shift and expand that framework with explicit context tokens. Another related
recent work builds hierarchical models for transformers applied to language modeling in (White et al., 2022), with similar
explaining away of group-specific effects and links to mixed models. Our work differs in the implementation details of
this idea from the inference strategy of the context tokens to the application to representation learning to images. Similar
to (Hao et al., 2022), our approach also achieves test time adaptation without the enormous memory costs of in-context
learning since we share inference over the context token across examples using it and only require a single additional token
to represent the group information. Test-time adaptation is also the topic of a wealth of prior work (Sun et al., 2020; Liu
et al., 2021; Zhang et al., 2022), while on the fly batch norm statistics have been shown to improve CNN generalization at at
test time (Zhang et al., 2021; Nado et al., 2020; Li et al., 2016; Schneider et al., 2020; Lin & Lu, 2022; Kaku et al., 2020).
Instead of directly normalizing the feature statistics, our approach abstracts the context information as an extra latent input
to the Transformer layer. Our work also demonstrates value in self-supervised representation learning tasks for ViTs (Zhou
et al.; He et al., 2022; Assran et al., 2022; Oquab et al., 2023; Caron et al., 2021), yielding robustness to covariate shift
through context-conditioning during pre-training.

We also would like to highlight the distinction between previous work on prefix tuning (Li & Liang, 2021) and ContextViT.
While both approaches involve conditioning a Transformer model with additional tokens, their objectives and mechanisms
differ. Prefix tuning focuses on learning a prefix token for a frozen Transformer model, which can enhance performance
for a specific downstream task. In contrast, ContextViT aims to generate in-context feature representations by inferring
these tokens directly from the input data. Furthermore, ContextViT jointly learns the Transformer parameters along with the
context conditioning, as discussed in Section B.2 and Section B.3.

B. Full experiments
We demonstrate the utilities of ContextViT across a variety of applications. We start with the common supervised fine-tuning
setting where we augment three existing pre-trained ViTs with our context inference model (Section B.1). Next we
experiment ContextViT with self-supervised representation learning. We demonstrate the importance of context conditioning
for both in-distribution generalization B.2 and out-of-distribution generalization B.3. We present our ablation study and
analysis in Section B.4.

B.1. Fine-tuning pre-trained ViTs with context conditioning

Dataset To evaluate robustness over data shifts, we consider two image classification datasets from the WILDS bench-
mark (Koh et al., 2021): iWildCam (Beery et al., 2021) and FMoW (Christie et al., 2018).

iWildCam consists of 203,029 labeled images captured different camera traps. The task is to classify the animal species
among 182 possible options. We use the official data split. At test time, we measure the average classification accuracy on
unseen camera traps to assess out-of-distribution generalization. We use the camera trap id for the context inference.

FMoW includes 141,696 satellite images labeled for 62 different land use categories, such as shopping malls, road bridges,
etc. The images are also tagged with the year they were taken and their geographical region. We adopt the standard split,
training our model on images from 2002-2013 and validating it on images from 2013-2016. We evaluate the model’s
worst-region accuracy on out-of-distribution images (from 2016-2018) during testing. We use the region id for the context
inference.

Evaluation protocol We consider three existing pre-trained ViT models, each with a different number of parameters: 1)
DINO ViT-S/8 (Caron et al., 2021), which is pre-trained on ImageNet with self-distillation between a teacher and a student
network. 2) SWAG ViT-B/16 (Singh et al., 2022), which is pre-trained on IG3.6B using weak supervision (hashtags from
Instagram). 3) CLIP ViT-L/14, which is pre-trained on the Multi-modal WebImageText using language-image contrastive
learning. Despite their differences in pre-training objectives and datasets, these models share the same ViT backbone.
Therefore we can augment these pre-trained models with our proposed context conditioning mechanism and fine-tune the
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Table 2. OOD accuracy on iWIldCam and worst-region OOD accuracy on FMoW for supervised fine-tuning (FT). Augmenting existing
pre-trained ViTs (DINO (Caron et al., 2021), SWAG (Singh et al., 2022), CLIP (Radford et al., 2021)) with our context inference model
consistently improves the out-of-distribution generalization performance.

