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Abstract
Implicit bias plays an important role in explaining
how overparameterized models generalize well.
Explicit regularization like weight decay is of-
ten employed in addition to prevent overfitting.
While both concepts have been studied separately,
in practice, they often act in tandem. Understand-
ing their interplay is key to controlling the shape
and strength of implicit bias, as it can be modified
by explicit regularization. To this end, we incor-
porate explicit regularization into the mirror flow
framework and analyze its lasting effects on the
geometry of the training dynamics, covering three
distinct effects: positional bias, type of bias, and
range shrinking. Our analytical approach encom-
passes a broad class of problems, including sparse
coding, matrix sensing, single-layer attention, and
LoRA, for which we demonstrate the utility of our
insights. To exploit the lasting effect of regulariza-
tion and highlight the potential benefit of dynamic
weight decay schedules, we propose to switch off
weight decay during training, which can improve
generalization, as we demonstrate in experiments.

1. Introduction

Regularization is a fundamental technique in machine learn-
ing that helps control model complexity, prevent overfitting
and improve generalization (Kukacka et al., 2017). We
focus on the interplay between two major categories of reg-
ularization: explicit regularization and implicit bias. We
introduce both concepts within a general minimization prob-
lem. Consider the objective function f: R™ — R to be
minimized with respect to x:

min f(z). (1)
In the context of explicit regularization, a penalty term h(z)
is incorporated into the objective function, directly prevent-
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ing the learning algorithm from overfitting (Goodfellow
et al., 2016), as follows:

min f(z) + ah(z), 2

where « controls the trade-off between the objective and the
penalty. This approach regulates the model capacity (Dai
et al., 2021) and encourages simpler solutions that are more
likely to generalize well to unseen data (Tian & Zhang,
2022). Common explicit regularization methods include
L, (LASSO) and L, (weight decay) (Bishop & Nasrabadi,
2006). The effectiveness of explicit regularization tech-
niques has been demonstrated across various machine learn-
ing paradigms (Arpit et al., 2016), including supervised
learning, unsupervised learning and reinforcement learning.

Implicit bias (Gunasekar et al., 2017; Woodworth et al.,
2020; Li et al., 2022; Sheen et al., 2024; Vasudeva et al.,
2024; Tarzanagh et al., 2023; Jacobs & Burkholz, 2025) can
be considered as an inherent aspect of the model design and
optimizer that does not require explicit modifications of the
objective function. The goal of characterizing the implicit
bias is to understand how overparameterization impacts
the training dynamics and, consequently, model selection.
For example, in the presence of many global minima, op-
timization algorithms like gradient descent inherently con-
verge towards low-norm solutions (Woodworth et al., 2020;
Pesme et al., 2021), which impacts model properties such
as generalization (Belkin et al., 2019) and memorization
(Radhakrishnan et al., 2020).

Implicit bias is often associated with a mirror flow (Karimi
et al., 2024; Li et al., 2022), which results from a reparam-
eterization of f by setting z = g(w), where w € M and
M is a smooth manifold. It is important to highlight a fun-
damental distinction between the explicit regularization in
the original space and the mirror flow with the objective
function, formulated as follows:

min f(g(w)) + ah(w). 3)

The explicit regularizer h now acts on the parameters w
instead of = g(w). Our main goal is to understand how
the explicit regularization h(w) affects the implicit bias,
thereby shaping the effective regularization in the original
parameter space . To achieve this, we analyze their inter-
play by integrating explicit regularization into the mirror
flow framework.
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Typically, the nature and strength of implicit bias remain
constant throughout training as they are inherently deter-
mined by the model parameterization. For instance, it has
been shown that specific forms of overparametrization lead
to low-rank or sparse solutions (Arora et al., 2019; Pesme
et al., 2021; Sheen et al., 2024; Woodworth et al., 2020;
Gunasekar et al., 2017), revealing a bias towards sparsity
in particular settings. Nevertheless, factors such as small
initialization, large learning rates and noise are needed to
obtain this sparsity bias, without guarantees. However, the
inherent bias can degrade performance if it does not fit to
the learning task. Our key insight to overcome this issue is
that implicit bias can be adapted and controlled by explicit
and potentially dynamic regularization, which induces a
time-dependent mirror flow. To analyze the resulting opti-
mization problem within the extended mirror flow frame-
work (Li et al., 2022) and obtain convergence and optimality
results, we provide sufficient conditions for the reparame-
terization g and explicit regularization h. Additionally, we
characterize the regularization A in terms of g to understand
their interplay and impact on the Legendre function, which
is associated with the implicit bias.

Concretely, we identify three distinct effects:

» Type of bias: the explicit regularization changes the
shape of the Legendre function and thus the implicit
bias. For example, the shape changes from an Ly norm
to L1 norm.

* Positional bias: in the standard case without explicit
regularization, the global minimum of the Legendre
function corresponds to the parameter initialization (Li
et al., 2022). Explicit regularization shifts this global
minimum, gradually moving it closer to zero during
training.

» Range shrinking: the explicit regularization shrinks the
range of the attainable values for the Legendre function.
For example,the L; norm of the parameters becomes
stationary during training.

The three effects are illustrated in Figure. 1. They all have a
lasting impact on implicit bias, as they change the geometry
of the training dynamics.

Weight decay provides an illustrative example of an explicit
regularization that has a desirable impact on the training
dynamics (D’ Angelo et al., 2023). While (Dai et al., 2021)
studied the effect of constant regularization on model ca-
pacity, and (Khodak et al., 2021; Kobayashi et al., 2024)
empirically observed that weight decay leads to sparsity bias
for quadratic reparameterizations, our focus lies on under-
standing the effects of both constant and dynamic explicit
regularization on the training dynamics and implicit bias.

Type of bias
Lo Ly
=N

Positional bias  Range shrinking

= W

Figure 1. Illustration of three established effects of explicit regu-
larization (—) on implicit bias.

This offers a deeper theoretical insight into the interplay
between implicit bias and explicit regularization.

Our theoretical framework has multiple application-relevant
implications. As examples, we explore sparse coding, ma-
trix sensing, attention mechanisms in transformers, and
Low-Rank Adaptation (LoRA) through experiments. By
switching off weight decay during training, we demonstrate
the positive impact of dynamic regularization on generaliza-
tion performance and analyze its effect on implicit bias.

Contributions:

* We establish sufficient conditions for incorporating dif-
ferent types of explicit regularization into the mirror flow
framework and characterize their effects, focusing on
three key impacts on implicit bias: positional bias shift,
type of bias, and range shrinking.

* We propose a systematic procedure for identifying appro-
priate regularizations and establish general convergence
and optimality results. These results provide guidance on
how to manage the above effects by adjusting the explicit
regularization.

* We gain the insight that explicit regularization controls
the strength of implicit sparsification and has a lasting
effect by changing the geometry of the training dynamics.

* We highlight the positive impact of dynamic regulariza-
tion and the resulting implicit bias through experiments
such as sparse coding, matrix sensing, attention mecha-
nism, and LoRA in fine-tuning large language models.

2. Related Work

Regularization There are multiple ways to regularize in
machine learning. Some of the most widely used tech-
niques include weight decay (D’ Angelo et al., 2023; Krogh
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& Hertz, 1991), data augmentation (Cubuk et al., 2020;
Orvieto et al., 2023), dropout (Srivastava et al., 2014), and
batch normalization (Ioffe & Szegedy, 2015). Weight decay,
or Lo regularization, discourages large weights to mitigate
overfitting and induces a desirable change in training dy-
namics. This change can be effectively captured using the
time-dependent mirror flow framework that we extend. As
another example, dynamic weight decay has been proposed
for ADAM to keep the gradient norms in check (Xie et al.,
2023). In comparison, we analyze the effect of more general
dynamic regularization on the implicit bias of gradient flow.

Implicit Bias The implicit bias is a well-studied phe-
nomenon (Woodworth et al., 2020; Gunasekar et al., 2017;
2018; Li et al., 2022), which has primarily been character-
ized within the mirror flow framework, a well-established
concept in convex optimization (Alvarez et al., 2004; Beck
& Teboulle, 2003; Rockafellar & Fenchel, 1970; Boyd &
Vandenberghe, 2009), which we extend by introducing ex-
plicit regularization that can induce a time-dependent Leg-
endre function. Moreover, for convergence guarantees the
time-dependent Legendre function needs to satisfy addi-
tional assumptions, i.e., it needs to be a time-dependent
Bregman function. For this class of functions we show con-
vergence with decaying regularization. A mirror flow can
be interpreted as a gradient flow on a Riemannian manifold
(Li et al., 2022; Alvarez et al., 2004), which has also been
studied in stochastic gradient descent (SGD) (Pesme et al.,
2021; Even et al., 2023; Lyu & Zhu, 2023) context. The
main observation is that large learning rates and stochastic
noise from SGD have a generalization benefit by inducing
sparsity, although uncontrollable. We derive a similar but
controllable benefit of explicit regularization. Still, it is pos-
sible to also combine stochastic noise and a large learning
rate with our framework. Discrete versions of mirror flow
(Sun et al., 2022) have led to novel algorithmic designs (Raj
& Bach, 2021; Gonzalez et al., 2024; Azizan et al., 2022).
Time-dependent mirror descent, in comparison, is under-
explored, except for an analysis of its intrinsic properties
and an application to continuous sparsification (Radhakrish-
nan et al., 2021; Jacobs & Burkholz, 2025). Our framework
covers multiple application relevant architectures and more
general cases.