iWildCam FMoW

DINO
ViT-S/8

SWAG
ViT-B/16

CLIP
ViT-L/14

DINO
ViT-S/8

SWAG
ViT-B/16

CLIP
ViT-L/14

FLYP (Goyal et al., 2022) — — 76.2±0.4 — — —
Model Soups (Wortsman et al., 2022) — — 79.3±0.3 — — 47.6±0.3

FT ViT (Wortsman et al., 2022; Kumar et al., 2022) — — 78.3±1.1 — — 49.9

Our implementations
FT ViT 75.7±0.2 77.5±0.5 81.5±0.2 35.0±0.2 39.8±0.5 46.6±1.1

FT ContextViT (w/o layerwise) 77.5±0.2 78.6±0.4 81.9±0.1 37.3±0.6 41.3±1.0 49.1±0.7

FT ContextViT 77.7±0.3 79.6±0.6 82.9±0.3 37.7±0.5 41.4±0.3 49.9±0.4

combined ContextViT jointly with empirical risk minimization. During fine-tuning, we use standard data augmentation
techniques including cropping and resizing, flipping and color jittering. For optimization, we use the AdamW optimizer with
a cosine learning rate decay, and we warm up the optimizer for the first 2 epochs. We fine-tune each model for a maximum
of 20 epochs with a batch size of 256. We perform model selection based on the accuracy on the official validation split and
report the mean and standard deviation across five runs.

Results Table 2 presents our results for supervised fine-tuning. We note that our direct fine-tuning baseline (using CLIP
ViT-L/14) outperforms the number reported by (Wortsman et al., 2022) on iWildCam (81.5 vs. 78.3) and underperforms
the number reported by (Kumar et al., 2022) on FMoW (46.6 vs. 49.9). We think this is likely caused by the differences
in the implementation details (data augmentation, learning rate scheduling, etc.), and unfortunately we cannot find the
configuration online to reproduce the exact numbers. Nevertheless, upon comparing our implementations, we make the
following observations: 1) Smaller ViTs exhibit inferior generalization compared to larger ViTs; 2) Incorporating our
context inference model consistently enhances the performance of ViTs; 3) Layerwise context inference further enhances
generalization.

B.2. In-distribution generalization of ContextViT with self-supervised learning

Microscopy imaging with cell painting has demonstrated its effectiveness in studying the effects of cellular perturba-
tions (Haghighi et al., 2022; Moshkov et al., 2022; Sivanandan et al.). Despite meticulous regulation of experimental
parameters like cell density and exposure time, technical artifacts can still confound measurements from these screens across
different batches. Learning a robust representation for cell images that can effectively handle batch variations remains an
ongoing challenge.

Dataset We consider three cell plates (”BR00116991”, ”BR00116993”, ”BR00117000”) from the cpg0000 dataset
released by the JUMP-Cell Painting Consortium (Chandrasekaran et al., 2022). Each plate consists of 384 wells with
perturbations (either via a chemical compound or a crispr guide) targeted at 160 different genes. Our input data consists
of single-cell images: 229228 images for BR00116991, 226311 images for BR00116993 and 239347 images for
BR00117000. We note that here each single-cell image has dimension 224 × 224 × 8 (5 fluorescence channels and 3
brightfield channels). For each plate, we split the images randomly into training (40%), validation (10%) and testing (50%).
We use the plate id for context inference.

Evaluation protocol For each model, we first use DINO (Caron et al., 2021) to pre-train the ViT and ContextViT from
scratch for 100 epochs. Once pre-training is completed, we freeze the ViT parameters and attach a classifier (a MLP with
one hidden ReLU layer of dimension 384) to predict the targeted gene of the cell. For each plate, we train the classifier
independently using its own training split and report the accuracy on the testing split.

Results Analyzing the first section of Table 3, we note that the representation learned by DINO on a single plate
(BR00116991) exhibits poor generalization across plates (42.7 for BR00116993 and 46.8 for BR00117000). More-
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Table 3. Accuracy of 160-way gene perturbation classification for three cell plates in cpg-0000. For each plate, we train a classifier
(one-layer MLP) on top of the pre-trained DINO embeddings and evaluate its held out performance. The DINO embeddings are pre-trained
on either a single plate BR00116991 (first section) or all three plates combined (second section).