Applications of the Mirror Flow Framework The mir-
ror flow framework has been applied to various architectures,
including attention mechanisms in transformers (Vaswani,
2017; Vasudeva et al., 2024; Sheen et al., 2024; Tarzanagh
et al., 2023; Julistiono et al., 2024; Pesme et al., 2024), ma-
trix factorization (Li et al., 2021; Gunasekar et al., 2017;
2018) and diagonal linear networks (Li et al., 2022; Pesme
et al., 2021; Woodworth et al., 2020). The implicit bias
of deep matrix factorization has also been analyzed with
gradient flow methods (Marion & Chizat, 2024; Arora et al.,

2019). Accordingly, the flow tends to be implicitly biased
towards solutions with low rank or nuclear norm. We show
that dynamic explicit Lo regularization can further enhance
this effect in the context of quadratic overparameterization.
This is illustrated through experiments on transformer net-
works. Moreover, we identify the inherent bias of LoRA (Hu
et al., 2022; Wan et al., 2024) and delve into the associated
challenges. This is especially of interest, as LoRA has
gained significant popularity in the field of large language
models (LLMs), as it allows for cost-effective finetuning.
Another application is sparse coding (SC) which is similar
to diagnonal linear networks with explicit regularization.
This representation technique is widely employed in signal
processing and pattern recognition (Zhang et al., 2015). The
core principle of SC is to find a sparse representation by im-
posing constraints, typically using the Ly-norm. However,
this formulation leads to an NP-hard problem (Tropp, 2004).
An alternative strategy relaxes the constraint, transforming
the original problem into a convex, albeit non-smooth opti-
mization task. Proximal algorithms have proven effective to
solve these non-smooth problems (Daubechies et al., 2004).
Similarly, reparameterization with explicit regularization
can be used to solve this.

3. Theory: Integrating Explicit Regularization
in the Extended Mirror Flow Framework

We begin by reviewing the theoretical background on repa-
rameterizations and when they induce mirror flows. Our
main result, Theorem 3.6, integrates explicit regularization
into the mirror flow framework. Building on this, we ex-
plore key implications, including a geometric interpretation
of the interaction between implicit bias and explicit regular-
ization. Using this interpretation and assuming the Legendre
function R is a Bregman function, we extend convergence
results to the time-dependent setting by introducing the con-
tracting property (Definition 3.8, Theorem 3.10). We also
prove optimality in underdetermined linear regression (The-
orem 3.11). To apply our theory in practice, we show how
to choose an explicit regularizer h for a given reparameter-
ization g, often determined by neural network design. We
characterize h for known reparameterizations (Woodworth
et al., 2020; Pesme et al., 2021; Gunasekar et al., 2017) and
examine their practical effects—type of bias, positional bias,
and range shrinking—in Section 4.

3.1. Preliminaries

To analyze the impact of regularization on the training dy-
namics of deep neural networks, we start from the gradient
flow for our general optimization problem in Eq. (1). We
assume f € C1(R™, R) to be a continuously differentiable
objective function. The corresponding gradient flow is:

dw; = =V f(g(wy))dt,

Wo = Winit,
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where V,, is the gradient with respect to w and g €
C'(M,R™). For a specific choice of g, reparameterizing the
loss function f leads to a mirror flow with a related implicit
bias. For this we recall two definitions that characterize
the parameterization. Moreover, we define the Legendre
function needed to define the mirror flow.

Definition 3.1. (Regular Parameterization, Definition 3.4
(Li et al., 2022)) Let M be a smooth submanifold of RP.
A regular parameterization g : M — R™ is a C'! parame-
terization such that the Jacobian OG(w) is of rank n for all
we M.

This ensures that the gradient flow for z; = g(w;) does
not have an additional null space i.e. the gradient flow can
not get stuck due to reparameterization. For the second
definition, we first need to define the Lie bracket operator
where 0 is the Jacobian operator.

Definition 3.2. (Lie Bracket, Definition 3.4 (Li et al., 2022))
Let M be a smooth submanifold of R”. Given two C*
vector fields X,Y on M, we define the Lie Bracket of X
and Y as [X,Y](w) := Y (w) X (w) — 0X (w)Y (w).

Definition 3.3. (Commuting Parameterization, Definition
4.1 (Li et al., 2022)) Let M be a smooth submanifold of
RP. A C? parameterization g : M — R is commuting
in a subset S C M iff for any i,j € [n], the Lie bracket
[Vgi, Vg;](w) = 0 for all w € S. Moreover, we call g a
commuting parameterization if it is commuting in M.

Definition 3.3 ensures appropriate eigen basis alignment.
We now introduce the Legendre function which governs the
mirror flow dynamics.

Definition 3.4. (Legendre Function, Definition 3.8 ((Li
etal., 2022))) Let R : R? — R U {oo} be a differentiable
convex function. We say R is a Legendre function when the
following holds:

* R is strictly convex on int(domR).

* For any sequence {xz;}$°, going to the boundary of
domR, lim;_, o ||[VR(2;)|[7, = oo.

Appendix A summarizes the main aspects of the mirror
flow framework (Li et al., 2022), which explains their rela-
tionship. Formally, let the reparameterization g be regular
(Definition 3.1), commuting (Definition 3.3) and satisfy As-
sumption A.6. Then, by Theorem A.7, there is an Legendre
function R : R” — R (Definition 3.4) that follows the
dynamics:

dViR(zy) = =V, f(x¢)dt, ro = g(Winit). (4
The Legendre function is associated with the implicit bias of
the optimization. For example, R can be the hyperbolic en-
tropy studied in (Pesme et al., 2021; Woodworth et al., 2020;

Wu & Rebeschini, 2021). Depending on the initialization
of the reparameterization, the hyperbolic entropy is equiva-
lent to either Lo or Ly implicit regularization. A Legendre
function R that resembles an L, regularization is associated
with the so-called feature learning regime, which has been
argued to improve generalization performance. Accordingly,
it presents a positive impact of overparameterization on deep
learning.

Notably, in the presence of explicit regularization, the Leg-
endre function R can change over time, which has been
recognized by Jacobs & Burkholz (2025) with the specific
goal to exploit the implicit bias for gradual sparsification.
(Lyu et al., 2024) has analyzed how small constant weight
decay impacts implicit bias to study its effect on Grokking,
but has done so outside of the mirror flow framework. We
allow for dynamic and possibly large regularization of rel-
atively general form. While the implicit bias can change
dynamically also for different reasons like large learning
rate and stochastic noise as in (Pesme et al., 2021; Lyu &
Zhu, 2023), we focus on dynamic explicit regularization to
control this change.

3.2. Main Result

We characterize the interplay between explicit regulariza-
tion and implicit bias by a time-dependent Legendre func-
tion. In the setting of Eq. (3) with reparameterization
g € C1(M,R™) and explicit regularization h € C*(M,R),
we allow the regularization strength « to vary over time
during the gradient flow, as indicated by an index «;. This
induces the following gradient flow:

dwt = — (wa(g(U)t)) + atvwh(wt)) dt,

wo = Winit-

To rigorously define the corresponding time-dependent mir-
ror flow, we define a parameterized Legendre function based
on Definition 3.4.

Definition 3.5. Let A be a subset of R. A parameterized
Legendre function is R, : R™ — R"” such that forall a € A,
R, is a Legendre function (Definition 3.4).

The next theorem is our main result and builds on Defini-
tion 3.5 and Theorem A.7 in the appendix.

Theorem 3.6. Let (g,h): M — R""L be regular and
commuting reparameterization satisfying Assumption A.6.
Then there exists a time-dependent Legendre function R,
such that

dV R, (x¢) = =V f(xe)dt, o = g(Winit), ()

t
where a; = — fo asds. Moreover, R,, only depends on
the initialization w;,;; and the reparameterization g and
regularization h, and is independent of the loss function f.

Proof. See Theorem B.1 in the appendix. The main steps
of the proof are: 1) We apply Theorem 4.9 (Li et al., 2022)
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to the time-dependent loss function L; (z,y) = f(x) +
ayy with the reparameterization x = g(w) and explicit
regularization y = h(w) to get the resulting mirror flow
with Legendre function R(x,y). 2) R is strictly convex.
We utilize this to show that y — 9, R(z,y) is invertible.
3) We use the fact that the mirror flow for y, is defined
by 0yR(z¢,y:) = a;, where a; = ffot agds. Next, we
plug in the inverse y; = Q(x¢,a;) into V,R(zy,y:) to
get an expression for the gradient of the time-dependent
Legendre function R. This leads to an equation for the time-
dependent mirror flow V,R(xt, Q(x+,a:)) = p1r, where
e = — fot V. f(zs)ds. 4) In the final step, we show that
VR (z,Q(x,a)), where V, is the derivative with respect
to the first entry, is the gradient of a Legendre function for
a fixed.

Theorem 3.6 characterizes the training dynamics of reparam-
eterization with regularization. This leads to an additional
geometric interpretation, which we use next.

3.3. Geometric Interpretation

A mirror flow can be interpreted as a gradient flow on a
Riemannian manifold (Li et al., 2022; Alvarez et al., 2004).
If a Legendre function R induces a mirror flow, the iterates
x; follow the dynamics:
dxy = — (ViR(JCt))il Vo f(xe)dt 2o = g(Winit),
(6)
where the manifold metric is given by (V2R) . Accord-
ingly, Theorem 3.6 leads to a new geometric interpretation
of a regularization. Specifically, z; evolves as follows:

dr; = — (V2Ry, (2,)) " (Vo f(x0) + Vo) dt, (7)

with initialization g = g(w;nst) and yo = h(winit), where
¢ is defined as in Theorem 3.6. Thus, the effect of regular-
ization on the training dynamics is described by a changing
Riemannian metric, where the metric evolves according to
the time-dependent Legendre function R,, .

In practice, we can steer a; and thus influence the manifold.
Another perspective on this is that the effect of explicit regu-
larization is stored in the time-dependent Legendre function
R,,. Therefore, explicit regularization has a lasting effect on
the training dynamics, even after it has been turned off, for
instance. This creates a novel connection between explicit
regularization and implicit bias. Also past regularization
influences future implicit bias by shaping the geometry.

Convergence The geometric interpretation not only pro-
vides valuable intuition but also helps us to show conver-
gence of the mirror flow for time-dependent Bregman func-
tions R,,. A Bregman function is defined as follows:

Definition 3.7. (Bregman function, Definition 4.1 (Alvarez

et al., 2004)) A function R is called a Bregman function if
it satisfies the following properties:

e domR is closed. R is strictly convex and continuous
on domR. R is C! on int(domR)).

e Forany x € domR and v € R,
{y € domR|Dg(z,y) < v} is bounded.

e For any + € domR and sequence {z;}2;, C
int(domR) such that lim; ,., x; = z, it holds that
lim; oo Dr(z,x;) — 0.

Using Definition 3.7, we can define the parameterized Breg-
man function next:

Definition 3.8. Let A be a subset of R. A parameterized
Bregman function is R, : R” — R"™ such that forall a € A,
R, is a Bregman function (Definition 3.7). Furthermore,
R, is called contracting if dR,/da < 0 for a € A.

Remark 3.9. If a; = 0fort > T (fora T > (), we recover
a gradient flow with Riemannian metric (ViRaT)_l.

This implication is useful for proving our next result, which
highlights under which conditions we can obtain conver-
gence if we switch off regularization at some point during
training. We will also verify later in our experiments that
this is a promising dynamic regularization strategy. Our
next Theorem 3.10 gives us the convergence we are looking
for by using the newly defined contracting property above.

Theorem 3.10. Consider the same setting as in Theorem 3.6.
Furthermore, assume that oy > 0 and oy = 0 forallt > T,
where T > 0. Moreover, for a € [b,0], R, is a contracting
Bregman function for some b < 0. Assume that for all t > 0
the integral a; == — fot agds > b. For the loss function
assume that V. f is locally Lipschitz and argmin{f(x) :
x € domR,__ } is non-empty. Then the following holds: If f
is quasi-convex, xy converges to a point x, which satisfies
Vof(x)T (x —x.) > 0 for v € domR,__. Furthermore,
if f is convex, x, converges to a minimizer f in the closed
domain domR,,__.

Proof, see Theorem B.2 in the appendix. The proof consists
of two parts: a) We show that the iterates are bounded up to
time 7" using the contracting property and quasi-convexity.
b) We establish convergence after time 7" using the geomet-
ric interpretation of the evolution of z;.

Optimality To show optimality, we need more assump-
tions on the problem. As common in the context of mirror
flows (Li et al., 2022; Jacobs & Burkholz, 2025), we re-
cover under-determined linear regression, as follows. Let
{(zi,y:)}%; C R% x R be a dataset of size n. Given a
reparameterization g with regularization h, the output of the
linear model on the i-th data is 2} g(w). The goal is to solve
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the regression for the target vector Y = (y1,%2,...,%n)"

and input vector Z = (21, 22, . . ., Zn ).

Theorem 3.11. Assume the same setting as Theorem 3.6.
Furthermore, assume that oy > 0 and oy = 0 forallt > T,
where T' > 0. If x4 converges when t — oo and the limit
Too = limy_yo0 x4 satisfies Zxo, = Y, then the gradient
Sflow minimizes the changed regularizer R, :

Too = argming. 5.y Ra (). 8)

Proof. See Theorem C.2.

This theorem extends known optimality results on matrix
sensing (Gunasekar et al., 2017; Wu & Rebeschini, 2021)
and diagonal linear networks (sparse coding) (Pesme et al.,
2021; Woodworth et al., 2020; Jacobs & Burkholz, 2025).

3.4. Characterization of the Explicit Regularization

To make use of the established theoretical results in practice
and develop promising regularization strategies, we charac-
terize the explicit regularization & for two important classes
of reparameterizations: separable and quadratic reparame-
terizations.

Separable Reparameterizations Our next result encom-
passes most previously studied reparameterizations within
mirror flow framework(Woodworth et al., 2020; Pesme et al.,
2021; Gunasekar et al., 2017).

Corollary 3.12. Let g be a separable reparameteriza-
tion such that g;(w;) = Z;nz’l gi,i(w; ;) and h(w) =
Z?:l Z;n:ll hi_’j(’wi’j), where gi,j R — R and hi,j :
R — R. Furthermore, assume that g and h are analytical
functions. Then, if and only if h and g satisfy

hij=cijgi; Vi€ |[n],j€[m,

where c¢; ; € R is a constant, Theorem 3.6 applies.

Proof. The result follows from the commuting relationship
between g and h. We use that the Wronskian between two
analytical functions is zero if and only if they are linearly
dependent (Bdcher, 1901).

The next two examples highlight the utility of Corollary
3.12.

Example 3.13. The reparameterization g : R" x R” —
R"™ such that g(u,v) = u? — v? with regularization of
the form h(u,v) = >I" | c,u? — c,v?. Setting ¢, = 1
and ¢, = —1 leads to weight decay regularization on the
reparameterization.

Example 3.13 has also been used to study the effect of
stochasticity on overparameterized networks (Pesme et al.,
2021). We present a more general class of examples that
always results in a well-posed optimization problem, i.e., b
is positive.

Example 3.14. Consider the reparameterization g : R™ X
R™ — R™ such that g(u,v) = a(u) — b(v), where a and
b are positive, analytical, increasing functions. Then, the
regularization y ., ¢,a;(u) — ¢,b;(v) can always be em-
ployed. By selecting ¢,, > 0 and ¢,, < 0, the optimization
problem remains well-posed.

To give concrete examples, this approach encompasses
u?F — v?* (Woodworth et al., 2020) and log u — log v.

Quadratic Reparameterizations Next, we will discuss
the class of quadratic reparameterizations, as described in
Theorem 4.16 in (Li et al., 2022).

Theorem 3.15. In the setting of Theorem 3.10, consider the
commuting quadratic parametrization G: RP — R and
H:RP — R, where each G;(w) = 1w” A;w and H (w) =
%wTBw with symmetric matrices Ai,As,...,Aq €
RPXP and symmetric matrix B € RP*P that commute
with each other, i.e., A;A; — A;A; = 0foralli, j € [d] and
BA; — A;B = 0 forall j € [d]. For any wi,; € RD,
if VwGi(winit)?:1 = AiWiniti—y and NV H(Winit) =
Buw;pit are linearly independent, then the following holds:

1) Qa(n) = §llexp(aB + S0, i Ai)wini[3, is a time-
dependent Legendre function with domain R®.

2) For all a € R, R, is Bregman function with domR, =
rangeV Q.. Furthermore, if B is positive semi-definite,
then % < 0, therefore Theorem 3.10 applies.

Proof. The first statement is derived by applying Theorem
4.16 from (Li et al., 2022). The second statement follows
from recognizing that exp(aB) acts as a linear transfor-
mation of the initialization w;,;;. Subsequently, applying
Theorem 4.16 of (Li et al., 2022) gives the first part of the
last statement. It remains to show that R, is contracting.
Since B is positive semi-definite, it follows that d%Qa > 0.
By the reverse ordering property of convex conjugation, we
have that %Ra < 0. For completeness, let h > 0, then for
a € R, we have Q5 > Q. Applying the reverse ordering
property implies R, < R,. Rearranging and dividing
by h gives + (Rq4n — R,) < 0. Taking the limit & — 0
concludes the proof.

Remark 3.16. For the time-dependent Bregman function
in Theorem 3.15 to be contracting, B needs to be positive
semi-definite.