Method BR00116991 BR00116993 BR00117000

DINO pre-training on BR00116991 only
ViT-S/16 56.5 42.7 46.8

DINO pre-training on BR00116991 & BR00116993 & BR00117000
ViT-S/16 53.6 43.5 45.6
ContextViT-S/16 57.7 48.0 48.8

over, directly combining all three plates for pre-training results in a degradation of the model’s performance: -2.9 for
BR00116991, +0.8 for BR00116993 and -1.2 for BR00117000. In contrast, by utilizing ContextViT, the model effec-
tively accounts for batch effects through context conditioning during the pre-training stage, resulting in superior performance
across all three plates.

B.3. Out-of-distribution generalization of ContextViT with self-supervised learning

In medical applications, models are often trained using data from a limited number of hospitals with the intention of
deploying them across other hospitals more broadly (Yala et al., 2019; 2021; Bandi et al., 2018). However, this presents a
challenge for the generalization of out-of-distribution data. In this section, we aim to evaluate the ability of self-supervised
learning with ContextViT to achieve better out-of-distribution generalization.

Dataset We consider the Camelyon17-WILDS benchmark (Bandi et al., 2018; Sagawa et al.). The dataset contains
455,954 labeled and 2,999,307 unlabeled pathology images across five hospitals (3 for training, 1 for validation and 1 for
testing). Given a 96× 96× 3 image, the task is to predict whether the center region of the image contains any tumor tissue.
We use the hospital id for context inference.

Evaluation protocol We utilize DINO to pre-train our ViT and ContextViT models from scratch on unlabeled pathology
images. Unlike previous work ((Sagawa et al., 2021)) that incorporates both in-distribution and out-of-distribution unlabeled
data (Unlabeled ID&OOD), we exclusively use images from the three training hospitals (Unlabeled ID) during pre-training
stage to prevent any potential information leakage from out-of-distribution data. Given the 96 by 96 input resolution of
our dataset, we opt for a smaller patch size (8 instead of 16) for the ViT models. Once pre-training is complete, we freeze
the ViT parameters and train a linear classifier with SGD to predict the target label, the presence of tumors. We use the
validation data for model selection and report the testing accuracy on the out-of-distribution hospitals.

Results Table 4 presents a comparison of our linear probing results (marked with†) with other published results on the
Camelyon17 benchmark. Our DINO pre-trained ViT-S/8 baseline outperforms the much larger CLIP model in terms of
linear probing (93.8 vs. 92.6), which is not surprising given the ViT-S/8 has been pre-trained on the same pathology domain.
Next, we see that by conditioning our ViT-S/8 representation with other images from the same hospital within the testing
batch, ContextViT-S/8 achieves an OOD accuracy of 97.5%, significantly outperforming all baselines. Moreover, Figure 2
demonstrates that the linear classifier built upon ContextViT-S/8 continues to enhance its OOD performance as the training
of the linear classifier progresses, while the one built upon ViT-S/8 exhibits signs of over-fitting to the training data.

B.4. Ablation study and analyses

Context inference model Our ablation study of our context inference model h(·;ϕ) is outlined in Table 5. We observe
that utilizing the mean patch embeddings as context (94.1) and incorporating an additional linear transformation (94.4)
result in improved performance compared to the no context baseline (93.8). Notably, we find that detaching the gradients
when calculating the context token from the patch embeddings is crucial, leading to a performance boost from 94.4 to 97.2.
Furthermore, the application of layerwise context conditioning further enhance the performance.

We also experimented with other set representation models for context inference, including deep sets (Zaheer et al., 2017).
Although deep sets (with detached patch embeddings) outperformed the baseline (94.9 vs. 93.8), it still fell short of the
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Table 4. Accuracy of linear probing of pre-trained DINO embeddings on Camelyon17-WILDS. We use † to denote our implementations.
Unlabeled ID&OOD denote unlabeled pathology images from all hospitals. In our experiments, we exclude the OOD unlabeled images
during the DINO pre-training stage to avoid information leak.