Theorem 3.15 encompasses recent works on the reparame-
terization g(m,w) = m ® w, where ® denotes pointwise
multiplication (Hadamard product). It has been proposed
to sparsify neural networks (Jacobs & Burkholz, 2025),
and extends work on matrix sensing and transformers (Wu
& Rebeschini, 2021; Gunasekar et al., 2017; Sheen et al.,
2024). Furthermore, B = I corresponds to weight decay
on the reparameterization, which is often used in practice.
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Having identified classes where we can determine h, we
next present applications to illustrate how time dependence
influences the dynamics.

4. Analysis: Effects of Explicit Regularization

We introduce several time-dependent Legendre functions
to demonstrate the wide applicability of our analysis. We
aim to gain insights into how explicit regularization affects
implicit bias during training. In particular, we focus on three
distinct effects, as summarized below:

* Type of bias: The shape of R, changes with a.

* Positional bias: The global minimum of R, changes
with a.

» Range shrinking: The range of VR, can shrink due to
a specific choice of a.

The Reparameterization m © w The reparameterization
g(m,w) = m@w is an exemplary quadratic reparameteriza-
tion, which can also be interpreted as the spectrum of more
general quadratic reparameterizations. When the initializa-
tion satisfies |wg| < |mo|, then Theorem 3.15 holds. We
can compute the time-dependent Bregman function R, (x):

d
%;xiarminh (Af(ia)) —/2? 4+ Ai(a)? — x;log (%) 9)

where A;(a) = 2exp(2a)u;ovio and ug = (mgo +
wo)/+v/2 and vg = (Mg — wp)/+/2. This adapts the hyper-
bolic entropy (Li et al., 2022; Woodworth et al., 2020; Wu
& Rebeschini, 2021), which now is dependent on a. Note
that we used Theorem 3.15 to find R,,, we can invert the cor-
responding function Q, (), where y = — f(f Vo f(xs)ds.
The regularization thus affects the time-dependent Legendre
function by changing a. This allows us to modulate between
an implicit Ly and L; regularization through explicit reg-
ularization (Jacobs & Burkholz, 2025). Moreover, a also
controls the location of the global minimum, a smaller a
corresponds to moving it closer to zero. Therefore, we both
change the type of bias and the positional bias. Similarly, in
case wy = mg > 0 we recover the entropy (Wu & Rebes-
chini, 2021):

- 1
Z (log (]M) — 1) z; + z;logx;, (10)

i=1

where B;(a) := xgexp (2a). Here a modulates between
maximizing and minimizing the L;-norm. Note that both
time-dependent Bregman functions are contracting on a €
(—00, 0]. Moreover, Figure 2 illustrates the effects of type
of bias and positional bias for m ® w.

03 L

(a) Time-dependent hyperbolic entropy.

(b) Time-dependent entropy.

Figure 2. Tllustrations of the positional bias and type of bias effects
of explicit regularization on the time-dependent Legendre function.
In both figures a = — fot asds. Depending on the initialization of
m © w the time-dependent Legendre function is given by Fig 2a
or Fig 2b. Both exhibit a type change towards L; minimization.

Quadratic Reparameterizations Building on the char-
acterization of the reparameterization m ® w, we study the
more general quadratic reparameterizations with weight de-
cay (B = I). This covers multiple architectures, including
matrix sensing, attention and LoRA, as explained in Ta-
ble 1. For the dimensions of the parameters, see Table 6
in the Appendix. In general, however, the assumptions of
Theorem 3.15 might not hold. In case of matrix sensing,
we are able to apply both Theorem 3.15 and 3.11, where
the time-dependent Bregman function for the eigenvalues is
given by Eq. (10). Thus, weight decay modulates between
maximizing and minimizing the nuclear norm of the matrix
X = UUT. The details are given in Appendix C. For atten-
tion, a common building block of Transformer architectures
(Sheen et al., 2024; Tarzanagh et al., 2023), additional as-
sumptions such as the alignment property are required. It is
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Table 1. Quadratic parametrization.

Matrix sensing vut
Attention SoftMax(QKT)V
LoRA Wo+ AB

worth noting that attention also has a value matrix V" and an
activation function. Assuming V' is not trainable and that the
function f encompasses the activation function, the gradient
flow dynamics of X = QK7 is described by Theorem 3.6.
This characterizes the implicit bias and can be interpreted
as a proxy for training full attention. Similarly, for LoRA, a
finetuning mechanism for LLMs (Hu et al., 2022; Wan et al.,
2024), the training dynamics of X = AB is described by
Theorem 3.6, assuming the alignment property in addition.

As observed in (Khodak et al., 2021) for quadratic reparame-
terizations, weight decay promotes small nuclear norm. This
is not the full picture, however. According to our results,
weight decay changes the manifold geometry according
to Eq. (7), which leads to an implicit bias that modulates
between the Frobenius and nuclear norm of the matrix X.
The eigenvalues in Eq. (9) are therefore subject to a time-
dependent Bregman function R,,. This is the most accurate
description of the implicit bias among the Bregman func-
tions in Eq. (9) and Eq. (10) that we have discussed for
the parameterization m © w, taking the initializations of
both attention and LoRA into account. In case of atten-
tion, the matrices are randomly initialized, which makes a
coupling between the spectrum of K and ) unlikely, i.e.,
mg = wyp. In case of LoRA, the initialization is A = 0
and B is random. Regardless of the initialization, weight
decay would still regularize towards the nuclear norm, but a
coupled initialization would constrain the eigenvalues to be
either positive or negative.

The Reparameterization u>* — v2*  The reparameteriza-
tion u?* — v2* serves as a proxy for deep neural networks
(Woodworth et al., 2020) and provides an example of range
shrinking due to explicit regularization. We consider the
regularization h(u,v) = >_i u?¥ + v?* as allowed by
Corollary 3.12. The current reparameterization also exhibits
a change in the implicit bias from L5 to L1, shown in Theo-
rem 3 in (Woodworth et al., 2020). Unfortunately, there is
no analytical formula available for the Legendre function in
this case. Therefore we only derive the flow and its domain,
which is the range of the time-dependent mirror flow. The

flow Qq, (u+) is given by

. . #
dp | —————— —dy | —mM8M8
k(“t+at+cqt> k(—uﬁ-at—&-cn) > (D

where dj, = ((2k —2) (2k))%2, iy, = — [ Vf(x,)ds
anda, = — [} asds. We have that domV, R, = intdom@),

for a fixed, where int refers to the interior of the domain
(see Lemma 4.8 (Li et al., 2022)). Furthermore, note that
u € (—cy — a,c, + a). Since a; is negative, the domain
of @, shrinks over time. Thus, the range of VR, shrinks
accordingly. This also lessens the set of acceptable solutions
of the original optimization problem, which can make its
solution harder. Figure 10 in Appendix F illustrates the
effect of range shrinking with an approximation of the time-
dependent Legendre function.

Other Reparameterizations Appendix E and D present
more reparameterizations. In particular, we analyze a repa-
rameterization that induces an L; to Ly change in the type
of bias (in contrast to the more prevalent flipped change
from Lo to L1). In addition, we highlight limitations of the
framework by considering deeper reparameterizations.

5. Experiments

We conduct three experiments to support our theoretical
analysis. The first experiment on matrix sensing illustrates
the positional bias and type change following Theorem 3.11.
Accordingly, we turn off weight decay at some point during
training and compare it with a linear reparameterization
with L, regularization. The second and third experiments
are finetuning a pretrained transformer network and an LLM
with LoRA, respectively. Both exhibit a gradual change of
the implicit bias from Frobenius to nuclear norm, while
demonstrating a lasting effect of dynamic regularization,
which leads to better generalization. Notably, this highlights
that our insights extend even to settings where our assump-
tions are not strictly met. Moreover, Appendix E discusses
the range shrinking effect on sparse coding. Note that the
change in positional bias is present in all experiments.

Recovering the Sparse Ground Truth in Matrix Sens-
ing We consider a matrix sensing experiment with the
setup of (Wu & Rebeschini, 2021). Details can be found
in Appendix C. The ground truth is a sparse matrix X*
and the reparameterization is X = UU”. When initialized
with UgUZ = BI, the eigenvalues of X satisfy Theorem
3.11 with the time-dependent Legendre function in Eq. (10).
For experiments labeled "turn-oft", we turn off the regular-
ization at time T" = 625. Figure 3 demonstrates that we
recover the ground truth after turning off weight decay for
the quadratic reparameterization. This can be explained by
the fact that the positional bias of the eigenvalues moves
closer to zero over time, which causes the type of bias to
change to the nuclear norm (see Figure 6) in the appendix.
Disabling weight decay in this context reveals the accumu-
lated effects of regularization. In contrast, using constant
weight decay would prevent us from exploiting this effect.
Also note that a linear reparameterization with L regular-
ization could achieve high sparsity but at the expense of
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reconstruction accuracy, as it cannot recover the ground
truth. The geometry of the manifold that defines the implicit
bias does not allow for it.

—— L1 =0, linear

10 L1 =0.02, turn-off, linear
L1=0.02

10 : L wd=0

—— wd = 0.02, turn-off

***** wd =0.02

Reconstruction error
|

250 500 750 1000 1250
Time

Figure 3. Recovering the sparse ground truth by turning weight
decay off for matrix sensing at 7" = 675. In contrast, a linear repa-
rameterization with L, regularization goes towards the minimal
L2 norm solution after a switch-off.

Turning-off Weight Decay for LoRA and Attention
Next, we aim to track the effect of the explicit regularization
on the quadratic reparameterizations in Table 1. For LoRA,
we calculate the nuclear norm and Frobenius norm of the
matrix product X = AB, averaging these values across all
layers, and then computing their ratio. For each attention
layer, we apply the same procedure to the product of the
query and key matrices X = QK. The ratio allows us to
track the relative sparsity of the matrix. With LoRA, we fine-
tune GPT2 (Radford et al., 2019) on the tiny_shakespeare
(Karpathy, 2015) dataset, training for 500 iterations in two
different types of settings. In case of "turn-off", we turn the
weight decay off at iteration 200. Furthermore, we fine-tune
a pretrained ViT on ImageNet for 300 epochs, turning the
weight decay off at epoch 150. Figure. 4 shows that increas-
ing weight decay reduces the reported norm ratio, indicating
a change in the type of bias from Ly to L;. Moreover, when
weight decay is turned off, the ratio intersects with other
ratios that are attained by constant weight decay. This cre-
ates a "window of opportunity" for unconstrained training
with a relatively low nuclear norm, leading to improved test
accuracy (see Appendix F), in particular, in comparison with
constant weight decay trajectories. For a ViT on ImageNet
this can lead to more than 1% improved validation accuracy
for similar relative sparsity.

6. Discussion

We have introduced a framework for analyzing the impact of
explicit regularization on implicit bias and provided a novel
geometric interpretation of their interplay. By extending the
mirror flow framework, we have outlined a method to con-
trol dynamic implicit bias through dynamic explicit regular-
ization. Our analysis has characterized their joint effects on
the training dynamics, including positional bias, type of bias,
and range shrinking. Additionally, we have established a

= 1.90
§ — wd=0.1
é) 1.85 wd = 0.2, turn-off
2 wd=0.2
S
= 1.80 \ wd=0.5
E \ —— wd = 1.0, turn-off
g | - wd=10
= 1.75 .
E) \\
Q \\
Z 170 L
(] 100 200 300 400 500
Iterations
(a) LoRA.
— wd=0.01
8 [y wd = 0.02, turn-off
wd =0.02
wd=0.1

-

—— wd = 0.2, turn-off

=N

Nuclear norm / Frobenius norm

[

=}

100 200 300
Epochs

(b) Attention.

Figure 4. Ratio between the nuclear norm and Frobenius norm for
LoRA and attention. Training with higher weight decay and then
turning it off in the shaded region allows for exploring the parame-
ter space at higher sparsity. This creates a window opportunity to
improve performance in a relatively sparse regime.

systematic procedure for identifying suitable regularizations
for given reparameterizations and established convergence
and optimality within our framework. As the implicit bias
can change dynamically during training, it is associated with
a time-dependent Legendre function, which might be con-
ceptually of independent interest. To demonstrate the utility
of our theory in applications, we have presented experiments
on sparse coding, matrix sensing, attention in transformers,
and LoRA fine-tuning. As we found, switching off weight
decay at some point during training could improve general-
ization performance by exploiting the accumulated effect
of past regularization. In future, our insights could guide
the development of more effective regularization techniques
that account for implicit bias, such as dynamic weight decay
strategies tailored to specific model architectures. Moreover,
our framework could be used to analyze the impact of early
stopping and extended to incorporate other regularization
factors like the impact of a large learning rate and stochastic
noise.
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A. Implicit bias framework

In this section, for completeness, we present the existing results for the mirror flow framework. Consider the optimization
problem in Eq. (1) for a loss function f : R — R

min f (z).

We can use the implicit bias framework to study the effect of overparameterization. An overparameterization can be
accomplished by introducing a function g : M — R", with M a smooth manifold. For particular g, the reparameterization
of the loss function f leads to a mirror flow. A general framework is given in (Li et al., 2022) to study the implicit bias in
terms of a mirror flow. Let R : R™ — R be a Legendre function (Definition 3.4), then the mirror flow is described by

dViR(xt) = =V f(2)dt, Tinit = g(Winit) (12)
(Li et al., 2022) provide a sufficient condition for the reparameterization g such that it induces a mirror flow Eq. (12). The

Legendre function R controls the implicit bias.

Definition A.1. (Legendre function Definition 3.8 ((Li et al., 2022))) Let R : RY — R U {occ} be a differentiable convex
function. We say R is a Legendre function when the following holds:

* R is strictly convex on int(domR).

* For any sequence {x;}2, going to the boundary of domR, lim; _, ||[VR(x;)||7, = oc.

In order to recover the convergence result in Theorem 4.14 in (Li et al., 2022) the function R also needs to be a Bregman
function, which we define in Definition 3.7.

Definition A.2. (Bregman function Definition 4.1 (Alvarez et al., 2004)) A function R is called a Bregman function if it
satisfies the following properties:

» domR is closed. R is strictly convex and continuous on domR. R is C* on int(domR)).
* Forany € domR and v € R, {y € domR|Dg(z,y) < ~} is bounded.

¢ For any € domR and sequence {z;}$°; C int(domR) such that lim;_,~ =; = z, it holds that lim; o, Dg(z,x;) —
0.

For a reparameterization to induce a mirror flow with a corresponding Legendre function we first have to give two definitions.
Furthermore, we define Jg as the Jacobian of the function g.

Definition A.3. (Regular Parmeterization Definition 3.4 (Li et al., 2022)) Let M be a smooth submanifold of R”. A regular
parameterization g : M — R™ is a C'! parameterization such that 9G(w) is of rank n for all w € M.

For the second definition, we first need to define what a Lie bracket is.

Definition A.4. (Lie bracket Definition 3.4 (Li et al., 2022)) Let M be a smooth submanifold of R”. Given two C'* vector
fields X, Y on M, we define the Lie Bracket of X and Y as [X,Y](w) := Y (w) X (w) — 0X (w)Y (w).

Definition A.5. (Commuting Parameterization Definition 4.1 (Li et al., 2022)) Let M be a smooth submanifold of RP. A C?
parameterization g : M — R? is commuting in a subset S C M iff for any 4, j € [n], the Lie bracket [Vg;, Vg;](w) =0
for all w € S. Moreover, we call g a commuting parameterization if it is commuting in the entire M.

Besides these two definitions, we need to make an additional assumption on the flow of the solution. We define the solution
of the gradient (descent) flow of a function f : M — R" initialized at z € M

dxy = =V f(x)dt To=2x (13)

as r; = ¢L (x) which is well defined if the solution exists. Using this we can make the following assumption.

Assumption A.6. (Assumption 3.5 (Li et al., 2022)) Let M be a smooth submanifold of R” and g : M — R" be a
reparameterization. We assume that for any w € M and i € [n], ¢} (w) is well-defined for ¢ € (T, T’ ) such that either
limg 7, ||¢f, (w)]|z, = oo or T} = oo and similarly for T"_. Also, we assume that for any w € M and i, j € [n], it holds
that for (¢,5) € R? that ¢% o ¢y, (w) is well-defined iff ¢! o ¢7 (w)
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Using these definitions we state the known result for mirror flow.

Theorem A.7. (Theorem 4.9 (Li et al., 2022)) Let M be a smooth submanifold of RP and g : M — R™ be a commuting
and regular parameterization satisfying Assumption A.6. For any initialization w;,; € M, consider the gradient flow for any
time-dependent loss function L, : RY — R:

dw; = —Vth(g(wt))dt, wWo = Wipit-

Define x; = g(wy) for all t > 0, then the dynamics of x; is a mirror flow with respect to the Legendre function R given by
Lemma 4.8 in (Li et al., 2022), i.e.,

dsz(ft) = —Vth(Cﬂt)dt7 To = g(winit)‘

Moreover, this R only depends on the initialization w;,; and the reparameterization g, and is independent of the loss function
Ly.

We have used Theorem A.7 to show the Theorem 3.6 in the main text. Moreover, we recover the convergence result for
Bregman functions in Theorem 3.10. The details of these results are presented in Appendix B.

15



Mirror, Mirror of the Flow: How Does Regularization Shape Implicit Bias?

B. Proofs of Section 3

Theorem B.1. Let g: M — R™ and h : M — R be regular and commuting parameterizations satisfying Assumption A.6.
Then there exists a time-dependent Legendre function R, such that

dvaat ((Et) = _vzf(irt)dt7 o = g(wznzt)

where a; = — fo asds. Moreover, R, only depends on the initialization w;,; and the reparameterization g and h and is
independent of the loss function f.

Proof. Consider the time-dependent loss function L:(z,y) = f(z) + c:y. Applying Theorem A.7 implies there is a
Legendre function R(x,y) such that

{V «R(2t,y¢) fo Vo f(zs)d (14)

OyR(xe,y) = — fo agds.