Backbone Size Pre-training
Method

Pre-training
Dataset

In-distribution
Accuracy

OOD
Accuracy

Fine-tuning all parameters
DenseNet121 (Koh et al., 2021) 7.9M Supervised ImageNet1K 90.6 82.0
DenseNet121 (Sagawa et al., 2021) 7.9M SwaV Unlabeled ID&OOD 92.3 91.4
ViT-B/16 (Kumar et al., 2022) 86M DINO ImageNet — 90.6
ViT-L/14 (Kumar et al., 2022) 303M CLIP WebImageText 95.2 96.5

Linear probing on frozen backbone
ViT-L/14 (Kumar et al., 2022) 303M CLIP WebImageText — 92.6
ViT-S/8† 21.7M DINO Unlabeled ID 98.9 93.8
ContextViT-S/8† 21.8M DINO Unlabeled ID 98.9 97.5

Table 5. Ablation study and pre-training time cost (on a server with 8 A100 GPUs) of different context inference models. For each method,
we pre-train the corresponding ContextViT on Camelyon17-WILDS (Unlabeled ID) from scratch using DINO for 100 epochs. We report
the out-of-distribution accuracy of linear probing on the official OOD testing split.

Context Inference Method Linear Probing
OOD Acc.

DINO Pre-training
Time Cost

No context (ViT-S/8 baseline) 93.8 21.5h
Mean patch embeddings 94.1 22.6h
Mean patch embeddings + linear 94.4 23.5h
Mean detached patch embeddings + linear 97.2 23.2h
Layerwise mean detached patch embeddings + linear 97.5 29.9h

Deep sets over patch embeddings 92.5 30.0h
Deep sets over detached patch embeddings 94.9 29.1h

simpler approach of mean pooling with linear transformation. Our hypothesis is that the Transformer block’s self-attention
mechanism, which utilizes the same key, query, and value transformations across the sequence, results in the mean pooling
with linear transformation producing a context embedding that is more comparable to the original patch sequence.

Time efficiency One limitation of ContextViT is the extra time cost for the context conditioning. In Table 5, we present
the DINO pre-training time cost for different context inference methods. We observe that adding the non-layerwise context
conditioning increases the baseline DINO pre-training time by 5%-9%. Applying layerwise context conditioning further
increases the time cost by 29%.

Sensitivity to testing batch size During the inference phase, ContextViT-S/8 takes a random batch of testing examples
(512 in all previous experiments) and groups them based on their group membership, such as the hospital ID in the case
of Camelyon17, to infer the corresponding context tokens. In Figure 3, we present a visualization of ContextViT’s linear
probing performance sensitivity across different testing batch sizes. Remarkably, even with a testing batch size of 1, where
ContextViT-S/8 leverages patches from a single testing image (144 patches) to establish its context, it still outperforms our
ViT-S/8 baseline by a significant margin (97.0 vs. 93.8). It’s worth noting that after DINO pre-training, ContextViT-S/8
acquires the ability to condition its output features with respect to the context. As highlighted by (Gao et al.), pathology
images from different hospitals exhibit distinct color distributions. The exceptional performance of ContextViT-S/8 with a
small testing batch size demonstrates the model’s capability to automatically estimate the color distribution shift from a few
representative images during test time.

Attention maps from multiple heads In line with the findings of (Caron et al., 2021), which demonstrate that DINO can
learn class-specific features leading to unsupervised object segmentations, we visualize the attention heatmaps for different
heads learned with ContextViT in the Camelyon17 dataset. Figure 4 illustrates these attention maps, showcasing that the
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Figure 3. On Camelyon17, we observe that even when we use a
testing batch size of 1 (computing the context by aggregating 144
8 x 8 patches from a single testing image into a single context
token), ContextViT-S/8 still significantly outperforms ViT-S/8.

learned attentions are focused on meaningful aspects for both in-distribution data and out-of-distribution data. Furthermore,
different attention heads exhibit distinct preferences for different cell types. For instance, head-2 primarily focuses on the
contour of the cells, while head-3 directs its attention to the actual cells themselves.

Visualizing the context tokens To visualize the learned context tokens for each hospital, we employ PCA and present
the results in Figure 5. Remarkably, the inferred context tokens for each hospital exhibit high similarity, appearing closely
clustered together. Additionally, we include example images for each hospital on the right side of Figure 5. Notably, the
distances between context tokens from different hospitals align well with their visual dissimilarities. For instance, hospital 3
(highlighted in red) is closer to hospital 1 (highlighted in orange) than it is to hospital 4 (highlighted in purple).

C. ContextViT: implementation details
The integration of ContextViT with existing pre-trained ViT models is straightforward. As illustrated in Figure 6, we provide
a PyTorch-style pseudo code to outline the process.

C.1. Supervised Fine-tuning

Data augmentation We apply standard data augmentations during supervised fine-tuning for both ContextViTs and ViTs.
These augmentations include random resized cropping, random horizontal flipping, and random color jittering.

For the iWildcam dataset, we set the crop scale to be [0.08, 1.0], the horizontal flip probability is set to 0.5, and color jitter is
applied with a maximum brightness change of 0.4, maximum contrast change of 0.4, maximum saturation change of 0.4,
and maximum hue change of 0.1, with a probability of 0.8.

In the FMoW dataset, objects typically only appear in a small part of the image, so aggressive cropping may introduce noise.
Therefore, we set the crop scale to be [0.8, 1.0] and reduce the probability of color jittering to 0.1.

Optimization We conduct fine-tuning of both ViTs and ContextViTs with a batch size of 256 for a total of 20 epochs. For
optimization, we follow previous work (Wortsman et al., 2022) and utilize the AdamW optimizer (Loshchilov & Hutter,
2019). To ensure a stable training process, we perform a two-epoch warm-up for the optimizer before applying a cosine
annealing scheduler to decay the learning rate. We tune the learning rate within the range of [10−4, 10−5, 10−6]. Weight
decay is applied to the model, excluding the bias parameters. Inspired by (Caron et al., 2021), we set the weight decay to
0.04 at the beginning and gradually increase it using a cosine scheduler to reach 0.4 at the end of training.
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Figure 4. Attention heatmap of ContextViT on patholog images from in-distribution hospitals (top) and OOD hospitals (bottom) in
Camelyon17.

C.2. ContextViT on Microscopy Imaging (cpg-0000)

DINO pre-training: data augmentation Each single-cell image in the cpg-0000 dataset has dimensions of 224 by 224
by 8. Since the images are consistently captured at a fixed magnification ratio, we have refrained from applying random
scaling, as it could hinder the model’s ability to infer the absolute size of the cells accurately. Instead, we have employed
the following data augmentations: random padded cropping, horizontal and vertical flipping, rotation (with angles of 90,
180, and 270 degrees), defocus (Hendrycks & Dietterich), coarse dropout (DeVries & Taylor, 2017), and input channel
dropout (Tompson et al., 2015). To facilitate these augmentations, we have utilized the Albumentations package (Buslaev
et al., 2020), which supports an arbitrary number of channels.

During DINO pre-training, the teacher network receives two global views of the image, while the student network receives
six local views. Here, we provide an explanation of the data augmentation configurations for both the global and local views.

For the teacher network in DINO, the two global views are generated as follows: starting with the original single-cell image,
we first apply random padding to expand the image to 256× 256 and subsequently crop it to 224× 224. We apply flipping
and rotating transformations uniformly at random. In one view, we apply defocus with a radius range of (1, 3), while in the
other view, the defocus radius range is (1, 5). Additionally, we apply coarse dropout, allowing for a maximum of 10 cutout
holes, where each hole has a maximum dimension of 10 by 10. However, we do not apply input channel dropout for the
global views.

For the student network, which receives eight local views, we follow a similar process as with the global views. Starting
with the original image, we apply random padding to expand it to 256× 256 and then crop it to 96× 96. We apply flipping
and rotating transformations uniformly at random, and we use the same defocus radius range of (1, 3) for all six local views.
Instead of coarse dropout, we randomly dropout the input channels with a probability of 0.2.

DINO pre-training: optimization Our optimization configuration for the DINO pre-training stage closely follows the
guidelines provided in the (Caron et al., 2021) GitHub repository. We utilize a batch size of 512 and train DINO for a total
of 100 epochs. The key aspects of our configuration are as follows:

• We employ the AdamW optimizer (Loshchilov & Hutter, 2019) and initiate the learning rate warm-up phase for the first
10 epochs. Considering our batch size, we set the maximum learning rate to 0.001, following recommendations from
(You et al., 2018; Caron et al., 2021). Subsequently, we decay the learning rate using a cosine learning rate scheduler.
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Figure 5. Left: PCA visualization of context tokens inferred by ContextViT using pathology images from different hospitals. Right:
Example images from different hospitals.