We use Eq. (14) to derive the time-dependent Legendre function. First note that 9,0, R(x,y) > 0 for (z,y) € domR since
R is strictly convex. This implies that the map y — 0, R(x, y) is invertible. Let the inverse be denoted by Q(x, a), where in

the dynamics a; = — fg asds. Plugging @ into the first part of Eq. (14) gives us

VR (24, Q (24, a4)) / Vaf () (15)

where V, is still the derivative with respect to the first entry. Eq. (15) looks already like a time-dependent mirror flow. We
show now that there exists a Legendre function R,, with the map VR (z,Q (z,«)) as the gradient. This we can do by
showing that the Hessian is symmetric and positive definite and that the R, is essentially smooth.

By implicitly differentiating, we make the following observation:

aQ 1

dr ~ 9,0,R(z,Q) Va0yR(z, Q).

Next, we compute the Hessian and apply observation B:

ViR, = V2R(z,Q) + 9,V.R(z,Q) - %
o2 _ 1 T
=ViR(z,Q) 8,0, (x, Q)ayv R(z,Q)Vi0yR(z, Q)" .

Observe that this matrix is symmetric as it is a sum of symmetric matrices. It remains to be shown that the Hessian matrix is
positive definite. For this, we use that V2 R and 8§R are positive definite. This implies that the the Hessian of R inverse is
PD. We use the block inversion matrix formula for matrix M,

vl

Cc D

where A and D are square and invertible. For notation clarity, define the Schur complement of D as:
S=A-BD'C

Then the inverse of M is given by:

Ml 51 —S§-1Bp-!
~ |-D-'cS"! D !4+ D-'CS'BD"!

The first block entry of the matrix V2R is given by the inverse Shur complement:
1 -1
ViR — 0, Vo R(z,y) V.0, R(z,y)"
(V2R0w0) = 5y 0TV, i)
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which is also PD. Now this implies the result as the inverse of ViRa is PD. It follows that there exists a function R, such
that VR, = V,R(z, Q(x, a)) by Corollary 16.27 in (Lee, 2013), concluding the first part.

Finally, R, is essentially smooth by construction, using that R is essentially smooth. The boundary bn(R,) by construction
is the set of points z* that have a sequence z,, € domintV R(-, Q(-,a)) such that if x,, — x* we have |||VR|| — .
Suppose that R, is not essentially smooth then there exists a sequence {xz,,} with z,, — bd(R,) as n — oo such that
limy, o0 [|VaR(2n, Q(2n,a))||7, < co. Nevertheless, R is essentially smooth this implies that

lim ||VyR(2n, Q(zn,a))|]* = a® = o0,

leading to a contradiction. Hence, R, is a Legendre function with the domain similarly constructed as the boundary. []
Theorem B.2. Assume the same settings as Theorem 3.6. Furthermore assume that for o, > 0 there is aT > 0 such that for
t > T, ap = 0. Moreover for a € [b,0], R, is a contracting Bregman function for some b < 0. Assume that for all t > 0 the
integral a; :== — fot asds > b. For the loss function assume that ¥V , f is locally Lipschitz and argmin{ f (x) : ©* € domR,__}
is non-empty. Then if f is quasi-convex x converges to a point &, which satisfies V. f(x.)T (x — 2.) > 0forz € domR,__.
In addition if f is convex x.,. converges to a minimizer f in domR,__.

Proof. We can bound the trajectory of z; by using the time-dependent Bregman divergence. The divergence between a
critical point z* of f and the iterates x; is given by

D, (x*,xt) := Rg,(z") — Rg, (xt) — VxRat(xt)T(x* —x4) >0

Note that the contracting property implies that for az < a; we have domR,, C domR,,. Thus, a critical point z* in
domR,__ isin domR,,. Hence, the divergence is well-defined. Due to that f is quasi convex and R, contracting we have
that D, (x*, x4) is bounded. From the contracting property it follows that R, _ (z*) > R,, (z*). By definition of a Bregman
function, we have that x; stays bounded for all ¢ > 0. It follows that z is in the domain of R,__ and bounded. Therefore,
we have that D,, (2%, ;) < R (2*) — Ra, (%) — Vo Ra, (z:)T (2% — 2;) =: W;. Now we show that the evolution of W,
is decaying, implying that D,, (z*, x+) is bounded. The evolution is given by

d
th = atERat (l‘t)dt — VzRat (Z‘t)dl’t + VwRat (l‘t)d$t — deRat (th)T(JT* — $t)
t

< —dV.R,, (xt)T(x* — Ty)
= +dV, f(ze)" (z* — z4)
<0

where we used that oy > 0 and the contracting property for the first inequality, the time dependendent mirror flow relationship
in the second and quasi-convexity for the last. Therefore x; stays bounded for ¢ € [0, T]. Now, using the geometeric
interpretation Eq. (7) we have that the evolution of ; = x7, is a gradient flow on a Riemannian manifold with metric

(ViRam ) ! Therefore Theorem 4.14 in (Li et al., 2022) applies, which concludes the result. [J
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C. Optimality characterizing the implicit bias.

In this section, we state a general result for underdetermined linear regression extending Theorem 4.17 (Li et al., 2022).
Moreover, we state a detailed result for matrix sensing extending Corollary 6 (Wu & Rebeschini, 2021).

For underdetermined linear regression, let {(z;,%;)}"; C R? x R be a dataset of size n. Given a reparameterization g with
regularization h, the output of the linear model on the i-th data is 27 g(w). The goal is to solve the regression for the label
vector Y = (y1,¥2,...,yn)’ . For notational convenience, we define Z = (21, 22, ..., 2,) € R™*",

In order to show optimality for underdetermined linear regression we use the following Lemma:

Lemma C.1. (Lemma B.1 (Li et al., 2022)) For any convex function R : R — R U {oco} and Z € R™ 4, suppose
VR(z*) = ZT X for some \ € R", then
R(z*)= min  R(z).

z:Z(x—x*)=0

We now denote the function to be optimized by f(x) = f(Zx — Y'), to emphasize the linearity of the optimization problem.

Theorem C.2. Assume the same settings as Theorem 3.6. Furthermore, assume that for oy > 0 there is a T > 0 such that
fort >T, a, = 0. If x; converges as t — oo and the convergence point T, = lim;_, . x; satisfies Zx~, =Y, then

Zoo = argming. 5.y Rap (). (16)
Therefore, the gradient flow minimizes the changed regularizer R, among all potential solutions. []

Proof. Since we assume convergence i.e. Zw, = y, we have to show the KKT condition associated with Eq. (16) is
satisfied. We have to show that VR, ,.(z*) € span (Z T). This follows directly from integrating the time-dependent mirror
flow fort > T':

t
VRay (1) — VR, (10) = —ZT/ Vf(Zzs—Y)ds € span (Z7).
0

Notice by definition of the Legendre function and its convex conjugate we have that VR, (z¢) = 0. Therefore, VR, (z+) €
span (Z T) , which further implies that VR, .. () € span (ZT). Applying Lemma C.1 concludes the result. [J

Theorem C.2 shows optimality for underdetermined linear regression. Moreover, together with Theorem 3.15 we extend
results by a series of papers on quadratic reparameterizations (Jacobs & Burkholz, 2025; Li et al., 2022; Gunasekar et al.,
2017; Azulay et al., 2021; Wu & Rebeschini, 2021).

We will focus now focus on one particular example: matrix sensing (Wu & Rebeschini, 2021; Gunasekar et al., 2017).
The reason for this focus is to show the effect on the spectrum on the matrix. We show we can modulate between the
Frobenius norm and nuclear norm similar to the modulation between Ly and L; regularization as in (Jacobs & Burkholz,
2025). Moreover, we can induce a new grokking effect distinct from (Lyu et al., 2024; Liu et al., 2023), which considers
large initialization and small weight decay.

Denote by A; € R™ " with i € [m] the sensing matrices and consider the loss function f(X) = 5= > ((4;, X) — y; ).
Moreover, let S} be the class of symmetric positive semi-definite matrices of size n x n.

Corollary C.3. Assume that the sensing matrices A;’s are symmetric and commute, and that there exists a X* € S
satisfying f(X™*) = 0. Moreover, assume that for oy > 0 there is a T > 0 such that for t > T, o, = 0. Then, the gradient

flow defined by % = —Vx f(UUU; — a,Uy and any initialization satisfying UgUJ = BI converges to a matrix Uy,
minimizing
- 1
Z log [ — ) — 1) Xi + Nilog\s (17)
i1 Ar
among all global minima of f, where {\;}"_, denote the eigenvalues of the matrix Xoo = U UL and Ap =

Bexp (—2 fOT asds).

Proof. Convergence follows from Theorem 3.15 and optimality follows from Theorem C.2. It is left to show that the
corresponding time-dependent Bregman function R,, (X;) is given by Eq. (17). From the gradient flow we can derive the

18



Mirror, Mirror of the Flow: How Does Regularization Shape Implicit Bias?

time-dependent Bregman function:

1
R., (X)) =Tr | X; | log — 1| + XilogX,

Bexp (72 fg asds>

Next, from the eigenvalue decomposition for symmetric matrices and the fact that all the above matrices are simultaneously
diagonalizable, we get Eq. (17). O

Experiment To illustrate the implication of Corollary C.3 we conduct an experiment on matrix sensing. The implication is
that when we train with weight decay it is stored in the the time-dependent Bregman function. We can leverage this lasting
effect by turning off the weight decay and reach the sparse (optimal) solution as in Eq. (16). This allows us to induce a
grokking-like phenomenon.