Our target learning rate at the end of optimization is set to 10−6.

• Weight decay is applied to all parameters except for the biases. We set the initial weight decay to 0.04 and gradually
increase it to 0.4 using a cosine learning rate scheduler towards the end of training.

• The DINO projection head we utilize has 65536 dimensions, and we do not employ batch normalization in the projection
head.

• The output temperature of the teacher network is initially set to 0.04 and is linearly increased to 0.07 within the first 30
epochs. Throughout the remainder of training, the temperature is maintained at 0.07. Additionally, during the first
epoch, we freeze the parameters of the output layer to enhance training stability.

Downstream classifier Based on our preliminary study on BR00116991 using ViT-S/16, we found that a multi-layer
perceptron (MLP) with two hidden layers outperforms the linear classifier (53.6% accuracy vs. 10.4% accuracy). Our final
MLP architecture consists of two hidden layers with ReLU activations, and each hidden layer has a dimension of 512. To
optimize the parameters of the MLP, we employ the Adam optimizer (Kingma & Ba, 2014) with a batch size of 256, and we
train the model for a maximum of 100 epochs. A weight decay of 10−5 is applied, and we fine-tune the learning rate within
the range of ∈ [10−3, 10−4, 10−5] to find the optimal value.

C.3. ContextViT on Pathology (Camelyon17-WILDS)

DINO pre-training: data augmentation The Camelyon17-WILDS dataset is a patch-based variant of the Camelyon17
dataset, where each pathology image has a dimension of 96 by 96. To enable finer-grained reasoning in ViTs, we use
a smaller patch size of 8 by 8. The images are stored in the RGB pixel format, consisting of 3 bytes per pixel. For
pre-training the DINO embeddings, we apply standard data augmentations, as done in previous work (Caron et al., 2021).
These augmentations include random resizing and cropping, horizontal flipping, random color jittering, random grayscale
transformation, Gaussian blur, and solarization.

Similar to the cpg-0000 dataset, the teacher network receives two global views of the image, while the student network
receives six local views. Here, we provide an explanation of the data augmentation configurations for both the global and
local views.

For the teacher network, the two global views are generated as follows: starting with the original pathology image, we first
randomly crop the image with a scale sampled from the range of [0.4, 1.0]. Then, we resize the cropped image back to its
original size of 96 by 96 using a bicubic transformation. A random horizontal flipping is applied with a probability of 0.5.
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1 # self.cls_token The CLS token [1, 1, embed_dim]
2 # self.pos_embed The positional embeddings [1, seq_len, embed_dim]
3 # self.transformer_layers Sequence (nn.Sequential) of transformer layers.
4 # self.linear_layers List (nn.ModuleList) of linear layers.
5

6 def forward(self, x, c):
7 # Forward pass of ContextViT
8 # Arguments:
9 # x images of dimension: [bs, n_channels, H, W]

10 # c covariates of x with dimension: [bs]
11 # Output:
12 # y image embeddings: [bs, embed_dim]
13

14 # Convert input images into sequences of patches
15 x = self.patch_embed(x) # [bs, seq_len, embed_dim]
16

17 # Apply the context inference model to compute the context token
18 context_token = self.context_inference(x, c, layer_id=0)
19 # [bs, 1, embed_dim]
20

21 # concatenate the CLS token, context token and the patch tokens
22 x = torch.cat([self.cls_token, context_token, x+self.pos_embed], dim=1)
23 # [bs, seq_len+2, embed_dim]
24

25 for layer_id, transformer in enumerate(self.transformer_layers):

26 # Apply one transformer layer
27 x = transformer(x) # [bs, seq_len+2, embed_dim]
28

29 # Compute the context token from the hidden patch embeddings
30 x[:,1:2] = self.context_inference(x[:,2:], c, layer=layer_id+1)
31

32 # return the image embedding at the cls token
33 y = self.norm(x)[:, 0]
34 return y
35