We use a similar experimental setup as in (Wu & Rebeschini, 2021). Specifically, we generate a sparse groundtruth matrix
X* by first sampling U* € R"*", where r = 5, with entries drawn i.i.d. from N (0, 1). We then set X* = U* (U*)" and
normalize it such that || X*||,,c = 1. We generate m symmetric sensing matrices 4; := % (B; + BY'), where the B; entries
are drawn i.i.d. from N (0, 1). We use learning rate 7 = 0.25, initialize Uy = I8 with 8 = 0.1 and train for 5000 steps. We
consider 3 scenarios:

* Train without weight decay i.e. « =0
* Train with weight decay o = 0.01, 0.02

* Train with weight decay o = 0.02 for 2500 steps and after that turn weight decay off, i.e. @ = 0.

The second scenario (o = 0.01) and the third scenario are constructed such that the same amount of total regularization is
applied at the end of training. Moreover, the same setup is used for the linear paramterization with L, regularization.

In Figure. 5 we present the evolution of the training and reconstruction error || X™* — X| |§cm. We observe that in all scenarios
the training error is below 1072, In contrast, only the reconstruction error for the third scenario where we turn off the
weight decay goes below 10~2. Therefore, by accessing the stored weight decay we can reach closer to the sparse solution
illustrating Corollary C.3. This is also confirmed by the evolution of the nuclear norm in Figure. 6.

Note that keeping the weight decay on in the second scenario (wd = 0.1) also leads to a better reconstruction error than the
overfitting of scenario one (wd = 0). Nevertheless, due to the explicit trade-off optimality is not possible. This is not in
contradiction with the analysis in (Lyu et al., 2024), where very small weight decay is used. In the case of small weight
decay, the trade-off is negligible.

The dynamics in Figure. 7 are similar to the dynamics of the grokking phenomenon: generalization happens later after no
progress. Nevertheless, a key difference is that we induce it by turning off the weight decay in contrast to (Liu et al., 2023;
Lyu et al., 2024). This leads to relatively "fast-grokking".

Ablation with different schedules Consider the family of schedules with constant regularization strength up to a specific
time T; such that oy = o for t < T; and oy = 0 afterward, for o a constant. We choose g = 0.02 and T; = T'/2. In
addition, we consider a linear and cosine decay schedule for the regularization with the same total strength (i.e., same
integral), but the regularization is switched off after half of the training time to ensure convergence. To compare with the
effect of turning off (t-o) the regularization, we include the constant schedule with regularization strength ccg = 0.01.

‘We observe in Table 2 that all schedules with decay or turn-off (t-o) converge to a solution with the same nuclear norm of
the ground truth, confirming Theorem 3.6, while the constant schedule does not reach the ground truth.
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Table 2. Performance of different regularization schedules.

Schedule Nuclear norm Train loss Recerror  Time to 10~ 7 train loss
Constant 0.01, no t-o 0.93 72x107% 3.9x 1072 -
Linear decay 1.00 1.8x107% 23 x107* 661
Cosine decay 1.00 1.7x107% 21x107* 624
Constant 0.02, t-o 1.00 1.1x107% 1.7x 104 716
Constant 0.2, t-0 1.00 2.7x 10710 27x10°5 209
Constant 2, t-o 1.00 2.1x10719 24 x10°5 209
Constant 20, t-o 1.00 79x10713 14 %1076 239
10° 10
—— wd = 0.02, turn-off —— wd = 0.02, turn-off
S 107 & 77777 ﬁ:g'oz g0’ \x 77777 ﬁgig'oz
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Figure 5. Train and reconstruction error for the matrix sensing experiment for quadratic parameterizations. Observe that both the training
and reconstruction error decrease when the weight decay is turned off recovering the sparse ground truth.
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Figure 6. Tracking the nuclear norm for both quadratic and linear reparameterization. In the case of the quadratic parameterization, the
effect of the regularization gets stored resulting in a better reconstruction error in Figure. 3, whereas this does not happen in the linear
case. In the linear case, the nuclear norm increases to the level of that without explicit L;-regularization.

D. Deeper reparameterization

In this section, we explore several reparameterizations and limitations of the framework. We show that Theorem 3.6 does
not apply to linear parametrization. Moreover, Theorem 3.6 does not apply to overparameterizations with a depth larger than
2 and weight decay. Nevertheless, we show in experiments that similar effects can occur. We illustrate both the type change
and range shrinking effect.

Linear parametrization From Corollary 3.12, we derive another corollary for non-overparameterized parametrization.

Corollary D.1. Let g(x) = x be the identity parametrization and h € C*(R™,R). Then Theorem 3.6 applies if and only if.
h is given by h(z) = 3", ¢;x; + d where ¢;, d € R are arbitrary coefficients.

Proof. To apply the theorem, h needs to be commuting with g, implying that 9;0;h = 0 Vi € [n], concluding the result. (]

Corollary D.1 poses a limitation in the applicability of Theorem 3.6. Since h is not positive for all z € R", the resulting
optimization problem is ill-posed. Therefore, standard non-reparameterized loss functions cannot be analyzed in this manner.

20



Mirror, Mirror of the Flow: How Does Regularization Shape Implicit Bias?

T
Traini
0.4 —— Training .
Reconstuction
0.3
S
= 0.21
0.1
0.0‘L

0 250 500 750 1000 1250
Time

Figure 7. Training and reconstruction error for « = 0.02 and turn-off. We recover the sparse ground truth by turning weight decay off for
matrix sensing.

Beyond quadratic reparameterization We show that the current framework excludes higher-order reparameterization
with weight decay. In order to show that

Theorem D.2. Let g : R¥ — R be given by g(w) := I¥_,w; , a k > 2 depth reparamterization. Moreover, let h : R¥ — R
and h(w) = Zle w?. Then g and h do not commute.

Proof. This follows directly from checking the commuting condition between g and h:

Vg, Vwh](w) = ng(w)V2 h(w) — th(w)vq%;g(w)

(4 — 2k) Wi 1y wi

(4 — 2k) Wiep) frywi

In order for this to be equal to zero all products need to be zero. This implies that the gradient flow given by

ek {13 wi e
dw; = — O V. f(g(w)) — apwydt,
e (k) {ry Wi

becomes dw; = —a;wdt and is independent of f. Hence, g and ~ do not commute [J

Theorem D.2 implies that we can not apply Theorem 3.6. We note that the commuting condition is only a sufficient criterion
such that a pair (g, h) is a time-dependent mirror flow.

Experiment Although our theoretical result does not hold for reparametrizations with higher depth, we illustrate that
the expected effects do occur as well for higher depth. We consider the reparameterization m ® w ® v for diagonal linear
networks and compare with m ® w, both with weight decay. Moreover, we compare with the reparameterization m with L
regularization to motivate the importance of the geometry, which is controlled by the time-dependent Legendre function.
This is similar to the matrix sensing case explored in the previous section and main paper.

Let d = 40 be the amount of data points and n = 100 the dimension of the data. We generate independent data
Zy. ~ N(0,I,) for k € [d]. We assume a sparse ground truth 2* such that ||2*||1, = 5. The training labels are generated
by yr, = Zka*. Moreover, the mean squared error loss function is used. The learning rate = 10~2 and we use weight
decay o € {0.01,0.1, 1}. We run the 100000 steps with weight decay, after that we run the same amount of steps without
weight decay. We initialize m = 0 and w = z = 1, this ensures that both parametrizations are initialized at zero and have
the same scaling. In this setup, we illustrate the type change similarly predicted for the parametrization m © w. Moreover,
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we illustrate the range shrinking which occurs for higher depth parametrization u?* — v2*. Note that the ground truth has
the following ratio between the L and Ly norm 2.23.

In Figure.8a we observe for m that higher weight decay does not get closer to the ground truth after turning the L;
regularization off. This is in line with the fact that the regularization is not stored in the geometry as described by Eq. (7).
By turning off the regularization we converge to the closest solution in Ly norm. This is best seen in Figure.9a, where the
ratio increases above the value of the ground truth.

In Figure.8b we observe for m © w that higher weight decay gets closer to the ground truth after turning the weight decay
off. This is in line with the fact that the regularization is stored in the geometry as described by Eq. (7) and a type of bias
change from L5 to Lq. Furthermore, this is also confirmed in Figure.9b that for large weight decay, the ratio gets close to
the ratio of the ground truth only after turning the weight decay off. This also illustrates Theorem 3.10 and 3.11.

In Figure.8c, we observe for the regularization strength 1e — 1 a similar effect corresponding to the type of bias change
from Lo to L. In contrast, the higher regularization does not exhibit the same behaviour. We claim this is due to the
range-shrinking effect. To motivate this is not due to the dynamics getting stuck at x = 0 we report the final value of the first
parameter. The value is equal to 1.58 which is not equal to either 0 or the ground truth value 1. To add to this, in Figure.9¢c
we unveil that the ratio for large weight decay stays constant.