36

37 def context_inference(self, x, c, layer_id):
38 # Context inference model
39 # Arguments:
40 # x sequences of patch embeddings: [bs, seq_len, embed_dim]
41 # c covariates of x with dimension: [bs]
42 # layer_id index of the transformer layer: int
43 # Output:
44 # context context token: [bs, 1, embed_dim]
45

46 # Group patches with the same covariate value
47 unique, inverse = torch.unique(c, return_inverse=True)
48

49 # Initialize context token
50 context = torch.zeros([bs, 1, embed_dim])

51

52 # Infer context token over examples with the same covariate value
53 for idx, u in enumerate(unique):
54 # Detached mean pooling over patches that have covariate value u
55 m = torch.mean(x[inverse == idx].detach(), dim=[0, 1])
56

57 # Apply a linear layer (based on the transformer layer id)
58 context[c==u, 0] = self.linear_layers[layer_id](m)
59

60 return context

Figure 6. PyTorch-style pseudo code for ContextViT.
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Table 6. OOD accuracy on iWildCam and worst-region OOD accuracy on FMoW for supervised fine-tuning (FT). In “VIT in-context
learning”, we append 256 random patches, sampled from images within the same group, to the input patch sequence.

iWildCam FMoW

DINO
ViT-S/8

SWAG
ViT-B/16

CLIP
ViT-L/14

DINO
ViT-S/8

SWAG
ViT-B/16

CLIP
ViT-L/14

Our implementations
FT ViT 75.7±0.2 77.5±0.5 81.5±0.2 35.0±0.2 39.8±0.5 46.6±1.1

FT ViT in-context learning 76.3±0.6 77.6±1.1 81.7±0.4 35.1±0.6 38.9±0.7 46.3±1.4

FT ContextViT (w/o layerwise) 77.5±0.2 78.6±0.4 81.9±0.1 37.3±0.6 41.3±1.0 49.1±0.7

FT ContextViT 77.7±0.3 79.6±0.6 82.9±0.3 37.7±0.5 41.4±0.3 49.9±0.4

Color jittering is performed with maximum brightness change of 0.4, maximum contrast change of 0.4, maximum saturation
change of 0.4, and maximum hue change of 0.1, with a probability of 0.8. The image is transformed into grayscale with a
probability of 0.2. Gaussian blur is applied using a kernel size of 1.0. Finally, solarization is applied to one of the global
views with a threshold of 0.2.

For the student network, which receives six local views, a similar process is followed with the following changes: 1) The
random cropping scale is adjusted to [0.05, 0.4], ensuring that the student network observes only local views of the original
image. 2) After cropping, the image is rescaled to a lower resolution of 32 by 32 instead of 96 by 96. 3) Gaussian blur is
applied using a larger kernel size of 5. 4) Solarization is not applied to the local views.

DINO pre-training: optimization For the Camelyon17 dataset, we employ the same optimization configuration as for
the cpg-0000 dataset during DINO pre-training. This includes training with a batch size of 512 for 100 epochs, utilizing
the AdamW optimizer with a cosine learning rate scheduler, and applying weight decay, among other techniques that we
have discussed in Section C.2.

Linear probing To evaluate the resulting DINO embeddings, we utilize the standard linear probing test, which involves
training a linear classifier while keeping the ViT backbones frozen. Consistent with (Caron et al., 2021), we employ the
following data augmentation and optimization methods:

For data augmentation, we first apply random cropping with a scale range of [0.08, 1.0] and subsequently resize the resulting
image to a resolution of 96 by 96. Additionally, we incorporate horizontal flipping with a probability of 0.5. Moreover, we
apply color jittering with a probability of 0.8, where the maximum allowed changes include a brightness change of 0.4, a
contrast change of 0.4, a saturation change of 0.4, and a hue change of 0.1.

In terms of optimization, we train the linear classifier for 100 epochs using a batch size of 512. Since the only trainable
parameters are in the final linear layer, we do not employ warmup or weight decay techniques. To optimize the classifier, we
employ SGD with a momentum value of 0.9. The learning rate is selected from the range [0.0005, 0.001, 0.005], and we
utilize a cosine annealing scheduler to decay the learning rate gradually throughout the training process.