In conclusion, the type of bias can improve generalization, whereas m ® w even goes to the ground truth with high
regularization, m does not. Moreover, when we use higher order reparametrization such as m ® w ® z we encounter a
different phenomenon: range shrinking. To add to this, higher-order parametrization still exhibits the type of bias change in
a certain range of regularization strength. Thus, our theoretical framework leads to verifiable predictions. These can be used
to improve the training dynamics of neural networks in general.
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Figure 8. Illustration of the effect of weight decay with higher order reparameterizations on generalization performance.
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Figure 9. The ratio between the L and Lo for diagonal linear networks.

22



Mirror, Mirror of the Flow: How Does Regularization Shape Implicit Bias?

E. Sparse coding

We extend our study to the traditional sparse coding problem, with our proposed reparameterization substituting the standard
sparse coding step. For this experiment, we use the Olivetti faces dataset. We denote the dictionary with D, labels with z,
the code with g(u, v) and regularization with h(u, v). The feature dimension of D is n. This is solved as a linear regression
problem with mean squared error. We have used a learning rate n = 0.001/Lip(D) where Lip(D) denotes the resulting
Lipschitz constant of the optimization problem depending on the dictionary D. In addition, we set the number of features
n = 50 and run for 100 iterations.

The reparameterization v2* — v?* In this context, we reparameterize the sparse code as g(u,v) = u?* — v and set the
regularization h(u,v) = > ., u2k 4 v2?¥ as discussed in the main paper. This parameterization exhibits range shrinking as
illustrated by the time-dependent Legendre function in Figure 10.

0.002

Ra(x)

0.001

0.000

S99 02 00 02
X

Figure 10. The evolution of the approximated R, associated with u* — v*, where a = — f(f asds.

1 1

The parameters are initialized as ug = (/22 + 52 + 2)*" and vy = (/22 + 2 — 2)*", where 8 = 1,z ~ N(0,1,,),
and all operations are pointwise. We set the regularization strength to & = 0.001 and explore various values of k € [7].
Throughout the training process, we track two key metrics: the reconstruction mean squared error (MSE) and the nuclear
norm of the sparse code, g(u,v) = u?¥ — v?*. The evolution of the nuclear norm is presented in Figure.11a. We observe
the effect of the range shrinking for £ > 1, for larger & the evolution of the nuclear norm becomes stationary faster. This
indicates that the range in which the time-dependent Legendre function is allowed to move has shrunk. The shrinking also
causes the MSE to converge faster for large &, shown in Figure.11b.

The reparameterization log(u) — log(v) We consider a novel reparameterization. In the main text, we have seen that the
regularization changed the type of bias from Lo to L;. We now consider a reparameterization with explicit regularization
that leads to the opposite type of bias change. The reparameterization is g(w) = log(u) — log(v). The regularization found
in Corollary 3.12 is h(w) = Y .-, log(u;) + log(v;). Then for u,v > 1 we can apply Theorem 3.6.

We now give the resulting time-dependent Legendre function. The time-dependent Legendre function is

Z uO . —2a)log (e7*" +1) + (vai — 2a) log (e*" +1) Va < %min{ug,i,vai}.

)-P\’—‘

The global minimum is centered at V, R, = 0 and is given by log <\/u§ — 2a> — log (\/’U% — 2a). Thus a shift occurs

when a changes, illustrating the positional bias. Moreover, to illustrate the type change, consider the balanced initialization
ug = vg = I, the Legendre function is then given by

Ru(z) = = (B — 2q) Zlog (2 cosh(z;))

i=1

NG
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Figure 11. Results for sparse coding reparameterisation g(w) = u?k — 2k

which resembles the log-cosh loss function with vertical rescaling. The rescaling changes the type of bias from L; — L.
The type here is L close to the origin and L; further away from zero. Due to the scaling, it becomes closer and closer to Ls.
This is illustrated in Figure.12. Furthermore, we will show in experiments that the type change is crucial for generalization.

Figure 12. From L, to Lo implicit bias, witha = — fot asds.

In this context, we reparameterize the sparse code as g(w) = log(u) — log(v) € R™ and replace the regularization as
discussed. We initialize the parameters as up = 1/(8(1 + e~ %)) and vo = 1/(8(1 + e*)), where 5 = 1 and = 0.1. Note
that the initialization is different for stability reasons. We explore various values for a € {0.0001,0.001,0.01,0.1,0.0,1.0}.
During the training process, we track two key metrics: the reconstruction Mean Squared Error (MSE) and the nuclear
norm of the sparse code, defined as g(w) = logu — logv. The results are illustrated in Figure.13. We observe that higher

regularization leads to a faster increase in the nuclear norm, which confirms the movement to Lo regularization. This leads
to a construction error.
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Figure 13. Results for sparse coding reparameterisation g(w) = logu — logv

F. Hyperparameters and additional figures on quadratic reparameterizations

We present the experimental details and additional figures such as validation error and accuracy. Moreover, we present
the evolution of the time-dependent Legendre functions corresponding to m ® w in Figures.2a and 2b . In the case of
attention, we used the optimizer AdamW with a learning rate 1e — 4 and a constant learning rate. We start training from a
pretrained tiny-ViT on ImageNet. Moreover, the CIFAR10 experiment is run over 3 seeds. Finally, for LoORA we use SGD
with momentum (0.9), constant learning rate 2e — 4, LoRA rank 8, alpha 8 and no drop-out. The GPT-2 experiment is run
over 2 seeds.

The validation accuracy is given in Table 4 for the attention experiment. The validation loss is given in Table 5 for the LoRA
experiment. In all cases turning off the weight decay leads to an improved validation score (accuracy or error). In Table 3 we
provide an ablation for various turn off points of the weight decay for strength 0.2. Turning off leads to better generalization
at the intersection point or even before intersection.

Table 3. Validation accuracy and ratio at different weight decay turn-off points.
WD Off | Intersect | Val Acc (WD) | Val Acc (Off) | Norm Ratio

50 104 70.7 72.4 6.9
100 195 70.2 72.6 6.5
150 270 71.1 73.4 6.4
200 None 70.3 (6.3) 72.5(6.1) -

Furthermore, we provide training of a tiny-ViT from scratch on CIFAR10 with varying weight decay in Figure. 14. The
learning rate is 1e — 3 and we use cosine warmup. Observe that higher weight decay is necessary to keep the ratio down at
the end of the training. This can improve the validation error significantly as observed for wd = 0.1.

Table 4. Validation accuracy for tiny-ViT experiment (attention).

Dataset ‘ wd = 0.2 wd = 0.2, turn-off wd = 0.1 wd = 0.02 wd = 0.02, turn-off wd = 0.01

TmageNet 71.08 73.66 71.76 74576 75.24 75.05
CIFARIO | 52.38(+£0.16)  56.7(+(0.39)  54.95(£0.36) | 57.05(£0.27)  57.78(+0.32)  57.33(40.44)
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Table 5. Validation loss for LORA experiment on Shakespeare dataset.
Architecture | wd =10  wd=1.0,tum-off wd=05 | wd=02 wd=02 tun-off wd=0.1
GPT2-x1 2.99 2.96 2.97 2.96 2.95 2.96
GPT2 3.44(40.00) 3.42(4+0.00) 3.43(£0.00) | 3.43(40.01) 3.41(4+0.00) 3.42(£0.01)

Table 6. Quadratic reparameterization.

Matrix sensing vut U € Rvxn
Attention Softmax(QKT)V Q, K,V c¢ Raxd
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(a) Validation error. (b) Ratio of the nuclear norm and the Frobenius norm.

Figure 14. Varying the weight decay parameter for a ViT on CIFAR10. Higher weight decay leads to a lower ratio and can also lead to
lower validation errors.

G. Learning rate schedule

We further study the effect of the learning rate scheduler. Specifically, we run pre-trained ViT-tiny on ImageNet classification
fine-tuning task. We set the learning rate to le — 4 with AdamW optimisers. We also vary the weight decay in the range
[0.001,0.003,0.005,0.007,0.01]. Moreover, for each of the settings, we train two comparison experiments, one without a
learning rate scheduler, and one with the popular CosineAnnealingWarmRestarts.

The results are shown in Figure.15. Furthermore, results with SGD optimizer are included in Figure.16. We observe in both
figures that the validation accuracy increases for the decaying schedule in comparison to the constant schedule. Moreover,
we again observe a decaying ratio, for stronger weight decay the ratio decreases more. Moreover, decaying the learning
rate has a similar effect as turning off the weight decay on the implicit and explicit regularization. Note that the AdamW
optimizer can have additional effects that also contribute to changing the ratio. Furthermore, regardless of the learning rate
schedule, the ratio is decreasing indicating a modulation from Frobenius norm towards nuclear norm minimization.
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Figure 15. Results for ViT-tiny fine-tuning task with AdamW optimiser on ImageNet.
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Figure 16. Results for ViT-tiny fine-tuning task with SGD optimiser on ImageNet.
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