D. Other options for the context inference model
In this section, we provide a detailed discussion of alternative approaches for implementing the context inference model.
We explore various strategies and techniques that can be employed to construct an effective and efficient context inference
model, taking into consideration different factors such as computational complexity, model architecture, and inference
accuracy. By examining these options, we aim to provide insights and guidance for researchers and practitioners seeking to
leverage the concept of context inference in their own applications.

D.1. Handling Covariates with Many Distinct Values

Exponential Moving Average (EMA) While mean pooling has demonstrated excellent performance in all of our
experiments, it may not be as effective for covariates with a large number of distinct values. To address this limitation, an
alternative approach is to employ an exponential moving average of the patch embeddings. The EMA operation can be
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expressed as follows:

tmean
c ← λtmean

c + (1− λ)
1

|Dc|
∑
x∈Dc

1

N

∑
xpi∈x

tpi .

Here, Dc represents the dataset containing instances of covariate c, N denotes the number of patches within an image, and
tpi signifies the patch embedding. By incorporating the EMA technique, we can improve the performance of mean pooling
for covariates with a large number of distinct values.

Context-based data sampler In all of our experimental settings, we have utilized the standard random sampler, which
selects examples uniformly at random from the dataset, for simplicity. However, when dealing with covariates that can take
a large number of distinct values, an alternative approach to enhance the performance of direct mean pooling is to employ a
context-based data sampler. By sampling a batch comprising examples with the same group membership, we can ensure an
adequate number of instances for estimating the context token accurately. Adopting a context-based sampler also offers the
advantage of eliminating the need for grouping examples during the forward pass, as the sampler guarantees that all samples
within a batch belong to the same group. This can potentially lead to further improvements in computational efficiency. It is
worth noting that to prevent divergence across different groups, gradient accumulation across batches may be necessary.

D.2. Exploring Alternative Context Inference Models

The context inference model h(·;ϕ) in our study serves as a mapping from a set to a vector representation. In the paper, we
propose a simple approach that employs mean pooling followed by a linear transformation. However, there are other options
available for parameterizing the context inference model. Here, we discuss additional approaches that can be considered.

Sampling patches from other images in the group As discussed in Section 2.1, one direct way to incorporate context
conditioning is by appending image patches from other images within the same group into the patch sequence of the current
image. However, this would result in an excessively long sequence length. Since self-attention scales quadratically (in terms
of memory and compute) with respect to the sequence length, this approach is not feasible. To overcome this limitation,
an alternative is to sample a fixed number of patches from these images and utilize them as the context. We explored this
baseline approach by sampling 256 patches for the context and present its supervised fine-tuning results in Table 6. The
results show mixed performance, likely due to the randomness in the context conditioning. It outperforms the ViT baseline
on iWildCam but underperforms ViTs on FMoW. Furthermore, even this sampling approach significantly increases memory
consumption compared to ContextViT. For instance, conditioning the CLIP model with 196 patches leads to a 49% increase
in GPU memory size.

Deep Sets Deep sets (Zaheer et al., 2017) offers a framework for dealing with objective functions defined on sets that
are permutation-invariant. In our application, for each patch token embedding tpi , it utilizes an encoder network φ(tpi) to
encode it. Then, it aggregates the embeddings of all patches belonging to the same group into a fixed-length vector using
either sum pooling or max pooling. Finally, another network ρ processes the aggregated representation to generate the final
output.

In Section 2.4, we conducted experiments with a specific instance of the deep sets model, where we employed two multi-layer
perceptrons (each with two hidden layers and ReLU activations) as the φ and ρ networks. Additionally, we incorporated
residual connections for each hidden layer. We utilized the sum pooling mechanism to aggregate information across the set.
As shown in Table 5, while this method exhibits increased representation power compared to mean pooling with a linear
transformation, the latter demonstrates better generalization capabilities.

Transformer Another approach for aggregating information across sets is by utilizing the Transformer architec-
ture (Vaswani et al., 2017). The Transformer layer, without the inclusion of positional information, inherently possesses
permutation invariance and can be employed as a set encoder. To obtain the final set representation, an additional classifier
token can be appended to the input sequence. However, due to the substantial computational requirements associated with
this method, we did not explore it in our experiments.


